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We study static, spherically symmetric vacuum solutions to quadratic gravity, extending considerably
our previous rapid communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-
to-Kundt metric ansatz, we arrive at a much simpler form of the field equations in comparison with their
expression in the standard spherically symmetric coordinates. We present details of the derivation of this
compact form of two ordinary differential field equations for two metric functions. Next, we apply
analytical methods and express their solutions as infinite power series expansions. We systematically derive
all possible cases admitted by such an ansatz, arriving at six main classes of solutions, and provide recurrent
formulas for all the series coefficients. These results allow us to identify the classes containing the
Schwarzschild black hole as a special case. It turns out that one class contains only the Schwarzschild black
hole, three classes admit the Schwarzschild solution as a special subcase, and two classes are not
compatible with the Schwarzschild solution at all since they have strictly nonzero Bach tensor. In our
analysis, we naturally focus on the classes containing the Schwarzschild spacetime, in particular on a new
family of the Schwarzschild-Bach black holes which possesses one additional non-Schwarzschild
parameter corresponding to the value of the Bach tensor invariant on the horizon. We study its geometrical
and physical properties, such as basic thermodynamical quantities and tidal effects on free test particles
induced by the presence of the Bach tensor. We also compare our results with previous findings in the

literature obtained using the standard spherically symmetric coordinates.
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I. INTRODUCTION

Soon after Albert Einstein formulated his general rela-
tivity in November 1915 and David Hilbert found an elegant
procedure how to derive Einstein’s field equations from the
variational principle, various attempts started to extend and
generalize this gravity theory. One possible road, suggested
by Theodor Kaluza exactly a century ago in 1919, was to
consider higher dimensions in an attempt to unify the field
theories of gravitation and electromagnetism. In the same
year, another road was proposed by Hermann Weyl. In this
case, the idea was to derive alternative field equations of a
metric theory of gravity by starting with a different action.
Instead of using the Einstein-Hilbert Lagrangian of general
relativity, which is simply the Ricci curvature scalar R
(a double contraction of a single Riemann tensor), Weyl
proposed a Lagrangian containing contractions of a product
of two curvature tensors. Such a Lagrangian is thus not
linear in curvature—it is quadratic so that this theory can be
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naturally called “quadratic gravity.” Einstein was well aware
of these attempts to formulate such alternative theories of
gravity, and for some time he also worked on them.
Interestingly, expressions for the quadratic gravity theory
can be found even in his last writing pad (at the bottom of its
last but one page) which he used in spring 1955.
Although it turned out rather quickly that these original
classical theories extending general relativity led to specific
conceptual, mathematical and physical problems, the nice
ideas have been so appealing that—the whole century after
their conception—they are still very actively investigated.
Both the higher dimensions of the Kaluza-Klein theory and
Weyl’s higher-order curvature terms in an effective action
are now incorporated into the foundations of string theory.
Quadratic gravity (QG) also plays an important role in
contemporary studies of relativistic quantum field theories.
Quadratic gravity is a very natural and quite
“conservative” extension of the Einstein theory, the most
precise gravity theory today. Quadratic terms in the QG
Lagrangian can be understood as corrections to general
relativity, which may play a crucial role at extremely high
energies. In the search for a consistent quantum gravity
theory, which could be applicable near the big bang or near
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spacetime singularities inside black holes, it is important
to understand the role of these higher-order curvature
corrections.

Interestingly, it was suggested by Weinberg and Deser,
and then proved by Stelle [1] already in the 1970s that
adding the terms quadratic in the curvature to the Einstein-
Hilbert action renders gravity renormalizable, see the very
recent review [2]. This property is also preserved in the
general coupling with a generic quantum field theory.
However, due to the presence of higher derivatives,
“massive ghosts” also appear (the corresponding classical
Hamiltonian is unbounded from below). Nevertheless,
there is a possibility that these ghosts could be benign
[3]. For all these reasons, this QG theory has attracted
considerable attention in recent years.

In our work, we are interested in classical solutions to
QG in four dimensions. It can be easily shown that all
Einstein spacetimes obey the vacuum field equations of this
theory. However, QG also admits additional vacuum
solutions with nontrivial Ricci tensor. In this paper, we
focus on such static, spherically symmetric vacuum sol-
utions without a cosmological constant. They were first
studied in the seminal work [4], in which three families of
such spacetimes were identified by using a power expan-
sion of the metric functions around the origin. The failure
of the Birkhoff theorem in quadratic gravity has also been
pointed out therein. Spherically symmetric solutions were
further studied in [5], where also numbers of free param-
eters for some of the above-mentioned classes were
determined. Recently it has been pointed out in [6—8] that,
apart from the Schwarzschild black hole and other spherical
solutions, QG admits non-Schwarzschild spherically sym-
metric and static black holes.

The field equations of a generic quadratic gravity theory
form a highly complicated system of fourth-order nonlinear
PDEs. Only a few nontrivial exact solutions are thus known
so far, and various approximative and numerical methods
have had to be used in their studies. Specifically, in the new
class of black holes presented in [6], the two unknown metric
functions of the standard form of a spherically symmetric
metric were given in terms of two complicated coupled
ODEs which were (apart from the first few orders in the
power expansion) solved and analyzed numerically.
Interestingly, all QG corrections to the four-dimensional
vacuum Einstein equations for constant Ricci scalar are
nicely combined into a conformally well-behaved Bach
tensor. Together with a conformal-to-Kundt metric ansatz
[9], this leads to a considerably simpler autonomous system
of the field equations. We employed this approach in our
recent letters [10,11] for vanishing and nonvanishing cos-
mological constant, respectively. In [10] we were thus able
to present an explicit form of the corresponding nontrivial
black-hole spacetimes—the so-called Schwarzschild-Bach
black holes with two parameters, a position of the horizon
and an additional Bach parameter. By setting this additional

Bach parameter to zero, the Schwarzschild metric of general
relativity is directly recovered. In the present considerably
longer paper, we are now giving the details of the derivation
summarized in [10], and also survey and analysis of other
classes of spherically symmetric solutions to quadratic
gravity.

Our paper is organized as follows. In Sec. I we recall the
quadratic gravity and the Einstein—Weyl theory, and we put
the corresponding field equations into a convenient form in
which the Ricci tensor is proportional to the Bach tensor. In
Sec. IIl we introduce a suitable spherically symmetric
metric ansatz in the conformal-to-Kundt form, and we give
relations to the standard metric form. In Sec. IV we
overview the derivation of the field equations, with various
technical details and a thorough discussion being post-
poned to the Appendixes A—C. In Sec. V expressions for
curvature invariants are derived. In Sec. VI expansions in
powers of A =r—r, around a fixed point r(, and for r — oo
are introduced. In Sec. VII the leading orders in A of the
field equations are solved and four main classes of
solutions are obtained. For these solutions, in Sec. VIII
all coefficients of the metric functions in the power
expansions in A are given in the form of recurrent formulas,
convenient gauge choices are found, and various aspects of
the solutions are discussed. Sections IX and X focus on the
same topics as Secs. VII and VIII, respectively, but this
time for expansions r — oo. In Sec. XI the relation of the
solutions obtained in Secs. VII-X (including their special
subcases) to the solutions given in the literature is dis-
cussed, and summarized in Table III. Mathematical and
physical aspects (specific tidal effects and thermodynam-
ical quantities) of the Schwarzschild-Bach solutions are
discussed in Secs. XII and XIII, respectively. Finally,
concluding remarks are given in Sec. XIV.

II. QUADRATIC GRAVITY AND THE
EINSTEIN-WEYL THEORY

Quadratic gravity (QG) is a natural generalization of
Einstein’s theory that includes higher derivatives of the
metric. Its action in four dimensions contains additional
quadratic terms, namely square of the Ricci scalar R and a
contraction of the Weyl tensor C,,., with itself [12,13]. In
the absence of matter, the most general QG action general-
izing the Einstein-Hilbert action reads [9]'

S = /d4x\/:§ (J/(R - 2/\) _|_ﬁR2 _ aCabch"de> ’ (1)

where y = 1/G (G is the Newtonian constant), A is the
cosmological constant, and «a, f are additional QG theory
parameters. The Einstein-Weyl theory is contained as a
special case by setting # = 0.

'In four dimensions, the Gauss-Bonnet term R peqgRcd —
4R, R + R? does not contribute to the field equations.
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Vacuum field equations corresponding to the action (1)
are

1
14 (Rab - ERgab =+ Agab) —4aB,,
1
+2p <Rab = ;1 R9ap + JapJ — vaa>R =0, (2)

where B, is the Bach tensor defined as

1
Bab = <VCVd + ERCd) Cacbd' (3)
It is traceless, symmetric, and conserved:

gabBab =0, Bab = Bbav vbBab =0, (4)
and also conformally well behaved [see expression (BS5)
below].

Now, assuming R = const., the last two terms in (2)
containing covariant derivatives of R vanish. Using (4), the

trace of the field equations thus immediately implies
R =4A. (5)

By substituting this relation into the field equations (2),
they simplify considerably to

a

h k=—"0-—.
where PEYIY

Rab - Agab = 4kBab7

(6)

In this paper, we restrict ourselves to investigation of
solutions with vanishing cosmological constant A (see [11]
for the study of a more general case A # 0). In view of (5),
this implies vanishing Ricci scalar,

R=0, (7)
and the field equations (6) further reduce to a simpler form
R,y = 4kBab» (8)

where the constant k is now a shorthand for the combi-
nation of the theory parameters k = a/y = Ga. For k =0
we recover vacuum FEinstein’s equations of general rela-
tivity. Interestingly, all solutions of (8) in Einstein-Weyl
gravity (f = 0) with R = 0 are also solutions to general
quadratic gravity (# # 0) since for A = 0 the QG param-
eter # does not contribute to the constant k defined by (6).

III. BLACK HOLE METRICS

For studying static, nonrotating black holes, it is a
common approach to employ the canonical form of a
general spherically symmetric metric

A2 | g
m—kr (d6” + sin“0dg*).  (9)

In particular, for the famous Schwarzschild solution of
Einstein’s general relativity [14] (and also of QG), the two
metric functions are the same and take the well-known
form

ds? = —h(7)de> +

1) = hp) = 1=,

’ (10)
The metric (9) was also used in the seminal papers [6,7] to
investigate generic spherical black holes in quadratic
gravity, in which it was surprisingly shown, mostly by
numerical methods, that such a class contains further black-
hole solutions distinct from the Schwarzschild solution
(10). It turned out that while the Schwarzschild black hole
has f = h, this non-Schwarzschild black hole is charac-
terized by f # h. However, due to the complexity of the QG
field equations (2) for the classical metric form (9), it has
not been possible to find an explicit analytic form of the
metric functions f(7), h(7).

A. A new convenient metric form
of the black hole geometry

As demonstrated in our previous works [10,11], it is
much more convenient to employ an alternative metric
form of the spacetimes represented by (9). This is obtained
by performing the transformation

dr
F=Q(r), t=u— | —, 11
F= Q) | 30 (1)
resulting in
ds? = Q2(r)[d#? + sin’0d¢p? — 2dudr + H(r)du?]. (12)

The two new metric functions Q(r) and H(r) are related to
f(7) and h(7) via simple relations

Q2
r=-(g) ™
where prime denotes the derivative with respect to r. Of
course, the argument r of both functions © and H must be
expressed in terms of 7 using the inverse of the rela-
tion 7 = Q(r).

The metric (12) admits a gauge freedom given by a
constant rescaling and a shift of r,

h=—-QH, (13)

r—Ar+v, u— A"u. (14)
More importantly, this new black hole metric is con-

formal to a much simpler Kundt-type metric,
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ds? = Q*(r) dsg - (15)
Indeed, dsi,, belongs to the famous class of Kundt
geometries, which are nonexpanding, shear-free and
twist-free, see [15,16]. In fact, it is a subclass of Kundt
spacetimes which is the direct product of two 2-spaces, and
is of Weyl algebraic type D and Ricci type II [9,16]. The
first part of

dsi g = d6* + sin?0d¢? — 2dudr + H(r)du®  (16)
spanned by 0, ¢ is a round 2-sphere of Gaussian curvature
K =1, while the second part spanned by u, r is a 2-dim
Lorentzian spacetime. With the usual stereographic repre-
sentation of a 2-sphere given by x+iy=2tan(6/2)exp(i¢),
this Kundt seed metric can be rewritten as

dx? + dy?
L3 +)%)

5 —2dudr 4+ H(r)du?. (17

ds 2Kundt = (

B. The black hole horizon

In the usual metric form (9), the Schwarzschild horizon
is defined by the zeros of the same two metric functions
h(7) = f(7). Due to (10), it is located at 7, = 2m, where m
denotes the total mass of the black hole.

In a general case, such a horizon can be defined as the
Killing horizon associated with the vector field 9,. Its norm
is determined by the metric function —%(7). In the regions
where h(F) > 0, the spacetime is static and ¢ is the
corresponding temporal coordinate. The Killing horizon
is generated by the null vector field 0,, and it is thus located
at a specific radius 7, satisfying

h|?:7h =0. (18)

In terms of the new metric form (12), we may similarly
employ the vector field 0, which coincides with 0,
everywhere. Its norm is given by Q?H. Since the conformal
factor Q is nonvanishing throughout the spacetime, the
Killing horizon is uniquely located at a specific radius r,
satisfying the condition

Hl,_,, =0, (19)
Interestingly, via the relations (13) this automatically
implies h(7;,) =0 = f(7)).

It is also important to recall that there is a time-scaling
freedom of the metric (9)

t > t/o, (20)
where ¢ # 0 is any constant, which implies 7 — ho?. This
freedom can be used to adjust an appropriate value of 4 at a
chosen radius 7. Or, in an asymptotically flat spacetime

such as (10) it could be used to achieve 7 — 1 as ¥ — oo,
thus enabling us to determine the mass of a black hole.

C. The Kundt seed of the Schwarzschild solution

It is also important to explicitly identify the Kundt seed
geometry (16) which, via the conformal relation (15),
generates the well-known vacuum Schwarzschild solution.
This is simply given by

1
F=Q(r)=——, H(r) = —r*=2mr*. (21)
r
Indeed, the first relation implies r = —1/7, so that

H(7) = —(1 —2m/7)/7. Using (13), we easily obtain
(10). It should be emphasized that the standard physical
range 7> 0 corresponds to r < 0. Also, the auxiliary
Kundt coordinate r increases from negative values to 0,
as 7 increases to oo.

Notice that H given by (21) is simply a cubic in the
coordinate r of the Kundt geometry. For m = 0, the Kundt
seed with H = —r? is the Bertotti-Robinson spacetime with
the geometry S? x AdS, (see chapter 7 of [16]), and the
corresponding conformally related metric (15) is just
the flat space. It should also be emphasized that, while
the Schwarzschild and Minkowski spacetimes are (the
simplest) vacuum solutions in Einstein’s theory, their
Kundt seeds (21) are not vacuum solutions in Einstein’s
theory since their Ricci tensor is nonvanishing. In fact, the
Bertotti-Robinson geometry is an electrovacuum space of
Einstein’s theory.

Since conformal transformations preserve the Weyl
tensor, both ds*> and ds% ., are of the same algebraic
type. Indeed, in the null frame k = 9,, I =1HO, + 0,
m; = (14§ (x* + y?))9;, the only Newman-Penrose Weyl
scalar for (17) is W, = — 15 (H” + 2), and both k and [ are
double principal null directions. For the specific function
(21), ¥, =mr. The Kundt seed geometry for the
Schwarzschild solution is thus of algebraic type D. It is
conformally flat if, and only if, m = 0, in which case it is
the Bertotti-Robinson spacetime.

D. The Robinson-Trautman form
of the black hole metrics

Recently, we have proven in [9] that any metric con-
formal to a Kundt geometry must belong to the class of
expanding Robinson-Trautman geometries (or it remains in
the Kundt class). Indeed, performing a simple transforma-
tion r(7) of (15), (17), such that

/ d7
r= | ——,
Q*(7)

H=QH, (22)

we obtain
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dx? +dy?
ds?3.=Q*(F)—————  __2dudi+ H(F)du?®. (23
RT ( )(1+%(x2+y2))2 ( ) ( )
This has the canonical form of the Robinson-Trautman
class [15,16] with the identification

9,7: \/f/h,

The Schwarzschild black hole is recovered for Q(7) = 7
that is Q; = 1, equivalent to f(7) = h(7). Other distinct
non-Schwarzschild black hole solutions are identified
by f(7) # h(7). The Killing horizon is obviously given
by H(7,) = 0, corresponding to H(r,) =0 = h(7,) and
f(7) =0.

H=—h. (24)

IV. THE FIELD EQUATIONS

The conformal approach to describing and studying
black holes and other spherical solutions in FEinstein-
Weyl gravity and fully general quadratic gravity, based
on the new form of the metric (12), is very convenient. Due
to (15), it enables one to evaluate easily the Ricci and Bach
tensors, entering the field equations (8), from the Ricci and
Bach tensors of the much simpler Kundt seed metric
ds% .o In particular, to derive the explicit form of the
field equations, it is possible to proceed as follows:

(1) Calculate all components of the Ricci and Bach
tensors RXmMdt and BXundt for the Kundt seed metric
gﬁ"’d‘. Since such a metric (17) is simple, containing
only one general metric function of one variable
H(r), its key curvature tensors are also simple. Their
explicit form is presented in Appendix A.

(2) Use the well-known geometric relations for the Ricci
and Bach tensors of conformally related metrics
giundt and g,,;, = Q2gKundt Thus it is straightforward
to evaluate the curvature tensors R,, and B, for
spherically symmetric geometries, starting from
their forms of the Kundt seed calculated in the first
step. In particular, since the Bach tensor trivially
rescales under the conformal transformation as
B, = Q72BXundt it remains simple. These calcu-
lations are performed in Appendix B.

(3) These explicit components of the Ricci and Bach
tensors are substituted into the field equations of
quadratic gravity, which we already reduced to the
expression R, = 4kB,,, see (8). This immediately
leads to a very simple and compact form of these
field equations. Moreover, using the Bianchi iden-
tities, it can be shown that the whole system reduces
just to two equations (C18), (C19) for the metric
functions Q(r) and H(r), see Appendix C.

By this procedure, we thus arrive at a remarkably simple
form of the field equations (8) for spherically symmetric
vacuum spacetimes in Einstein-Weyl gravity and general
quadratic gravity with R =0, namely two ordinary

differential equations for the two metric functions Q(r)

and H(r):

QQ" —2Q7 = %kBlH‘l, (25)

QOH' +3Q7H + QF — %sz. (26)

The functions B;(r) and B,(r) denote two independent
components of the Bach tensor,

Bl = HH/W, (27)
1
BZ =HH" - E7_{//2 + 2. (28)

Recall also the relation (7), that is R = 0, which is a trace
of the field equations (8). This relation takes the explicit
form

HQ + HY + é (H'+2)Q=0,  (29)

see (B11). Indeed, it immediately follows from (25), (26):
just subtract from the derivative of the second equation the
first equation multiplied by ' (and divide the result
by 6€).

It is a great advantage of our conformal approach with
the convenient form of the new metric (12) that the field
equations (25), (26) are considerably simpler than the
previously used field equations for the standard metric (9).
Moreover, they form an autonomous system, which means
that the differential equations do not explicitly depend on
the radial variable r. This will be essential for solving such
a system, finding their analytic solution in the generic form
(39), (40) or (43), (44) in subsequent Sec. VI.

V. FUNDAMENTAL SCALAR INVARIANTS
AND GEOMETRIC CLASSIFICATION

For a geometrical and physical interpretation of space-
times that are solutions to the field equations (25), (26), it
will be crucial to investigate the behavior of scalar
curvature invariants constructed from the Ricci, Bach,
and Weyl tensors themselves. A direct calculation yields

Ry R = 16k2B,,, B, (30)
1
BB = 5507 (B)’ +2(B, + B’ (31)
1
CapeaCPPe = S (H" +2)%. (32)

To derive these expressions, we have used the field
equations, the quantities (B7)-(B10), (A13)-(Al6),
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(A9)—(A12), and relations (A2), (B2), (B5) together
with C,pCoP¢d = Q=4 CKundicabed ~which follows from
the invariance of the Weyl tensor under conformal
transformations.
It is interesting to observe from (31) and (A13)—(A16)
with (B5) that
Bab — 0

if, and only if, B,,B*’ =0. (33)

Moreover,

CupeaC? =0 implies B, =0, (34)
because the relation H” + 2 = 0 substituted into (31) gives
B,,B* =0, ie., By, = 0 due to (33).

Notice also that the first Bach component B, = HH""
always vanishes on the horizon where H =0, see the
condition (19).

In view of the key invariant (31), there are two geomet-
rically distinct classes of solutions to (25), (26), depending
on the Bach tensor B,;,. The first simple case corresponds to
B,, = 0, while the much more involved second case, not
allowed in general relativity, arises when B, # 0. This
invariant classification has geometrical and physical con-
sequences. In particular, the distinction of spacetimes with
B,, = 0 and with B, # 0 can be detected by measuring
geodesic deviation of test particles, see Sec. XIII A below.

A. B, =0: Uniqueness of Schwarzschild

First, let us assume the metrics (12) such that B,, =0
everywhere. In view of (33) and (31), this condition
requires B, = 0 = B,, that is

1
H//// _ 0’ H/H/// _ 57_(//2 + 2 =0. (35)
Therefore, all left-hand sides and right-hand sides of
Egs. (25) and (26) vanish separately, i.e.,

QQ" =202, QOH +3Q*H + Q> =0. (36)
The first equations of (35) and (36) imply that H must be at
most cubic, and Q™' must be ar most linear in r. Using a
coordinate freedom (14) of the metric (12), without loss of

generality we obtain Q = —1/r. The remaining equa-
tions (35), (36) then admit a unique solution

H(r) = —r*> =2mr. (37)

Not surprisingly, this is exactly the Schwarzschild solution
of general relativity, see Eq. (21). Thus we have verified
that the Schwarzschild black hole spacetime is the only
possible solution with vanishing Bach tensor. Its corre-
sponding scalar invariants (30)—(32) are

RypR™® = 0= BB, CupegC* = 48m*r®.  (38)

Clearly, for m # 0 there is a curvature singularity at r — oo
. - 2

corresponding to 7 = Q(r) = 0.

B. B, # 0: New types of solutions to QG

Many other spherically symmetric vacuum solutions to
quadratic gravity and Einstein-Weyl gravity exist when the
Bach tensor is nontrivial. They are much more involved,
and do not exist in general relativity. Indeed, the field
equations (8) imply R,, = 4kB,, # 0, which is in contra-
diction with vacuum Einstein’s equations R, = 0.

In the rest of this paper, we now concentrate on these
new spherical spacetimes in QG, in particular on black
holes generalizing the Schwarzschild solution. First, we
integrate the field equations (25), (26) for the metric
functions Q(r) and H(r). Actually, we demonstrate that
there are several classes of such solutions with B, # 0.
After their explicit identification and description, we will
analyze their geometrical and physical properties.

VI. SOLVING THE FIELD EQUATIONS

For nontrivial Bach tensor (B, B, # 0), the right-hand
sides of the field equations (25), (26) are nonzero so that the
nonlinear system of two ordinary differential equations for
Q(r), H(r) is coupled in a complicated way. Finding
explicitly its general solution seems to be hopeless.
However, it is possible to write the admitted solutions
analytically, in terms of (infinite) mathematical series
expressed in powers of the radial coordinate r.

In fact, there are two natural possibilities. The first is the
expansion in powers of the parameter A = r — r, which
expresses the solution around any finite value r, (including
ro = 0). The second possibility is the expansion in powers
of r~! which is applicable for large values of r. Let us now
investigate both these cases.

A. Expansion in powers of A =r-r,
It is a great advantage that (25), (26) is an autonomous

system. Thus we can find the metric functions in the form of
an expansion in powers of r around any fixed value r,

Q(r) = A" f: a; Al (39)
i=0

H(r) = AP ) Al (40)
i=0
where

*For brevity, in this paper the symbol r — oo means |r| — oo,
unless the sign of r is explicitly specified.
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A=r—r, (41)

and ry is any real constant.’ In particular, in some cases this
allows us to find solutions close to any black hole horizon
r, by choosing ry = r,.

It is assumed that i =0,1,2,... are integers, so that
the metric functions are expanded in integer steps of
A = r — ry. On the other hand, the dominant real powers
n and p in the expansions (39) and (40) need not be positive
integers. We only assume that ay # 0 and ¢y # 0, so that
the coefficients n and p are uniquely defined as the leading
powers.

By inserting (39)—(41) into the field equations (25), (26),
we prove in Sec. VII that only 4 classes of solutions of this
form are allowed, namely

7. p] = [1,0]. (42)

In subsequent Sec. VIII, it will turn out that the only
possible solution in the class [n, p] =[-1,2] is the
Schwarzschild black hole (21) for which the Bach tensor
vanishes. Explicit Schwarzschild-Bach black holes with
B, # 0 are contained in the classes [0, 1] and [0, 0]. The
fourth class [n, p] =[1,0] represents singular solutions
without horizon, and it is equivalent to the class (s, 1) =
(2,2) identified previously in [4,7,8].

00 1-2n+2

B. Expansion in powers of r~!

Analogously, we may study and classify all possible
solutions to the QG field equations for an asymptotic
expansion as r — oo. Instead of (39), (40) with (41), for
very large r we can assume that the metric functions Q(r),
H(r) are expanded in negative powers of r as

Q(r) =Y Ar, (43)

H(r)=rP Z Cir . (44)

i=0

Inserting the series (43), (44) into the field equations
(25), (26), it can be shown that only 2 classes of such
solutions are allowed, namely

[N, P] = [-1,3]* [N, P] = [-1.2]*, (45
see Sec. IX. In subsequent Sec. X, it will be shown that the
class [N, P| = [—1, 3] represents the Schwarzschild-Bach
black holes, whereas the class [N,P]=[-1,2]® is a
specific Bachian generalization of a flat space which does
not correspond to a black hole.

VII. DISCUSSION OF SOLUTION USING THE
EXPANSION IN POWERS OF A

By inserting the series (39), (40) into the first field
equation (25), the following key relation is obtained:

DAY giar g (l—i—n+2)(1-3i- 3n+1)—fk Z Alep I+ 4)([I+3)(1+2)(1+1).  (46)

1=2n-2 i=0

I=p-4

The second field equation (26) puts further constraints on the admitted solutions, namely

oo [-2n—p+2 j oo [-2n
Z A! Za,l,cl_J mepr2(J—i+n)(l—j+3i+n+2) +ZAlZaal,2n
1=2nF p-2 =0 =0 =2 =0
1 ® 1-2p+4 3 3 5
_ Al :
_31{2—1—1;4 2 CiCr_i_ 2p+4l—l—p)(l—l—p+4)(l—l—p+3)<l—21—2p+2>]. (47)

Considerably simpler is the additional (necessary but not sufficient) condition following from the trace equation (29) which

reads
0 l-n—p+2
> A
I=n+p-2 i=0

Now we analyze the consequences of Eqs. (46)—(48).

S ety (=i p DU )+ 4 )4 =) = =5 )
I=n

*There may also exist other solutions such that their expansion contains logarithmic or exponential terms in r.
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First, by comparing the corresponding coefficients of the
same powers of A’ on both sides of the key relation (46), we
can express the coefficients c¢; in terms of (products of) a;.
Moreover, the terms with the lowest order put further
restrictions. In particular, comparing the lowest orders on
both sides (that is [ = 2n — 2 and [ = p —4) it is obvious
that we have to discuss three distinct cases, namely:

(1) Case I: 2n—-2<p—4,ie., p>2n+2,

(2) Case II: 2n—-2>p—4,ie, p <2n+2,

(3) Caselll: 2n -2 =p—4,1ie, p=2n+2.

Now let us systematically derive all possible solutions in
these three distinct cases.

A. Case I

In this case, 2n — 2 < p — 4, so that the lowest order in
the key equation (46) is on the left-hand side, namely A’
with [ = 2n — 2, and this yields the condition

n(n+1) =0. (49)
There are thus only two possible cases, namely n = 0 and
n = —1. Next, it is convenient to apply Eq. (48) whose
lowest orders on both sides are

For n = 0, these powers are A2 and A, respectively, but
p—2>2n =0 by the definition of Case I. The lowest
order 0 = —2A° thus leads to a contradiction. Only the
possibility n = —1 remains, for which (50) reduces to

(P=3)(p—4)coAP 4. = 2A7T ... (51)
Since cq # 0, the only possibility is p =2, in which
case ¢y = —1.

To summarize, the only possible class of solutions in
Case I is given by

(52)

[n,p] =[-1,2] with ¢y=-1.

B. Case I1

In this case, 2n — 2 > p — 4, so that the lowest order in
the key equation (46) is on the right-hand side, namely A’
with [ = p — 4, and this gives the condition

plp=1)(p-2)(p-3)=0. (53)

6n(n+p—1)+p(p—1D]coA"™ P2 .. = —2A" + ... Thus there are four possible cases, namely p =0, p =1,
p =2, and p = 3. Equation (48) has the lowest orders on
(50) both sides the same as given by Eq. (50), that is
|

for p=0: [6n(n—1)]coA"? + -+ = =2A" + - necessarilyn =0, 1, (54)

for p=1: [6n2]co A" 4 oo = —2A" ... necessarily n = 0, (55)

for p=2: [6n(n+ 1) 4 2]coA" + -+ - = =2A" 4 - - (3n2 +3n+1)cy = —1, (56)

for p=3: [6n(n +2) + 6]coA" ! + ... = —2A" + ... not compatible. (57)

Moreover, the lowest orders of all the terms in the field
equation (47) for the case p = 2, implying n > 0, are
3a3[n(3n+2)co + 1]A>" +2k(c3 — 1) +--- =0, (58)
which requires ¢, = %1, but the constraint (56) 3n” +
3n+ 1 = £1 cannot be satisfied for n > 0.

To summarize, the only possible three classes of sol-
utions in Case II are given by
[n. p] = [0.0]. (59)

[, p] = [0,1], [n, p] =[1,0].

C. Case III

Now 2n —2 = p —4, that is n = —1 + p/2 equivalent
to p = 2n + 2. In such a case, the lowest order in the key

|
equation (46) is on both sides, namely A! with [ = p — 4.
This implies the condition

p(p —2)[3aj + 4kco(p—1)(p = 3)] =0.  (60)

There are three subcases to be considered, namely p = 0,
p =2, and 3a}=—4kco(p—1)(p—3) with p #0, 1, 2, 3.
This corresponds to n=—1, n=0, and 3a3=—4kc,(4n*-1)
withn # —1,—-1/2,0, 1/2, respectively. The leading orders
of the trace equation (48) on both sides are

2(11n2 +6n+ 1)cgA¥ 4. = —2A" + - .. (61)

Consequently, we obtain
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for n=-1sp=0: 12¢A3 4o = 2A 1 4 ... not compatible, (62)
for n=0&p=2: 200+ =24+ co=-—1, (63)
for  3af = 4kcy(1 —4n?): (11n* +6n+1)cy+---=0 not compatible. (64)

The incompatibility in the cases (62) and (64) are due to the
fact that ¢y # 0 and 11n% + 6n + 1 is always positive. In
the case (63), we employ the field equation (47) which for
n=0, p=2 gives the condition 3a3 + 2k(cj —1) = 0.
Since c¢y=-—1 implies a;=0, we again end up in a
contradiction.

To summarize, there are no possible solutions in Case III.

VIII. DESCRIPTION AND STUDY OF ALL
POSSIBLE SOLUTIONS IN POWERS OF A

Let us analyze all spherically symmetric solutions
contained in the possible four classes (52) and (59)
contained in Case I and Case II, respectively.

A. Uniqueness of the Schwarzschild black hole
in the class [np]=[-1,2]

Starting with the only admitted class [n, p] = [-1,2] in
the Case I, see (52), now we prove that the only solution in
this class is the Schwarzschild solution with vanishing
Bach tensor. Such a solution can be easily identified within
the complete form (39)-(41), with ry =0, using the
expression (37) as

a;=0 Vix>l, (65)
=0 Vi>2  (66)

apg = —1,
co = —1, ¢y = —2m,

where m is a free parameter.
Let us prove the uniqueness. The full key equation (46)
for n = —1 p =2 reads

I+4

2a1a0A7 + 6aragA™? + 12a3a0A7" + > " AN a4 i(1+3 = i)(1+4 = 3i)

i=0

= Lk Al + 41+ 3+ )+ ). (67)

=0
which necessarily implies
a; =0,
and
I+4
i=0

that is

(12:0,

asy = O, (68)

Za,-a,H_,»(l +3-0i)(l+4-3i)= %kclﬂ(l +4)(+3)+2)(I+1) VY [>0, (69)

[+3

(I4+4)(1+5)apa; 4 :%kc,+2(l+4)(l+3)(l+2)(l+ 1) —Zaial+4_,~(1+3 —i)(I+4-3i) VI>0. (70)

i=1

The second field equation (47), using (68), takes the explicit form

© +2 © 1+2
— a3 A% + ZAI Zzaiaj—icl—j+2(j —i—-)(-j+3i+1)+ ZAZZaial_i+2
=1 j=0 i=0 =1 =0
1 S < 3.1
_ l . . . .
_ng;A;;qq40+%U—z+%U—l+lwy—?—i) (71)

which implies

¢, =0. (72)

However, instead of solving (71) for a general /, it is convenient to employ the “trace equation” (48)
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I+1
1 1
> it (1 D=0+ g0+ 106+ ==Jan V122 (13)
i=0
This can be rewritten as
/
(1= Dlager = 611+ Dy =3 cjar 61+ 1) (1= )+ (i+1)(i+2)] ¥ 122, (74)

i=1
i.e., by relabeling the index [ — [+ 2, as

142

(L+ 1)1+ 2)agers = 6(1+2)(1+3)aps = > ciaps[6(1+3) (1 +2—i) + (i+1)(i+2)] V¥ [>0. (75)

i=1

Now, we employ the mathematical induction. Let us
assume that for some / > 0

a;=0 VY i=1.1+3, (76)
;=0 Y i=2..1+2 (77)

For [ =0 this is true due to (68), (72). Then the field
equation (70) reduces to

(I+4)(1+5)apars =0, (78)
while Eq. (75) gives
(I+1)(I+2)agc; 3 =0. (79)

This obviously implies a;,4 = 0 and ¢;, 3 = 0, completing
the induction step.

Therefore, all coefficients a; fori > 1 and all ¢; fori > 2
vanish, which means that the only possible solution in
Case I is
|

Q=" H=-A24c A% (80)

With the coordinate freedom (14), enabling us to set ayp=—1
and A =r, this is exactly the explicit Schwarzschild
solution (37).

To conclude, the class of solutions [n, p] = [-1,2]
represents spherically symmetric Schwarzschild solution
(37), and it is the only solution in this class.

B. Schwarzschild-Bach black holes in the class
[n.p]=[0,1]: Near the horizon

Now we will prove that this second class represents
spherically symmetric non-Schwarzschild solutions to QG
that describe black holes with nonvanishing Bach tensor.
Thus it is natural to call this family Schwarzschild-Bach
black holes. The first three terms in the expansion of the full
solution take the explicit form

Q(r)——1“‘%(7"—”;1)_%<2+—+b>("_rh>2+"" (81)

r ry h

2

H(r) = (r—ry) {— +3b(r—ry) + b

I'n

where r;, localizes the black hole horizon since H(r;,) = 0.
In fact, for the whole class [n, p] =[0,1], the metric
function H given by (40), (41) takes the generic form
H(r) = (r—ro)(co+ ci(r—ry) + ...), which means that
r = rq is the root of H, and thus the horizon. Therefore,
we can identify the constant r, (around which the solution is
expanded) with the location of geometrical/physical horizon,

ro=rp- (83)

When the additional new “Bach parameter” b in (81),
(82) is set to zero, the Bach tensor vanishes, and this

8kr?

(4_2]:—r%+3b>(r—rh)2+..l, (82)

|
solution reduces to the Schwarzschild spacetime (37)
with r, = —1/(2m).

Let us systematically derive the complete analytic form
of these Schwarzschild-Bach black holes, leading to (81),
(82). Equation (46) for [n, p] = [0, 1] gives

141
Clia1+2_i(l + 2 - l)(l + 1 - 31)
=0

1

3 keps(I+4)(1+3)(1+2)(1+1), (84)

024027-10



BLACK HOLES AND OTHER EXACT SPHERICAL SOLUTIONS ...

PHYS. REV. D 101, 024027 (2020)

where [ > 0. Relabeling [ — [ — 1, we thus obtain

3 ’ : :
Cl+2_k(l+3)(l+2)(l+l)l;alal+l_l(l+l_l)(l_3l)

Vi1, (85)

which enables us to express all coefficients ¢, , in terms of
ay, ..., ap,y, starting from c3. In the lowest nontrivial order
[ = 0, the “trace equation” (48) implies

— 0 (14 ey), (86)

a, =
3C0

while for higher orders [ = 1,2, ..., yields

-1
T e
I+1 |
X [gaz +Zcial+1—i[<l+ D(l+1-1i) +6i(i+ 1)]
py

Vi1, (87)

which expresses all a;.; in terms of ag,...,a; and
Cgs ..., €y 1. Finally, in the lowest nontrivial order [ = 0,
the field equation (47) gives the constraint 6kcyc, =
3ag(ag + ajcg) + 2k(c? —1). Using (86), this becomes

1

= G @@= e) T kG- DL (88)

(&)

There are thus three free initial parameters, namely ay,
¢p, and ¢ (apart from ry = r;,). Using (86), (88), we obtain
a, ¢, and then a;., c; ., for all [=1,2,... by the
alternate application of the recurrent relations (87), (85).
This gives the complete analytic solution.

Now, the scalar invariants (31), (32) evaluated at r =
r, = ry take the form

1 —c?+3cpcy\2
B (ny) = (10"

4
Cabcdcade(rh) = 3614 (1 + 61)2' (89)
0

The Bach tensor is in general nonvanishing. In fact, for a
physical interpretation of this family of solutions, it is
convenient to introduce a new parameter b proportional to
1 — ¢3 + 3cocy. Setting b =0 then gives the necessary

condition for the Bach tensor to vanish. In view of (88),
such Bach parameter b can be defined simply as

b==(c;-2), (90)

so that the Bach scalar invariant (89) at the black hole
horizon r; becomes

bz

B.,B(r)) = prepes

o1

Using b as the dimensionless key parameter in the
expansion (39), (40), the recurrent relations (87), (85)
readily yield an explicit solution of the field equations in
the form

ay =21+ p),

€o
2
az=+%(1+<2+g—z>b+b2),
0
ay 1 29a}
=014 (2542504 20 )y
“ c3< +9( TR
1 3542 7
—(23+=2 )2 +-b%), ... 2
and
¢ =2+ 3b,
1 2
cz_c—o<1+<4—;—l‘l>b+3b2),
_ a4
T3k
o= a‘%3b 1—%—”—402
30kc3 4k~ 32k
1342
2——L)p4+b7),..., 93
~(2-5e)rr) o

and so on, where a, ¢y, and b are three free parameters.

1. Identification of the Schwarzschild black hole

Now, it is possible to identify the Schwarzschild black
hole. This is defined geometrically by the property that its
Bach tensor vanishes. In view of (91), it requires to set the
key parameter b to zero. Interestingly, with b =0, the
expansion coefficients (92), (93) simplify enormously to

1\
a; = ag <— > for all i > 0, (94)
Co
1 .
¢ =2, Cp=—, c;=0 foralli>3. (95)
Co

The first sequence clearly corresponds to a geometrical
series, while the second series is truncated to a polynomial
of the third order. The metric functions thus take the
explicit closed form
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© A i apCo apCo
Q(r) = - = = , 96
(r) = ao i0< c0> co+A r—r,+c (96)
H(r) = co(r —ry) +2(r —ry)? —|—c51(r—rh)3. (97)

Using the gauge freedom (14) (a constant rescaling and
shift of the coordinate r), we are free to choose

1
ag = ——,

= 8
o Co = Tn> (9 )

so that the metric functions become

! H(r) :—r2—|—r—:(r—rh)r—. (99)

r ry ry

Clearly, there is a black hole horizon located at ry,. This is
the Schwarzschild horizon given by the usual condition
h=1-2m/7 = 0. In terms of r = —1/7, it is equivalent to
ry = —1/(2m). Thus for the case b =0, we have fully
recovered the standard form of the Schwarzschild solution,
since the metric functions (99) are exactly the same as (37).

2. More general Schwarzschild-Bach black holes

When b # 0, the corresponding solution given by (87),
(85), that is (92), (93), can be naturally interpreted as
generalized black holes with a nontrivial Bach tensor
whose invariant value B, B at the horizon is proportional
to b2, according to (91). Moreover, as b — 0 we explicitly
obtain the Schwarzschild black hole (99). Using the
summation of the “background” terms independent of b
as in (96), and the same gauge fixing (98), it is possible to
write this solution explicitly as (81), (82). Recall that ry, still
|

141

—a, 112 32

(_1)1+1 !

1
=— 202 4 21
[O7ES] (l+ 1)2 |:al( + +

T2 = 2 (4 3) (1 +2) (1 + 1)1 £

which follow from (87) and (85) for a;,; and ¢ ,,
respectively. The first terms generated by these relations are

02:2 8k2+b
1 29 1 1 35
25 23+ )b
%= 9< My 2+16k24>+9< +8kr%,>
7
+5b% (106)

Z(O‘i + o 1-i(1+ bay))(1+ 1= i) (1 = 3i),

gives the exact value of the horizon even if b is now
nonzero, see the text below Eq. (82).

To express a general solution in this class completely, it
is convenient to introduce coefficients «;, y; as those parts
of a;, c;, respectively, which do not involve the b =0
Schwarzschild “background,” i.e., using the following

definitions:
b a 1
a;=a,(b=0)———=, whereq;(b=0)=—7+,
=0 ==
(100)
1
01—2+3b]/1, C2—*+3b*
Tn Th
¢;=3b—"— foralli>3. (101)
(rn)

With the natural gauge choice (98), the complete solution
then takes the explicit form

Q(r :_?_r_,,za’<l__> ,

(102)

O A )

with the initial coefficients

1 1
ri=1 72_§<4 2k2+3b> (104)

and all other coefficients «a;, y; for any [ > 1 given by the
recurrent relations (defining oy = 0)

Viyi(1+ by _)[(L+ 1)(I+ 1 =) +éi(i—|— 1)]],

(105)
[
o
737 96kt
1 1
T8k \5 4k 160K%r
3 13 1
= _(16-—=)b+——b7 ... 107
+720kr%l< kr%) +90krfl (107)

yielding (81), (82).
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This family of spherically symmetric black-hole space-
times (102), (103) in Einstein-Weyl/quadratic gravity
depends on two parameters with a clear geometrical
and physical interpretation, namely:

(1) The parameter r;, identifies the horizon position.

Indeed, r = r;, is the root of the metric function
H(r) given by (103).

(2) The dimensionless Bach parameter b distinguishes
the Schwarzschild solution (b = 0) from the more
general Schwarzschild-Bach black hole spacetime
with nonzero Bach tensor (b # 0).

In fact, we have chosen the parameter b in such a way

that it determines the value of the Bach tensor (27), (28) on
the horizon ry,, namely

3
Bz(rh) = _Wb
h

Bi(ry) =0, (108)

Thus on the horizon, the invariants (31) and (32) of the
Bach and Weyl tensors take the values

1

%= 7 a1 (27 =2j+ 1) —a;5(j=1)* =3

M)~

i=1

T
4k>
CapcaC®(ry) = 1213 (1 + b)?,

B,,B* (ry) = 15 b,

(109)

respectively.

To conclude, the class of solutions [n, p] = [0, 1] repre-
sents spherically symmetric Schwarzschild-Bach black holes
(abbreviated as Schwa-Bach), expressed in terms of the
series (102), (103) around the horizon ry, i.e., for the special
choice ry = rj,. These Schwa-Bach black holes include and
generalize the well-known Schwarzschild black hole.

Restricting our discussion to Einstein’s theory, corre-
sponding to k = 0, requires ay + a,cy = 0; see the con-
straint above Eq. (88). Substituting this into (86), we obtain
¢y = 2, and thus b = 0. This again confirms that the only
possible spherical vacuum solution in general relativity is
the Schwarzschild solution.

Let us finally remark that the explicit recurrent relations
(105) can be rewritten in a slightly more compact form if
we relabel the index [ to j = [ 4 1, so that the relations for
any j > 2 become

(=171 4 bay )i = i)+ i+ D]

(110)

1)/ — o .
R 2>(<j+) G =T & il ba))( =)0~ 1-30)

C. Schwarzschild-Bach black holes in the class [n,p] =[0,0]: Near a generic point

This more general class of possible spherically symmetric vacuum solutions to QG [see (59)] may, as a special case, also
represent the family of Schwarzschild-Bach black holes with nonvanishing Bach tensor. In contrast to the previous case
[n, p] = [0, 1], the expansion is now considered around an arbitrary fixed value r, which is distinct from the position of the
black hole horizon ry,

ro ?é rp. (1 1 1)
Indeed, for [n, p] = [0, 0] the metric function H given by (40), (41)is H(r) = c¢o + ¢1(r — rg) + - - -, Where ¢ # 0, so that
the value r = r( is not the root of H and thus cannot be the horizon.

In such a case, the first few terms in the expansion of the full solution take the explicit form

1 ry (r=ro)?
Qr)=—=+bs5——+... 112
(r) o T, T (112)
2 (ba=b1)(1+7+32) =2(2+37)by +3b3

H(r) = (=) 4 (i =ba)ro(r=ro)=3ba(r=ro)*+ " (r=rofees (113)

where b, and b, are two independent Bach parameters
proportional to values of the two components of the Bach
tensor at 7. By setting b; =0 = b,, the Schwarzschild solution
(which has vanishing Bach tensor) is immediately obtained.

Let us derive this analytic form of the Schwa-Bach

black holes. For [n, p] = [0,0] the complete solution to

(25), (26) of the form (39)—(41) is given by the Taylor
expansions
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(114)

The key equation (46) for n =0 = p, after relabeling
[ —[—1, gives

3 l
= i (I+1-=0)(1-3i
€143 k(l+3)(l+2)(l+l)l;alal+l—l( + l)( l)

Vix1. (115)

Equation (48), relabeling [ — [ — 1, implies

-1
T Dey

| I+1 R
X |:§al—l + ;CiaHl—i[l(l +1-1i) +61(l - 1)]]

Vil (116)

Finally, the field equation (47) in the lowest nontrivial order
[ = 0 gives one additional constraint

1
c3 = ——[3ag(ag + a;cy) + 9alcy + 2k(c3 - 1)].

117
6kC1 ( )

Thus there are five free initial parameters, namely ay, a;,
Cp, €1, Co (in addition to ry). All the remaining coefficients
a1, ¢4z in (114) are then obtained by applying the
recurrent relations (116), (115), respectively, starting as

1
ay, = ——|ag + 3a;c; + apeal, ... (118)
6C0
— e 6636+ an(ao + 3arey +agey) (119)
€4 = " ake, 040+ dolao t3arcr Fapey), ..

Now we show that three of the five initial parameters
(namely aq, a;, cg) can be conveniently fixed using the
gauge freedom in such a way that the Schwarzschild
solution and flat Minkowski background are uniquely
identified and directly seen.

1. Identification of the Schwarzschild black hole

Specific geometry can be identified by the scalar
invariants (31), (32) with (27), (28). In particular, the
Bach invariant evaluated at r = ry is

1
72a§

where B (rg) = 24cqcy,

B,,B* (ry) = [(By)* +2(B, + B,)*],

82(1’0) = 2(36‘16‘3 - C% + 1)
(120)

Vanishing of the Bach tensor (B,, =0 < By =0 = B,),
which uniquely identifies the Schwarzschild solution, thus
requires ¢4 = 0 and 3¢ c3 — 3 + 1 =0. In combination
with (119), (117), this implies two necessary conditions

a? a?
Cl———<1+3—éC0), C2:2+3—éC0 (121)
a ag
that only depend on the fraction a, /a, and c. Interestingly,
for such a choice of parameters the recurrent relations
(116), (115) give a very simple complete solution

i 2
ai:a()(;ll) for all i >0, c3=—‘“<1+a;c0>,
0

¢;=0 foralli>4. (122)

The first sequence clearly yields a geometrical series, while
the second series is truncated to the third-order polynomial.
Thus the metric functions take the closed form

Q(r) i <alA)i @ i
r) =a —_— = = s
0;’:0 ap ag—a1A  (ag+ajrg) —arr
(123)
H(r)=co+ci(r=ro)+ca(r—ro)* +cs(r—rg)’.  (124)

Using the gauge freedom (14), the most convenient choice

ay = (125)

1
2
o
can always be made, so that the metric functions reduce to

72
H(r) = (r=ro)

Co 3
—+—=r. (126
r ro I"gr ( )

Notice that this function H can be rewritten as
3 2 3

H(r) :—r2+r—: (r—ry)—, where r,=
I'n I'n

. (127)
This is exactly the standard form (99) of the Schwarzschild
solution, with the black hole horizon located at r), (clearly
the root of H). Thus the constant ¢ is uniquely determined
in terms of the physical/geometrical parameter r;, (the
horizon) and an arbitrary parameter r, (entering the
expansion variable A = r — r() as

To
where y =——1,
T

co=yri, ro# ry.  (128)
Thus we have proven that all solutions in the class [n, p] =
[0,0] with vanishing Bach tensor are equivalent to the
Schwarzschild black hole solution, as also identified in the
classes [n, p] = [0, 1] and [n, p] = [—1,2]; see expressions
(99) and (80), respectively. The main difference is that in
the class [n, p] = [0, 1], it is possible (and, in fact, neces-
sary) to choose the expansion parameter r, equal to the
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horizon rj,, see (83), naturally allowing one to expand the
solution around the black hole horizon, while in the present
case of the class [n, p] = [0, 0], such a choice is forbidden
(r is not the root of H). Indeed, for the choice r, = r;, the
expression (128) would lead to ¢y =0 which is not
allowed. Otherwise the constant r,, determining the initial
position around which the solution is expanded, can be
chosen arbitrarily.

These conclusions are consistent with the behavior of the
Weyl curvature invariant (32) at r,

(§)
CpeaC?e(rg) = 1270 = 48m?/8, (129)
T

where we have used the conditions (127) and the
Schwarzschild horizon position r, = —1/(2m). This
invariant value at the horizon agrees with (38). For
m = 0, flat Minkowski background is obtained, corre-
sponding to ¢, = —1, that is ¢y = —rj, in which case
H(r) = —r?, and there is no horizon.

2. More general black hole solutions
with nontrivial Bach tensor

Returning to the generic case (115)—(119) in the class
[n, p] = [0,0] with nonvanishing Bach tensor, it is now
necessary to introduce two distinct Bach parameters b, and
b,, corresponding to the two components B(ry) and
B,(rg) of the Bach tensor (27) and (28), respectively,
evaluated at ry. They enter (120) via the coefficients ¢, and
c3, which are expressed in terms of the two remaining
initial parameters c¢; and ¢, using (119) and (117). For
B, = 0, they take the form (121), i.e., with the gauge (125)
and fixing (128), ¢; = (1 + 3y)rgand ¢, = 2 + 3y. It turns
out to be useful to define two dimensionless Bach param-
eters b; and b, via the relations

ci=(143y+b,—by)ry, c¢,=243y—=3b,, (130)
that is
b15%<—1—6}’—fz+301/70)’
b25%<2+3y—c2). (131)

Then b, and b, are directly proportional to the two Bach
tensor components B (ry) and B, (ry),

1 1
b1=§k7331(70)’ bzzgkr(z)(Bl(Vo)+Bz(ro))’ (132)

and the Bach invariant at r is simply expressed as

4
"o

BabBab(rO) = 8k2

(b3 +2b3). (133)

With the parametrization by b;, b, introduced in (130),
assuming again the natural gauge (125) and fixing (128),
the coefficients a;, ¢; of the explicit solution (115)—(117)

are then given as

1 1 b
a, =-, Ay =——S——5,...,
r(2) 3 3

134
ry  2yr ( )

ag=——,
o

co=rry, c;=(143y)ro+(by—by)rg, c3=2+3y—3b,,
(1+7)(143y) =2(243y) by +3b3+ (by— b)) / (2kr3)
(143y+by=by)ry

C3=

’

b,

= ... 135
8kyrg (135)

C4

For by =0=5b,, we immediately recover the
Schwarzschild solution (126), that is (127). In a generic
case, the complete solution can be understood as the
Schwarzschild black hole “background” modified by a
nonzero Bach tensor, encoded in the terms that are propor-
tional to (powers of) the dimensionless Bach parameters b,
and b,. The expansion of this full solution takes the explicit
form (112), (113).

3. Identification of the Schwa-Bach black hole
solutions [0, 1] in the class [0, 0]

Now a natural question arises about the explicit relation
between the form (81), (82) and the form (112), (113) of the
family of Schwarzschild-Bach black holes. The problem is
that we cannot simply express the single Bach parameter b
in terms of the two parameters b, b,. The reason is that b
determines the value of the Bach tensor at the horizon ry,
namely

3
Bz(rh):—mb,

h

By(ry) =0, (136)

while b; and b, determine its two independent values at
any given r

3 3
by, By(ry) = 5 (by = by);

- 1
Bl (rO) kr(z) kr(z) ( 37)

see (108) and (132), respectively. Since the functions
B, (r), B,(r) are complicated, the relations between the
constants b and b, b, are obscured.

However, this problem can be circumvented by the
following procedure. In order to explicitly identify the
Schwa-Bach black hole solution (102), (103), expressed
around the horizon r, in the class [0, 1], within the generic
class [0, 0] given by (114), we just have to determine its five
free parameters aq, a;, cg, c;, ¢, properly. Instead of
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considering (134), (135), we can simply evaluate the
functions (102), (103) (and their derivatives) at r = r,
and then compare them with the Taylor expansions (114)
(and their derivatives) evaluated at r = r, obtaining4

1 b i

ag=———— a,»(l—E) \ (138)
o Thi34 T

1 b - ro i—1
==+ ig(l-—=) ., 139
“g (i) 1
co=(ro—r )[—+3brh2yi<ﬂ— 1> }, (140)

-1 \'n
c1=Brg—2r,) +3brh2(z+l (——1) (141)
T
1 3 - . ro i1

C2:(3r0—rh)r—h+§bizl:l(l+l)yi<r—h—1> . (142)

Then using the recurrent relations (115)—(117), we are able
to express the Schwarzschild-Bach black holes using the
complete expansion around any value r, and just a single
Bach parameter b which determines the value of the Bach
tensor at the horizon r;,.

When b =0, the coefficients a; form a geometrical
series, and the metric functions simplify to (126), (127)
which is again the Schwarzschild solution (21). Both the
classes [0, O] and [0, 1] with B,, = O thus reduce to the
Schwarzschild black hole. The difference is that in the class
[0, 1] the radial distance parameter r, is equal to ry,, while
ro # 1, can be chosen arbitrarily in the class [0, O].

4. Formal limit ry — ry,

Let us consider a “consistency check” between the two
series expressing the Schwa-Bach black hole solution,
namely (81), (82) in the class [0, 1] and (112), (113) in
the class [0, 0].

To this end, let us denote temporarily the coefficients in
the class [0, O] by ¢; and a;. The limit ry — r;, in (138)—
(142) can be trivially performed, just by setting rq = ry,
leading to the relations

. 1 . 1
aoz—r—hEﬂo, alzp(l‘H’)Eah
h

(143)

6‘0:0, &1:7']1560, 62:2+3bEC1, (144)

where Eq. (98) and the first relations in (92), (93) have also
been employed. By comparing (85) and (115) it is also seen

*Of course, provided r( is within the convergence radius of
(102), (103).

that ¢;, satisfies the same recurrent relation as c;, so that
the functions H agree. Moreover, from the relatlon (116) it
follows that the condition ¢, = 0 requires

1,\ L I+1 o . 1 .
Ozgal_l+l2C1a[+;Cial+l_i[1(l+1—l)+gl(l—1)}.

(145)
This implies
a; = [ 011+Z Cipray[I(1—1i) + gl(l‘*‘l)]
(146)

which (with the identification ¢;, | = ¢;) is equivalent to the
recurrent expression (87) for a;,, so that the functions Q
also agree. In other words, in the limit ry — r, we obtain

60—)0, ,C\’J'+l—)c &J—>a (147)

j for all j > 0,

js
demonstrating the consistency of the two expressions for
the Schwa-Bach black holes in these two classes of
solutions.

D. Bachian singularity in the class [rp]=[1,0]

This last possible class (42) of spherically symmetric
vacuum solutions represents spacetimes which are not
black holes with horizon localized at ry. Instead, it seems
to be a specific family containing a naked singularity
with B,;, # 0.

The key equation (46) for [n, p] =
[ —[-3, gives

[1,0], relabeling

3 1-3
Cr1= KA D=1 (= ZZaal3 (1-2-i)(I-5-3i)

Vi3, (148)

expressing c;,, starting from c4. Equation (48) in the
lowest order [ = 0 implies

apCy

=—-— 14
a; 2 (149)
and in higher orders
-1
ap | =7
T+ D (I+2)co
1 141 1
x50 #3010 +2=1) - ili=1)
Vix>1. (150)
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Finally, the field equation (47) in the lowest nontrivial order
[ = 0 gives the condition

3= [9a3co + 2k(c3 —1)). (151)

1
6kc 1
All coefficients a;.4, ¢, are obtained by applying the

recurrent relations (150), (148). This yields an explicit
solution

Qr)=(r—r, [a0+z (r—rg }

= Z r—rg) (152)
where
ay = =% [eo(1 + 7e3) = 6],
180%
a
18 k -1
as 36kcocl [ aoCo + k[4cg(e3 = 1)
—2¢oci(1+ 10c;) + 9c1}}
2 2
(o= _ 34y (153)

4 O T d0key

and ay, ¢y, ¢y, ¢, are four initial parameters (apart from ry),
but not all of them are independent. Due to the gauge
freedom (14), we can set, for example, ay = 1 and also
ro = O

To determine the main geometric properties we employ
the scalar invariants (31), (32), which read

3c? 1
B,,B(r) = o 4.,
B (7) 4a3k2 (r—r0)8+
4 (1 + Cz)
C upeq CP4 A 154
bed ( ) 3610 (I"— r0)4 ( )

The Bach tensor B, is thus nonvanishing near ry. And
since R,, = 4kB,, # 0, this class of solutions does not
contain Ricci-flat subcases. The Bach invariant always
diverges at r = ry, and there is also a Weyl curvature
singularity at r = ry, (maybe unless ¢, = —1).

Moreover, for (152) the expressions (11)—(13) in the
limit r — ry behave as

F=Q(r)~ay(r—rg) =0, (155)

h~—cof* = 0, f~=adcy(F)? > 0.  (156)
It shows a very specific and unusual behavior of the metric
functions f and h close to the curvature singularity at
7 =0, in terms of the physical radial coordinate 7.

This class [n, p] = [1,0] of solutions corresponds to
the family which has been identified in [4,7,17] as
(s,1) = (2,2), and nicknamed (2,2)-family in [8]; see
Sec. XI for more details.

IX. DISCUSSION OF SOLUTIONS USING THE
EXPANSION IN POWERS OF r-1

By inserting the series (43), (44), that is

(157)

into the key field equation (25), we obtain the relation

0 I+2N-2 ©
1
ooty AiAiiona(I=i+N=2)(I=3i+3N - 1) =2k > rICpos(1=4)(1=3)(1=2)(I=1).  (158)
I==2N+2 i=0 |=—P+4
The second field equation (26) puts further constraints, namely
) [4+2N+P-2 ] o [+2N
! Z ZAiAj—iCl—j+2N+P—2(j —i=N)(l-j+3i- rt Z AiAitoN
I==2N-P+2 =0 =0 I=22N =
zlk 2+ io: r"l+2P_4C-C, opa(i—P)(l—i+P—-4)(I-i+P-3) l—gi—I—EP—§ . (159)
3 ey = S 22 2
=-2P+4 i=0
The supplementary condition following from the “trace equation” (29) reads
© [+N+P-2
. L. .
Z I"_l Z CiAl—i+N+P—2 |:(l—l+P—2>(l—1)+6(l—P)(l—P+ :| :—_Z r- A1+N' (160)
I=-N—P+2 i=0 35
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By comparing the corresponding coefficients of the same
powers of r~/ on both sides of the relation (158), we can
express the coefficients C; in terms of A;s. Moreover, the
terms with the lowest order imply that we have to discuss
three distinct cases, namely:

(1) Case I*: —-2N +2 < —-P+4,ie., P<2N + 2,

(2) Case II*: —2N +2>—-P+4,1ie., P>2N+2,

(3) Case III*: —2N +2 =—-P + 4, ie., P =2N + 2.
Let us derive all possible solutions in these cases.

A. Case I®

In the case, —2N + 2 < —P + 4, the highest order in the
key equation (158) is on the left-hand side, namely r~! with
—[ = 2N — 2, which yields the condition

N(N+1)=0. (161)

The only two admitted cases are N =0 and N = —1. The
highest orders on both sides of Eq. (160) are

[6N(N + P —1)+ P(P—1)]CorNtFP2 4 ...

For N = 0, these powers are r~2 and r°, respectively,

but P —2 < 2N =0 by the definition of Case I*. The
highest order 0 = —27° thus leads to a contradiction.
Similarly, for the second possibility N = —1, the powers
are rP=3 and r7!, respectively, but P—3 <2N —1 =
—3 < —1. The highest order is thus 0 = —2r~1, which is
again a contradiction.

To summarize, there are no possible solutions in
Case I*.

B. Case II*®

In this case, —2N +2 > —P + 4, so that the highest
order in the key equation (158) is on the right-hand side,
namely r~' with [ = —P + 4, which gives the condition

P(P-1)(P=-2)(P-3)=0. (163)

Thus there are four possible cases, namely P =0, P =1,
P =2, and P = 3. Equation (160) has the highest orders on

=2+ (162)  pboth sides as given by Eq. (162), that is
|
for P=0: [6N(N —1)]CorN=2 + -+ = =21V + . not compatible, (164)
for P=1: [6N?]CorV=! + o = =27V + ... not compatible, (165)
for P=2: [6N(N+1) +2]CorV +---==2rN+... (BN*+3N+1)Cy = -1, (166)
for P=3: [6N(N +2) +6]CorV*! + ... = =2¢N + ... necessarily N = —1. (167)

The highest orders of all terms in Eq. (159) for the case
P =2, implying N < 0, are

3A3NBN +2)Co+ 1]r*N +2k(C3—1)+---=0,  (168)
which requires (3N? + 2N)Cy = —1. Together with con-
straint (166) this implies N = —1, Cy = —1.

To summarize, the only possible two classes of solutions
in Case II* are given by

key equation (158) is on both sides, namely r~! with
[ =2 —2N. This implies the condition

P(P —2)[3A3 + 4kCo(P - 1)(P=3)] =0.  (170)

There are three subcases to be considered, namely P = 0,
P=2, and 3A%:—4kCO(P—1)(P—3) with P #0, 1, 2, 3.
This corresponds to N =—1, N =0, and also 3A(2) =
—4kCy(4N? — 1) with N # —1, —1/2, 0, 1/2, respectively.
The leading orders of the trace equation (160) on both

[N, P] = [-1,3]®, [N, P] = [-1,2]®. (169) sides are
C. Case 111 2(1IN2 + 6N + 1)CoPN 4+ = =2/ 1. (171)
Now, —2N 4+2 = —P +4, that is N = -1+ P/2 and
P =2N+2. In such a case, the highest order in the  Consequently, we obtain
|
for N=-1, P=0: 12Cor= +---==2r""+--- not compatible, (172)
for N=0, P=2: 2Ch+ =24 Cyp=-—1, (173)
for 3A3 =4kCy(1 —4N?):  (1IN>+6N+1)Cy+---=0 not compatible. (174)
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The incompatibility in the case (174) is due to the fact that
11N? + 6N + 1 is always positive. In the case (173), we
employ the field equation (159), which for N =0, P =2
requires 3A3 4 2k(C5—1) = 0. Since Cy = —1 would
imply Ay = 0, we also end up in a contradiction.

To summarize, there are no possible solutions in
Case 1II*.

X. DESCRIPTION AND STUDY OF ALL
POSSIBLE SOLUTIONS IN POWERS OF r-!

Now we derive and investigate spherically symmetric
solutions in the domain as r — oo by completely solving
Egs. (158), (159), and their consequence (160). As it has
been proven in the previous Sec. IX, there are only two
distinct cases (169) to be discussed.

A. Schwarzschild-Bach black holes in the class [-1,3]*:
Near the singularity

In the class given by N = —1, P = 3 in the expansion
(43), (44) in negative powers of r, the only possible black
hole solutions are

1 B/2F8 14 2r
Q)= —— 4+ (Z2h 4y ZTh = Th 1
(r) r r<9r3+6r4+15r5+ )’ (175)
2
)= ()
r'p
17 1 M 1 »
B( - h_ h_ by ). (176
N <rh 90k 140k 4 210k P (176)

These solutions represent the class of Schwarzschild-Bach
black holes in quadratic gravity/the Einstein-Weyl theory.
By setting B = 0, the Schwarzschild solution (99) is again
obtained, with the horizon located at ry,.

In the limit r — oo, the relation (11) implies 7 =
Q(r) ~=1/r = 0.1In such a limit, the curvature singularity
at ¥ = 0 is approached, where H — co. Moreover, from
the relations (13) it follows that i(7) ~ 1/(r,7) = oo and
f(F) ~ h(7). Thus both metric functions of (9) diverge
exactly in the same way as for the Schwarzschild solution,
independently of the Bach parameter B.

Let us derive this class of solutions. The key equa-
tion (158), relabeling / — [ + 2, implies

3
C .=
P k(1=2)(I=1)I(1+1)
-2
XY Al (1-1=i)(1-2=3i) V>3,
i=0

=

(177)

which gives all C;, in terms of A, ..., A;_,, starting form
C, = 0. The trace equation (160) yields

~1 [1 L N
A= C, [§A1—1 + ; CiA[I(1 1) +gl(l +1)]

vV Ii>1, (178)
which expresses all A; in terms of A, ...,A,_; and

Cy, ..., C,. Finally, the second field equation (159) in the
lowest nontrivial order / = 0 gives the additional constraint
ci-1
Cy=—"1—.
2736,

(179)

Therefore, in this case there are four free parameters,
namely A, Cy, Cq, C3. Using (179) we obtain C,, and then
A, C; 5 for all [ > 1 by the application of the recurrent
relations (178), (177).

1. Identification of the Schwarzschild black hole

The scalar invariants (31), (32) for (43), (44) now take
the form

C 2
B.,B(r - ) = <45A_2C6> .
0

o
Cabcdcade(r - OO) ~ 12,?7'6.
0

(180)

Since Ay, C, are nonzero by definition, the necessary
condition for the Bach tensor to vanish (which geometri-
cally identifies the classical Schwarzschild solution) is

Ce=0. (181)
Interestingly, for such a setting, the expansion coefficients
simplify enormously to

Cp+1\i
A,-:A0<— ;;; ) for all i > 0, (182)
c2-1 C,+1)%(C, -2
C,= Sl C3:(1+)(21 )’
3C, 27C3
C; =0 forall i > 4. (183)

The first sequence is a geometrical series, while the second
series is truncated to the third-order polynomial. Thus the
metric functions can be written in the closed form

Ag S~/ C +1\ Ao
Q = — - = 5 184
(r) r;< 3C0r> r+(C;+1)/(3Cy) (184)
C2—1  (C,+1)%C;-2)
=Cyr3+C 2+ -1 ! ! 185
H(r)=Cor’ +Cyr" + 3, 27C2 (185)

In view of (14), we are free to chose the gauge
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Ay = -1, Cc, =-1, (186)
so that the metric functions become
- 1 2 3
F=Q(r)=—--, H(r) = —r*+ Cyr. (187)
r

This is exactly the Schwarzschild black hole metric in the
form (37) and (99). It also identifies the physical meaning
of the coefficient C as

1
C():—,
T'n

(188)
where r;, determines the horizon position, the root of 'H
given by (187). Of course, the Schwarzschild horizon is
given by r, = —1/(2m), i.e., Cy = —2m. All free param-
eters of such solution are thus fixed and fully determined.

2. More general Schwarzschild-Bach black holes

For the physical interpretation of the more general
solutions in this family, it is convenient to introduce the
Bach parameter B proportional to Cg entering (180), which
for the gauge choice (186) reads Cs = —C3/(90kC). We
also naturally require B to be a dimensionless parameter, SO
that the best choice seems to be

c
B = C3C; :r—,j. (189)
h

With such B as the key parameter in the expansions (43), (44)
and the same natural gauge (186), the recurrent relations
(178), (177) yield an explicit solution of the field equations in
a simple form

2, 1, 2
A3:§th, A4:€th, AS :Bth,

1 7 10
A¢=-r°(1—————-—B|B,..., 190
6 9”’( 360k 9 > (190)
Co—V;l, C]——l, CZZO,
CgZV%B, C4—0, CSIO,
c Lap o c L ap
©~ Took 1" 77 T 140k

1 5

-——nB, ... 191

8 o106 M (191)

This gives the explicit expansion (175), (176).

The corresponding scalar invariants (180) at 7 = 0 are

4
r
B Bab _ _h B2,
ab (r - 00) 4k2
bed 12 6
Cahcdca ¢ (7’ - OO) ~5 T 0, (192)
T

which can be compared with the invariants (109) evaluated
at the horizon 7,

b i o
BabBa (rh):4_k2b ’

CapeaC (1) = 12r5(1 + b)?, (193)
obtained previously for the class [n, p] =[0,1] of the
Schwarzschild-Bach black holes. There is a striking sim-
ilarity between the two expressions for B,,B%’, and thus we
could be inclined to directly identify the Bach parameter B
with the parameter b. However, it should again be empha-
sized that B determines the value of the Bach invariant at
the Weyl curvature singularity ¥ = 0, while b determines its
value at the horizon 7;,. And these values are, in general,
distinct.

B. Bachian vacuum in the class [NV.P]=[-12]®

Finally, it remains to analyze the second possibility (169)
in the Case [I1®. For N = —1, P = 2 the key equation (158),
relabeling [ — [ + 2, gives

3
Ck(I=2)(I=-1D)I(1+1)
-2
XY AA i (I-1=i)(1-2=3i) VI>3.
i=0

C

(194)

Equation (160) in its lowest orders /=1, 2 puts the
constraints

1
Al — EA()C], CO = —1, (195)
and for higher / implies
1 & 1
A= (- l)lzl:ciAZ—H {(l— 1)(1=1i) +8(1 —2)(i-1)
VI1>3. (196)

Equation (159) gives no additional constraint. There are
thus three free parameters, namely A, Cy, C,, and all other
coefficients are determined by the relations (194), (196),
starting as
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Ay 1430(C2+C2) A3=%C1(C%+2C2),
A4:@<c4+3CZC2+CZ+A—2(C2+4c2)> . (197)
5 192k
2 2
C3=0, C,= 240k(02 4C,), Cs= 240kc 1(C3+4C,),
Ce= i (342 +4k(59C2 +26C,))(C?+4C5), ...

6720002
(198)

1. Identification of flat Minkowski space

Now, for very large r the scalar invariants (31), (32)
behave as

u 300
BabB b(r - m) A8 C27
abcd 12 2
CapeaC?(r - ) ~ A C;. (199)
Or

Interestingly, they remain finite, so that for r — oo there is
no physical singularity. Moreover, for C4 # 0 they are
nonzero. In fact, the necessary condition for both the Bach
and Weyl tensor invariants to vanish is C, = 0, that is
C% + 4C, = 0. For such a choice, we obtain the relation
C, = —lCZ, and then all the coefficients (197), (198)
simplify enormously to A; = Ay(3 C,)" forall i, and C; = 0
for all i > 3. The metric functions thus reduce to

AOZ<2r> - r——c1 Hin)= _("_;C‘y'

(200)
Using the gauge freedom (14) we can always set
Ay =—1, Cc, =0, (201)
and the functions take the trivial form
F=Q(r) = —%, H(r) = —r. (202)

In view of (187), (188), we conclude that the case C, =0
gives the Schwarzschild metric with trivial value Cy =
—2m = 0 which is just flat Minkowski space without any
horizon (formally r, = o). Of course, for flat space, both
the Bach and the Weyl tensor vanish everywhere.

2. Bachian vacuum

Now, the complete class of solutions [N, P| = [-1,2]®
can be naturally analyzed if we introduce the Bach
parameter B, proportional to C, because, due to (199),
such solutions admit general Bach and Weyl tensors. With

the same gauge (201), we observe from (198) that
C4 = C,/(60k), so that it is more convenient to choose
the equivalent parameter C,, instead. The simplest choice is

B, =C,. (203)

With the only remaining parameter B, (in this case it is not
dimensionless), the coefficients (197), (198) simplify to

1

AO - —1, Al - 0, Az - —§B1), A3 - 0,

Ay ——t(1 +B, |B As=0 (204)

+ T 5\ 48k v ST

C() ——1, C] :O, C2—By, C3 —O,

1 1 /1. 13

C=gorBr G=0 Co=g001 <8k > v

(205)

1 1 1 /1
Q(r) = —;—Bv<§+§ (erBU) + ) (206)

+— 1 14—133 +
700kr*\8k 3°") )

(207)

——r2+B,(1
H(r) re+ v( +60kr

The corresponding scalar invariants (199) now read

1

B.,B?(r - ) = WB%,
abcd 1 B%

Therefore, we may conclude that this class of metrics
[N, P] = [—1,2]® can be understood as a one-parameter
Bachian generalization of flat space (202) (that is the limit
of black hole solutions without mass and horizon) with a
nonzero Bach tensor whose magnitude is determined by the
parameter B, i.e., the “massless limit” of the previous
class [N, P| = [-1,3]®

Interestingly, in the limit r — oo, the expressions (11),
(13) now imply

F=Q(r)~—-1/r -0, (209)

h~1l,  f~l.

(210)
Both the metric functions 4 and f thus remain nonzero and
finite, i.e., in this limit we are not approaching a horizon nor
a singularity. In fact, for 7 — 0 the metric (9) becomes
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conformally flat. Interestingly, the Bach invariants (208)
and (192) are very similar.

C. Consistency check of the limit [-1,3]* — [-12]®

Let us consider a “consistency check” between the class
of solutions [—1,3]*, described by (177)-(179), and the
class [—1,2]*, described by (194)—(196), where the coef-
ficients will now be denoted by hats.

The transition from [—1,3]® to [-1,2]* requires
Co—0, Ci-»Ciy, i>1, A=A, i>0. (211)
The relation (178) for = 1, thatis 3CyA| = —Ay(1 + C),
in this limit leads to

C, - -1, e Cp=-1, (212)
while the relations (177) for C;,; and (194) for C, remain
the same. Moreover, the relation (178) for A,

1 L N
_IZCOA,:§AI_1+ZCZ»A,_,»{l(l—l)—i-gz(l—i—l)] Vix1,

1

(213)
for Cy = 0 leads to
. | N 1
it = gy X G (1= 1)0=0 4+ 56=2)i- 1)
Vi>2, (214)

which is exactly (196) and thus concludes the consis-
tency check.

Note that from the free parameters of the family [—1, 3],
two parameters become determined, namely C, — 0,
C, - Cy=—1, and one parameter C, — C; becomes
undetermined since 3C,C, = C; — 1 — 0. Therefore, four
free parameters Ay, Cy, C;, C; of the [—1,3]® family
reduce to three free parameters AO, C‘l, C‘z of the [—1,2]®
family.

XI. SUMMARY AND RELATIONS
TO PREVIOUS RESULTS

In this section, let us summarize all the distinct and
explicit families of spherically symmetric vacuum space-
times in QG, expressed both in powers of A = r — r, and
r~!. Moreover, we identify these families with solutions
previously discussed in the literature.

In particular, in [4,6,7], various classes of static spheri-
cally symmetric solutions to higher-derivative gravity
equations were identified and denoted by the symbol
(s, 1), using the standard spherically symmetric form (9).
Such a classification was based on the powers s and ¢ of the

leading terms of a Laurent expansion of the two metric
functions, namely5

(215)

=
—

Rl
~—

I

B(7) ~ T, (216)
in the domain 7 — 0. It was shown in [4,7] that there are
three main solution families corresponding to the following
choices of (s, 1):

(5.7) = (0.0),. (217)
(s,1) = (1, =1)o, (218)
(s.1) = (2,2),, (219)

[T L]

where the subscript “(” indicates the expansion around the
origin 7 = 0.

In addition, the following three families (w, t) were
identified in [7,8] using a series expansion around a finite
point 7 — 7 # 0:

(w.1) = (11);,, (220)
(w.1) = (0,0);,, (221)
(w.1) = (1,0),,, (222)

where
W= —s, (223)

that is f ~ 7" and h ~ 7. The subscript “; ” indicates the
expansion around 7.

In fact, we have recovered all these families of solutions
in the present paper, and we have also identified some
additional families.

To find the specific mutual relations, first let us note that
from the relation (11) between the spherically symmetric
radial coordinate 7 and the Kundt coordinate r, that is
7 = Q(r), it follows using (39) and (43) that

(1) -0 for r > rg, n>0, and also for r — oo,

N <0,

2) r—> 7y for r > ry, n =0, and also for r — oo,
N =0,

(3) r—> o for r > rp, n<0, and also for r — oo,
N > 0.

Now let us find a relation between the powers (s, ?)
introduced by (215) and (216), respectively, and the
coefficients [n, p] employed in this paper. They are the
analogous leading powers of the two metric functions Q

>To make the identification, we have relabeled the arguments
of the metric functions A(r), B(r) of [7] to F.
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and 'H, respectively. For n # 0, such a relation is found
using the expressions (13) with 7 = Q(r) and (39), (40) for
r — ry. It turns out that

2
s = p’ t:2+£.
n n

(224)
Analogously, using (43), (44), we obtain the relations

P
t=24+—
+N

(225)
for the asymptotic expansion of the metric functions as
r — oo. Thus, for n # 0 and N # 0, it immediately fol-
lows that

(1) the family (s,¢) = (0,0), corresponds to [N, P] =

—1.2),
(2) the family (s,7) = (0,0)* corresponds to [n, p] =
-1.2],
(3) the family (s,¢) = (1,—1), corresponds to [N, P] =
[=1.3]%,
(4) the family (s,7) = (2,2), corresponds to [n, p] =
[1,0],
where the superscript “*” in (0,0)® indicates the expan-
sion as 7 — oo.

The two admitted cases (42) with n = 0 have to be
analyzed separately [there are no cases (45) with N = 0]. In
the generic case when a; # 0, using (13), (39), (40), we
obtain that

(226)

Therefore, for n = 0 and a; # 0 we conclude that
(1) the family (w,t) = (0,0);, corresponds to [n, p] =
[0, 0],
(2) the family (w,t) = (1,1); corresponds to [n, p] =
[0, 1],

TABLE L
series (39)—(40) expanded around any constant value r.

completing the identification of all our main six classes of
solutions. Note that for n = 0, a; # 0 the relation between
A and A is A =7 — 7y ~a,A. Therefore, a series expan-
sion with integer steps in A corresponds to a series
expansion with integer steps in A in the physical radial
coordinate 7.

All four possible generic families compatible with the
field equations as » — r, and the series expansion (39)—
(41) are summarized in Table I, while the two cases
compatible with the field equations as r — oo and (43),
(44) are summarized in Table II. We also indicate their
physical interpretation and the corresponding section, in
which these solutions are described and studied.

A. Special subclasses with n=0

In addition to the above six main classes of solutions, in
the case given by n =0 we have identified some other
special subclasses, including a new one. These are not
given as integer steps in 7 or A, so that these are additional
classes from the point of view of expansions in powers of
7 — 7o in the physical radial coordinate. In our Kundt
coordinate r, they just naturally appear as special cases
of the solutions with n = 0, namely when a; =0 # a,
and a; =0 = a,.

When a, = 0 # a,, the relation is A ~ a,A?, and thus a
series expansion with integer steps in A leads to (half
integer) steps A/, Using (13), in such a case we obtain

w=P11, z:%. (227)

For a; =0 and a, # 0, we thus conclude that
(1) the family (w.t)=(3.3);, 1/, corresponds to [n, p] =
[O’ 1]111=0’
(2) the family (w,#)=(1,0); ,, corresponds to [n, p| =
0,0)

a;=0"

All possible generic types of solutions to quadratic gravity and the Einstein-Weyl theory that can be written as the power

Class [n, p] Family (s, 1) Interpretation Section
[-1,2] (0,0)® Schwarzschild black hole VIIIA
[0, 1] (=1, 1); Schwarzschild-Bach black holes (near the horizon) VI B
[0, 0] (0, O);0 generic solution, including the Schwa-Bach black holes VI C
[1, 0] (2,2), Bachian singularity (near the singularity) VIID
TABLE II.  All possible generic types of solutions to quadratic gravity and the Einstein-Weyl theory that can be written as the power

series (43), (44) expanded as r — 0.

Class [N, P|® Family (s, 1) Interpretation Section
[-1,3]® (L,-1), Schwarzschild-Bach black holes (near the singularity) XA
[-1,2]® (0,0), Bachian vacuum (near the origin) XB
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TABLE III.

All solutions, sorted according to the physical regions in which the expansions are taken. The subscripts “(”,
superscript “*°” denote solutions (s, t) or (w, t) near 7 = 0, ¥ = 7y, and 7 — oo, respectively. The subscript “

9 e

7~ and the
indicates that only even

T3]

powers are present in the expansion, while “; ,” and ** | ;3”indicate that fractional powers are present. Specific number of free parameters
is given before and after removing two parameters by the gauge freedom (14) in the Kundt coordinates. In physical coordinates, only one
parameter can be removed by rescaling (20). The symbols “(S)” or “(nS)” indicate that a class of solutions contains or does not contain

the Schwarzschild black hole, respectively.

Family [n, pl or [N, P]® Parameters Free parameters Interpretation

(Sv t) r—0

(2,2), [1, 0] agy, Cg, C1, Co, T 553 Bachian singularity (nS)
(2.2)0 (1,0, 0=, ag, Co, ro 31 Bachian singularity (nS)
(1,=1), [-1,3]® Ap, Cy, Cy, Cs 4 -2 Schwa-Bach black holes (S)
(0,0), [-1,2]® Ay, C1, Cy 351 Bachian vacuum (nS)

(w, 1) F— T

(1, 1),0 [0, 1] ag, Co, C1s To = 1y, 452 Schwa-Bach black holes (S)
(3/2 1/2); 102 [0,1],,—0 ag, Co» 1o 31 “Unusual” horizon (nS)
(0,0 ,” [0, 0] ag, Ay, Co, C15 Coy T 6—-4 Generic solution (S)

(1, O),0 12 [0,0],,—o ag, Co, C1, €, T 5-3 Half-integer wormhole (nS)
(1,0 0,04, —0—c, —c; ag, ¢y, 1o 31 Symmetric wormhole (nS)
4/ 3 0),0 1/3 [0,0],, —0—q, ayp, co, €1, To 42 Not known (nS)—new

(s, 1) F— o0

(0,0) [-1,2] ag, Ci, ro 351 Schwarzschild black hole (S)

Analogously, when a; = 0 = a, and a3 # 0, the relation
is A ~ayA3, and thus integer steps in A corresponds to
steps in A!'/3. The relations are now

(228)

Thus for a; = 0 = a, and az # 0, we conclude that
(1) the family (w,?) = (%,0);0’1/3 corresponds to (1, p] =
[07 O]m =0=a,"

Concerning the geometrical and physical interpretation

of these special solutions, it can be generally said that the
classes with n = 0 contain (among other solutions) black
holes and wormbholes. In particular, the class [n = 0, p = 1]
represents a black hole spacetime since it admits a Killing
horizon at r, = ry, see (19). As pointed out in [7], a
wormhole spacetime is characterized by admitting a finite
value of 7y where f = 0 while & # 0. Therefore, for a series
expansion around this point, necessarily n = 0 = p (since
H #0), and a; = 0 (since Q' = 0). Thus wormholes may
appear only in the class [0, 0], _,
The family of solutions (3.3); ,, was identified in [7]
and interpreted in [8] as an “unusual” type of a horizon.
However, it was stated therein that it is a solution to QG
only for # # 0, which implies R # 0. Thus it seems that this
class does not coincide with our class [0, 1], _, since, for all
our classes, R = 0 by assumption.

Our family [0,0], _, corresponds to the family
(1,0)7,1/2 of [7.8], while our family [0,0], _o_., _.,, Where
only even powers in A are considered (indicated by the

subscript ** ;”), corresponds to the family (1,0);  of [7,8].
Both of these families describe wormholes with two
different (half-integer wormhole) and two same patches
(integer wormhole), respectively, see [8]. Note that the

Bach invariant (31) for wormholes in the [0, 0], _, class is
always nonvanishing.
To our knowledge, the specific family [0,0], _o_,, has

not yet been considered, and it corresponds to a new family
(5.0)7,.1/3 in the notation of [7].

It also seems that the generic solution [0, 0], with the
highest number of free parameters, can be connected to all
other solutions, and it represents an expansion around a
generic point in these spacetimes.

In Table III, we summarize all the classes and subclasses
found and identified both in the physical and Kundt
coordinates, grouped according to the regions in which
the expansions are taken in the usual radial coordinate 7.

XII. DISCUSSION AND ANALYSIS OF THE
SCHWARZSCHILD-BACH BLACK HOLES

In this section, we discuss the behavior of the series
expressing the Schwarzschild-Bach black hole solutions
(102), (103). For our analysis, we choose the same values
of the parameters as in our previous paper [10], namely
r,=-—1, k=0.5, b=0.3633018769168. Such a very
special value of b is “close” to the asymptotically flat case.’

®We obtained this value from the Mathematica code kindly
provided by H. Lii, cf. also [8] for a very close value of b.
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FIG. 1. The Schwarzschild-Bach solution [0, 1] given by (102),

(103). The ratios -*- (blue) and —/# (red) for the first 3000
coefficients q; and y, given by the recurrent formula (105) are
plotted.

numerical >[I

15

10

The key observation for estimating the radius of con-
vergence can be made from Fig. 1. Interestingly, the ratios
of subsequent terms ”] and —L given by the recurrent
relations (105) are approachmg a constant asymptotically.
This suggests that both series given by «,, and y,, behave as
geometric series for large n, with the ratio ¢ being
apparently equal for both the series. Therefore, the series
for Q and H, given by (102), (103), should be convergent
for —1 —é <r<-1 —l—é, where ¢ ~ 1.494, that is in the
interval r € (—1.67,—0.33).

Figure 2 illustrates the convergence of the metric
functions Q(r) and H(r) in the Kundt coordinate r. In
the domain of convergence, denoted by vertical dashed
lines, the solution fully agrees with the numerical solution
of the field equations.

For comparison, Fig. 3 illustrates the convergence of the
corresponding metric functions f(7) and h(7) in the

Rnumcrical
|
|

']

-1.5

-1.5 -1.0 -0.5 T

FIG. 2. The metric functions Q(r) (left) and H(r) (right) for the Schwarzschild-Bach solution [0, 1]. The first 20 (red), 50 (orange),
100 (green), and 500 (blue) terms of the series (102), (103) for Q and H are also compared with a numerical solution (black). Boundaries
of the domain of convergence are denoted by vertical dashed lines. Within this radius of convergence, all these functions overlap with the
numerical solution, except the lowest shown 20th order of € near the top right corner on the left graph.

numerical numerical
10 ——————————mm————— - - — - b 10 ——————m—mmmmm—————— - - — =
f(r) h(r)
0.5 05F
L f L L f L
. 5 10 15 20 . 5 10 15 20
FIG.3. The metric functions f(7) (left) and /(7) (right) for the Schwarzschild-Bach solution [0,1] in the standard coordinates. The first

20 (red), 50 (orange), 100 (green), and 300 (blue) terms of the series are plotted. A numerical solution (black) overlaps with the blue
curve, even far above the horizon located at 7, = 1 (here up to 7 = 207,).
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standard spherically symmetric coordinates. The solution
quickly converges, and approaches a numerical solution
even at a large distance from the horizon located at 7, = 1.

From the value of Q(r) = 7 at the lower boundary of the
domain of convergence shown in Fig. 2, we can easily read
off its value 7~ 0.53 in the usual radial coordinate. In
contrast, the value of the coordinate 7 given by Q(r) at the
upper boundary remains unclear since it depends on the
precise value of the series (102) at the upper boundary of
the domain of convergence. In fact, we cannot even say
with certainty that the radius of convergence in the standard
spherical coordinate 7 is finite—it may well extend up
to ¥ — oo.

Finally, it is illustrative to show explicitly that, in
contrast to the Schwarzschild solution, the metric functions
f(7) and h(7) for the Schwarzschild-Bach black holes
are not equal. This is clearly seen from their plots in Fig. 4.

There are three classes of solutions containing the
Schwarzschild black hole as a special case, namely the
[0, O] class with four free parameters and the classes [0, 1]
and [—1, 3], both with two free parameters, see Table III.
(The class [—1,2] contains only the Schwarzschild solu-
tion.) The solution [0, O] describes a generic point of a
static, spherically symmetric spacetime in QG, including
also black-hole and wormhole solutions. A natural question
is whether the solutions [0, 1] and [—1,3]*® describe the
same black hole at two different regions (near the horizon
and near the singularity, respectively). We have not arrived
at a definite answer yet. Nevertheless the Bach invariant
(31) for the class [—1,3]® approaches a finite constant as
|r| = oo corresponding to 7 — 0, see expression (192),
while analytical and numerical results describing the
behavior of the Bach invariant of the [0, 1] class of
solutions as the value of r decreases below the horizon
seems to suggest that in this case the Bach invariant is
unbounded; see Fig. 5. If this is indeed the case, then
the classes [0, 1] and [—1,3]® must describe distinct

0.5f

0.0

0.6 0.8

-0.51

-1.0"

FIG. 4. The metric functions f(7) (blue) and A(7) (red) in the
near-horizon region for the Schwarzschild-Bach solution [0,1].
These two functions are clearly distinct. They both vanish at the
horizon, located here at 7, = 1.

1000
< numerical
800\
600} N
r
| -4 -2
400} 1
1
1
1
200} |
| numerical
| v
0 1 L L L L )
-1.8 -1.7 -1.6 -15 -1.4 -1.3 -1.2
r
FIG. 5. The Bach invariant (31) inside the horizon of the

Schwarzschild-Bach black holes [0, 1] calculated from first 20
(red), 50 (green), and 300 (blue) terms, compared with the
numerical solution (black). The lower boundary of the domain of
convergence is indicated by the vertical dashed line. The horizon
is located at r, = —1. The insert in the upper right corner shows
the numerical value to much lower value of the coordinate r,
indicating a possible divergence as r — —oo, that is as 7 — 0.

generalizations of the Schwarzschild black hole admitting
a nontrivial Bach tensor.

XIII. MAIN PHYSICAL PROPERTIES OF THE
SCHWARZSCHILD-BACH BLACK HOLES

A. Specific observable effects on test particles
caused by the Bach tensor

In this section we demonstrate that the two parts 5;, B,
of the Bach tensor (27), (28), entering the invariant (31),
that distinguish the Schwa-Bach and the Schwarzschild
black holes, can be explicitly observed via a specific
influence on particles. It is well known that a relative
motion of freely falling test particles (observers) directly
encodes specific components of the spacetime curvature,
such as the tidal deformation in the vicinity of a black hole,
or a transverse effect of gravitational waves measurable by
a laser interferometer detector. This is described by the
equation of geodesic deviation; see [18,19] for a recent
review with historical remarks and description of the
formalism that we are going to employ here.

1. Interpreting solutions to quadratic gravity using
geodesic deviation

To obtain physically measurable information about the
relative motion, we have to choose an orthonormal frame
{e)-€(1).€2).€(3)} such that e, - e, = n,,, where the
timelike vector e =u is the observer’s 4-velocity.
Projecting the equation of geodesic deviation onto this
frame, we obtain

VAR i,j=1,2,3, (229)
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where

o) D2

70 = ol 2 _ eai)Za;cducud’
and R(i)(O)(O)(j) =R, peq 6‘(11) ubuceg). (230)

Spacetime curvature, characterized by the Riemann tensor,
can then be decomposed into the traceless Weyl tensor, the
Ricci tensor, and the scalar curvature R. Its projection (230)
gives

1

(231)

Moreover, the vacuum field equations (8) of quadratic
gravity (including the Einstein-Weyl theory), R, = 4kB
implying R =0, can be employed. Substituting these
relations into (231), we finally obtain the invariant form
of the equation of geodesic deviation (229) as

20 = Ciyoy0 2% + 2k(B; 2V = By Z")-  (232)
Of course, C;)0)(0)() = CE})))(O)(J') and B;)j) = Bg; since the
spatial part of the frame is Cartesian. The Weyl tensor
projections  C(j0)(0)j) can be further decomposed and
expressed in terms of the Newman-Penrose scalars W4

with respect to the (real) null frame {k,I,m;} which is
defined by

1 1
k:_ u+e . l: u-—e 5

m; =e; for i=23. (233)
Thus, k and [ are future oriented null vectors, and m; are
two spatial vectors orthogonal to them, normalized as
k-1=—1andm; -m; = 5;;. Such a generic decomposition
was found in [18,19].

Using these results, we obtain the corresponding general
form of the equation of geodesic deviation (232) in

quadratic gravity/the Einstein-Weyl theory:

1
V2

+ 2k[(B(1y1) = Bioy0)) 2" + By 2Y].

20 =W ZW + — (¥y1y — Y37s)ZV)
(234)

. 1 . 1
Z(l) = —E‘stzo) +7(T1Ti —_

+2k[B (51 2" + Biy(y ZY) = B (o)) 2", (235)

where we have used the relation ¥, ;) = %‘P2 s 0;; valid in
D = 4, see [19]. This system of equations admits a clear

physical interpretation: The Newtonian component ¥, of
the gravitational field causes classical tidal deformations,
Wi, Wi are responsible for longitudinal motions, while
Wi, Wy represent the transverse effects of gravitational
waves (propagating in the directions e(j), —e(y), respec-
tively). The additional specific effects caused by the
nonvanishing Bach tensor are encoded in the frame
components B, )-

2. Geodesic deviation in the Schwarzschild-Bach
black hole spacetimes

Let us concentrate on the spherically symmetric black
hole metric in the form (12), or (15) with (17). In particular,
we introduce the “interpretation” orthonormal frame asso-
ciated with a radially falling observer, i.e., assuming
X =0 =y. Such a frame reads

e(O) =u= rar + l:tau’

(Q2ir)~" — Hil)d, — id,

- 8

e =

1
e =9 [ 14302 457 (236)

where the normalization of the observer’s four-velocity
u-u = —1 implies 7 = } [(Q%it)~" + Hir]. Using (233), the
associated null interpretation frame thus takes the form
1 uH
k=———0,, l=—
V2u? V2

1
m; = Q! [1 +7 (x* + yz)] 0;.

0, + V2iid,.
(237)

A direct calculation shows that the only nonvanishing Weyl
tensor component with respect to (237) is

1
Wi = Cupeak? 1?1k = 89‘2(7-{” +2).  (238)
This is consistent with the fact that the spherically
symmetric black hole metric (12) is of algebraic type D.
The explicit Bach tensor projections with respect to the
orthonormal frame (236) are

1 .
B(O)(O) = m |:—(1 — QZHMZ)ZH////
1
+ 20252 (H/H/// _ 51}_{//2 + 2>:| ’ (239)
l .
B(l)(l) = 240572 [—(1 + QZHMZ)ZH////
— 2022 (’H/H/// _ %HNZ + 2>:| ’ (240)
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I .
Bioi) = = 5552 (1 = HHOH". By =0,

(241)

0ij 1
Bi)o) =12 <HH’”’ +HH"—H" +2) . By =0.

(242)

Therefore, the equation of geodesics deviation (234), (235)
explicitly becomes

VAQ) :ég-z(H”Jrz)z(‘)

1 1
_ §kQ—4 <HH//// +HH" - 5rH//z 4 2> Z(l), (243)

L 1 .
7l = —EQ‘Z(H”+2)Z<’)

+]—12k9—4 ((92Ha2)—1 + Q2Hu2> HH"'Z1). (244)

We conclude that there is a classical tidal deformation
caused by the Weyl curvature (238) proportional to
Q72(H" +2), i.e., the square root of the invariant (32).
Moreover, in quadratic gravity (with k # 0) there are two
additional effects caused by the presence of a nonvanishing
Bach tensor. The first can be observed in the longitudinal
component of the acceleration (243), while the second can
be observed in the transverse components (244).
Interestingly, up to a constant they are exactly the square
roots of the two parts of the invariant (31), that is the
amplitudes B;, B, given by (27), (28).

The influence of these two distinct components B; and
B, of the Bach tensor B, on test particles is even more
explicitly seen in the geodesic deviation of initially static
test particles with i = 0. The 4-velocity normalization then
implies Q?>Hii> = —1, which simplifies (243), (244) to

.. 1 1
200 = 2@ (W' + )20 —2kQ74 (B, + B;)21. (245)

. 1 Lo .
70 = - — Q72 (H" 4 2)21) - 6ksz-“zslz@.

3 (246)

From these expressions, it immediately follows that the first
component 3; of the Bach tensor is directly observed in the
transverse components of the acceleration (246) along e(,),
e(3), that is 9,, 0, (equivalent to 9y, d), while the second
component 53, only occurs in the radial component (245)
along ey = —it(9, +HO,) = “HQ'id;, proportional
to 0;.

Interestingly, on the horizon there is only the radial
effect given by B,(r,) since B(r,) =0 due to (27) and
(19), see also (108).

It can also be proven by direct calculation that the
specific character of B, B, cannot mimic the Newtonian
tidal effect in the Schwarzschild solution, i.e., cannot be
“incorporated” into the first terms Q72(H" + 2) in (245),
(246). Therefore, by measuring the free fall of a set of
test particles, it is possible to distinguish the pure
Schwarzschild black hole from the Schwarzschild-Bach
black hole geometry which has nonvanishing Bach ten-
sor B, # 0.

B. Thermodynamic properties: Horizon area,
temperature, entropy

It is also important to determine main geometrical and
thermodynamic properties of the family of Schwarzschild-
Bach black holes. The horizon in these spherically sym-
metric spacetimes is generated by the rescaled null Killing
vector £ = 60, = 00,, considering the time-scaling free-
dom (20) represented by a parameter o. Thus it appears at
zero of the metric function H(r), where the norm of &
vanishes, see (19). In the explicit form (102), (103) this is
clearly located at r =r;, since H(r,) =0. By simply
integrating the angular coordinates of the metric (12),
we immediately obtain the horizon area as

4
A= 4nQ2(r) = 2 = 4aF2. (247)
r

h

The only nonzero derivatives of & are &,, = —¢,., =
16(Q*H), and thus & = —&+ =Q ¢, . From the
definition [20] of surface gravity &* =—3¢&,, 8%, we
obtain k = —406(H 4+ 2HQ'/Q). On the horizon, where
‘H = 0, using (103) this simplifies to

1 y ry 1
k/o = 27—( (rp) = > 3 (248)
It is the same expression as for the Schwarzschild solution
(in which case x = 1/4m). The standard expression for
temperature of the black hole horizon T = x/(2x), which
is valid even in higher-derivate gravity theories [21], thus
yields

ry 1
T/o= dr  dxr,’ (249)
independent of the Bach parameter b.

However, in higher-derivative theories it is not possible
to use the usual formula § = 4—1‘.,4 to determine the black
hole horizon entropy. Instead, it is necessary to apply the
generalized formula derived by Wald [22,23], namely

Szﬁfq
K

where the Noether charge 2-form Q on the horizon is

(250)
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1
Q= nga/idexa A dx?,
oL

9

HUPO

(251)

QM = 2XMPOE,  + AXPPO £ and  XMO =

in which £ is the Lagrangian of the theory. In the case of
quadratic gravity (1), it can be shown that

1 2
vpo - )
XHep = Ton [(}'+3(2a+3ﬁ)R>g” g

- 4ag’<[”g"”/’g"]’1RK,1] ) (252)

Subsequent lengthy calculation for the metric (12) with
A = 0 then leads to

1 4
S e

B+ DB,
167

Q4

sin@df A dg.

r=ry

(253)

Evaluating the integral (250), and using (247), (248), (108),
we finally obtain

1 o1 b
S—EA(1—4krhb)_4GA<1 4k;%l). (254)

This explicit formula for the Schwarzschild-Bach black
hole entropy agrees with the numerical results presented in
[6], with the identification kX = a and b = 6*. In fact,
it gives a geometrical interpretation of the ‘“non-
Schwarzschild parameter” 6* as the dimensionless Bach
parameter b that determines the value of the Bach tensor on
the horizon ry, see relations (108). Of course, for the
Schwarzschild black hole (b = 0) or in Einstein’s general
relativity (k =0) we recover the standard expression
S = iA. Notice also from (254) that for a given b # 0,
the deviation from this standard Schwarzschild entropy is
larger when the Schwarzschild-Bach black holes are
smaller because they have smaller 7,

XIV. CONCLUSIONS

The class of spherically symmetric black holes in
quadratic gravity and the Einstein-Weyl theory was studied
in many previous works, in particular [4-8], often by
numerical methods applied to complicated field equations
corresponding to the standard form of the spherical metric
(9). In [10,11], using a convenient form of the line element
(12) conformal to a simple Kundt seed, we obtained a
surprisingly simple form of the field equations (25), (26).
This enabled us to find an explicit form of their exact
solutions. Moreover, we identified the Bach tensor as the

key ingredient which makes the Schwarzschild solution
geometrically distinct from the other branch of ‘“non-
Schwarzschild” ones. This is a direct consequence of the
extension of Einstein’s theory to include higher derivative
corrections.

The present paper contains a thorough analysis of all
such solutions and their derivation, including the details
which had to be omitted in our brief letter [10].

We have started with the conformal-to-Kundt metric
ansatz (12). Together with the Bianchi identities, this leads
to a compact form of the quadratic gravity field equa-
tions (8), assuming R = 0, namely the autonomous system
of two ordinary differential equations (25) and (26) for
two metric functions Q(r) and H(r). They have been
solved in terms of power series representing these metric
functions, expanded around any fixed point ry (39), (40),
or using the asymptotic expansion (43), (44), respectively.
The field equations have become the algebraic constraints
(46), (47) in the fixed point case (near ry), and (158), (159)
in the asymptotic region (as r — o0). Their dominant
orders restrict the admitted solutions to (42) and (45),
respectively. The detailed discussion of all the possible
six main classes, together with a suitable fixing of the
gauge freedom, can be found in subsequent Secs. VIII
and X. The classes are summarized in Tables I and II
in Sec. XI.

The most prominent case corresponds to the spherically
symmetric black hole spacetimes with (in general) non-
vanishing Bach tensor. This solution has been expanded
around the event horizon, see Sec. VIIIB. The metric
functions Q(r) and H(r) are given by the series (102),
(103) with the initial coefficients specified by (104), and all
other coefficients determined by the recurrent relations
(105). Thus we have obtained the two-parametric family of
black holes characterized by the radial position r;, of the
horizon and by the additional parameter b. The new Bach
parameter distinguishes this more general Schwarzschild-
Bach solutions (b # 0) from the classical Schwarzschild
spacetime with vanishing Bach tensor (b = 0). The main
mathematical properties of the Schwarzschild-Bach metric
functions are presented and visualized in Sec. XII.
Subsequent Sec. XIII contains the physical and geometrical
analysis. We have discussed specific behavior of freely
falling test observers, described by the equation of geodesic
deviation, and demonstrated that their relative motion
encodes the presence of the Bach tensor. The physical
investigation is completed by a fully explicit evaluation of
the thermodynamic quantities. In particular, the expression
for entropy (254) exhibits the key role of the Bach
parameter b.

Finally, for convenience, in Sec. XI we have also
summarized all the admitted classes of solutions, including
their physical interpretation, the number of free parameters
and, most importantly, relations to previous works. See, in
particular, Table III
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We hope that our approach to spherically symmetric
vacuum solutions to quadratic gravity and the Einstein-
Weyl theory may elucidate some of their properties that are
not easily accessible by numerical simulations. Of course,
we are aware of many remaining open questions. For
example, complete analytic identification of the same
physical solution in distinct classes and their mutual
relations are still missing. It is also of physical interest
to understand the effect of nontrivial Bach tensor in the
Schwarzschild-Bach spacetimes on perihelion shift and
light bending, studied thoroughly during the last century in
Einstein’s theory using the Schwarzschild solution.

|
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APPENDIX A: THE RICCI AND BACH TENSORS
FOR THE KUNDT SEED

We start with the seed Kundt metric (17). Its nontrivial
metric components g,;, are

1 -2
gjlf;ndl — )I}(yundt — <1 + Z( 2 + yZ)) , Ir(L:mdt =1, Iu(;ndt =H, (Al)
so that the contravariant components g*” read
y Lo oY
glx()imdt = glv(undt = <1 + Z (.X +y )) ’ glglundt =-1, glrirundt =—-H. (A2)
|
Recall that the spatial 2-metric g;; is a round sphere of unit CKundt _ 1 RKundt (A9)
radius, with the Gaussian curvature K = 1 and thus its rur ’
Ricci scalar is 'R = 2K = 2. The nontrivial Christoffel |
symbols for this metric are CIr(il;r}dt =5 RKundt G (A10)
=t = g I
o2 e Crpt = ERKundt(gklgij = Gkjir)s (A1)
1
| R— k. = Spk. (A3)
e Y Y Cffi‘;'}dt = —HCE‘;‘}d‘. (A12)
where Srfj = %9“(291(:', j)—gij;) are the symbols with  The nonzero components of the Bach tensor are
respect to the spatial metric g;; of the 2-sphere. The only
. . . 1
nontrivial Riemann curvature tensor components are pRundt _EH////’ (A13)
1
Kundt _ Kundt _
Ryime = _EH”’ Rkilll;'1 = 9ki9ij — kit (A4) pBKundt _ i (ZHH//// +HH" - 17‘[//2 + 2) (A14)
" 12 2 '
and the only nontrivial Ricci tensor components of (A1) are
BuK;mdt — _HBIr(Mundt’ (AIS)

1
RIfuundt - = 5 H", (AS)
RL(,;mdt =M er(uundt’ (A6)
R.l)é;]ndt = Ri'(}}]ndt = gxxv (A7)
while the Ricci scalar reads
RKundt — H// + 2’ (AS)

so that the only nontrivial Weyl tensor components are

1 1
B)l((;mdt — B}éypndt — ngx (HH//// +HH — 57_{//2 + 2) ,

(A16)

involving up to the fourth derivative of the metric function
H(r).

APPENDIX B: THE RICCI AND BACH TENSORS
FOR THE CONFORMAL METRIC

Taking the class of Kundt geometries (17) as a seed,
we can generate the metric of spherically symmetric
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geometries by the conformal

that is

transformation (15),

dx? + dy?

ds? = Q*(r) a +%(x2 )

5 — 2dudr 4+ H(r)du?|.
(B1)

Now, it is well known [20] that under a conformal
transformation of the seed metric
T (B2)

the Ricci scalar and the Ricci and Bach tensors transform as

R = Q2RKwd _ 603010, (B3)
R,y = REM 2071V, V,Q — Q! gRundi[Q

+ Q_z (4Q,a9,b - gaKgndtgf(tlimdtQ,CQ,d)’ (B4)

B,y = Q2B (85)

For the Kundt seed metric g%t (A1), its Ricci and Bach
tensors RXundt and pXundt gre given by (AS5)~(A7) and
(A13)—(A16), respectively. The nontrivial derivatives (with
respect to the Kundt seed) of the conformal factor Q(r) are,
in view of (A3),

Q,=Q,
V,V.Q=q" V,.V,Q= %H’Q’ =V,V,Q,
vV.V,Q= —%HH’Q’,

0Q = —(HQ" + H'QY). (B6)

Employing (B4), the nonvanishing Ricci tensor compo-
nents of the metric (B1) are thus

R, = —2Q72(QQ" —2Q?), (B7)
R, =~ 5 Q2(QH)" (B8)
R, =—HR,,, (B9)
Ry = Ry, = Q729 [(HQQ) +Q*,  (B10)
and using (B3) we obtain
R=06Q7|HQ" + H'Q + é (H"+2)Q|.  (BI1)

The nonvanishing Bach tensor components B, are
obtained by a trivial rescaling (B5) of (A13)-(A16).

APPENDIX C: DERIVATION
AND SIMPLIFICATION OF
THE FIELD EQUATIONS

The vacuum field equations in the Einstein-Weyl theory
and also general quadratic gravity for the metric g, are (8),
that is

Rab - 4kBab' (Cl)
Using the expressions (B7)—(B10) and (BS) with (A13)—
(A16), these field equations explicitly read

1
QQ" ~ 20 = kM, (C2)

(QZH)// — _ % k (2HH//// 4 HIH" — %H//z 4 2) ,

(C3)

(HQQ/)/+92 :%k <HH////+H/H///_;H//2+2> . (C4)

The equations (C2), (C3), (C4) represent the nontrivial
components rr, ru, xx (identical to yy), respectively. The
uu component of the field equations is just the (—H)-
multiple of (C3).

Moreover, recall that the trace of the field equations (C1)
is R=0, cf. (7). Using (B11) we obtain the explicit
condition

T =HQ' + HQ + é (H'+2)Q=0.  (C5)

It can be checked that this is a direct consequence of
Eqgs. (C2)-(C4). Notice that it is a linear differential
equation for the function H(r), and also linear differential
equation for Q(r).

We have thus obtained three nontrivial field equations
(C2)—(C4) for two unknown functions Q(r) and H(r), and
also their consequence (C5). Therefore, this coupled
system seems to be overdetermined. However, now we
prove that the key metric functions Q(r) and H(r) are, in
fact, solutions of just two coupled equations.

To this end, let us introduce the auxiliary symmetric
tensor J ,, defined as

1
Jap = Rop — ERgab —4kB . (C6)

Using J,,, the vacuum field equations (2) of quadratic
gravity (assuming a constant R and A = 0) or Einstein-
Weyl gravity (with # =0 = A) are simply
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J ab — 0 <C7)
Now, by employing the contracted Bianchi identities
VPR, = %R,a and the conservation property of the Bach
tensor VB, = 0, see (4), we obtain
Vb, =0. (C8)
Interestingly, this is actually a geometrical identity which is
valid without employing any field equations, namely (C7),
or (C1) in particular.
An explicit evaluation of the identity (C8) for the metric
Gap Of the form (B1) leads to the following equations, which
are always satisfied:

VP = -Q7Q ;97 +HJ,,)

3
_Q (HJ,,,, e+ H’J,,) =0, (C9)
vbJub = _ZQ_BQI(Juu + HJru)
_Q_z(‘]uu +H‘]ru).r =0, (ClO)
vb‘]ib = Q_z‘lik”lgkl = 0 (Cll)

Here the spatial covariant derivative || is calculated
with respect to the spatial part g;; of the Kundt seed metric
(A1). Moreover, a direct calculation of J,;, defined by (C6)
gives

Juw=="HJpo  Ju=T (g =y, (Cl12)
where the function 7 (r) is defined as
J=Q7|(HeQ)) + @ - 37Q
- %k <HH”” +HH" - %H”z + 2)} . (C13)
and
J,, =2Q72 [—QQ” +20Q7 + ;kH””} , (C14)
Ty = Q72 [—% (QPH)" +3TQ
1 1
-3k <2HH”” +HH" - 5H”2 + 2” . (C15)

By substituting the relations (C12) into (C10) and (C11),
it can be seen immediately that these two conditions are
automatically satisfied. Interestingly, the remaining Bianchi
identity (C9) gives a nontrivial result. If the metric
functions Q(r) and H(r) satisfy the two field equations
J,, =0 and J,, =0 then necessarily J;;¢" =0, that is
Joug™ +J,,¢" =27 (r) =0 and thus J,, =0 = J,,.

Therefore, we conclude that all field equations for the
metric (B1) reduce just to two key equations, namely
J,,=0and J,,=0. Since ¢g**J,;, = 0, it also implies R = 0
and thus 7 =0, cf. (C5). This coupled system of two
equations completely determines all possible exact vacuum
solutions of the type (B1) in Einstein-Weyl gravity, and
since R = 0, also in a general quadratic gravity. The key
point is that, due to the Bianchi identities, the two key
equations imply the nontrivial field equations J,, =0=J,,
since necessarily J = 0, that is using (C13)

(HQQ/)/ + Qz —37TQ= %k <HH//// +H/H/// _ %H//Z + 2) .
(C16)

The equation J,, = 0 is exactly Eq. (C2), and Eq. (C3) is
simply J,, =0 with 7 = 0. Finally, substituting 7 =0
into (C16), we immediately obtain (C4). This completes the
proof of the equivalence.

To integrate the field equations, it is necessary to solve
Eq. (C2). Simultaneously, we must solve the equation

(927‘[)” —67TQ = —%k <2HH//// + HH" — %H//Z + 2> .
(C17)
Remarkably, this equation can further be simplified by

expressing the term "’ from (C2). We thus finally obtain
two very simple field equations

1
QQ" - 207 = ng’”’, (C18)

QQH' +3Q*H +Q> = %k (H’H”’ —%H”Z + 2) , (C19)

for the two metric functions Q(r) and H(r). Alternatively,
instead of solving the single Eq. (C19), it is also possible to
solve any two of the three Egs. (C3)—(C5).
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