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The center of mass (c.m.) and spin for isolated sources of gravitational radiation that move at relativistic
speeds are defined. As a first step we also present these definitions in flat space. This contradicts some
general wisdom given in textbooks claiming that such definitions are not covariant and thus, have no
physical meaning.We then generalize the definitions to asymptotically flat spacetimes giving their equations
of motion when gravitational radiation is emitted by the isolated sources. The resulting construction has
some similarities with the Mathisson-Papapetrou equations which describe the motion of the particle in an
external field. We analyze the relationship between the c.m. velocity and the Bondi linear momentum and
show they are not proportional to each other. A similar situation happens between the total and intrinsic
angular momentum when the Bondi momentum vanishes. We claim that extra terms should be added in
other approaches to adequately describe the time evolution of isolated sources of gravitational radiation.
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I. INTRODUCTION

The notions of center of mass (c.m.) and spin are very
useful concepts for isolated systems in Newtonian mechan-
ics. They arise from the invariance of the Lagrangian of the
system under Galilean transformations plus the definition of
the c.m. position as the special origin with vanishing mass
dipole moment. A perfectly valid question is whether these
definitions can be generalized to isolated systems in general
relativity (GR). Using the notion of asymptotically flat
spacetimes, onehas available amathematical tool to describe
isolated sources in general relativity. Those spacetimes come
equipped with a null boundary and a symmetry group
constructed from asymptotic killing fields of the spacetime.
The restriction of those fields to the null boundary form the
Bondi-Metzner-Sachs (BMS) algebra, the direct sum of the
Lorentz algebra plus an Abelian subalgebra called super-
translations. A particular linear representation of the BMS
algebra is constructed from integrals on two surfaces at null
infinity. They are called Linkages and are used to define the
Bondi 4-momentum vector and the linkage angular momen-
tum two-form at null infinity [1].
It is worth mentioning that all the definitions of angular

momentum in the literature [2–8] have a supertranslation
ambiguity and thus, it is not easy to extract its physical
meaning. This fact has been recognized bymany authors and
usually one fixes the supertranslation freedom by selecting a
particular Bondi gauge to perform the calculations. This
point is extremely important and must be emphasized
accordingly. Instead of having the usual 4 degrees of
freedom (d.o.f.) in the definition of angular momentum that
are associated with the translation of the origin, the

supertranslation subalgebra has infinite d.o.f. Thus, if one
tries to fix an origin by demanding the vanishing of the mass
dipole moment, one still has infinite many different defi-
nitions of intrinsic angular momentum to choose from. One
way to get rid of this ambiguity is to find first a canonical
way of fixing all the supertranslation freedom except the 4
translational d.o.f. for each Bondi time. Next, one considers
a one parameter family of cuts with a vanishing mass dipole
moment to define the c.m. worldline. This approach is
followed in thiswork and the c.m.worldline is defined on the
solution space of the canonical equation that fixes all but the
4 translational degrees of the supertranslation freedom. In
principle those four points are not related to the points of the
spacetime. The identification comes from a completely
different piece of information that, surprisingly, yields the
same equation as the canonical equation that fixes the
supertranslation freedom.
Prior work related to this presentation [9,10] assumed a

slow motion approximation. A central feature in those
approaches was a time dependent translation from an
arbitrary Bondi frame to the c.m. worldline where the
mass dipole part of the linkage angular momentum tensor
vanished. The c.m. worldline was defined on a special
space called observation space with a flat Minkowski
metric. It was then argued that this observation space
was related to the interior points of the spacetime at a linear
approximation. Since a slow motion approximation was
assumed, angles were kept unchanged when performing a
BMS transformation to an arbitrary Bondi frame. Likewise,
the Bondi gauge was fixed at an initial time when no
gravitational radiation was present. The resulting c.m.
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worldline was assumed to move at Newtonian speeds and
not surprisingly there was no coupling between the c.m.
motion with the spin of the source. They were independent
objects with their own evolution equations.
However, recent observations of gravitational waves for

coalescence binaries indicate that one or both black holes
could be moving at relativistic speeds close to the merger
point. In this case the dynamical evolution of the black
holes must also include the coupling to the spins and the
final black hole could move at recoil velocities close to
4000 km=s. To analyze this relativistic situation we start
with the linkage angular momentum two-form described in
Ref. [10] in a Newman-Unti (NU) foliation, and then
describe this situation on an “inertial” Bondi coordinate
system. To perform such a task, onemust generalize the time
dependent translation given in a previous work [10] to
include boosts and rotations, i.e., time dependent fractional
angular transformations. Using this time dependent Lorentz
transformation, one obtains a definition of the c.m. that
depends on both the mass dipole moment and the spin of the
system. Furthermore, the equations of motion include this
coupling with the spin and gives additional terms to the ones
obtained before.
The term relativistic c.m. deserves an explanation since

in general relativity physical variables do not depend on any
set of special observers like the inertial coordinate systems of
special relativity. Nevertheless, for asymptotically flat space-
times the Bondi coordinate systems define special observers
that resemble the inertial systems of special relativity. The
notion of a relativistic c.m. then arises from a two-form
defined on the Bondi algebra. The idea was to start with
special relativity and then extend this notion to isolated
systems in general relativity. However, to our knowledge,
there is not available in the literature a covariant definition of
c.m. in special relativity. This fact was acknowledged in the
book, TheClassical Theory of Fields by Landau and Lifshitz
[11] and, thus, we are presenting a flat space definition of
c.m. so that a comparison could bemadewith the generalized
notion for asymptotically flat spacetimes.
Another point that can also be raised is that in general

relativity the c.m. and spin of an isolated system are global
quantities, i.e., they cannot be defined locally since it is
impossible to take into account the contribution of the
gravitational radiation. Thus, one finds dynamical defini-
tions that have unexpected consequences. For example one
finds that the c.m. velocity is not proportional to the total
linear momentum. Thus, even when the total momentum
vanishes in a given Bondi frame the c.m. velocity is not
zero. Likewise, the total angular momentum is not equal to
the intrinsic angular momentum when the total linear
momentum vanishes. This issue is discussed once the
relevant equations are presented and the relationships
between the global variables are given.
This work is organized as follows. In Sec. II, we give a

background review of conserved quantities in isolated

systems and present the notion of c.m. in special relativity.
In Sec. III, we introduce some previous concepts needed
in our construction like the Newman-Penrose scalar
transformations, and linkages in general relativity. The
definitions of c.m. and spin are given in Sec. IV. We first
present the linearized gravity version since it should
resemble the flat space definition. We then give the full
GR formulation. In Sec. V we introduce the so-called the
gravitational spinning particle and discuss its similarity
to the Mathisson-Papapetrou model. We also discuss an
unexpected consequence of our approach that can shed
light on recent results in the literature that appear to be
contradictory. Finally, we close this work with some final
remarks and conclusions.

II. BACKGROUND REVIEW

A. Conserved quantities in Minkowski spacetime

Minkowski spacetime is a flat four-dimensional mani-
fold ðM; ηαβÞ [12]. In a Euclidean coordinate system (and
geometrized units G ¼ c ¼ 1) the line element given by

ηαβdxαdxβ ¼ dt2 − dx2 − dy2 − dz2: ð1Þ

A vector field on a Riemannian manifold that preserves
the metric is named as a Killing vector field. These vectors
are the elements of the algebra associated with the group of
isometries. In Minkowski space the Killing equation can be
written as

Lξηαβ ¼ 2∂ðαξβÞ ¼ 0: ð2Þ

The general solution to the above equation can be written as
follows:

ξα ¼ ωαβxβ þ dα; ð3Þ

where ωαβ ¼ −ωβα is a constant antisymmetric tensor, dα is
a constant vector field, and xα ¼ ðt; x; y; zÞ is the basis
vector in a Cartesian coordinate system. It follows from (3)
that there are ten Killing fields in Minkowski space.
Every Killing vector implies the existence of a conserved

quantity. Given a Killing vector ξν and a conserved energy-
momentum tensor Tμν, it is possible to construct a current,

Jμ ¼ ξνTμν ð4Þ

which is conserved since ∂μJν ¼ 0.
Let Σ be a smooth, compact spacelike hypersurface with

boundary S ¼ ∂Σ and Tαβ the energy-momentum tensor.
The following integral:

Qξ ¼
Z
Σ
ξαTαβtβdΣ ð5Þ
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with ta the future-directed timelike normal vector, and
dΣ, the induced volume element on Σ, is a conserved
quantity. By that we mean that, if another compact space-
like hypersurface Σ0 has the same boundary S, then the flux
integral defined on Σ and Σ0 coincide. The boundary S can
be extended to infinity in order to define global charges.
Inserting the killing vector (3) in (5) at t ¼ const, we

obtain ten conserved charges, namely,

Mμν ¼ 2

Z
t
x½μT0ν�d3x; ð6Þ

Pμ ¼
Z
t
T0μd3x; ð7Þ

where tμ ¼ ð1; 0; 0; 0Þ is the normal vector to the surface,
and where Mμν and Pμ are called the relativistic mass
dipole/angular momentum tensor and the momentum
vector, respectively.

B. Center of mass in special relativity

The notion of c.m. in special relativity is intrinsically
linked to the global symmetries of Minkowski spacetime.
The invariance of the action under rotations, boosts, and
translations yield ten conserved quantities, associated with
the total 4-momentum vector and the mass dipole/angular
momentum two-form. If the Lagrangian contains non-
interacting particles, those objects can be written as

Mμν ¼
X
A

2x½μAp
ν�
A ; ð8Þ

Pμ ¼
X
A

pμ
A; ð9Þ

where xμA and pμ
A are the worldline and the momentum of

the Ath particle of the system, respectively. Now, the (i; 0)
components of the tensor Mμν yield the dynamic mass
moment,

Mi0 ≔
X
A

2x½iAp
0�
A ; ð10Þ

usually this vector is denoted by Ni. The dynamic mass
momentNi is related to the mass dipole moment as follows:

Ni ¼ Di − tPi; ð11Þ

where

Di ¼
X
A

xiAp
0
A; ð12Þ

_Di ¼ Pi; ð13Þ

and Pi the spatial part of the linear momentum. Note, from
the above equations, that the object Di does not transform

as the spatial part of a four-vector. So, in order to define
the c.m. notion, one should use the dynamic mass
moment since it transforms as the (i; 0) part of a two-form
under Lorentz transformations. On the other hand, the
components

Mij ≔
X
A

2x½iAp
j�
A; ð14Þ

gives the total angular momentum of the system via
Li ¼ ϵ0ijkMjk. Under a Lorentz transformation Ni and Li

transform in exactly the same form as the electric and
magnetic fields.
Another geometric object that will be important in

our construction is the worldline dependent mass dipole/
angular momentum two-form,

MμνðRÞ ¼
X
A

2ðx½μA − R½μÞpν�
A ; ð15Þ

¼ Mμν − 2R½μPν�; ð16Þ

whereRμ ¼ ðt; RiðtÞÞ is an arbitraryworldline inMinkowski
space. It follows from the above equation that Rμ is defined
up to a term proportional to Pμ. We thus write

Rμ ¼ Rμ
0 þ αPμ;

with Rμ
0Pμ ¼ 0 and α an arbitrary function of time. The c.m.

worldline is selected by the condition MμνðRÞPν ¼ 0. We
thus have

0 ¼ MμνPν − Rμ
0P

2

from which we obtain

Rμ
0 ¼ P−2MμνPν:

The function α can be fixed by introducing an affine length τ.
Defining M2 ¼ P2 and using the fact that the angular and
linear momentum tensors are conserved quantities in flat
space we finally obtain

MRμ ¼ M−1MμνPν þ τPμ; ð17Þ

MVμ ¼ Pμ; ð18Þ

with Vμ ¼ dRμ

dτ .
At this point it is worth making some remarks.
(i) There exists a reference frame x̃μ with x̃0 ¼ τ, the

rest frame for the c.m. Evaluating the above defined
quantities in this frame yields

R̃μ ¼ ðτ; R̃i
0Þ; ð19Þ
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P̃μ ¼ðM; 0Þ; ð20Þ

M̃i0 ¼ D̃i; ð21Þ

M̃i0ðRÞ ¼ D̃i − P̃0R̃i
0 ¼ 0: ð22Þ

(ii) Conversely, starting from definition (15) and per-
forming a Lorentz transformation to the rest frame of
a worldline Rμ we have

R̃μ ¼ ðt̃; R̃i
0Þ; ð23Þ

Ṽμ ¼ð1; 0Þ; ð24Þ

M̃i0 ¼ D̃i − t̃P̃i; ð25Þ

M̃i0ðR̃Þ ¼ M̃i0 − 2R̃½iP̃0�; ð26Þ

¼ D̃i − P̃0R̃i: ð27Þ

If we now impose the condition that for all values
of t̃, M̃i0ðRÞ ¼ 0, we get

P̃0R̃i ¼ D̃i: ð28Þ

Then, the c.m. worldline is given by

R̃μ ¼
�
t̃;
D̃i

P̃0

�
: ð29Þ

Note that from dDi

dt ¼ Pi, valid in any reference
frame, we find that

P̃0 dR̃
i

dt̃
¼ P̃i;

but the lhs of the above equation vanishes in its own
rest frame. We then conclude that Eqs. (29) and (17)
define the same object.

The second method to define the c.m. worldline of
noninteracting relativistic particles can be used to analyze
an assertion made in the book The Classical Theory of
Fields by Landau and Lifschitz where it is stated that a c.m.
definition given by Eq. (14.6) is not a four-vector [11]. It is
now clear that the meaning of this assertion, Eq. (14.6), is
the analog of Eq. (29) written in an arbitrary inertial frame.
However, only in the rest frame of the c.m. worldline is
Eq. (29) valid. If one wants to write down the c.m.
worldline in an arbitrary frame, one can either write down
(17) in a given coordinate system or perform a boost
transformation of (29). As a corollary, one can say that
Eq. (14.6) gives an incorrect definition of c.m. except in
only one frame, namely, where the c.m. is at rest.

The second method can also be generalized to situations
where Eq. (13) is not valid, as in asymptotically flat
spacetimes. By going to the rest frame of a given worldline
and setting M̃i0ðR̃Þ ¼ 0 for any value of t̃, one selects a
vanishing mass dipole moment at each instant of time.
How this worldline is then seen from any other reference
frame is obtained by a reverse boost transformation. This
situation is analogous to the description of the Coulomb
field of a moving charge. In its rest frame, the field is purely
electrical and with a spherical symmetry. Performing a
boost yields a nonsymmetrical electric field plus the
addition of a magnetic field.
The required Lorentz transformations are given by

M̃μνðR̃Þ ¼ Λμ
αΛν

βMαβðRÞ; ð30Þ

where x̃μA; R̃
μ
A and p̃μ

A transforms as usual,

x̃μA ¼ Λμ
αxαA; ð31Þ

R̃μ
A ¼ Λμ

αRα; ð32Þ

p̃μ
A ¼ Λμ

αpα
A: ð33Þ

As we mentioned before, starting from

M̃μνðR̃Þ ¼
X
A

2ðx̃½μA − R̃½μÞp̃ν�
A ; ð34Þ

and setting

M̃i0ðR̃Þ ¼ M̃i0 − 2R̃½iP̃0� ¼ 0 ð35Þ

defines the c.m. in terms of the dynamic mass moment
and the total momentum of the system. In this frame the
c.m. worldline is given by

R̃μ ¼
�
t̃;
D̃i

M

�
; ð36Þ

where the mass M is given by

M2 ¼ PμPμ ¼ P2 ¼ P2
0: ð37Þ

The coordinate description Rα can then be found just
making an inverse Lorentz transformation as follows:

Rμ ¼ ðΛ−1ÞμαR̃α: ð38Þ

Finally, the intrinsic angular momentum is also defined
in this rest frame, namely,

S̃i ¼ 1

2
ϵi0αβM̃αβ ¼ M̃�i0 ð39Þ

where

KOZAMEH, NIEVA, and QUIROGA PHYS. REV. D 101, 024028 (2020)

024028-4



M̃�μν ¼ 1

2
ϵμναβM̃αβ: ð40Þ

To obtain the relationship between the intrinsic and
total angular momentum one then performs an inverse
Lorentz transformation. These relationships are specifi-
cally given below.

C. Lorentz transformations

In this subsection, we write the relations between
variables defined on a generic inertial frame and the
c.m. frame which is moving with velocity Vi ¼ _Ri with
respect to the generic frame. In order to do this, we start
from Eq. (30) and write the three-space tensor as follows:

M̃i0ðR̃Þ ¼ Λi
αΛ0

βMαβðRÞ: ð41Þ

It is possible to rewrite the last equation as

M̃i0ðR̃Þ ¼ Λi
0Λ0

βM0βðRÞ þ Λi
jΛ0

βMjβðRÞ
¼ Λi

0Λ0
kM0kðRÞ þ Λi

jΛ0
0Mj0ðRÞ

þ Λi
jΛ0

lMjlðRÞ; ð42Þ

where M00 ¼ 0. Now, for a boost with velocity Vi without
rotations, the Lorentz transformation matrix elements are
the following:

Λ0
0 ¼ γ ð43Þ

Λi
0 ¼ Λ0

i ¼ −γVi ð44Þ

Λi
j ¼ δij þ

ðγ − 1Þ
V2

ViVj: ð45Þ

Introducing the above Lorentz coefficients in Eq. (43) we
can write

M̃i0 ¼ γ2ViVkM0k þ γ

�
δij þ

γ − 1

V2
ViVj

�
Mj0

− γ

�
δij þ

γ − 1

V2
ViVj

�
VlMjl

¼ −γ2ViVkNk þ γNj þ γ
γ − 1

V2
ViVjNj

− γVlMil: ð46Þ

Now, by setting Vi ¼ _Ri, and introducing the three-vector
Ni ¼ Mi0 in the last equation, we can write

M̃i0 ¼ −γ2ViðVkNkÞ þ γNj þ γ
γ − 1

V2
ViðVjNjÞ − γVlMil

¼ −
ðγ − 1Þ
V2

ViðVkNkÞ þ γðNj − VjMijÞ: ð47Þ

Inserting the following definition:

Mij ¼ ϵijkðJkÞ ð48Þ

in Eq. (47), we get

ÑiðR̃Þ ¼ γðNjðRÞ − ϵijkVjJkðRÞÞ

−
ðγ − 1Þ
V2

ViðVkNkðRÞÞ: ð49Þ

Setting the lhs of the above equation equal to zero yields

Di ¼ ERi þ ϵijkVjJkðRÞ þ
ðγ − 1Þ
γV2

ViðVkNkðRÞÞ: ð50Þ

Likewise, it is possible to perform the transformation for
the angular momentum. Starting from the equation

M̃ijðR̃Þ ¼ Λi
αΛj

βMαβðRÞ; ð51Þ

and expanding the rhs of the previous equation we get

M̃ijðR̃Þ ¼ γ½Mij − ðRiPj − RjPiÞ þ ViNjðRÞ − VjNiðRÞ�

þ γ − 1

V2
VnðVjMinðRÞ − ViMjnðRÞÞ: ð52Þ

Finally, introducing the Levi-Civita tensor, ϵijk, in both
sides gives

Sk ¼ γðJk − ðR⃗ × P⃗Þk þ ðV⃗ × N⃗ðRÞÞkÞ

−
γ − 1

V2
½ðJ⃗ðRÞ:V⃗ÞV⃗�k: ð53Þ

Introducing a parameter ϵ to the velocity V⃗ and assuming ϵ
to be small, one can retrieve well know formulas. The
zeroth order is just the Newtonian transformations, i.e.,

Di ¼ ERi

Ji ¼ Si þ ϵijkRjPk: ð54Þ

Linear order gives

Di ¼ ERi þ ϵijkVjSk

Ji ¼ Si þ ϵijkRjPk; ð55Þ

etc.

III. ASYMPTOTICALLY FLAT SPACETIMES

We begin this section by introducing the necessary tools
and key ideas that are indispensable in our later discussions.
We keep our explanations as concise as possible since most
of them are discussed in some previous works. Also, the
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reader will be directed to the appropriate references for
extra details.

A. Definition, coordinate transformations

The notion of asymptotically flat spacetime is an
adequate tool to analyze the gravitational and electromag-
netic radiation coming from isolated, compact sources. A
spacetime ðM; gabÞ is called asymptotically flat if the
curvature tensor vanishes as it approaches infinity along the
future-directed null geodesics of the spacetime. The geo-
metrical notion of an asymptotically flat spacetime can be
formalized by the following definition introduced by
Penrose [13].
Definition: a future null asymptote is a manifold M̂ with

boundary Iþ ≡ ∂M̂ together with a smooth Lorentzian
metric ĝab, and a smooth function Ω on M̂ satisfying the
following:

(i) M̂ ¼ M ∪ Iþ
(ii) On M, ĝab ¼ Ω2gab with Ω > 0
(iii) At Iþ, Ω ¼ 0, na ≡ ∂aΩ ≠ 0 and ĝabnanb ¼ 0

We assume Iþ to have topology S2 × R. In the neighbor-
hood of null infinity, it is possible to introduce a particular
system called a Bondi system. A Bondi system is an inertial
frame in general relativity, its coordinates will be labeled by
ðuB; rB; ζB; ζ̄BÞ. The time uB represents null surfaces, rB is
the affine parameter along the null geodesics of the constant
uB surfaces, and ζB; ζ̄B are the complex stereographic
coordinates [14]. Also, in the neighborhood of Iþ, we can
consider a more general coordinate system, whose coor-
dinates are ðu; r; ζ; ζ̄Þ and where the transformation
between both sets of coordinates are given by

u ¼ TðuB; ζB; ζ̄BÞ → uB ¼ Zðu; ζB; ζ̄BÞ ð56Þ

r ¼ _T−1rB → rB ¼ Z0−1r ð57Þ

ζ ¼ aζB þ b
cζB þ d

→ ζB ¼ −dζ þ b
cζ − a

ð58Þ

where a, b, c, d are four complex functions such as
ad − bc ¼ 1. Here, Z is a smooth real function and T is
the inverse of Z, also _T ¼ ∂uBT, Z0 ¼ ∂uZ, and the
derivatives satisfies Z0 ¼ _T−1. Under Eqs. (56)–(58) the
spherical metric in Iþ transform like

4r2dζdζ̄
P�2 ¼ 4r2dζdζ̄

V2P2
¼ 4r2BdζBdζ̄B

Z02P2
B

: ð59Þ

Here we assume that the conformal functions can be
written as

P� ¼ Vðu; ζ; ζ̄ÞP;
P ¼ 1þ ζζ̄;

PB ¼ 1þ ζBζ̄B:

Now, V ¼ ∂uB∂u is a regular function, with no zeros on the
sphere; V−1 in Eq. (59) represents the deviation of this
limiting two-surface from sphericity. Also, V is the rate of
change (at infinity) of our null coordinate system with
respect to a Bondi null coordinate uB [15] and from
Eq. (56) we can establish the following relation with the
real function Z:

Vðu; ζ; ζ̄Þjζ→ζB
ζ̄→ ¯̄ζB

¼ Z0ðu; ζB; ζ̄BÞ: ð60Þ

Additionally, we introduce some transformation laws
between the coordinates previously introduced, which
can be written in the following way [16]:

P ¼ J−
1
2
PB

_T
ð61Þ

∂ζB
∂ζ ¼ eiλ _T−1 PB

P
ð62Þ

eiλ ¼
�∂ζ̄=∂ζ̄B
∂ζ=∂ζB

�
1=2

ð63Þ

∂
∂ζ ¼

�∂uB
∂ζ

� ∂
∂uB þ

�∂ζB
∂ζ

� ∂
∂ζB ð64Þ

∂
∂u ¼

�∂uB
∂u

� ∂
∂uB þ

�∂ζB
∂u

� ∂
∂ζB þ

�∂ζ̄B
∂u

� ∂
∂ζ̄B ð65Þ

J ¼
�∂ζ̄B
∂ζ̄

∂ζB
∂ζ

�
: ð66Þ

Here λ is interpreted as the local angle of rotation of the
two coordinate grids given by ζ ¼ const and ζB ¼ const
[16]. Associated with these sets of coordinates there are
two sets of null vectors denoted by ðla; na; ma; m̄aÞ for the
Bondi frame and ðl�a; n�a; m�

a; m̄�
aÞ for the other frame which

satisfy the following conditions:

l�a ¼ ∇au; ð67Þ

la�n�a ¼ −ma�m̄�
a ¼ 1; ð68Þ

la ¼ ∇auB; ð69Þ

lana ¼ −mam̄a ¼ 1; ð70Þ

and zero for any other product. Now, using the tetrad
orthonormalization equations [14] we can find a relationship
between these two bases [9],

KOZAMEH, NIEVA, and QUIROGA PHYS. REV. D 101, 024028 (2020)

024028-6



l�a ¼ A

�
la þ

B
A
m̄a þ

B̄
A
ma þ

BB̄
A2

na

�
ð71Þ

n�a ¼ A−1na ð72Þ

m�
a ¼ eiλ

�
ma þ

B
A
na

�
ð73Þ

m̄�
a ¼ e−iλ

�
m̄a þ

B̄
A
na

�
ð74Þ

where A, B are two smooth functions with spin weight zero
and one, respectively, andwhere λ is the real phase defined by
Eq. (63). Now, we find the functions A and B by differ-
entiating (56),

A ¼ 1

Z0 ð75Þ

B
A
¼ −

L
rB

: ð76Þ

Thus, we can write

l�a ¼
1

Z0

�
la −

L̄
rB

ma −
L
rB

m̄a þ
L̄L
r2B

na

�
ð77Þ

n�a ¼ Z0na ð78Þ

m�
a ¼ eiλ

�
ma −

L
rB

na

�
ð79Þ

m̄�
a ¼ e−iλ

�
m̄a −

L̄
rB

na

�
: ð80Þ

where the function L is given by

LðuB; ζB; ζ̄BÞ ¼ −
ðBðuBÞTðuB; ζB; ζ̄BÞ

_T
¼ ðBðuÞZðu; ζB; ζ̄BÞ:

ð81Þ

Finally, for any functionf ¼ fðu; ζB; ζ̄BÞwith spinweight s,
we define the following operators ðB and ð̄B as

ðBðuÞf ¼ P1−s
B

∂ðPs
BfÞ

∂ζB ð82Þ

ð̄BðuÞf ¼ P1þs
B

∂ðP−s
B fÞ

∂ζ̄B : ð83Þ

Here the subscript umeans to take the differential operator ð
keeping u constant. In the following sections, we will omit
the subscript (u) in the operators ðB and ð̄B when it matches

with the dependence of the function, i.e., ðBðuÞf ¼ ðBf
if f ¼ fðuÞ.

B. Weyl scalars and shear transformations

The transformation between the different Weyl scalars,
Maxwell scalar, and spin coefficient can be computed using
the tetrad equations (77)–(80). Particularly, we are focused
on the following transformations:

ψ0�
1

Z03 ¼ eiλ½ψ0
1 − 3Lψ0

2 þ 3L2ψ0
3 − L3ψ0

4� ð84Þ

ϕ0�
0

Z02 ¼ eiλ½ϕ0
0 − 2Lϕ0

1 þ L2ϕ0
2� ð85Þ

σ0�

Z0 ¼ e2iλ½σ0 − ðBðuBÞL − L _L�: ð86Þ

It is quite convenient to introduce in Eq. (84) the linkage
supermomentum [1] (see next subsection),

ΨL ¼ ψ0
2 þ σ0 _̄σ0 − ð̄2Bσ

0: ð87Þ

Using ΨL, we can write Eq. (84) in the following way:

ψ0�
1

Z03 ¼ eiλ½ψ0
1 − 3LðΨL þ ð̄2Bσ

0 − σ0 _̄σ0Þ þ 3L2ψ0
3 − L3ψ0

4�:
ð88Þ

In the Newman-Penrose formalism, the evolution equations
are given by the Bianchi identities. In Bondi coordinates
they can be written as [14]

_ψ0
1 þ ðBΨL ¼ −ð̄Bσ0 þ ðBσ0 _̄σ0 þ 3σ0ðB _̄σ0; ð89Þ

_ΨL ¼ _σ0 _̄σ0; −ð2 _̄σ0 − ð̄2 _σ0 ð90Þ

_ϕ0
0 þ ðϕ0

1 ¼ σ0ϕ0
2: ð91Þ

Finally, we introduce the tensorial spin-s harmonic trans-
formation between ðζ; ζ̄Þ and ðζB; ζ̄BÞ. A general relation
between these two bases is very difficult to find. However,
using the asymptotic behavior of the null vectors ðmi�; m̄i�Þ
and ðmi; m̄iÞ defined on the sphere at null infinity allows us
to write (see [16])

Y−1�
1i ðζ; ζ̄Þ ¼ e−iλ½Y−1

1i ðζB; ζ̄BÞ þ H̄Y0
1iðζB; ζ̄BÞ� ð92Þ

H̄ ¼ 2ðB _T
_T

≈ 2
ffiffiffi
2

p
ViY−1

1i : ð93Þ

For further information about the tensorial spin-s harmonic
we leave Ref. [17].
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C. Linkages in general relativity

Symmetries of the spacetime translate into conserved
quantities. This was recognized by Komar associating a
certain integral constructed with Killing fields and showing
they were constants. More precisely, if a vector field ξa

satisfies

ξða;bÞ ¼ 0;

then the Komar integral,

KξðΣÞ ¼ −
1

16π

I
Σ
ðξ½a;b�ÞdSab; ð94Þ

is conserved. Although a generic spacetime has no sym-
metries, asymptotically flat spacetimes have asymptotic
symmetries since as one recedes from the sources the
spacetime resembles Minkowski space. One gives a modi-
fied Killing equation, constructs the associated algebra of
these fields, and gives a linearized representation called
linkages in terms of two-surface integrals. As it is shown in
Ref. [1] the scheme consists of three steps:

(i) Propagate the asymptotic Killing vectors ξa inward
along the null hypersurface Γ intersecting Iþ in Σþ
by means of the null hypersurface Killing propaga-
tion law

½ξða;bÞ − 1

2
ξc;c gab�lbjΓ ¼ 0 ð95Þ

where la is the null generator of Γ. This determines
the vector field ξa on Γ in terms of its asymptotic
values (2.12) on Iþ.

(ii) Evaluate the modified Komar integral

LξðΣÞ ¼ −
1

16π

I
Σ
ðξ½a;b� þ ξc;c l½anb�ÞdSab ð96Þ

over slices Σ of Γ, where l½anb� is the bivector normal
to Σ, with normalization lana ¼ 1.

(iii) Take the limit Σ → Σþ along Γ.
For exact symmetries it reduces to Komar’s integrals.

The extra divergence term in (96) allows the calculation of
the integral without knowledge of the derivatives of ξa in
directions pointing out of Γ. If carried out in conformal
Bondi coordinates the limit in step (iii) leads to integrals
of the Bondi mass and angular momentum aspects. The
coordinate-independent calculation of the limit leads to the
following result:

8π21=2Lξ ¼
I
Σþ

ξala½ψ0
2 þ σ0 _̄σ0 − ð̄2σ0�dS

þ Re
I
Σþ

ξam̄a½2ψ0
1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ�dS

ð97Þ

where “Re” denotes real part, dS is the area element on the
unit sphere, and ma is the complex null vector tangent
to Σþ.
These integrals form a linear representation (the adjoint

representation) of the BMS generators. The angular
momentum and c.m. integrals are obtained by selecting
a Lorentz subgroup. Here is where the only difficulty in
defining angular momentum arises: there is no unique way
to single out a Lorentz subgroup unless one has a canonical
method of fixing the supertranslation freedom. Here we
provide such a method.
The integrand of the supertranslation part in the linkages

is called the linkage supermomentum ΨL. It follows from
the Bianchi identities at null infinity that ΨL is real, i.e.,

ΨL ¼ ψ0
2 þ σ0B _̄σ

0
B − ð̄2σ0B ¼ Ψ̄L:

Under a supertranslation u0 ¼ u − αðζB; ζ̄BÞ it changes as

Ψ0
Lðu0Þ ¼ ΨLðu ¼ αþ u0Þ þ ð2α:

If we demand that at the cut u0 ¼ 0

Ψ0
Lð0Þjl≥2 ¼ 0; ð98Þ

then the only freedom left is a translation corresponding to
the l ¼ 0, 1 spherical harmonics. It is worth mentioning that
Moreschi and collaborators impose an analogous condition
for l ≥ 1 defining what is called the c.m. frame since in this
frame the Bondi momentum has no spatial components [5].
In our construction we fix the supertranslation freedom by
demanding that the linkage supermomentum vanishes on the
u0 ¼ const foliation for l ≥ 2. The only freedom left is a
time and space translation that is fixed by first defining the
c.m. worldline associated with a cut with vanishing mass
dipole moment and then introducing an affine length for this
worldline. This is done in the next section.
We end this section by deriving the equation thatαðζB; ζ̄BÞ

must satisfy so that in the new Bondi frame the linkage
supermomentum only contains l ¼ 0, 1 spherical harmon-
ics. It follows from (98) that

ð2α ¼ −ΨLðαÞjl≥2;

where we have ignored the spherical coordinates for sim-
plicity. Using the available Bianchi identities and Einstein
equations at null infinity one can write down

ð2ð̄2α ¼ ð̄2σ0B þ ð2σ̄0B −
Z

α

uo

½ _σ0B _̄σ0Bjl≥2�du − ð2ð̄2σRðuoÞ

ð99Þ

where we have assumed the spacetime to be stationary and
σ0B ¼ ð2σR for u≦uo. It follows from the above equation that
the l ¼ 0, 1 part of αðζB; ζ̄BÞ is undetermined. The solutions
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of this equation yield a four parameter family of cuts. The
four-dim solution space of Eq. (99), in principle, has nothing
to do with points of the spacetime. The identification comes
from a completely different piece of information that,
surprisingly, yields the same equation as Eq. (99).
If one considers the future null cones from points in an

asymptotically flat spacetime and obtains the intersection
of these future null cones with null infinity, one obtains a
special set of cuts at null infinity. Those cuts are called null
cone cuts and one can obtain a formulation of general
relativity based on these cuts called the null surface
formulation of general relativity or NSF for short [18].
There is a one to one correspondence between null cone cuts
and points of the spacetime. Thus, there is a way to identify
points by the imprint they leave on null infinity [19].
Furthermore, one can obtain the field equations for NSF

that are equivalent to the vacuum field equations of GR
[20]. Those equations are very involved, but one can take its
Huygens part as the main contribution towards the solution.
This follows from the fact that the characteristics of the
field equations are precisely the null cones that define the
cuts. If one writes down the Huygens part of the NSF
equations one gets Eq. (99) [20]. We thus identify the four
parameters of the foliation at null infinity with points of the
spacetime via the one to one correspondence given in the
NSF approach.

1. Linearized solutions

We present here the linearized version of Eq. (99) since
its solution will be used in our construction below. We
define Z ≔ α − σR and write

ð̄2ð2Z ¼ ð̄2Δσ0ðZ; ζ; ζ̄Þ þ ð2Δσ̄0ðZ; ζ; ζ̄Þ; ð100Þ

whereΔσ indicates the difference between σ at some Bondi
time t and σ at the initial Bondi time usually taken to be
−∞. The last equation was first derived by Mason as the
linearized Bach equations [21], and later by Fritelli [22] and
collaborators where they were called the regularized null
cut equation or RNC equation for short The solution to the
RNC equation can be found using the perturbative solution,

Z ¼ Z0 þ Z1 þ Z2 þ � � � ; ð101Þ

where each term in the series is determined from the
previous one and the free data σ0ðu; ζ; ζ̄Þ. The first two
terms satisfy

ð̄2ð2Z0 ¼ 0 ð102Þ

ð̄2ð2Z1 ¼ ð̄2Δσ0ðZ0; ζ; ζ̄Þ þ ð2Δσ̄0ðZ0; ζ; ζ̄Þ: ð103Þ

The zeroth order term Z0 is simply the flat cut and it has
been assumed that in the absence of radiation the Bondi
shear vanishes. Its solution is given as

Z0 ¼ xala; xa ¼ ðR0; RiÞ; la ¼
�
Y0
0;−

1

2
Y0
1i

�
:

The first perturbative term is given by

Z1 ¼ R0 −
1

2
RiY0

1i þ
�
ΔσijR
12

þ
ffiffiffi
2

p

72
σig0I Rfϵgfi

�
Y0
2ij ð104Þ

where Y0
0; Y

0
1i are the tensorial spin-s harmonic [17]. Note

that Z1 depends on the real part of the Bondi shear [9], also
if xaðuÞ describes any worldline, then Zi describes a NU
foliation up to the order needed.

IV. DEFINITIONS OF CENTER OF MASS
AND SPIN

As outlined in the previous section, the spatial d.o.f. left
in a BMS transformation can be used to define the c.m.
worldline. To do that we first introduce the dynamic mass
dipole and angular momentum vectors from the real and
imaginary part of the linkage integral [9,10,15] as follows:

D�i þ ic−1J�i ¼ −
c2

12
ffiffiffi
2

p
G

�
2ψ0

1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ
Z03

��i
:

ð105Þ

Following the ideas presented in Eqs. (34)–(38), we assume
there exists a special worldline for each u ¼ const cut
where the mass dipole moment D�i vanishes. This special
worldline will be called the c.m. worldline of the system.
The angular momentum Ji� evaluated at the c.m. will be the
intrinsic angular momentum Si.
The c.m. worldline is then determined from

Re

�
2ψ0

1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ
Z03

��i
¼ 0: ð106Þ

The above equation gives three algebraic conditions equiv-
alent to Eq. (35) from which the spacial components of the
c.m. are obtained. Since the four-velocity of the worldline is
normalized to one, we use this norm to fix the timelike
component of the worldline coordinate. Additionally, the
intrinsic angular momentum is given by

Si ¼ −
c3

12
ffiffiffi
2

p
G
Im

�
2ψ0

1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ
Z03

��i
: ð107Þ

Following the main ideas of our previous work [9], we
define Di and Ji in a Bondi system,

Di þ ic−1Ji ¼ −
c2

12
ffiffiffi
2

p
G
½2ψ0

1 − 2σ0ðσ̄0 − ððσ0σ̄0Þ�i:

ð108Þ
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Finding the transformation law between the quantities
ðψ0�

1 ; σ0�; ðÞ into ðψ0
1; σ

0; ðBÞ and using the condition that
in the c.m. foliation the dipole mass moment vanishes; i.e.,
Di�ju¼const ¼ 0 yields the relativistic definition of the c.m.
worldline. To simplify the presentation we first perform the
calculations in linearized gravity. In this way we avoid the
technical complications that arise when the spacetime is not
stationary. The full derivation is given later.

A. Center of mass and angular momentum in
linearized gravity

We start from the linearized version of Eq. (88) which is
given by

ψ0�
1

Z03 ¼ eiλ½ψ0
1 − 3LΨL� ð109Þ

using that uB ¼ uþ δu and making a Taylor expansion up
to linear order in δu and its derivatives we get

ψ0�
1

Z03 ¼ eiλ½ψ0
1 þ ψ00

1 δu − 3ðBδuΨL�
¼ eiλ½ψ0

1 − ðBΨLδu − 3ðBδuΨL� ð110Þ

where we can use the following approximation ψ00
1 ≈ _ψ0

1

since they are considered linear terms in δu.The Taylor
expansion is an important step because we want the same
time dependence u on both sides of the equation (110).
Now, we compute the mass dipole and the angular
momentum vector using the shear free part of Eqs. (105)
and (108)

D�i þ ic−1J�i ¼ −
c2

12
ffiffiffi
2

p
G

�
2ψ0�

1

Z03

�
i

ð111Þ

Di þ ic−1Ji ¼ −
c2

12
ffiffiffi
2

p
G
½2ψ0

1�i: ð112Þ

Now, consider the following integral:

�
ψ0�
1

Z03

�
i

¼ 3

4π

Z �
ψ0�
1

Z03

�
Y−1�
1i dΩ

¼ 3

4π

Z
eiλ½ψ0

1 − ðBΨLδu − 3ðBδuΨL�Y−1�
1j dΩB;

and use (92) in the rhs of the previous equation to write

�
ψ0�
1

Z03

�
i

¼ ½ψ0
1 − ðBΨLδu − 3ðBδuΨL�i þ

iffiffiffi
2

p Rj0ψ0k
1 ϵijk:

ð113Þ

Again we use the following tensorial spin-s harmonic:

ψ0
1 ¼ ψ0i

1 ðuÞY1
1iðζB; ζ̄BÞ;

ΨL ¼ −
2

ffiffiffi
2

p
G

c2
MðuÞ − 6G

c3
PiðuÞY0

1iðζB; ζ̄BÞ;

where M is the Bondi energy and Pi is the Bondi
momentum [14]. Inserting these expansions in Eq. (113)
and using the definitions (111) and (105) we get

Di� þ ic−1Ji� ¼ Di þ ic−1Ji −MRi − ic−1RjPkϵijk

þ iffiffiffi
2

p Rj0½ðDk −MRkÞ

þ ic−1ðJk − RlPmϵlmkÞ�ϵijk: ð114Þ

We rewrite the above equation as

Di� ¼ Di −MRi − c−2VjðJk − RlPmϵlmkÞϵijk
Ji� ¼ Ji − RjPkϵijk þ VjðDk −MRkÞϵijk;

where we have inserted the factor
ffiffiffi
2

p
in order to consider

the retarded time factor, since uret ¼
ffiffiffi
2

p
u [17], and where

the velocity is defined as Ri0 ¼ ffiffiffi
2

p
Vi. Imposing the

condition Di� ¼ 0 at u ¼ const, and defining the intrinsic
angular momentum Si as Ji�, we obtain the following
equations:

Di ¼ MRi þ c−2VjðJk − RlPmϵlmkÞϵijk; ð115Þ

Ji ¼ Si þ RjPkϵijk − VjðDk −MRkÞϵijk: ð116Þ

Writing the above equations to linear order in Vi yields

Di ¼ MRi þ c−2ϵijkVjSk; ð117Þ

Ji ¼ Si þ ϵijkRjPk: ð118Þ

As expected these equations are the same as those pre-
viously obtained in special relativity.
The linearized Bianchi identities gives the following

evolution equations:

Pi0 ¼ M0 ¼ 0;

Di0 ¼ Pi;

Ji0 ¼ Si0 ¼ 0:

Taking the time derivative of (115) and using (116) gives

Pi ¼ MVi: ð119Þ

Thus, in linearized GR, the c.m. velocity is proportional to
the linear momentum. This will change in full GR.
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B. Center of mass and angular momentum in full GR

In this section, we include the gravitational radiation
contribution to the definitions of our global variables. We
start with the Winicour-Tamburino linkages [1] and follow
the approach outlined before to define the c.m. worldline
and spin. For simplicity we will make the following
assumptions. We assume that σ0B ¼ 0 for some initial
Bondi time, usually this time is taken to be −∞. This first
assumption fixes the supertranslation freedom at uB ¼ −∞
and it is consistent with our choice of null cone cut. Also,
we assume that the Bondi shear only has a quadrupole term.
Additionally, all the expansions performed will be linear in
δu and its derivatives, and quadratic in σ.
Consider Eq. (105) written as follows:

Li
ξ ¼

3

4π

Z �
ψ0
1

Z03 −
3σ0ðσ̄0 þ σ̄0ðσ0

Z03

��
Y−1�
1i dΩ: ð120Þ

In the full GR case, the transformation (84) can be written as

ψ0�
1

Z03 ¼ eiλ½ψ0
1 − 3ðBδuðΨL þ ð̄2Bσ

0 − σ0σ̄00Þ�: ð121Þ

The shear contribution to the linkage integral can be
written as

−
3σ0�ð�σ̄0� þ σ̄0�ð�σ0�

Z03

¼ −eiλ½3σ0ðBσ̄0 þ σ̄0ðBσ0 þ Fðσ0; ZÞ� ð122Þ

where the function F is given by

Fðσ0; ZÞ ¼ 3½ðZ0 − 1Þσ0ðBσ̄0 − Z0ðBσ̄0ð2BZ

− ð3½σ̄0 − ð̄2BZ�ðBZ0 þ Z0ðBð̄2BZ

− ½σ̄00 − ð̄2BZ
0�ðBZÞðσ0 − ð2BZÞ�

þ ðZ0 − 1Þσ̄0ðBσ0 − Z0ðBσ0ð̄2BZ

þ ð5½σ0 − ð2BZ�ðBZ0 − Z0ð3BZ

þ ½σ00 − ð2BZ
0�ðBZÞðσ̄0 − ð̄2BZÞ:

In such way, the angular momentum c.m. tensor is given by

D�i þ ic−1J�i ¼ Di þ iJi þ iffiffiffi
2

p Vj½Dk −MRk

þ ic−1ðJk − RlPmϵlmkÞ�ϵijk

−
c2

6
ffiffiffi
2

p
G
½−3ðBδuðΨL þ ð̄2Bσ

0 − σ0σ̄00Þ�

−
c2

12
ffiffiffi
2

p
G
½Fðσ0; ZÞ�:

Performing a Taylor expansion linear in δu and its derivatives
gives

D�i þ ic−1J�i ¼ Di þ ic−1Ji þ iffiffiffi
2

p VjðDk −MRk ð123Þ

þ ic−1ðJk − RlPmϵlmkÞÞϵijk
þ ðDi −MRi þ ic−1ðJi − RlPmϵlmiÞÞ0δu

−
c2

6
ffiffiffi
2

p
G
½−3ðBδuðΨL þ ð̄2Bσ

0 − σ0σ̄00Þ�

−
c2

12
ffiffiffi
2

p
G
½Fðσ0; ZÞ�; ð124Þ

where the first derivative of themass dipole/angular momen-
tum tensor is given by

ðDi þ ic−1JiÞ0 ¼ −
c2

6
ffiffiffi
2

p
G

�
−ðΨL − ð̄σ0 þ 3

2
σ0ðσ̄00

−
3

2
σ00ðσ̄0 þ 1

2
ðσ0σ̄00 −

1

2
ðσ00σ̄0

�
:

Using Z1, the linearized solution of the RNC cut equation,

δu ¼ −
1

2
RiY0

1i þ
�
ΔσijR
12

þ
ffiffiffi
2

p

72
_σigI R

fϵgfj
�
Y0
2ij; ð125Þ

and inserting the following tensorial spin-s expansion in
Eq. (123):

σ0 ¼ σijðuÞY2
2ijðζB; ζ̄BÞ

ψ0
1 ¼ ψ0i

1 ðuÞY1
1iðζB; ζ̄BÞ;

ΨL ¼ −
2

ffiffiffi
2

p
G

c2
M −

6G
c3

PiðuÞY0
1iðζB; ζ̄BÞ;

gives

D�i ¼ Di − c−2VjðJk − RlPmϵlmkÞϵijk

−MRi þ 8

5
ffiffiffi
2

p
c
PjΔσijR −

36c2

7G
ϵijkσklmI σjlmR : ð126Þ

(In the above equation we have introduced again the time
factor

ffiffiffi
2

p
.) Similarly, for the angular momentum we have

J�i ¼ Ji − RjPkϵijk þ VjðDk −MRkÞϵijk

−
137c2

168
ffiffiffi
2

p
G
ðσijkR σjkI − σijkI σjkR Þ: ð127Þ

Setting D�i ¼ 0, and keeping up to linear terms in the
velocity gives
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Di ¼ MRi þ c−2ϵijkVjSk −
8

5
ffiffiffi
2

p
c
PjΔσijR

−
36c2

7G
ϵijkσklmI σjlmR ; ð128Þ

Ji ¼ Si þ ϵijkRjPk −
137c2

168
ffiffiffi
2

p
G
ðσijkR σjkI − σijkI σjkR Þ: ð129Þ

V. EQUATIONS OF MOTION

The evolution equation of Di and Ji follows from the
Bianchi identity for ψ0

1 when the l ¼ 1 component of the
real and imaginary part of _ψ0

1 are computed [10]. Following
our assumptions, we can approximate _ψ0

1 ≈ ψ00
1 , since the

difference is a third order quantity. Thus, the evolution
equations can be written as,

Di0 ¼ Pi þ 3

7

c2ffiffiffi
2

p
G
½ðσijk0R σjkR − σijkR σjk0R Þ�

þ 3

7

c2ffiffiffi
2

p
G
½ðσijk0I σjkI − σijkI σjk0I Þ�; ð130Þ

Ji0 ¼ c3

5G
ðσklR σjl0R þ σklI σ

jl0
I Þϵijk

þ 9c3

7G
ðσklmR σjlm0

R þ σklmI σjlm0
I Þϵijk: ð131Þ

Note that in previous equations the definition (108) was
used, and a time derivative was taken. We have then
replaced ψ00

1 by Eq. (89). Similarly, using the Bianchi
identity (90), we can obtain the flux laws for the Bondi
energy and linear momentum, namely,

M0 ¼ −
c

10G
ðσij0R σij0R þ σij0I σij0I Þ − 3c

7G
ðσijk0R σijk0R þ σijk0I σijk0I Þ;

ð132Þ

Pi0 ¼ 2c2

15G
σkl0I σjl0R ϵijk −

ffiffiffi
2

p
c2

7G
ðσjk0R σijk0R þ σjk0I σijk0I Þ

þ 3c2

7G
σjlm0
R σklm0

I ϵijk: ð133Þ

The evolution equations for the c.m. and spin are obtained
by taking time derivatives of Eqs. (128) and (129) and
inserting the relevant Bianchi identities. To keep the algebra
simple we neglect either cubic terms in the gravitational
radiation or linear terms in the velocity times quadratic
terms in the radiation. Those extra terms can be recovered
when needed.

The time evolution of the spin is given by

Si0 ¼ c3

5G
ϵijkðσjl0R σklR þ σjl0I σklI Þ

−
137c2

168
ffiffiffi
2

p
G
ðσijkR σjkI − σijkI σjkR Þ0: ð134Þ

Note that the above equation is identical to the result
obtained in Ref. [10]. This is a direct consequence of the
linear approximation taken in Eq. (127) where quadratic
terms in the velocity were dropped. Those terms could be
recovered when needed and obtain a contribution coming
from the c.m. velocity.
From Eqs. (128) and (130) we obtain

MVi ¼ Pi −
1

c2
ϵijkðVjSkÞ0 þ 8

5
ffiffiffi
2

p
c
ΔPjσij0R

−
36c2

7G
ϵijkðσklmI σjlmR Þ0: ð135Þ

Finally, taking one more time derivative in Eq. (135) and
using the approximations outlined above yields the equa-
tion of motion for the c.m.,

MVi0 ¼ 2c2

15G
σkl0I σjl0R ϵijk −

ffiffiffi
2

p
c2

7G
ðσjk0R σijk0R þ σjk0I σijk0I Þ

þ 3c2

7G
σjlm0
R σklm0

I ϵijk −
1

Mc2
ϵijkPjSk00

þ 8

5
ffiffiffi
2

p
c
ΔPjσij00R −

36c2

7G
ϵijkðσklmI σjlmR Þ00: ð136Þ

The rhs of the equation only depends on the gravitational
data at null infinity and the initial mass of the system. Also,
the second term of this equation corresponds to the angular
momentum-velocity interaction. Note this term is quite
similar to a Mathisson-Papapetrou term [23]. Also note that
when comparing our results from those coming from the
post Newtonian approach we observe many coincidences
and some discrepancies [24].

A. Gravitational spinning particle

TheMathisson-Papapetrou-Dixon equation [25] describes
the motion of a massive spinning body in a gravitational
field. Usually, this equation is combinedwith some constrain
like the Pirani condition. TheMathisson-Pirani condition is a
spin condition used to specify the frame in which the c.m.
will be evaluated [26]. This condition yields the “mass dipole
moment” as measured in the rest frame of the observer.
The equations derived above can be thought of as the

motion of a gravitational spinning particle in an external
field given by the gravitational radiation terms in Eqs. (134),
(135), and (136). For simplicitywe consider only linear terms
in the position and velocity, and also we neglect quadratic
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products of the shear by R and/or R0. Thus, from these
equations we have

Pi ¼ MRi0 þ 1

c2
Vj0Skϵijk þ 1

c2
VjSk0ϵijk −

8

5
ffiffiffi
2

p
c
ΔPjσij0R

Si0 ¼ c3

5G
ðσklR σjl0R þ σklI σ

jl0
I Þϵijk: ð137Þ

On the other hand, in the absence of gravitational radiation,
the previous equations take the following form:

Pi ¼ MRi0 þ 1

c2
Vj0Skϵijk ð138Þ

Si0 ¼ 0: ð139Þ

Note that Eqs. (138) and (139) agree with those coming
from the Mathisson-Papapetrou-Dixon description when the
Mathisson-Pirani condition is applied, i.e., when the spin and
the four-velocity satisfy Sαβuβ ¼ 0. It is clear to see that
Eqs. (138) and (139), and Eq. (9) and the next unnumbered
equation of Ref. [27], are exactly the same. These last two
describe themotion of a free spinning particle in aMinkowski
background without any further fields. However, when
gravitational radiation is considered, the resulting set of
equations are given by (134)–(136). It is clear that Si0 is
different from zero since the gravitational radiation carries
away angular momentum.

B. New relationships between global variables

In Newtonian mechanics (or for relativistic noninteract-
ing particles) the c.m. vector satisfies

MRi ¼ Di; ð140Þ

MVi ¼ Pi; ð141Þ

with Di the mass dipole moment of the system and where
we have used

_Di ¼ Pi: ð142Þ

Likewise, the total and intrinsic angular momentum are
related via

Ji ¼ Si þ ðR⃗ × P⃗Þi ð143Þ

with Si the intrinsic angular momentum of the system.
One can easily show that if the c.m. position is selected as
the new origin, then in that frame Di ¼ 0, Pi ¼ 0, and
Ji ¼ Si.
The situation is completely different for isolated systems

in general relativity that emit gravitational radiation. When
the gravitational radiation is taken into account we obtain a

dynamical definition of c.m. and spin together with their
evolution equations directly from the Einstein equations.
Furthermore, the relationships between Di, Pi, or Ji are
different from their Newtonian counterparts. This can be
seen explicitly in Eqs. (128), (129), and (135).
It follows from the Einstein equations in asymptotically

flat spacetimes that the time evolution of these global
variables are given by

_Di ¼ Pi þ FD;

_Ji ¼ FJ;

_Pi ¼ FP; ð144Þ

where the flux terms Fi are explicitly given in (130), (132),
and (133) and vanish when gravitational radiation is absent.
The relationship between the c.m. and the mass dipole
moment given by

MRi ¼ Di þ Δi ð145Þ

where the term Δi, explicitly given in (128), vanishes in
absence of gravitational radiation. It follows from of this
dynamical definition that the c.m. velocity is not propor-
tional to the momentum, i.e.,

MVi ¼ _Di þ _Δi ¼ Pi þ FD þ _Δi: ð146Þ

Also,

Ji ¼ Si þ ϵijkRjPk þ radiation terms: ð147Þ

Here we have a big discrepancy between the notions of
the c.m. in Newtonian theory and general relativity. If we
set Pi ¼ 0 in the above equations (the c.m. frame) we find
that the c.m. velocity does not vanish nor is Ji equal to Si.
Had we started with another definition for intrinsic angular
momentum, for example, by demanding that Ji ¼ Si when
Pi ¼ 0, then we would have found that the mass dipole
moment does not vanish when gravitational radiation is
present; i.e., we do not have any freedom left to make it
zero. Thus, for isolated sources of gravitational radiation
one must select one definition to describe the global d.o.f.
of an isolated system and derive the resulting equations of
motion. In our approach we define the c.m. trajectory by
finding an appropriate cut foliation on null infinity such
that the mass dipole momentum in that foliation vanishes.

VI. CONCLUSIONS

In this paper, we introduce the notion of relativistic c.m.
and spin for isolated sources of gravitational radiation. We
use the framework of asymptotically flat spacetimes
together with generalized Newman-Unti coordinate trans-
formations and a special foliation of two-dimensional cuts
at null infinity.
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This canonical foliation is selected by requiring that the
l ≥ 2 part of the linkage supermomentum vanishes. This
selects a worldline dependent foliation that functionally
depends on the gravitational radiation reaching null infinity.
By then requiring that in a particular foliation the mass
dipole momentum vanishes one specifies a canonical
foliation associated with the c.m. worldline.
One finds that the c.m. position together with the spin

of the isolated system become components of a two-form
defined on the BMS algebra. Thus, under a BMS trans-
formation the spin and c.m. dipole moment change in a
similar way as the magnetic and electric fields of the
Maxwell tensor. The new relativistic definition yields
spin-velocity terms between the linear momentum and
velocity of the c.m. We also find a modification in the
relationship between the total and intrinsic angular
momentum incorporating new terms that directly comes
from the Lorentz boost.
In this scenario the so-called relativistic angular momen-

tum plays a central role in the dynamical evolution. This

would be important for certain coalescence compact objects
when they attain relativistic velocities.
As an application, we define the notion of a gravitational

spinning particle and show that our equations are similar to
the Mathisson-Papapetrou description for a massive spin-
ning body in a gravitational field.
We also analyze the relationship between the c.m.

velocity and the Bondi total momentum and find that they
are not proportional to each other. We also show that even
when the Bondi linear momentum vanishes, the total and
intrinsic angular momentum do not coincide. We conclude
that new terms should be added to the equations of motion
that arise in other approaches to adequately describe the
time evolution of an isolated system.
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