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We study static, spherically symmetric vacuum solutions to quadratic gravity, extending considerably
our previous rapid communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-
to-Kundt metric ansatz, we arrive at a much simpler form of the field equations in comparison with their
expression in the standard spherically symmetric coordinates. We present details of the derivation of this
compact form of two ordinary differential field equations for two metric functions. Next, we apply
analytical methods and express their solutions as infinite power series expansions. We systematically derive
all possible cases admitted by such an ansatz, arriving at six main classes of solutions, and provide recurrent
formulas for all the series coefficients. These results allow us to identify the classes containing the
Schwarzschild black hole as a special case. It turns out that one class contains only the Schwarzschild black
hole, three classes admit the Schwarzschild solution as a special subcase, and two classes are not
compatible with the Schwarzschild solution at all since they have strictly nonzero Bach tensor. In our
analysis, we naturally focus on the classes containing the Schwarzschild spacetime, in particular on a new
family of the Schwarzschild-Bach black holes which possesses one additional non-Schwarzschild
parameter corresponding to the value of the Bach tensor invariant on the horizon. We study its geometrical
and physical properties, such as basic thermodynamical quantities and tidal effects on free test particles
induced by the presence of the Bach tensor. We also compare our results with previous findings in the
literature obtained using the standard spherically symmetric coordinates.
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I. INTRODUCTION

Soon after Albert Einstein formulated his general rela-
tivity in November 1915 andDavid Hilbert found an elegant
procedure how to derive Einstein’s field equations from the
variational principle, various attempts started to extend and
generalize this gravity theory. One possible road, suggested
by Theodor Kaluza exactly a century ago in 1919, was to
consider higher dimensions in an attempt to unify the field
theories of gravitation and electromagnetism. In the same
year, another road was proposed by Hermann Weyl. In this
case, the idea was to derive alternative field equations of a
metric theory of gravity by starting with a different action.
Instead of using the Einstein-Hilbert Lagrangian of general
relativity, which is simply the Ricci curvature scalar R
(a double contraction of a single Riemann tensor), Weyl
proposed a Lagrangian containing contractions of a product
of two curvature tensors. Such a Lagrangian is thus not
linear in curvature—it is quadratic so that this theory can be

naturally called “quadratic gravity.”Einstein waswell aware
of these attempts to formulate such alternative theories of
gravity, and for some time he also worked on them.
Interestingly, expressions for the quadratic gravity theory
can be found even in his last writing pad (at the bottom of its
last but one page) which he used in spring 1955.
Although it turned out rather quickly that these original

classical theories extending general relativity led to specific
conceptual, mathematical and physical problems, the nice
ideas have been so appealing that—the whole century after
their conception—they are still very actively investigated.
Both the higher dimensions of the Kaluza-Klein theory and
Weyl’s higher-order curvature terms in an effective action
are now incorporated into the foundations of string theory.
Quadratic gravity (QG) also plays an important role in
contemporary studies of relativistic quantum field theories.
Quadratic gravity is a very natural and quite

“conservative” extension of the Einstein theory, the most
precise gravity theory today. Quadratic terms in the QG
Lagrangian can be understood as corrections to general
relativity, which may play a crucial role at extremely high
energies. In the search for a consistent quantum gravity
theory, which could be applicable near the big bang or near
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spacetime singularities inside black holes, it is important
to understand the role of these higher-order curvature
corrections.
Interestingly, it was suggested by Weinberg and Deser,

and then proved by Stelle [1] already in the 1970s that
adding the terms quadratic in the curvature to the Einstein-
Hilbert action renders gravity renormalizable, see the very
recent review [2]. This property is also preserved in the
general coupling with a generic quantum field theory.
However, due to the presence of higher derivatives,
“massive ghosts” also appear (the corresponding classical
Hamiltonian is unbounded from below). Nevertheless,
there is a possibility that these ghosts could be benign
[3]. For all these reasons, this QG theory has attracted
considerable attention in recent years.
In our work, we are interested in classical solutions to

QG in four dimensions. It can be easily shown that all
Einstein spacetimes obey the vacuum field equations of this
theory. However, QG also admits additional vacuum
solutions with nontrivial Ricci tensor. In this paper, we
focus on such static, spherically symmetric vacuum sol-
utions without a cosmological constant. They were first
studied in the seminal work [4], in which three families of
such spacetimes were identified by using a power expan-
sion of the metric functions around the origin. The failure
of the Birkhoff theorem in quadratic gravity has also been
pointed out therein. Spherically symmetric solutions were
further studied in [5], where also numbers of free param-
eters for some of the above-mentioned classes were
determined. Recently it has been pointed out in [6–8] that,
apart from the Schwarzschild black hole and other spherical
solutions, QG admits non-Schwarzschild spherically sym-
metric and static black holes.
The field equations of a generic quadratic gravity theory

form a highly complicated system of fourth-order nonlinear
PDEs. Only a few nontrivial exact solutions are thus known
so far, and various approximative and numerical methods
have had to be used in their studies. Specifically, in the new
class of black holes presented in [6], the twounknownmetric
functions of the standard form of a spherically symmetric
metric were given in terms of two complicated coupled
ODEs which were (apart from the first few orders in the
power expansion) solved and analyzed numerically.
Interestingly, all QG corrections to the four-dimensional
vacuum Einstein equations for constant Ricci scalar are
nicely combined into a conformally well-behaved Bach
tensor. Together with a conformal-to-Kundt metric ansatz
[9], this leads to a considerably simpler autonomous system
of the field equations. We employed this approach in our
recent letters [10,11] for vanishing and nonvanishing cos-
mological constant, respectively. In [10] we were thus able
to present an explicit form of the corresponding nontrivial
black-hole spacetimes—the so-called Schwarzschild-Bach
black holes with two parameters, a position of the horizon
and an additional Bach parameter. By setting this additional

Bach parameter to zero, the Schwarzschild metric of general
relativity is directly recovered. In the present considerably
longer paper, we are now giving the details of the derivation
summarized in [10], and also survey and analysis of other
classes of spherically symmetric solutions to quadratic
gravity.
Our paper is organized as follows. In Sec. II we recall the

quadratic gravity and the Einstein–Weyl theory, and we put
the corresponding field equations into a convenient form in
which the Ricci tensor is proportional to the Bach tensor. In
Sec. III we introduce a suitable spherically symmetric
metric ansatz in the conformal-to-Kundt form, and we give
relations to the standard metric form. In Sec. IV we
overview the derivation of the field equations, with various
technical details and a thorough discussion being post-
poned to the Appendixes A–C. In Sec. V expressions for
curvature invariants are derived. In Sec. VI expansions in
powers ofΔ≡r−r0 around a fixed point r0, and for r → ∞
are introduced. In Sec. VII the leading orders in Δ of the
field equations are solved and four main classes of
solutions are obtained. For these solutions, in Sec. VIII
all coefficients of the metric functions in the power
expansions inΔ are given in the form of recurrent formulas,
convenient gauge choices are found, and various aspects of
the solutions are discussed. Sections IX and X focus on the
same topics as Secs. VII and VIII, respectively, but this
time for expansions r → ∞. In Sec. XI the relation of the
solutions obtained in Secs. VII–X (including their special
subcases) to the solutions given in the literature is dis-
cussed, and summarized in Table III. Mathematical and
physical aspects (specific tidal effects and thermodynam-
ical quantities) of the Schwarzschild-Bach solutions are
discussed in Secs. XII and XIII, respectively. Finally,
concluding remarks are given in Sec. XIV.

II. QUADRATIC GRAVITY AND THE
EINSTEIN-WEYL THEORY

Quadratic gravity (QG) is a natural generalization of
Einstein’s theory that includes higher derivatives of the
metric. Its action in four dimensions contains additional
quadratic terms, namely square of the Ricci scalar R and a
contraction of the Weyl tensor Cabcd with itself [12,13]. In
the absence of matter, the most general QG action general-
izing the Einstein-Hilbert action reads [9]1

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
γðR − 2ΛÞ þ βR2 − αCabcdCabcd

�
; ð1Þ

where γ ¼ 1=G (G is the Newtonian constant), Λ is the
cosmological constant, and α, β are additional QG theory
parameters. The Einstein-Weyl theory is contained as a
special case by setting β ¼ 0.

1In four dimensions, the Gauss-Bonnet term RabcdRabcd −
4RabRab þ R2 does not contribute to the field equations.
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Vacuum field equations corresponding to the action (1)
are

γ

�
Rab −

1

2
Rgab þ Λgab

�
− 4αBab

þ 2β

�
Rab −

1

4
Rgab þ gab□ −∇b∇a

�
R ¼ 0; ð2Þ

where Bab is the Bach tensor defined as

Bab ≡
�
∇c∇d þ 1

2
Rcd

�
Cacbd: ð3Þ

It is traceless, symmetric, and conserved:

gabBab ¼ 0; Bab ¼ Bba; ∇bBab ¼ 0; ð4Þ

and also conformally well behaved [see expression (B5)
below].
Now, assuming R ¼ const., the last two terms in (2)

containing covariant derivatives of R vanish. Using (4), the
trace of the field equations thus immediately implies

R ¼ 4Λ: ð5Þ

By substituting this relation into the field equations (2),
they simplify considerably to

Rab − Λgab ¼ 4kBab; where k≡ α

γ þ 8βΛ
: ð6Þ

In this paper, we restrict ourselves to investigation of
solutions with vanishing cosmological constant Λ (see [11]
for the study of a more general case Λ ≠ 0). In view of (5),
this implies vanishing Ricci scalar,

R ¼ 0; ð7Þ

and the field equations (6) further reduce to a simpler form

Rab ¼ 4kBab; ð8Þ

where the constant k is now a shorthand for the combi-
nation of the theory parameters k≡ α=γ ¼ Gα. For k ¼ 0
we recover vacuum Einstein’s equations of general rela-
tivity. Interestingly, all solutions of (8) in Einstein-Weyl
gravity (β ¼ 0) with R ¼ 0 are also solutions to general
quadratic gravity (β ≠ 0) since for Λ ¼ 0 the QG param-
eter β does not contribute to the constant k defined by (6).

III. BLACK HOLE METRICS

For studying static, nonrotating black holes, it is a
common approach to employ the canonical form of a
general spherically symmetric metric

ds2 ¼ −hðr̄Þdt2 þ dr̄2

fðr̄Þ þ r̄2ðdθ2 þ sin2θ dϕ2Þ: ð9Þ

In particular, for the famous Schwarzschild solution of
Einstein’s general relativity [14] (and also of QG), the two
metric functions are the same and take the well-known
form

fðr̄Þ ¼ hðr̄Þ ¼ 1 −
2m
r̄

: ð10Þ

The metric (9) was also used in the seminal papers [6,7] to
investigate generic spherical black holes in quadratic
gravity, in which it was surprisingly shown, mostly by
numerical methods, that such a class contains further black-
hole solutions distinct from the Schwarzschild solution
(10). It turned out that while the Schwarzschild black hole
has f ¼ h, this non-Schwarzschild black hole is charac-
terized by f ≠ h. However, due to the complexity of the QG
field equations (2) for the classical metric form (9), it has
not been possible to find an explicit analytic form of the
metric functions fðr̄Þ, hðr̄Þ.

A. A new convenient metric form
of the black hole geometry

As demonstrated in our previous works [10,11], it is
much more convenient to employ an alternative metric
form of the spacetimes represented by (9). This is obtained
by performing the transformation

r̄ ¼ ΩðrÞ; t ¼ u −
Z

dr
HðrÞ ; ð11Þ

resulting in

ds2 ¼ Ω2ðrÞ½dθ2 þ sin2θ dϕ2 − 2du drþHðrÞdu2�: ð12Þ

The two new metric functions ΩðrÞ andHðrÞ are related to
fðr̄Þ and hðr̄Þ via simple relations

h ¼ −Ω2H; f ¼ −
�
Ω0

Ω

�
2

H; ð13Þ

where prime denotes the derivative with respect to r. Of
course, the argument r of both functions Ω and H must be
expressed in terms of r̄ using the inverse of the rela-
tion r̄ ¼ ΩðrÞ.
The metric (12) admits a gauge freedom given by a

constant rescaling and a shift of r,

r → λrþ ν; u → λ−1u: ð14Þ

More importantly, this new black hole metric is con-
formal to a much simpler Kundt-type metric,
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ds2 ¼ Ω2ðrÞ ds2Kundt: ð15Þ

Indeed, ds2Kundt belongs to the famous class of Kundt
geometries, which are nonexpanding, shear-free and
twist-free, see [15,16]. In fact, it is a subclass of Kundt
spacetimes which is the direct product of two 2-spaces, and
is of Weyl algebraic type D and Ricci type II [9,16]. The
first part of

ds2Kundt ¼ dθ2 þ sin2θ dϕ2 − 2du drþHðrÞdu2 ð16Þ

spanned by θ, ϕ is a round 2-sphere of Gaussian curvature
K ¼ 1, while the second part spanned by u, r is a 2-dim
Lorentzian spacetime. With the usual stereographic repre-
sentation of a 2-sphere given by xþ iy¼2tanðθ=2ÞexpðiϕÞ,
this Kundt seed metric can be rewritten as

ds2Kundt ¼
dx2 þ dy2

ð1þ 1
4
ðx2 þ y2ÞÞ2 − 2du drþHðrÞdu2: ð17Þ

B. The black hole horizon

In the usual metric form (9), the Schwarzschild horizon
is defined by the zeros of the same two metric functions
hðr̄Þ ¼ fðr̄Þ. Due to (10), it is located at r̄h ¼ 2m, where m
denotes the total mass of the black hole.
In a general case, such a horizon can be defined as the

Killing horizon associated with the vector field ∂t. Its norm
is determined by the metric function −hðr̄Þ. In the regions
where hðr̄Þ > 0, the spacetime is static and t is the
corresponding temporal coordinate. The Killing horizon
is generated by the null vector field ∂t, and it is thus located
at a specific radius r̄h satisfying

hjr̄¼r̄h ¼ 0: ð18Þ

In terms of the new metric form (12), we may similarly
employ the vector field ∂u which coincides with ∂t

everywhere. Its norm is given byΩ2H. Since the conformal
factor Ω is nonvanishing throughout the spacetime, the
Killing horizon is uniquely located at a specific radius rh
satisfying the condition

Hjr¼rh ¼ 0: ð19Þ

Interestingly, via the relations (13) this automatically
implies hðr̄hÞ ¼ 0 ¼ fðr̄hÞ.
It is also important to recall that there is a time-scaling

freedom of the metric (9)

t → t=σ; ð20Þ

where σ ≠ 0 is any constant, which implies h → hσ2. This
freedom can be used to adjust an appropriate value of h at a
chosen radius r̄. Or, in an asymptotically flat spacetime

such as (10) it could be used to achieve h → 1 as r̄ → ∞,
thus enabling us to determine the mass of a black hole.

C. The Kundt seed of the Schwarzschild solution

It is also important to explicitly identify the Kundt seed
geometry (16) which, via the conformal relation (15),
generates the well-known vacuum Schwarzschild solution.
This is simply given by

r̄ ¼ ΩðrÞ ¼ −
1

r
; HðrÞ ¼ −r2 − 2mr3: ð21Þ

Indeed, the first relation implies r ¼ −1=r̄, so that
Hðr̄Þ ¼ −ð1 − 2m=r̄Þ=r̄2. Using (13), we easily obtain
(10). It should be emphasized that the standard physical
range r̄ > 0 corresponds to r < 0. Also, the auxiliary
Kundt coordinate r increases from negative values to 0,
as r̄ increases to ∞.
Notice that H given by (21) is simply a cubic in the

coordinate r of the Kundt geometry. For m ¼ 0, the Kundt
seed withH ¼ −r2 is the Bertotti-Robinson spacetime with
the geometry S2 × AdS2 (see chapter 7 of [16]), and the
corresponding conformally related metric (15) is just
the flat space. It should also be emphasized that, while
the Schwarzschild and Minkowski spacetimes are (the
simplest) vacuum solutions in Einstein’s theory, their
Kundt seeds (21) are not vacuum solutions in Einstein’s
theory since their Ricci tensor is nonvanishing. In fact, the
Bertotti-Robinson geometry is an electrovacuum space of
Einstein’s theory.
Since conformal transformations preserve the Weyl

tensor, both ds2 and ds2Kundt are of the same algebraic
type. Indeed, in the null frame k ¼ ∂r, l ¼ 1

2
H∂r þ ∂u,

mi ¼ ð1þ 1
4
ðx2 þ y2ÞÞ∂i, the only Newman-Penrose Weyl

scalar for (17) is Ψ2 ¼ − 1
12
ðH00 þ 2Þ, and both k and l are

double principal null directions. For the specific function
(21), Ψ2 ¼ mr. The Kundt seed geometry for the
Schwarzschild solution is thus of algebraic type D. It is
conformally flat if, and only if, m ¼ 0, in which case it is
the Bertotti-Robinson spacetime.

D. The Robinson-Trautman form
of the black hole metrics

Recently, we have proven in [9] that any metric con-
formal to a Kundt geometry must belong to the class of
expanding Robinson-Trautman geometries (or it remains in
the Kundt class). Indeed, performing a simple transforma-
tion rðr̃Þ of (15), (17), such that

r ¼
Z

dr̃
Ω2ðr̃Þ ; H ≡Ω2H; ð22Þ

we obtain
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ds2RT¼Ω2ðr̃Þ dx2þdy2

ð1þ 1
4
ðx2þy2ÞÞ2−2dudr̃þHðr̃Þdu2: ð23Þ

This has the canonical form of the Robinson-Trautman
class [15,16] with the identification

Ω;r̃ ¼
ffiffiffiffiffiffiffiffi
f=h

p
; H ¼ −h: ð24Þ

The Schwarzschild black hole is recovered for Ωðr̃Þ ¼ r̃
that is Ω;r̃ ¼ 1, equivalent to fðr̄Þ ¼ hðr̄Þ. Other distinct
non-Schwarzschild black hole solutions are identified
by fðr̄Þ ≠ hðr̄Þ. The Killing horizon is obviously given
by Hðr̃hÞ ¼ 0, corresponding to HðrhÞ ¼ 0 ¼ hðr̄hÞ and
fðr̄hÞ ¼ 0.

IV. THE FIELD EQUATIONS

The conformal approach to describing and studying
black holes and other spherical solutions in Einstein-
Weyl gravity and fully general quadratic gravity, based
on the new form of the metric (12), is very convenient. Due
to (15), it enables one to evaluate easily the Ricci and Bach
tensors, entering the field equations (8), from the Ricci and
Bach tensors of the much simpler Kundt seed metric
ds2Kundt. In particular, to derive the explicit form of the
field equations, it is possible to proceed as follows:
(1) Calculate all components of the Ricci and Bach

tensors RKundt
ab and BKundt

ab for the Kundt seed metric
gKundtab . Since such a metric (17) is simple, containing
only one general metric function of one variable
HðrÞ, its key curvature tensors are also simple. Their
explicit form is presented in Appendix A.

(2) Use the well-known geometric relations for the Ricci
and Bach tensors of conformally related metrics
gKundtab and gab ¼ Ω2gKundtab . Thus it is straightforward
to evaluate the curvature tensors Rab and Bab for
spherically symmetric geometries, starting from
their forms of the Kundt seed calculated in the first
step. In particular, since the Bach tensor trivially
rescales under the conformal transformation as
Bab ¼ Ω−2BKundt

ab , it remains simple. These calcu-
lations are performed in Appendix B.

(3) These explicit components of the Ricci and Bach
tensors are substituted into the field equations of
quadratic gravity, which we already reduced to the
expression Rab ¼ 4kBab, see (8). This immediately
leads to a very simple and compact form of these
field equations. Moreover, using the Bianchi iden-
tities, it can be shown that the whole system reduces
just to two equations (C18), (C19) for the metric
functions ΩðrÞ and HðrÞ, see Appendix C.

By this procedure, we thus arrive at a remarkably simple
form of the field equations (8) for spherically symmetric
vacuum spacetimes in Einstein-Weyl gravity and general
quadratic gravity with R ¼ 0, namely two ordinary

differential equations for the two metric functions ΩðrÞ
and HðrÞ:

ΩΩ00 − 2Ω02 ¼ 1

3
kB1H−1; ð25Þ

ΩΩ0H0 þ 3Ω02HþΩ2 ¼ 1

3
kB2: ð26Þ

The functions B1ðrÞ and B2ðrÞ denote two independent
components of the Bach tensor,

B1 ≡HH0000; ð27Þ

B2 ≡H0H000 −
1

2
H002 þ 2: ð28Þ

Recall also the relation (7), that is R ¼ 0, which is a trace
of the field equations (8). This relation takes the explicit
form

HΩ00 þH0Ω0 þ 1

6
ðH00 þ 2ÞΩ ¼ 0; ð29Þ

see (B11). Indeed, it immediately follows from (25), (26):
just subtract from the derivative of the second equation the
first equation multiplied by H0 (and divide the result
by 6Ω0).
It is a great advantage of our conformal approach with

the convenient form of the new metric (12) that the field
equations (25), (26) are considerably simpler than the
previously used field equations for the standard metric (9).
Moreover, they form an autonomous system, which means
that the differential equations do not explicitly depend on
the radial variable r. This will be essential for solving such
a system, finding their analytic solution in the generic form
(39), (40) or (43), (44) in subsequent Sec. VI.

V. FUNDAMENTAL SCALAR INVARIANTS
AND GEOMETRIC CLASSIFICATION

For a geometrical and physical interpretation of space-
times that are solutions to the field equations (25), (26), it
will be crucial to investigate the behavior of scalar
curvature invariants constructed from the Ricci, Bach,
and Weyl tensors themselves. A direct calculation yields

RabRab ¼ 16k2BabBab; ð30Þ

BabBab ¼ 1

72
Ω−8½ðB1Þ2 þ 2ðB1 þ B2Þ2�; ð31Þ

CabcdCabcd ¼ 1

3
Ω−4ðH00 þ 2Þ2: ð32Þ

To derive these expressions, we have used the field
equations, the quantities (B7)–(B10), (A13)–(A16),
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(A9)–(A12), and relations (A2), (B2), (B5) together
with CabcdCabcd ¼ Ω−4CKundt

abcd C
abcd
Kundt which follows from

the invariance of the Weyl tensor under conformal
transformations.
It is interesting to observe from (31) and (A13)–(A16)

with (B5) that

Bab ¼ 0 if; and only if; BabBab ¼ 0: ð33Þ

Moreover,

CabcdCabcd ¼ 0 implies Bab ¼ 0; ð34Þ

because the relationH00 þ 2 ¼ 0 substituted into (31) gives
BabBab ¼ 0, i.e., Bab ¼ 0 due to (33).
Notice also that the first Bach component B1 ¼ HH0000

always vanishes on the horizon where H ¼ 0, see the
condition (19).
In view of the key invariant (31), there are two geomet-

rically distinct classes of solutions to (25), (26), depending
on the Bach tensor Bab. The first simple case corresponds to
Bab ¼ 0, while the much more involved second case, not
allowed in general relativity, arises when Bab ≠ 0. This
invariant classification has geometrical and physical con-
sequences. In particular, the distinction of spacetimes with
Bab ¼ 0 and with Bab ≠ 0 can be detected by measuring
geodesic deviation of test particles, see Sec. XIII A below.

A. Bab = 0: Uniqueness of Schwarzschild

First, let us assume the metrics (12) such that Bab ¼ 0
everywhere. In view of (33) and (31), this condition
requires B1 ¼ 0 ¼ B2, that is

H0000 ¼ 0; H0H000 −
1

2
H002 þ 2 ¼ 0: ð35Þ

Therefore, all left-hand sides and right-hand sides of
Eqs. (25) and (26) vanish separately, i.e.,

ΩΩ00 ¼ 2Ω02; ΩΩ0H0 þ 3Ω02HþΩ2 ¼ 0: ð36Þ

The first equations of (35) and (36) imply thatHmust be at
most cubic, and Ω−1 must be at most linear in r. Using a
coordinate freedom (14) of the metric (12), without loss of
generality we obtain Ω ¼ −1=r. The remaining equa-
tions (35), (36) then admit a unique solution

ΩðrÞ ¼ −
1

r
; HðrÞ ¼ −r2 − 2mr3: ð37Þ

Not surprisingly, this is exactly the Schwarzschild solution
of general relativity, see Eq. (21). Thus we have verified
that the Schwarzschild black hole spacetime is the only
possible solution with vanishing Bach tensor. Its corre-
sponding scalar invariants (30)–(32) are

RabRab ¼ 0 ¼ BabBab; CabcdCabcd ¼ 48m2r6: ð38Þ

Clearly, for m ≠ 0 there is a curvature singularity at r → ∞
corresponding to r̄ ¼ ΩðrÞ ¼ 0.2

B. Bab ≠ 0: New types of solutions to QG

Many other spherically symmetric vacuum solutions to
quadratic gravity and Einstein-Weyl gravity exist when the
Bach tensor is nontrivial. They are much more involved,
and do not exist in general relativity. Indeed, the field
equations (8) imply Rab ¼ 4kBab ≠ 0, which is in contra-
diction with vacuum Einstein’s equations Rab ¼ 0.
In the rest of this paper, we now concentrate on these

new spherical spacetimes in QG, in particular on black
holes generalizing the Schwarzschild solution. First, we
integrate the field equations (25), (26) for the metric
functions ΩðrÞ and HðrÞ. Actually, we demonstrate that
there are several classes of such solutions with Bab ≠ 0.
After their explicit identification and description, we will
analyze their geometrical and physical properties.

VI. SOLVING THE FIELD EQUATIONS

For nontrivial Bach tensor (B1, B2 ≠ 0), the right-hand
sides of the field equations (25), (26) are nonzero so that the
nonlinear system of two ordinary differential equations for
ΩðrÞ, HðrÞ is coupled in a complicated way. Finding
explicitly its general solution seems to be hopeless.
However, it is possible to write the admitted solutions
analytically, in terms of (infinite) mathematical series
expressed in powers of the radial coordinate r.
In fact, there are two natural possibilities. The first is the

expansion in powers of the parameter Δ≡ r − r0 which
expresses the solution around any finite value r0 (including
r0 ¼ 0). The second possibility is the expansion in powers
of r−1 which is applicable for large values of r. Let us now
investigate both these cases.

A. Expansion in powers of Δ≡ r− r0
It is a great advantage that (25), (26) is an autonomous

system. Thus we can find the metric functions in the form of
an expansion in powers of r around any fixed value r0,

ΩðrÞ ¼ Δn
X∞
i¼0

aiΔi; ð39Þ

HðrÞ ¼ Δp
X∞
i¼0

ciΔi; ð40Þ

where

2For brevity, in this paper the symbol r → ∞ means jrj → ∞,
unless the sign of r is explicitly specified.
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Δ≡ r − r0; ð41Þ

and r0 is any real constant.
3 In particular, in some cases this

allows us to find solutions close to any black hole horizon
rh by choosing r0 ¼ rh.
It is assumed that i ¼ 0; 1; 2;… are integers, so that

the metric functions are expanded in integer steps of
Δ ¼ r − r0. On the other hand, the dominant real powers
n and p in the expansions (39) and (40) need not be positive
integers. We only assume that a0 ≠ 0 and c0 ≠ 0, so that
the coefficients n and p are uniquely defined as the leading
powers.
By inserting (39)–(41) into the field equations (25), (26),

we prove in Sec. VII that only 4 classes of solutions of this
form are allowed, namely

½n; p� ¼ ½−1; 2�; ½n; p� ¼ ½0; 1�;
½n; p� ¼ ½0; 0�; ½n; p� ¼ ½1; 0�: ð42Þ

In subsequent Sec. VIII, it will turn out that the only
possible solution in the class ½n; p� ¼ ½−1; 2� is the
Schwarzschild black hole (21) for which the Bach tensor
vanishes. Explicit Schwarzschild-Bach black holes with
Bab ≠ 0 are contained in the classes [0, 1] and [0, 0]. The
fourth class ½n; p� ¼ ½1; 0� represents singular solutions
without horizon, and it is equivalent to the class ðs; tÞ ¼
ð2; 2Þ identified previously in [4,7,8].

B. Expansion in powers of r− 1
Analogously, we may study and classify all possible

solutions to the QG field equations for an asymptotic
expansion as r → ∞. Instead of (39), (40) with (41), for
very large r we can assume that the metric functions ΩðrÞ,
HðrÞ are expanded in negative powers of r as

ΩðrÞ ¼ rN
X∞
i¼0

Air−i; ð43Þ

HðrÞ ¼ rP
X∞
i¼0

Cir−i: ð44Þ

Inserting the series (43), (44) into the field equations
(25), (26), it can be shown that only 2 classes of such
solutions are allowed, namely

½N;P� ¼ ½−1; 3�∞; ½N;P� ¼ ½−1; 2�∞; ð45Þ

see Sec. IX. In subsequent Sec. X, it will be shown that the
class ½N;P� ¼ ½−1; 3�∞ represents the Schwarzschild-Bach
black holes, whereas the class ½N;P� ¼ ½−1; 2�∞ is a
specific Bachian generalization of a flat space which does
not correspond to a black hole.

VII. DISCUSSION OF SOLUTION USING THE
EXPANSION IN POWERS OF Δ

By inserting the series (39), (40) into the first field
equation (25), the following key relation is obtained:

X∞
l¼2n−2

Δl
Xl−2nþ2

i¼0

aial−i−2nþ2ðl− i− nþ 2Þðl− 3i− 3nþ 1Þ ¼ 1

3
k
X∞
l¼p−4

Δlcl−pþ4ðlþ 4Þðlþ 3Þðlþ 2Þðlþ 1Þ: ð46Þ

The second field equation (26) puts further constraints on the admitted solutions, namely

X∞
l¼2nþp−2

Δl
Xl−2n−pþ2

j¼0

Xj

i¼0

aiaj−icl−j−2n−pþ2ðj− iþ nÞðl− jþ 3iþ nþ 2Þ þ
X∞
l¼2n

Δl
Xl−2n
i¼0

aial−i−2n

¼ 1

3
k

�
2þ

X∞
l¼2p−4

Δl
Xl−2pþ4

i¼0

cicl−i−2pþ4ðiþ pÞðl− i− pþ 4Þðl− i− pþ 3Þ
�
l−

3

2
i−

3

2
pþ 5

2

��
: ð47Þ

Considerably simpler is the additional (necessary but not sufficient) condition following from the trace equation (29) which
reads

X∞
l¼nþp−2

Δl
Xl−n−pþ2

i¼0

cial−i−n−pþ2

�
ðl − i − pþ 2Þðlþ 1Þ þ 1

6
ðiþ pÞðiþ p − 1Þ

�
¼ −

1

3

X∞
l¼n

Δlal−n: ð48Þ

Now we analyze the consequences of Eqs. (46)–(48).

3There may also exist other solutions such that their expansion contains logarithmic or exponential terms in r.
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First, by comparing the corresponding coefficients of the
same powers ofΔl on both sides of the key relation (46), we
can express the coefficients cj in terms of (products of) aj.
Moreover, the terms with the lowest order put further
restrictions. In particular, comparing the lowest orders on
both sides (that is l ¼ 2n − 2 and l ¼ p − 4) it is obvious
that we have to discuss three distinct cases, namely:
(1) Case I: 2n − 2 < p − 4, i.e., p > 2nþ 2,
(2) Case II: 2n − 2 > p − 4, i.e., p < 2nþ 2,
(3) Case III: 2n − 2 ¼ p − 4, i.e., p ¼ 2nþ 2.

Now let us systematically derive all possible solutions in
these three distinct cases.

A. Case I

In this case, 2n − 2 < p − 4, so that the lowest order in
the key equation (46) is on the left-hand side, namely Δl

with l ¼ 2n − 2, and this yields the condition

nðnþ 1Þ ¼ 0: ð49Þ
There are thus only two possible cases, namely n ¼ 0 and
n ¼ −1. Next, it is convenient to apply Eq. (48) whose
lowest orders on both sides are

½6nðnþp− 1Þ þpðp− 1Þ�c0Δnþp−2 þ � � � ¼ −2Δn þ � � � :
ð50Þ

For n ¼ 0, these powers are Δp−2 and Δ0, respectively, but
p − 2 > 2n ¼ 0 by the definition of Case I. The lowest
order 0 ¼ −2Δ0 thus leads to a contradiction. Only the
possibility n ¼ −1 remains, for which (50) reduces to

ðp − 3Þðp − 4Þc0Δp−3 þ � � � ¼ −2Δ−1 þ � � � : ð51Þ

Since c0 ≠ 0, the only possibility is p ¼ 2, in which
case c0 ¼ −1.
To summarize, the only possible class of solutions in

Case I is given by

½n; p� ¼ ½−1; 2� with c0 ¼ −1: ð52Þ

B. Case II

In this case, 2n − 2 > p − 4, so that the lowest order in
the key equation (46) is on the right-hand side, namely Δl

with l ¼ p − 4, and this gives the condition

pðp − 1Þðp − 2Þðp − 3Þ ¼ 0: ð53Þ

Thus there are four possible cases, namely p ¼ 0, p ¼ 1,
p ¼ 2, and p ¼ 3. Equation (48) has the lowest orders on
both sides the same as given by Eq. (50), that is

for p ¼ 0∶ ½6nðn − 1Þ�c0Δn−2 þ � � � ¼ −2Δn þ � � � necessarilyn ¼ 0; 1; ð54Þ

for p ¼ 1∶ ½6n2�c0Δn−1 þ � � � ¼ −2Δn þ � � � necessarilyn ¼ 0; ð55Þ

for p ¼ 2∶ ½6nðnþ 1Þ þ 2�c0Δn þ � � � ¼ −2Δn þ � � � ð3n2 þ 3nþ 1Þc0 ¼ −1; ð56Þ

for p ¼ 3∶ ½6nðnþ 2Þ þ 6�c0Δnþ1 þ � � � ¼ −2Δn þ � � � not compatible: ð57Þ

Moreover, the lowest orders of all the terms in the field
equation (47) for the case p ¼ 2, implying n > 0, are

3a20½nð3nþ 2Þc0 þ 1�Δ2n þ 2kðc20 − 1Þ þ � � � ¼ 0; ð58Þ

which requires c0 ¼ �1, but the constraint (56) 3n2 þ
3nþ 1 ¼ �1 cannot be satisfied for n > 0.
To summarize, the only possible three classes of sol-

utions in Case II are given by

½n;p� ¼ ½0;1�; ½n;p� ¼ ½0;0�; ½n;p� ¼ ½1;0�: ð59Þ
C. Case III

Now 2n − 2 ¼ p − 4, that is n ¼ −1þ p=2 equivalent
to p ¼ 2nþ 2. In such a case, the lowest order in the key

equation (46) is on both sides, namely Δl with l ¼ p − 4.
This implies the condition

pðp − 2Þ½3a20 þ 4kc0ðp − 1Þðp − 3Þ� ¼ 0: ð60Þ

There are three subcases to be considered, namely p ¼ 0,
p ¼ 2, and 3a20¼−4kc0ðp−1Þðp−3Þ with p ≠ 0, 1, 2, 3.
This corresponds to n¼−1, n¼0, and 3a20¼−4kc0ð4n2−1Þ
with n ≠ −1, −1=2, 0, 1=2, respectively. The leading orders
of the trace equation (48) on both sides are

2ð11n2 þ 6nþ 1Þc0Δ3n þ � � � ¼ −2Δn þ � � � : ð61Þ

Consequently, we obtain
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for n ¼ −1 ⇔ p ¼ 0∶ 12c0Δ−3 þ � � � ¼ −2Δ−1 þ � � � not compatible; ð62Þ

for n¼ 0⇔p¼ 2∶ 2c0þ��� ¼−2þ�� � c0¼−1; ð63Þ

for 3a20 ¼ 4kc0ð1 − 4n2Þ∶ ð11n2 þ 6nþ 1Þc0 þ � � � ¼ 0 not compatible: ð64Þ

The incompatibility in the cases (62) and (64) are due to the
fact that c0 ≠ 0 and 11n2 þ 6nþ 1 is always positive. In
the case (63), we employ the field equation (47) which for
n ¼ 0, p ¼ 2 gives the condition 3a20 þ 2kðc20 − 1Þ ¼ 0.
Since c0¼−1 implies a0¼0, we again end up in a
contradiction.
To summarize, there are no possible solutions in Case III.

VIII. DESCRIPTION AND STUDY OF ALL
POSSIBLE SOLUTIONS IN POWERS OF Δ

Let us analyze all spherically symmetric solutions
contained in the possible four classes (52) and (59)
contained in Case I and Case II, respectively.

A. Uniqueness of the Schwarzschild black hole
in the class ½n;p�= ½− 1;2�

Starting with the only admitted class ½n; p� ¼ ½−1; 2� in
the Case I, see (52), now we prove that the only solution in
this class is the Schwarzschild solution with vanishing
Bach tensor. Such a solution can be easily identified within
the complete form (39)–(41), with r0 ¼ 0, using the
expression (37) as

a0 ¼ −1; ai ¼ 0 ∀ i ≥ 1; ð65Þ
c0 ¼ −1; c1 ¼ −2m; ci ¼ 0 ∀ i ≥ 2; ð66Þ
where m is a free parameter.
Let us prove the uniqueness. The full key equation (46)

for n ¼ −1 p ¼ 2 reads

2a1a0Δ−3 þ 6a2a0Δ−2 þ 12a3a0Δ−1 þ
X∞
l¼0

Δl
Xlþ4

i¼0

aialþ4−iðlþ 3 − iÞðlþ 4 − 3iÞ

¼ 1

3
k
X∞
l¼0

Δlclþ2ðlþ 4Þðlþ 3Þðlþ 2Þðlþ 1Þ; ð67Þ

which necessarily implies

a1 ¼ 0; a2 ¼ 0; a3 ¼ 0; ð68Þ
and

Xlþ4

i¼0

aialþ4−iðlþ 3 − iÞðlþ 4 − 3iÞ ¼ 1

3
kclþ2ðlþ 4Þðlþ 3Þðlþ 2Þðlþ 1Þ ∀ l ≥ 0; ð69Þ

that is

ðlþ4Þðlþ5Þa0alþ4¼
1

3
kclþ2ðlþ4Þðlþ3Þðlþ2Þðlþ1Þ−

Xlþ3

i¼1

aialþ4−iðlþ3− iÞðlþ4−3iÞ ∀ l≥ 0: ð70Þ

The second field equation (47), using (68), takes the explicit form

− c2a20Δ0 þ
X∞
l¼1

Δl
Xlþ2

j¼0

Xj

i¼0

aiaj−icl−jþ2ðj − i − 1Þðl − jþ 3iþ 1Þ þ
X∞
l¼1

Δl
Xlþ2

i¼0

aial−iþ2

¼ 1

3
k
X∞
l¼1

Δl
Xl

i¼0

cicl−iðiþ 2Þðl − iþ 2Þðl − iþ 1Þ
�
l −

3

2
i −

1

2

�
; ð71Þ

which implies

c2 ¼ 0: ð72Þ
However, instead of solving (71) for a general l, it is convenient to employ the “trace equation” (48)
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Xlþ1

i¼0

cialþ1−i

�
ðlþ 1Þðl − iÞ þ 1

6
ðiþ 1Þðiþ 2Þ

�
¼ −

1

3
alþ1 ∀ l ≥ 2: ð73Þ

This can be rewritten as

ðl−1Þla0clþ1 ¼ 6lðlþ1Þalþ1−
Xl

i¼1

cialþ1−i½6ðlþ1Þðl− iÞþ ðiþ1Þðiþ2Þ� ∀ l≥ 2; ð74Þ

i.e., by relabeling the index l → lþ 2, as

ðlþ 1Þðlþ 2Þa0clþ3 ¼ 6ðlþ 2Þðlþ 3Þalþ3 −
Xlþ2

i¼1

cialþ3−i½6ðlþ 3Þðlþ 2 − iÞ þ ðiþ 1Þðiþ 2Þ� ∀ l ≥ 0: ð75Þ

Now, we employ the mathematical induction. Let us
assume that for some l ≥ 0

ai ¼ 0 ∀ i ¼ 1;…; lþ 3; ð76Þ
ci ¼ 0 ∀ i ¼ 2;…; lþ 2: ð77Þ

For l ¼ 0 this is true due to (68), (72). Then the field
equation (70) reduces to

ðlþ 4Þðlþ 5Þa0alþ4 ¼ 0; ð78Þ
while Eq. (75) gives

ðlþ 1Þðlþ 2Þa0clþ3 ¼ 0: ð79Þ
This obviously implies alþ4 ¼ 0 and clþ3 ¼ 0, completing
the induction step.
Therefore, all coefficients ai for i ≥ 1 and all ci for i ≥ 2

vanish, which means that the only possible solution in
Case I is

Ω ¼ a0
Δ
; H ¼ −Δ2 þ c1Δ3: ð80Þ

With the coordinate freedom (14), enabling us to set a0¼−1
and Δ ¼ r, this is exactly the explicit Schwarzschild
solution (37).
To conclude, the class of solutions ½n; p� ¼ ½−1; 2�

represents spherically symmetric Schwarzschild solution
(37), and it is the only solution in this class.

B. Schwarzschild-Bach black holes in the class
½n;p�= ½0;1�: Near the horizon

Now we will prove that this second class represents
spherically symmetric non-Schwarzschild solutions to QG
that describe black holes with nonvanishing Bach tensor.
Thus it is natural to call this family Schwarzschild-Bach
black holes. The first three terms in the expansion of the full
solution take the explicit form

ΩðrÞ ¼ −
1

r
þ b
r2h

ðr − rhÞ −
b
r3h

�
2þ 1

8kr2h
þ b

�
ðr − rhÞ2 þ…; ð81Þ

HðrÞ ¼ ðr − rhÞ
�
r2

rh
þ 3bðr − rhÞ þ

b
rh

�
4 −

1

2kr2h
þ 3b

�
ðr − rhÞ2 þ…

�
; ð82Þ

where rh localizes the black hole horizon sinceHðrhÞ ¼ 0.
In fact, for the whole class ½n; p� ¼ ½0; 1�, the metric
function H given by (40), (41) takes the generic form
HðrÞ ¼ ðr − r0Þðc0 þ c1ðr − r0Þ þ…Þ, which means that
r ¼ r0 is the root of H, and thus the horizon. Therefore,
we can identify the constant r0 (around which the solution is
expanded) with the location of geometrical/physical horizon,

r0 ≡ rh: ð83Þ
When the additional new “Bach parameter” b in (81),

(82) is set to zero, the Bach tensor vanishes, and this

solution reduces to the Schwarzschild spacetime (37)
with rh ¼ −1=ð2mÞ.
Let us systematically derive the complete analytic form

of these Schwarzschild-Bach black holes, leading to (81),
(82). Equation (46) for ½n; p� ¼ ½0; 1� gives

Xlþ1

i¼0

aialþ2−iðlþ 2 − iÞðlþ 1 − 3iÞ

¼ 1

3
kclþ3ðlþ 4Þðlþ 3Þðlþ 2Þðlþ 1Þ; ð84Þ
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where l ≥ 0. Relabeling l → l − 1, we thus obtain

clþ2¼
3

kðlþ3Þðlþ2Þðlþ1Þl
Xl

i¼0

aialþ1−iðlþ1− iÞðl−3iÞ

∀ l≥ 1; ð85Þ

which enables us to express all coefficients clþ2 in terms of
a0;…; alþ1, starting from c3. In the lowest nontrivial order
l ¼ 0, the “trace equation” (48) implies

a1 ¼ −
a0
3c0

ð1þ c1Þ; ð86Þ

while for higher orders l ¼ 1; 2;…, yields

alþ1 ¼
−1

ðlþ 1Þ2c0

×

�
1

3
alþ

Xlþ1

i¼1

cialþ1−i½ðlþ 1Þðlþ 1− iÞþ 1

6
iðiþ 1Þ�

�

∀ l≥ 1; ð87Þ
which expresses all alþ1 in terms of a0;…; al and
c0;…; clþ1. Finally, in the lowest nontrivial order l ¼ 0,
the field equation (47) gives the constraint 6kc0c2 ¼
3a0ða0 þ a1c0Þ þ 2kðc21 − 1Þ. Using (86), this becomes

c2 ¼
1

6kc0
½a20ð2 − c1Þ þ 2kðc21 − 1Þ�: ð88Þ

There are thus three free initial parameters, namely a0,
c0, and c1 (apart from r0 ¼ rh). Using (86), (88), we obtain
a1, c2, and then alþ1, clþ2 for all l ¼ 1; 2;… by the
alternate application of the recurrent relations (87), (85).
This gives the complete analytic solution.
Now, the scalar invariants (31), (32) evaluated at r ¼

rh ≡ r0 take the form

BabBabðrhÞ ¼
�
1 − c21 þ 3c0c2

3a40

�
2

;

CabcdCabcdðrhÞ ¼
4

3a40
ð1þ c1Þ2: ð89Þ

The Bach tensor is in general nonvanishing. In fact, for a
physical interpretation of this family of solutions, it is
convenient to introduce a new parameter b proportional to
1 − c21 þ 3c0c2. Setting b ¼ 0 then gives the necessary
condition for the Bach tensor to vanish. In view of (88),
such Bach parameter b can be defined simply as

b≡ 1

3
ðc1 − 2Þ; ð90Þ

so that the Bach scalar invariant (89) at the black hole
horizon rh becomes

BabBabðrhÞ ¼
b2

4k2a40
: ð91Þ

Using b as the dimensionless key parameter in the
expansion (39), (40), the recurrent relations (87), (85)
readily yield an explicit solution of the field equations in
the form

a1 ¼ −
a0
c0

ð1þ bÞ;

a2 ¼ þ a0
c20

�
1þ

�
2þ a20

8k

�
bþ b2

�
;

a3 ¼ −
a0
c30

�
1þ 1

9

�
25þ 29a20

8k
þ a40
16k2

�
b

þ 1

9

�
23þ 35a20

8k

�
b2 þ 7

9
b3
�
;…; ð92Þ

and

c1 ¼ 2þ 3b;

c2 ¼
1

c0

�
1þ

�
4 −

a20
2k

�
bþ 3b2

�
;

c3 ¼
a40

32k2c20
b;

c4 ¼
a20

30kc30
b

��
1 −

5a20
4k

−
a40
32k2

�

þ
�
2 −

13a20
8k

�
bþ b2

�
;…; ð93Þ

and so on, where a0, c0, and b are three free parameters.

1. Identification of the Schwarzschild black hole

Now, it is possible to identify the Schwarzschild black
hole. This is defined geometrically by the property that its
Bach tensor vanishes. In view of (91), it requires to set the
key parameter b to zero. Interestingly, with b ¼ 0, the
expansion coefficients (92), (93) simplify enormously to

ai ¼ a0

�
−

1

c0

�
i

for all i ≥ 0; ð94Þ

c1 ¼ 2; c2 ¼
1

c0
; ci ¼ 0 for all i ≥ 3: ð95Þ

The first sequence clearly corresponds to a geometrical
series, while the second series is truncated to a polynomial
of the third order. The metric functions thus take the
explicit closed form
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ΩðrÞ ¼ a0
X∞
i¼0

�
−
Δ
c0

�
i
¼ a0c0

c0 þ Δ
¼ a0c0

r − rh þ c0
; ð96Þ

HðrÞ ¼ c0ðr − rhÞ þ 2ðr − rhÞ2 þ c−10 ðr − rhÞ3: ð97Þ

Using the gauge freedom (14) (a constant rescaling and
shift of the coordinate r), we are free to choose

a0 ¼ −
1

c0
; c0 ¼ rh; ð98Þ

so that the metric functions become

r̄¼ΩðrÞ ¼ −
1

r
; HðrÞ ¼ −r2 þ r3

rh
¼ ðr− rhÞ

r2

rh
: ð99Þ

Clearly, there is a black hole horizon located at rh. This is
the Schwarzschild horizon given by the usual condition
h ¼ 1–2m=r̄ ¼ 0. In terms of r ¼ −1=r̄, it is equivalent to
rh ¼ −1=ð2mÞ. Thus for the case b ¼ 0, we have fully
recovered the standard form of the Schwarzschild solution,
since the metric functions (99) are exactly the same as (37).

2. More general Schwarzschild-Bach black holes

When b ≠ 0, the corresponding solution given by (87),
(85), that is (92), (93), can be naturally interpreted as
generalized black holes with a nontrivial Bach tensor
whose invariant value BabBab at the horizon is proportional
to b2, according to (91). Moreover, as b → 0 we explicitly
obtain the Schwarzschild black hole (99). Using the
summation of the “background” terms independent of b
as in (96), and the same gauge fixing (98), it is possible to
write this solution explicitly as (81), (82). Recall that rh still

gives the exact value of the horizon even if b is now
nonzero, see the text below Eq. (82).
To express a general solution in this class completely, it

is convenient to introduce coefficients αi, γi as those parts
of ai, ci, respectively, which do not involve the b ¼ 0
Schwarzschild “background,” i.e., using the following
definitions:

ai≡aiðb¼ 0Þ− b
rh

αi
ð−rhÞi

; where aiðb¼ 0Þ≡ 1

ð−rhÞ1þi ;

ð100Þ

c1 ≡ 2þ 3bγ1; c2 ≡ 1

rh
þ 3b

γ2
rh

;

ci ≡ 3b
γi

ðrhÞi−1
for all i ≥ 3: ð101Þ

With the natural gauge choice (98), the complete solution
then takes the explicit form

ΩðrÞ ¼ −
1

r
−

b
rh

X∞
i¼1

αi

�
1 −

r
rh

�
i
; ð102Þ

HðrÞ ¼ ðr − rhÞ
�
r2

rh
þ 3brh

X∞
i¼1

γi

�
r
rh

− 1

�
i
�
; ð103Þ

with the initial coefficients

α1¼ 1; γ1¼ 1; γ2 ¼
1

3

�
4−

1

2kr2h
þ3b

�
; ð104Þ

and all other coefficients αl, γl for any l ≥ 1 given by the
recurrent relations (defining α0 ¼ 0)

αlþ1 ¼
1

ðlþ 1Þ2
�
αlð2l2 þ 2lþ 1Þ − αl−1l2 − 3

Xlþ1

i¼1

ð−1Þiγið1þ bαlþ1−iÞ½ðlþ 1Þðlþ 1 − iÞ þ 1

6
iðiþ 1Þ�

�
;

γlþ2 ¼
ð−1Þlþ1

kr2hðlþ 3Þðlþ 2Þðlþ 1Þl
Xl

i¼0

ðαi þ αlþ1−ið1þ bαiÞÞðlþ 1 − iÞðl − 3iÞ; ð105Þ

which follow from (87) and (85) for alþ1 and clþ2,
respectively. The first terms generated by these relations are

α2 ¼ 2þ 1

8kr2h
þ b;

α3 ¼
1

9

�
25þ 29

8kr2h
þ 1

16k2r4h

�
þ 1

9

�
23þ 35

8kr2h

�
b

þ 7

9
b2;…; ð106Þ

γ3 ¼
1

96k2r4h
;

γ4 ¼
1

18kr2h

�
1

5
−

1

4kr2h
−

1

160k2r4h

�

þ 3

720kr2h

�
16 −

13

kr2h

�
bþ 1

90kr2h
b2;…; ð107Þ

yielding (81), (82).
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This family of spherically symmetric black-hole space-
times (102), (103) in Einstein-Weyl/quadratic gravity
depends on two parameters with a clear geometrical
and physical interpretation, namely:
(1) The parameter rh identifies the horizon position.

Indeed, r ¼ rh is the root of the metric function
HðrÞ given by (103).

(2) The dimensionless Bach parameter b distinguishes
the Schwarzschild solution (b ¼ 0) from the more
general Schwarzschild-Bach black hole spacetime
with nonzero Bach tensor (b ≠ 0).

In fact, we have chosen the parameter b in such a way
that it determines the value of the Bach tensor (27), (28) on
the horizon rh, namely

B1ðrhÞ ¼ 0; B2ðrhÞ ¼ −
3

kr2h
b: ð108Þ

Thus on the horizon, the invariants (31) and (32) of the
Bach and Weyl tensors take the values

BabBabðrhÞ ¼
r4h
4k2

b2;

CabcdCabcdðrhÞ ¼ 12r4hð1þ bÞ2; ð109Þ
respectively.
To conclude, the class of solutions ½n; p� ¼ ½0; 1� repre-

sents spherically symmetric Schwarzschild-Bach black holes
(abbreviated as Schwa-Bach), expressed in terms of the
series (102), (103) around the horizon rh, i.e., for the special
choice r0 ¼ rh. These Schwa-Bach black holes include and
generalize the well-known Schwarzschild black hole.
Restricting our discussion to Einstein’s theory, corre-

sponding to k ¼ 0, requires a0 þ a1c0 ¼ 0; see the con-
straint above Eq. (88). Substituting this into (86), we obtain
c1 ¼ 2, and thus b ¼ 0. This again confirms that the only
possible spherical vacuum solution in general relativity is
the Schwarzschild solution.
Let us finally remark that the explicit recurrent relations

(105) can be rewritten in a slightly more compact form if
we relabel the index l to j≡ lþ 1, so that the relations for
any j ≥ 2 become

αj ¼
1

j2

�
αj−1ð2j2 − 2jþ 1Þ − αj−2ðj − 1Þ2 − 3

Xj

i¼1

ð−1Þiγið1þ bαj−iÞ½jðj − iÞ þ 1

6
iðiþ 1Þ�

�
;

γjþ1 ¼
ð−1Þj

kr2hðjþ 2Þðjþ 1Þjðj − 1Þ
Xj−1
i¼0

ðαi þ αj−ið1þ bαiÞÞðj − iÞðj − 1 − 3iÞ: ð110Þ

C. Schwarzschild-Bach black holes in the class ½n;p�= ½0;0�: Near a generic point

This more general class of possible spherically symmetric vacuum solutions to QG [see (59)]may, as a special case, also
represent the family of Schwarzschild-Bach black holes with nonvanishing Bach tensor. In contrast to the previous case
½n; p� ¼ ½0; 1�, the expansion is now considered around an arbitrary fixed value r0 which is distinct from the position of the
black hole horizon rh,

r0 ≠ rh: ð111Þ

Indeed, for ½n; p� ¼ ½0; 0� the metric functionH given by (40), (41) isHðrÞ ¼ c0 þ c1ðr − r0Þ þ � � �, where c0 ≠ 0, so that
the value r ¼ r0 is not the root of H and thus cannot be the horizon.
In such a case, the first few terms in the expansion of the full solution take the explicit form

ΩðrÞ ¼ −
1

r
þ b1

rh
2r30

ðr − r0Þ2
rh − r0

þ…; ð112Þ

HðrÞ¼ðr−rhÞ
r2

rh
þðb1−b2Þr0ðr−r0Þ−3b2ðr−r0Þ2þ

ðb2−b1Þð1þγþ 1
2kr2

0

Þ−2ð2þ3γÞb2þ3b22

ð1þ3γþb1−b2Þr0
ðr−r0Þ3…; ð113Þ

where b1 and b2 are two independent Bach parameters
proportional to values of the two components of the Bach
tensor at r0. By settingb1¼0¼b2, theSchwarzschild solution
(which has vanishing Bach tensor) is immediately obtained.

Let us derive this analytic form of the Schwa-Bach
black holes. For ½n; p� ¼ ½0; 0� the complete solution to
(25), (26) of the form (39)–(41) is given by the Taylor
expansions
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ΩðrÞ ¼ a0 þ
X∞
i¼1

aiðr − r0Þi;

HðrÞ ¼ c0 þ
X∞
i¼1

ciðr − r0Þi: ð114Þ

The key equation (46) for n ¼ 0 ¼ p, after relabeling
l → l − 1, gives

clþ3 ¼
3

kðlþ 3Þðlþ 2Þðlþ 1Þl
Xl

i¼0

aialþ1−iðlþ 1− iÞðl− 3iÞ

∀ l≥ 1: ð115Þ
Equation (48), relabeling l → l − 1, implies

alþ1 ¼
−1

lðlþ 1Þc0

×

�
1

3
al−1 þ

Xlþ1

i¼1

cialþ1−i½lðlþ 1 − iÞ þ 1

6
iði − 1Þ�

�

∀ l ≥ 1: ð116Þ
Finally, the field equation (47) in the lowest nontrivial order
l ¼ 0 gives one additional constraint

c3 ¼
1

6kc1
½3a0ða0 þ a1c1Þ þ 9a21c0 þ 2kðc22 − 1Þ�: ð117Þ

Thus there are five free initial parameters, namely a0, a1,
c0, c1, c2 (in addition to r0). All the remaining coefficients
alþ1, clþ3 in (114) are then obtained by applying the
recurrent relations (116), (115), respectively, starting as

a2 ¼ −
1

6c0
½a0 þ 3a1c1 þ a0c2�;… ð118Þ

c4 ¼−
1

24kc0
½6a21c0þa0ða0þ3a1c1þa0c2Þ�;…: ð119Þ

Now we show that three of the five initial parameters
(namely a0, a1, c0) can be conveniently fixed using the
gauge freedom in such a way that the Schwarzschild
solution and flat Minkowski background are uniquely
identified and directly seen.

1. Identification of the Schwarzschild black hole

Specific geometry can be identified by the scalar
invariants (31), (32) with (27), (28). In particular, the
Bach invariant evaluated at r ¼ r0 is

BabBabðr0Þ ¼
1

72a80
½ðB1Þ2 þ 2ðB1 þB2Þ2�;

where B1ðr0Þ ¼ 24c0c4; B2ðr0Þ ¼ 2ð3c1c3 − c22 þ 1Þ:
ð120Þ

Vanishing of the Bach tensor (Bab ¼ 0 ⇔ B1 ¼ 0 ¼ B2),
which uniquely identifies the Schwarzschild solution, thus
requires c4 ¼ 0 and 3c1c3 − c22 þ 1 ¼ 0. In combination
with (119), (117), this implies two necessary conditions

c1 ¼ −
a0
a1

�
1þ 3

a21
a20

c0

�
; c2 ¼ 2þ 3

a21
a20

c0 ð121Þ

that only depend on the fraction a1=a0 and c0. Interestingly,
for such a choice of parameters the recurrent relations
(116), (115) give a very simple complete solution

ai ¼ a0

�
a1
a0

�
i

for all i ≥ 0; c3 ¼ −
a1
a0

�
1þ a21

a20
c0

�
;

ci ¼ 0 for all i ≥ 4: ð122Þ
The first sequence clearly yields a geometrical series, while
the second series is truncated to the third-order polynomial.
Thus the metric functions take the closed form

ΩðrÞ ¼ a0
X∞
i¼0

�
a1
a0

Δ
�

i
¼ a20

a0 − a1Δ
¼ a20

ða0 þ a1r0Þ − a1r
;

ð123Þ
HðrÞ¼ c0þc1ðr−r0Þþc2ðr−r0Þ2þc3ðr− r0Þ3: ð124Þ

Using the gauge freedom (14), the most convenient choice

a0 ¼ −
1

r0
; a1 ¼

1

r20
ð125Þ

can always be made, so that the metric functions reduce to

r̄ ¼ ΩðrÞ ¼ −
1

r
; HðrÞ ¼ ðr − r0Þ

r2

r0
þ c0

r30
r3: ð126Þ

Notice that this function H can be rewritten as

HðrÞ¼−r2þr3

rh
¼ðr−rhÞ

r2

rh
; where rh≡ r30

r20þc0
: ð127Þ

This is exactly the standard form (99) of the Schwarzschild
solution, with the black hole horizon located at rh (clearly
the root ofH). Thus the constant c0 is uniquely determined
in terms of the physical/geometrical parameter rh (the
horizon) and an arbitrary parameter r0 (entering the
expansion variable Δ ¼ r − r0) as

c0 ≡ γr20; where γ ≡ r0
rh

− 1; r0 ≠ rh: ð128Þ

Thus we have proven that all solutions in the class ½n; p� ¼
½0; 0� with vanishing Bach tensor are equivalent to the
Schwarzschild black hole solution, as also identified in the
classes ½n; p� ¼ ½0; 1� and ½n; p� ¼ ½−1; 2�; see expressions
(99) and (80), respectively. The main difference is that in
the class ½n; p� ¼ ½0; 1�, it is possible (and, in fact, neces-
sary) to choose the expansion parameter r0 equal to the
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horizon rh, see (83), naturally allowing one to expand the
solution around the black hole horizon, while in the present
case of the class ½n; p� ¼ ½0; 0�, such a choice is forbidden
(r0 is not the root ofH). Indeed, for the choice r0 ¼ rh, the
expression (128) would lead to c0 ¼ 0 which is not
allowed. Otherwise the constant r0, determining the initial
position around which the solution is expanded, can be
chosen arbitrarily.
These conclusions are consistent with the behavior of the

Weyl curvature invariant (32) at r0,

CabcdCabcdðr0Þ ¼ 12
r60
r2h

¼ 48m2r60; ð129Þ

where we have used the conditions (127) and the
Schwarzschild horizon position rh ¼ −1=ð2mÞ. This
invariant value at the horizon agrees with (38). For
m ¼ 0, flat Minkowski background is obtained, corre-
sponding to c2 ¼ −1, that is c0 ¼ −r20, in which case
HðrÞ ¼ −r2, and there is no horizon.

2. More general black hole solutions
with nontrivial Bach tensor

Returning to the generic case (115)–(119) in the class
½n; p� ¼ ½0; 0� with nonvanishing Bach tensor, it is now
necessary to introduce two distinct Bach parameters b1 and
b2, corresponding to the two components B1ðr0Þ and
B2ðr0Þ of the Bach tensor (27) and (28), respectively,
evaluated at r0. They enter (120) via the coefficients c4 and
c3, which are expressed in terms of the two remaining
initial parameters c1 and c2 using (119) and (117). For
Bab ¼ 0, they take the form (121), i.e., with the gauge (125)
and fixing (128), c1 ¼ ð1þ 3γÞr0 and c2 ¼ 2þ 3γ. It turns
out to be useful to define two dimensionless Bach param-
eters b1 and b2 via the relations

c1¼ð1þ3γþb1−b2Þr0; c2 ¼ 2þ3γ−3b2; ð130Þ

that is

b1 ≡ 1

3
ð−1 − 6γ − c2 þ 3c1=r0Þ;

b2 ≡ 1

3
ð2þ 3γ − c2Þ: ð131Þ

Then b1 and b2 are directly proportional to the two Bach
tensor components B1ðr0Þ and B2ðr0Þ,

b1¼
1

3
kr20B1ðr0Þ; b2¼

1

3
kr20 ðB1ðr0ÞþB2ðr0ÞÞ; ð132Þ

and the Bach invariant at r0 is simply expressed as

BabBabðr0Þ ¼
r40
8k2

ðb21 þ 2b22Þ: ð133Þ

With the parametrization by b1, b2 introduced in (130),
assuming again the natural gauge (125) and fixing (128),
the coefficients ai, ci of the explicit solution (115)–(117)
are then given as

a0 ¼ −
1

r0
; a1 ¼

1

r20
; a2 ¼ −

1

r30
−

b1
2γr30

;…; ð134Þ

c0¼γr20; c1¼ð1þ3γÞr0þðb1−b2Þr0; c2¼2þ3γ−3b2;

c3¼
ð1þγÞð1þ3γÞ−2ð2þ3γÞb2þ3b22þðb2−b1Þ=ð2kr20Þ

ð1þ3γþb1−b2Þr0
;

c4¼
b1

8kγr40
;…: ð135Þ

For b1 ¼ 0 ¼ b2, we immediately recover the
Schwarzschild solution (126), that is (127). In a generic
case, the complete solution can be understood as the
Schwarzschild black hole “background” modified by a
nonzero Bach tensor, encoded in the terms that are propor-
tional to (powers of) the dimensionless Bach parameters b1
and b2. The expansion of this full solution takes the explicit
form (112), (113).

3. Identification of the Schwa-Bach black hole
solutions [0, 1] in the class [0, 0]

Now a natural question arises about the explicit relation
between the form (81), (82) and the form (112), (113) of the
family of Schwarzschild-Bach black holes. The problem is
that we cannot simply express the single Bach parameter b
in terms of the two parameters b1, b2. The reason is that b
determines the value of the Bach tensor at the horizon rh,
namely

B1ðrhÞ ¼ 0; B2ðrhÞ ¼ −
3

kr2h
b; ð136Þ

while b1 and b2 determine its two independent values at
any given r0

B1ðr0Þ ¼
3

kr20
b1; B2ðr0Þ ¼

3

kr20
ðb2 − b1Þ; ð137Þ

see (108) and (132), respectively. Since the functions
B1ðrÞ, B2ðrÞ are complicated, the relations between the
constants b and b1, b2 are obscured.
However, this problem can be circumvented by the

following procedure. In order to explicitly identify the
Schwa-Bach black hole solution (102), (103), expressed
around the horizon rh in the class [0, 1], within the generic
class [0, 0] given by (114), we just have to determine its five
free parameters a0, a1, c0, c1, c2 properly. Instead of
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considering (134), (135), we can simply evaluate the
functions (102), (103) (and their derivatives) at r ¼ r0,
and then compare them with the Taylor expansions (114)
(and their derivatives) evaluated at r ¼ r0, obtaining

4

a0 ¼ −
1

r0
−

b
rh

X∞
i¼1

αi

�
1 −

r0
rh

�
i
; ð138Þ

a1 ¼
1

r20
þ b
r2h

X∞
i¼1

iαi

�
1 −

r0
rh

�
i−1

; ð139Þ

c0 ¼ ðr0 − rhÞ
�
r20
rh

þ 3brh
X∞
i¼1

γi

�
r0
rh

− 1

�
i
�
; ð140Þ

c1 ¼ð3r0−2rhÞ
r0
rh
þ3brh

X∞
i¼1

ðiþ1Þγi
�
r0
rh
−1

�
i
; ð141Þ

c2 ¼ð3r0−rhÞ
1

rh
þ3

2
b
X∞
i¼1

iðiþ1Þγi
�
r0
rh
−1

�
i−1

: ð142Þ

Then using the recurrent relations (115)–(117), we are able
to express the Schwarzschild-Bach black holes using the
complete expansion around any value r0 and just a single
Bach parameter b which determines the value of the Bach
tensor at the horizon rh.
When b ¼ 0, the coefficients ai form a geometrical

series, and the metric functions simplify to (126), (127)
which is again the Schwarzschild solution (21). Both the
classes [0, 0] and [0, 1] with Bab ¼ 0 thus reduce to the
Schwarzschild black hole. The difference is that in the class
[0, 1] the radial distance parameter r0 is equal to rh, while
r0 ≠ rh can be chosen arbitrarily in the class [0, 0].

4. Formal limit r0 → rh
Let us consider a “consistency check” between the two

series expressing the Schwa-Bach black hole solution,
namely (81), (82) in the class [0, 1] and (112), (113) in
the class [0, 0].
To this end, let us denote temporarily the coefficients in

the class [0, 0] by ĉi and âi. The limit r0 → rh in (138)–
(142) can be trivially performed, just by setting r0 ¼ rh,
leading to the relations

â0 ¼ −
1

rh
≡ a0; â1 ¼

1

r2h
ð1þ bÞ≡ a1; ð143Þ

ĉ0 ¼ 0; ĉ1 ¼ rh ≡ c0; ĉ2 ¼ 2þ 3b≡ c1; ð144Þ

where Eq. (98) and the first relations in (92), (93) have also
been employed. By comparing (85) and (115) it is also seen

that ĉjþ1 satisfies the same recurrent relation as cj, so that
the functions H agree. Moreover, from the relation (116) it
follows that the condition ĉ0 ¼ 0 requires

0¼ 1

3
âl−1 þ l2ĉ1âl þ

Xlþ1

i¼2

ĉiâlþ1−i½lðlþ 1− iÞ þ 1

6
iði− 1Þ�:

ð145Þ

This implies

âl ¼ −
1

l2ĉ1

�
1

3
âl−1 þ

Xl

i¼1

ĉiþ1âl−i½lðl − iÞ þ 1

6
iðiþ 1Þ�

�
;

ð146Þ

which (with the identification ĉiþ1 ¼ ci) is equivalent to the
recurrent expression (87) for alþ1, so that the functions Ω
also agree. In other words, in the limit r0 → rh we obtain

ĉ0 → 0; ĉjþ1 → cj; âj → aj for all j ≥ 0; ð147Þ

demonstrating the consistency of the two expressions for
the Schwa-Bach black holes in these two classes of
solutions.

D. Bachian singularity in the class ½n;p�= ½1;0�
This last possible class (42) of spherically symmetric

vacuum solutions represents spacetimes which are not
black holes with horizon localized at r0. Instead, it seems
to be a specific family containing a naked singularity
with Bab ≠ 0.
The key equation (46) for ½n; p� ¼ ½1; 0�, relabeling

l → l − 3, gives

clþ1¼
3

kðlþ1Þlðl−1Þðl−2Þ
Xl−3
i¼0

aial−3−iðl−2− iÞðl−5−3iÞ

∀ l≥3; ð148Þ

expressing clþ1, starting from c4. Equation (48) in the
lowest order l ¼ 0 implies

a1 ¼ −
a0c1
2c0

; ð149Þ

and in higher orders

alþ1¼
−1

ðlþ1Þðlþ2Þc0

×

�
1

3
al−1þ

Xlþ1

i¼1

cialþ1−i½ðlþ1Þðlþ2− iÞþ1

6
iði−1Þ�

�

∀ l≥1: ð150Þ
4Of course, provided r0 is within the convergence radius of

(102), (103).
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Finally, the field equation (47) in the lowest nontrivial order
l ¼ 0 gives the condition

c3 ¼
1

6kc1
½9a20c0 þ 2kðc22 − 1Þ�: ð151Þ

All coefficients alþ1, clþ1 are obtained by applying the
recurrent relations (150), (148). This yields an explicit
solution

ΩðrÞ ¼ ðr − r0Þ
�
a0 þ

X∞
i¼1

aiðr − r0Þi
�
;

HðrÞ ¼ c0 þ
X∞
i¼1

ciðr − r0Þi; ð152Þ

where

a2 ¼ −
a0
18c20

½c0ð1þ 7c2Þ − 6c21�;

a3 ¼ −
a0

36kc30c1

�
18a20c

3
0 þ k½4c20ðc22 − 1Þ

− 2c0c21ð1þ 10c2Þ þ 9c41�
�
;…;

c4 ¼ −
a20
4k

; c5 ¼
3a20c1
40kc0

;…; ð153Þ

and a0, c0, c1, c2 are four initial parameters (apart from r0),
but not all of them are independent. Due to the gauge
freedom (14), we can set, for example, a0 ¼ 1 and also
r0 ¼ 0.
To determine the main geometric properties we employ

the scalar invariants (31), (32), which read

BabBabðrÞ ¼ 3c20
4a40k

2

1

ðr − r0Þ8
þ…;

CabcdCabcdðrÞ ¼ 4

3a40

ð1þ c2Þ2
ðr − r0Þ4

þ…: ð154Þ

The Bach tensor Bab is thus nonvanishing near r0. And
since Rab ¼ 4kBab ≠ 0, this class of solutions does not
contain Ricci-flat subcases. The Bach invariant always
diverges at r ¼ r0, and there is also a Weyl curvature
singularity at r ¼ r0 (maybe unless c2 ¼ −1).
Moreover, for (152) the expressions (11)–(13) in the

limit r → r0 behave as

r̄ ¼ ΩðrÞ ∼ a0ðr − r0Þ → 0; ð155Þ

h ∼ −c0r̄2 → 0; f ∼ −a20c0ðr̄Þ−2 → ∞: ð156Þ

It shows a very specific and unusual behavior of the metric
functions f and h close to the curvature singularity at
r̄ ¼ 0, in terms of the physical radial coordinate r̄.
This class ½n; p� ¼ ½1; 0� of solutions corresponds to

the family which has been identified in [4,7,17] as
ðs; tÞ ¼ ð2; 2Þ, and nicknamed (2,2)-family in [8]; see
Sec. XI for more details.

IX. DISCUSSION OF SOLUTIONS USING THE
EXPANSION IN POWERS OF r− 1

By inserting the series (43), (44), that is

ΩðrÞ ¼ rN
X∞
i¼0

Air−i; HðrÞ ¼ rP
X∞
i¼0

Cir−i; ð157Þ

into the key field equation (25), we obtain the relation

X∞
l¼−2Nþ2

r−l
Xlþ2N−2

i¼0

AiAl−iþ2N−2ðl−iþN−2Þðl−3iþ3N−1Þ¼1

3
k

X∞
l¼−Pþ4

r−lClþP−4ðl−4Þðl−3Þðl−2Þðl−1Þ: ð158Þ

The second field equation (26) puts further constraints, namely

X∞
l¼−2N−Pþ2

r−l
Xlþ2NþP−2

j¼0

Xj

i¼0

AiAj−iCl−jþ2NþP−2ðj − i − NÞðl − jþ 3i − N − 2Þ þ
X∞
l¼−2N

r−l
Xlþ2N

i¼0

AiAl−iþ2N

¼ 1

3
k

�
2þ

X∞
l¼−2Pþ4

r−l
Xlþ2P−4

i¼0

CiCl−iþ2P−4ði − PÞðl − iþ P − 4Þðl − iþ P − 3Þ
�
l −

3

2
iþ 3

2
P −

5

2

��
: ð159Þ

The supplementary condition following from the “trace equation” (29) reads

X∞
l¼−N−Pþ2

r−l
XlþNþP−2

i¼0

CiAl−iþNþP−2

�
ðl − iþ P − 2Þðl − 1Þ þ 1

6
ði − PÞði − Pþ 1Þ

�
¼ −

1

3

X∞
l¼−N

r−lAlþN: ð160Þ
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By comparing the corresponding coefficients of the same
powers of r−l on both sides of the relation (158), we can
express the coefficients Cj in terms of Ajs. Moreover, the
terms with the lowest order imply that we have to discuss
three distinct cases, namely:
(1) Case I∞: −2N þ 2 < −Pþ 4, i.e., P < 2N þ 2,
(2) Case II∞: −2N þ 2 > −Pþ 4, i.e., P > 2N þ 2,
(3) Case III∞: −2N þ 2 ¼ −Pþ 4, i.e., P ¼ 2N þ 2.

Let us derive all possible solutions in these cases.

A. Case I∞

In the case, −2N þ 2 < −Pþ 4, the highest order in the
key equation (158) is on the left-hand side, namely r−l with
−l ¼ 2N − 2, which yields the condition

NðN þ 1Þ ¼ 0: ð161Þ
The only two admitted cases are N ¼ 0 and N ¼ −1. The
highest orders on both sides of Eq. (160) are

½6NðN þ P − 1Þ þ PðP − 1Þ�C0rNþP−2 þ � � �
¼ −2rN þ � � � : ð162Þ

For N ¼ 0, these powers are rP−2 and r0, respectively,
but P − 2 < 2N ¼ 0 by the definition of Case I∞. The
highest order 0 ¼ −2r0 thus leads to a contradiction.
Similarly, for the second possibility N ¼ −1, the powers
are rP−3 and r−1, respectively, but P − 3 < 2N − 1 ¼
−3 < −1. The highest order is thus 0 ¼ −2r−1, which is
again a contradiction.
To summarize, there are no possible solutions in

Case I∞.

B. Case II∞

In this case, −2N þ 2 > −Pþ 4, so that the highest
order in the key equation (158) is on the right-hand side,
namely r−l with l ¼ −Pþ 4, which gives the condition

PðP − 1ÞðP − 2ÞðP − 3Þ ¼ 0: ð163Þ

Thus there are four possible cases, namely P ¼ 0, P ¼ 1,
P ¼ 2, and P ¼ 3. Equation (160) has the highest orders on
both sides as given by Eq. (162), that is

for P ¼ 0∶ ½6NðN − 1Þ�C0rN−2 þ � � � ¼ −2rN þ � � � not compatible; ð164Þ
for P ¼ 1∶ ½6N2�C0rN−1 þ � � � ¼ −2rN þ � � � not compatible; ð165Þ
for P ¼ 2∶ ½6NðN þ 1Þ þ 2�C0rN þ � � � ¼ −2rN þ � � � ð3N2 þ 3N þ 1ÞC0 ¼ −1; ð166Þ

for P ¼ 3∶ ½6NðN þ 2Þ þ 6�C0rNþ1 þ � � � ¼ −2rN þ � � � necessarily N ¼ −1: ð167Þ

The highest orders of all terms in Eq. (159) for the case
P ¼ 2, implying N < 0, are

3A2
0½Nð3Nþ2ÞC0þ1�r2Nþ2kðC2

0−1Þþ �� � ¼ 0; ð168Þ
which requires ð3N2 þ 2NÞC0 ¼ −1. Together with con-
straint (166) this implies N ¼ −1, C0 ¼ −1.
To summarize, the only possible two classes of solutions

in Case II∞ are given by

½N;P� ¼ ½−1; 3�∞; ½N;P� ¼ ½−1; 2�∞: ð169Þ

C. Case III∞

Now, −2N þ 2 ¼ −Pþ 4, that is N ¼ −1þ P=2 and
P ¼ 2N þ 2. In such a case, the highest order in the

key equation (158) is on both sides, namely r−l with
l ¼ 2 − 2N. This implies the condition

PðP − 2Þ½3A2
0 þ 4kC0ðP − 1ÞðP − 3Þ� ¼ 0: ð170Þ

There are three subcases to be considered, namely P ¼ 0,
P¼2, and 3A2

0¼−4kC0ðP−1ÞðP−3Þ with P ≠ 0, 1, 2, 3.
This corresponds to N ¼ −1, N ¼ 0, and also 3A2

0 ¼
−4kC0ð4N2 − 1Þ with N ≠ −1, −1=2, 0, 1=2, respectively.
The leading orders of the trace equation (160) on both
sides are

2ð11N2 þ 6N þ 1ÞC0r3N þ � � � ¼ −2rN þ � � � : ð171Þ

Consequently, we obtain

for N ¼ −1; P ¼ 0∶ 12C0r−3 þ � � � ¼ −2r−1 þ � � � not compatible; ð172Þ
for N ¼ 0; P ¼ 2∶ 2C0 þ � � � ¼ −2þ � � � C0 ¼ −1; ð173Þ

for 3A2
0 ¼ 4kC0ð1− 4N2Þ∶ ð11N2 þ 6N þ 1ÞC0 þ � � � ¼ 0 not compatible: ð174Þ
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The incompatibility in the case (174) is due to the fact that
11N2 þ 6N þ 1 is always positive. In the case (173), we
employ the field equation (159), which for N ¼ 0, P ¼ 2

requires 3A2
0 þ 2kðC2

0 − 1Þ ¼ 0. Since C0 ¼ −1 would
imply A0 ¼ 0, we also end up in a contradiction.
To summarize, there are no possible solutions in

Case III∞.

X. DESCRIPTION AND STUDY OF ALL
POSSIBLE SOLUTIONS IN POWERS OF r− 1

Now we derive and investigate spherically symmetric
solutions in the domain as r → ∞ by completely solving
Eqs. (158), (159), and their consequence (160). As it has
been proven in the previous Sec. IX, there are only two
distinct cases (169) to be discussed.

A. Schwarzschild-Bach black holes in the class ½−1;3�∞:
Near the singularity

In the class given by N ¼ −1, P ¼ 3 in the expansion
(43), (44) in negative powers of r, the only possible black
hole solutions are

ΩðrÞ ¼ −
1

r
þ B

r

�
2

9

r3h
r3

þ 1

6

r4h
r4

þ 2

15

r5h
r5

þ…

�
; ð175Þ

HðrÞ¼ ðr− rhÞ
r2

rh

þB

�
r2h−

1

90k
r3h
r3
−

1

140k
r4h
r4
−

1

210k
r5h
r5
þ…

�
: ð176Þ

These solutions represent the class of Schwarzschild-Bach
black holes in quadratic gravity/the Einstein-Weyl theory.
By setting B ¼ 0, the Schwarzschild solution (99) is again
obtained, with the horizon located at rh.
In the limit r → ∞, the relation (11) implies r̄ ¼

ΩðrÞ ∼ −1=r → 0. In such a limit, the curvature singularity
at r̄ ¼ 0 is approached, where H → ∞. Moreover, from
the relations (13) it follows that hðr̄Þ ∼ 1=ðrhr̄Þ → ∞ and
fðr̄Þ ∼ hðr̄Þ. Thus both metric functions of (9) diverge
exactly in the same way as for the Schwarzschild solution,
independently of the Bach parameter B.
Let us derive this class of solutions. The key equa-

tion (158), relabeling l → lþ 2, implies

Clþ1 ¼
3

kðl−2Þðl−1Þlðlþ1Þ

×
Xl−2
i¼0

AiAl−2−iðl−1− iÞðl−2−3iÞ ∀ l≥ 3; ð177Þ

which gives all Clþ1 in terms of A0;…; Al−2, starting form
C4 ¼ 0. The trace equation (160) yields

Al ¼
−1
l2C0

�
1

3
Al−1 þ

Xl

i¼1

CiAl−i½lðl − iÞ þ 1

6
iðiþ 1Þ�

�

∀ l ≥ 1; ð178Þ

which expresses all Al in terms of A0;…; Al−1 and
C1;…; Cl. Finally, the second field equation (159) in the
lowest nontrivial order l ¼ 0 gives the additional constraint

C2 ¼
C2
1 − 1

3C0

: ð179Þ

Therefore, in this case there are four free parameters,
namely A0, C0, C1, C3. Using (179) we obtain C2, and then
Al, Clþ3 for all l ≥ 1 by the application of the recurrent
relations (178), (177).

1. Identification of the Schwarzschild black hole

The scalar invariants (31), (32) for (43), (44) now take
the form

BabBabðr → ∞Þ ¼
�
45

C0

A4
0

C6

�
2

;

CabcdCabcdðr → ∞Þ ∼ 12
C2
0

A4
0

r6: ð180Þ

Since A0, C0 are nonzero by definition, the necessary
condition for the Bach tensor to vanish (which geometri-
cally identifies the classical Schwarzschild solution) is

C6 ¼ 0: ð181Þ

Interestingly, for such a setting, the expansion coefficients
simplify enormously to

Ai ¼ A0

�
−
C1 þ 1

3C0

�
i

for all i ≥ 0; ð182Þ

C2 ¼
C2
1 − 1

3C0

; C3 ¼
ðC1 þ 1Þ2ðC1 − 2Þ

27C2
0

;

Ci ¼ 0 for all i ≥ 4: ð183Þ

The first sequence is a geometrical series, while the second
series is truncated to the third-order polynomial. Thus the
metric functions can be written in the closed form

ΩðrÞ¼A0

r

X∞
i¼0

�
−
C1þ1

3C0r

�
i
¼ A0

rþðC1þ1Þ=ð3C0Þ
; ð184Þ

HðrÞ¼C0r3þC1r2þ
C2
1−1

3C0

rþðC1þ1Þ2ðC1−2Þ
27C2

0

: ð185Þ

In view of (14), we are free to chose the gauge
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A0 ¼ −1; C1 ¼ −1; ð186Þ

so that the metric functions become

r̄ ¼ ΩðrÞ ¼ −
1

r
; HðrÞ ¼ −r2 þ C0r3: ð187Þ

This is exactly the Schwarzschild black hole metric in the
form (37) and (99). It also identifies the physical meaning
of the coefficient C0 as

C0 ¼
1

rh
; ð188Þ

where rh determines the horizon position, the root of H
given by (187). Of course, the Schwarzschild horizon is
given by rh ¼ −1=ð2mÞ, i.e., C0 ¼ −2m. All free param-
eters of such solution are thus fixed and fully determined.

2. More general Schwarzschild-Bach black holes

For the physical interpretation of the more general
solutions in this family, it is convenient to introduce the
Bach parameter B proportional to C6 entering (180), which
for the gauge choice (186) reads C6 ¼ −C3=ð90kC0Þ. We
also naturally require B to be a dimensionless parameter, so
that the best choice seems to be

B≡ C2
0C3 ¼

C3

r2h
: ð189Þ

With suchB as the key parameter in the expansions (43), (44)
and the same natural gauge (186), the recurrent relations
(178), (177) yield an explicit solution of the field equations in
a simple form

A0 ¼ −1; A1 ¼ 0; A2 ¼ 0;

A3 ¼
2

9
r3hB; A4 ¼

1

6
r4hB; A5 ¼

2

15
r5hB;

A6 ¼
1

9
r6h

�
1 −

7

360kr2h
−
10

9
B

�
B;…; ð190Þ

C0 ¼ r−1h ; C1 ¼ −1; C2 ¼ 0;

C3 ¼ r2hB; C4 ¼ 0; C5 ¼ 0;

C6 ¼ −
1

90k
r3hB; C7 ¼ −

1

140k
r4hB;

C8 ¼ −
1

210k
r5hB;…: ð191Þ

This gives the explicit expansion (175), (176).

The corresponding scalar invariants (180) at r̄ ¼ 0 are

BabBabðr → ∞Þ ¼ r4h
4k2

B2;

CabcdCabcdðr → ∞Þ ∼ 12

r2h
r6 → ∞; ð192Þ

which can be compared with the invariants (109) evaluated
at the horizon r̄h

BabBabðrhÞ ¼
r4h
4k2

b2;

CabcdCabcdðrhÞ ¼ 12r4hð1þ bÞ2; ð193Þ

obtained previously for the class ½n; p� ¼ ½0; 1� of the
Schwarzschild-Bach black holes. There is a striking sim-
ilarity between the two expressions for BabBab, and thus we
could be inclined to directly identify the Bach parameter B
with the parameter b. However, it should again be empha-
sized that B determines the value of the Bach invariant at
the Weyl curvature singularity r̄ ¼ 0, while b determines its
value at the horizon r̄h. And these values are, in general,
distinct.

B. Bachian vacuum in the class ½N;P�= ½− 1;2�∞
Finally, it remains to analyze the second possibility (169)

in the Case II∞. ForN ¼ −1, P ¼ 2 the key equation (158),
relabeling l → lþ 2, gives

Cl¼
3

kðl−2Þðl−1Þlðlþ1Þ

×
Xl−2
i¼0

AiAl−2−iðl−1− iÞðl−2−3iÞ ∀ l≥ 3: ð194Þ

Equation (160) in its lowest orders l ¼ 1, 2 puts the
constraints

A1 ¼
1

2
A0C1; C0 ¼ −1; ð195Þ

and for higher l implies

Al−1¼
1

lðl−1Þ
Xl−1
i¼1

CiAl−1−i

�
ðl−1Þðl− iÞþ1

6
ði−2Þði−1Þ

�

∀ l≥ 3: ð196Þ

Equation (159) gives no additional constraint. There are
thus three free parameters, namely A0, C1, C2, and all other
coefficients are determined by the relations (194), (196),
starting as
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A2¼
A0

3
ðC2

1þC2Þ; A3¼
A0

4
C1ðC2

1þ2C2Þ;

A4¼
A0

5

�
C4
1þ3C2

1C2þC2
2þ

A2
0

192k
ðC2

1þ4C2Þ
�
;…; ð197Þ

C3¼0; C4¼
A2
0

240k
ðC2

1þ4C2Þ; C5¼
A2
0

240k
C1ðC2

1þ4C2Þ;

C6¼
A2
0

67200k2
ð3A2

0þ4kð59C2
1þ26C2ÞÞðC2

1þ4C2Þ;…:

ð198Þ

1. Identification of flat Minkowski space

Now, for very large r the scalar invariants (31), (32)
behave as

BabBabðr → ∞Þ ¼ 300

A8
0

C2
4;

CabcdCabcdðr → ∞Þ ∼ 12

A4
0r

4
C2
4: ð199Þ

Interestingly, they remain finite, so that for r → ∞ there is
no physical singularity. Moreover, for C4 ≠ 0 they are
nonzero. In fact, the necessary condition for both the Bach
and Weyl tensor invariants to vanish is C4 ¼ 0, that is
C2
1 þ 4C2 ¼ 0. For such a choice, we obtain the relation

C2 ¼ − 1
4
C2
1, and then all the coefficients (197), (198)

simplify enormously to Ai ¼ A0ð12C1Þi for all i, and Ci ¼ 0

for all i ≥ 3. The metric functions thus reduce to

ΩðrÞ¼A0

r

X∞
i¼0

�
C1

2r

�
i
¼ A0

r− 1
2
C1

; HðrÞ¼−
�
r−

1

2
C1

�
2

:

ð200Þ

Using the gauge freedom (14) we can always set

A0 ¼ −1; C1 ¼ 0; ð201Þ

and the functions take the trivial form

r̄ ¼ ΩðrÞ ¼ −
1

r
; HðrÞ ¼ −r2: ð202Þ

In view of (187), (188), we conclude that the case C4 ¼ 0
gives the Schwarzschild metric with trivial value C0 ¼
−2m ¼ 0 which is just flat Minkowski space without any
horizon (formally rh ¼ ∞). Of course, for flat space, both
the Bach and the Weyl tensor vanish everywhere.

2. Bachian vacuum

Now, the complete class of solutions ½N;P� ¼ ½−1; 2�∞
can be naturally analyzed if we introduce the Bach
parameter Bv proportional to C4 because, due to (199),
such solutions admit general Bach and Weyl tensors. With

the same gauge (201), we observe from (198) that
C4 ¼ C2=ð60kÞ, so that it is more convenient to choose
the equivalent parameter C2, instead. The simplest choice is

Bv ≡ C2: ð203Þ

With the only remaining parameter Bv (in this case it is not
dimensionless), the coefficients (197), (198) simplify to

A0 ¼ −1; A1 ¼ 0; A2 ¼ −
1

3
Bv; A3 ¼ 0;

A4 ¼ −
1

5

�
1

48k
þ Bv

�
Bv; A5 ¼ 0;… ð204Þ

C0 ¼−1; C1 ¼ 0; C2 ¼Bv; C3 ¼ 0;

C4 ¼
1

60k
Bv; C5 ¼ 0; C6 ¼

1

700k

�
1

8k
þ13

3
Bv

�
Bv;…

ð205Þ

yielding an explicit solution

ΩðrÞ ¼ −
1

r
− Bv

�
1

3r3
þ 1

5r5

�
1

48k
þ Bv

�
þ…

�
; ð206Þ

HðrÞ¼−r2þBv

�
1þ 1

60kr2
þ 1

700kr4

�
1

8k
þ13

3
Bv

�
þ…

�
:

ð207Þ

The corresponding scalar invariants (199) now read

BabBabðr → ∞Þ ¼ 1

12k2
B2
v;

CabcdCabcdðr → ∞Þ ∼ 1

300k2
B2
v

r4
→ 0: ð208Þ

Therefore, we may conclude that this class of metrics
½N;P� ¼ ½−1; 2�∞ can be understood as a one-parameter
Bachian generalization of flat space (202) (that is the limit
of black hole solutions without mass and horizon) with a
nonzero Bach tensor whose magnitude is determined by the
parameter Bv, i.e., the “massless limit” of the previous
class ½N;P� ¼ ½−1; 3�∞.
Interestingly, in the limit r → ∞, the expressions (11),

(13) now imply

r̄ ¼ ΩðrÞ ∼ −1=r → 0; ð209Þ

h ∼ 1; f ∼ 1: ð210Þ

Both the metric functions h and f thus remain nonzero and
finite, i.e., in this limit we are not approaching a horizon nor
a singularity. In fact, for r̄ → 0 the metric (9) becomes
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conformally flat. Interestingly, the Bach invariants (208)
and (192) are very similar.

C. Consistency check of the limit ½− 1;3�∞ → ½− 1;2�∞
Let us consider a “consistency check” between the class

of solutions ½−1; 3�∞, described by (177)–(179), and the
class ½−1; 2�∞, described by (194)–(196), where the coef-
ficients will now be denoted by hats.
The transition from ½−1; 3�∞ to ½−1; 2�∞ requires

C0→ 0; Ci→ Ĉi−1; i≥ 1; Ai → Âi; i≥ 0: ð211Þ

The relation (178) for l ¼ 1, that is 3C0A1 ¼ −A0ð1þ C1Þ,
in this limit leads to

C1 → −1; i:e: Ĉ0 ¼ −1; ð212Þ

while the relations (177) for Clþ1 and (194) for Ĉl remain
the same. Moreover, the relation (178) for Al,

−l2C0Al¼
1

3
Al−1þ

Xl

i¼1

CiAl−i

�
lðl− iÞþ1

6
iðiþ1Þ

�
∀ l≥1;

ð213Þ

for C0 ¼ 0 leads to

Âl−1¼
1

lðl−1Þ
Xl−1
i¼1

ĈiÂl−1−i

�
ðl−1Þðl− iÞþ1

6
ði−2Þði−1Þ

�

∀ l≥ 2; ð214Þ

which is exactly (196) and thus concludes the consis-
tency check.
Note that from the free parameters of the family ½−1; 3�∞,

two parameters become determined, namely C0 → 0,
C1 → Ĉ0 ¼ −1, and one parameter C2 → Ĉ1 becomes
undetermined since 3C0C2 ¼ C2

1 − 1 → 0. Therefore, four
free parameters A0, C0, C1, C3 of the ½−1; 3�∞ family
reduce to three free parameters Â0, Ĉ1, Ĉ2 of the ½−1; 2�∞
family.

XI. SUMMARY AND RELATIONS
TO PREVIOUS RESULTS

In this section, let us summarize all the distinct and
explicit families of spherically symmetric vacuum space-
times in QG, expressed both in powers of Δ≡ r − r0 and
r−1. Moreover, we identify these families with solutions
previously discussed in the literature.
In particular, in [4,6,7], various classes of static spheri-

cally symmetric solutions to higher-derivative gravity
equations were identified and denoted by the symbol
(s, t), using the standard spherically symmetric form (9).
Such a classification was based on the powers s and t of the

leading terms of a Laurent expansion of the two metric
functions, namely5

f−1ðr̄Þ ¼ Aðr̄Þ ∼ r̄s; ð215Þ

hðr̄Þ ¼ Bðr̄Þ ∼ r̄t; ð216Þ

in the domain r̄ → 0. It was shown in [4,7] that there are
three main solution families corresponding to the following
choices of (s, t):

ðs; tÞ ¼ ð0; 0Þ0; ð217Þ

ðs; tÞ ¼ ð1;−1Þ0; ð218Þ

ðs; tÞ ¼ ð2; 2Þ0; ð219Þ

where the subscript “ 0” indicates the expansion around the
origin r̄ ¼ 0.
In addition, the following three families (w, t) were

identified in [7,8] using a series expansion around a finite
point r̄ → r̄0 ≠ 0:

ðw; tÞ ¼ ð1; 1Þr̄0 ; ð220Þ

ðw; tÞ ¼ ð0; 0Þr̄0 ; ð221Þ

ðw; tÞ ¼ ð1; 0Þr̄0 ; ð222Þ

where

w ¼ −s; ð223Þ

that is f ∼ r̄w and h ∼ r̄t. The subscript “ r̄0” indicates the
expansion around r̄0.
In fact, we have recovered all these families of solutions

in the present paper, and we have also identified some
additional families.
To find the specific mutual relations, first let us note that

from the relation (11) between the spherically symmetric
radial coordinate r̄ and the Kundt coordinate r, that is
r̄ ¼ ΩðrÞ, it follows using (39) and (43) that
(1) r̄ → 0 for r → r0, n > 0, and also for r → ∞,

N < 0,
(2) r̄ → r̄0 for r → r0, n ¼ 0, and also for r → ∞,

N ¼ 0,
(3) r̄ → ∞ for r → r0, n < 0, and also for r → ∞,

N > 0.
Now let us find a relation between the powers (s, t)

introduced by (215) and (216), respectively, and the
coefficients [n, p] employed in this paper. They are the
analogous leading powers of the two metric functions Ω

5To make the identification, we have relabeled the arguments
of the metric functions AðrÞ, BðrÞ of [7] to r̄.
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and H, respectively. For n ≠ 0, such a relation is found
using the expressions (13) with r̄ ¼ ΩðrÞ and (39), (40) for
r → r0. It turns out that

s ¼ 2 − p
n

; t ¼ 2þ p
n
: ð224Þ

Analogously, using (43), (44), we obtain the relations

s ¼ 2 − P
N

; t ¼ 2þ P
N

ð225Þ

for the asymptotic expansion of the metric functions as
r → ∞. Thus, for n ≠ 0 and N ≠ 0, it immediately fol-
lows that
(1) the family ðs; tÞ ¼ ð0; 0Þ0 corresponds to ½N;P� ¼

½−1; 2�∞,
(2) the family ðs; tÞ ¼ ð0; 0Þ∞ corresponds to ½n; p� ¼

½−1; 2�,
(3) the family ðs; tÞ ¼ ð1;−1Þ0 corresponds to ½N;P� ¼

½−1; 3�∞,
(4) the family ðs; tÞ ¼ ð2; 2Þ0 corresponds to ½n; p� ¼

½1; 0�,
where the superscript “∞” in ð0; 0Þ∞ indicates the expan-
sion as r̄ → ∞.
The two admitted cases (42) with n ¼ 0 have to be

analyzed separately [there are no cases (45) withN ¼ 0]. In
the generic case when a1 ≠ 0, using (13), (39), (40), we
obtain that

w ¼ p; t ¼ p: ð226Þ

Therefore, for n ¼ 0 and a1 ≠ 0 we conclude that
(1) the family ðw; tÞ ¼ ð0; 0Þr̄0 corresponds to ½n; p� ¼

½0; 0�,
(2) the family ðw; tÞ ¼ ð1; 1Þr̄0 corresponds to ½n; p� ¼

½0; 1�,

completing the identification of all our main six classes of
solutions. Note that for n ¼ 0, a1 ≠ 0 the relation between
Δ and Δ̄ is Δ̄≡ r̄ − r̄0 ∼ a1Δ. Therefore, a series expan-
sion with integer steps in Δ corresponds to a series
expansion with integer steps in Δ̄ in the physical radial
coordinate r̄.
All four possible generic families compatible with the

field equations as r → r0 and the series expansion (39)–
(41) are summarized in Table I, while the two cases
compatible with the field equations as r → ∞ and (43),
(44) are summarized in Table II. We also indicate their
physical interpretation and the corresponding section, in
which these solutions are described and studied.

A. Special subclasses with n= 0

In addition to the above six main classes of solutions, in
the case given by n ¼ 0 we have identified some other
special subclasses, including a new one. These are not
given as integer steps in r̄ or Δ̄, so that these are additional
classes from the point of view of expansions in powers of
r̄ − r̄0 in the physical radial coordinate. In our Kundt
coordinate r, they just naturally appear as special cases
of the solutions with n ¼ 0, namely when a1 ¼ 0 ≠ a2
and a1 ¼ 0 ¼ a2.
When a1 ¼ 0 ≠ a2, the relation is Δ̄ ∼ a2Δ2, and thus a

series expansion with integer steps in Δ leads to (half
integer) steps Δ̄1=2. Using (13), in such a case we obtain

w ¼ p
2
þ 1; t ¼ p

2
: ð227Þ

For a1 ¼ 0 and a2 ≠ 0, we thus conclude that
(1) the family ðw;tÞ¼ð3

2
;1
2
Þr̄0;1=2 corresponds to ½n; p� ¼

½0; 1�a1¼0,
(2) the family ðw;tÞ¼ð1;0Þr̄0;1=2 corresponds to ½n; p� ¼½0; 0�a1¼0.

TABLE II. All possible generic types of solutions to quadratic gravity and the Einstein-Weyl theory that can be written as the power
series (43), (44) expanded as r → ∞.

Class ½N;P�∞ Family (s, t) Interpretation Section

½−1; 3�∞ ð1;−1Þ0 Schwarzschild-Bach black holes (near the singularity) X A
½−1; 2�∞ ð0; 0Þ0 Bachian vacuum (near the origin) X B

TABLE I. All possible generic types of solutions to quadratic gravity and the Einstein-Weyl theory that can be written as the power
series (39)–(40) expanded around any constant value r0.

Class [n, p] Family (s, t) Interpretation Section

½−1; 2� ð0; 0Þ∞ Schwarzschild black hole VIII A
[0, 1] ð−1; 1Þr̄0 Schwarzschild-Bach black holes (near the horizon) VIII B
[0, 0] ð0; 0Þr̄0 generic solution, including the Schwa-Bach black holes VIII C
[1, 0] ð2; 2Þ0 Bachian singularity (near the singularity) VIII D
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Analogously, when a1 ¼ 0 ¼ a2 and a3 ≠ 0, the relation
is Δ̄ ∼ a3Δ3, and thus integer steps in Δ corresponds to
steps in Δ̄1=3. The relations are now

w ¼ pþ 4

3
; t ¼ p

3
: ð228Þ

Thus for a1 ¼ 0 ¼ a2 and a3 ≠ 0, we conclude that
(1) the family ðw;tÞ¼ð4

3
;0Þr̄0;1=3 corresponds to ½n; p� ¼½0; 0�a1¼0¼a2

.
Concerning the geometrical and physical interpretation

of these special solutions, it can be generally said that the
classes with n ¼ 0 contain (among other solutions) black
holes and wormholes. In particular, the class ½n ¼ 0; p ¼ 1�
represents a black hole spacetime since it admits a Killing
horizon at rh ¼ r0, see (19). As pointed out in [7], a
wormhole spacetime is characterized by admitting a finite
value of r̄0 where f ¼ 0while h ≠ 0. Therefore, for a series
expansion around this point, necessarily n ¼ 0 ¼ p (since
H ≠ 0), and a1 ¼ 0 (since Ω0 ¼ 0). Thus wormholes may
appear only in the class ½0; 0�a1¼0.
The family of solutions ð3

2
; 1
2
Þr̄0;1=2 was identified in [7]

and interpreted in [8] as an “unusual” type of a horizon.
However, it was stated therein that it is a solution to QG
only for β ≠ 0, which implies R ≠ 0. Thus it seems that this
class does not coincide with our class ½0; 1�a1¼0 since, for all
our classes, R ¼ 0 by assumption.
Our family ½0; 0�a1¼0 corresponds to the family

ð1; 0Þr̄0;1=2 of [7,8], while our family ½0; 0�a1¼0¼c1¼c3, where
only even powers in Δ are considered (indicated by the

subscript “ E”), corresponds to the family ð1; 0Þr̄0;E of [7,8].
Both of these families describe wormholes with two
different (half-integer wormhole) and two same patches
(integer wormhole), respectively, see [8]. Note that the
Bach invariant (31) for wormholes in the ½0; 0�a1¼0 class is
always nonvanishing.
To our knowledge, the specific family ½0; 0�a1¼0¼a2 has

not yet been considered, and it corresponds to a new family
ð4
3
; 0Þr̄0;1=3 in the notation of [7].
It also seems that the generic solution [0, 0], with the

highest number of free parameters, can be connected to all
other solutions, and it represents an expansion around a
generic point in these spacetimes.
In Table III, we summarize all the classes and subclasses

found and identified both in the physical and Kundt
coordinates, grouped according to the regions in which
the expansions are taken in the usual radial coordinate r̄.

XII. DISCUSSION AND ANALYSIS OF THE
SCHWARZSCHILD-BACH BLACK HOLES

In this section, we discuss the behavior of the series
expressing the Schwarzschild-Bach black hole solutions
(102), (103). For our analysis, we choose the same values
of the parameters as in our previous paper [10], namely
rh ¼ −1, k ¼ 0.5, b ¼ 0.3633018769168. Such a very
special value of b is “close” to the asymptotically flat case.6

TABLE III. All solutions, sorted according to the physical regions in which the expansions are taken. The subscripts “ 0”, “ r̄0” and the
superscript “∞” denote solutions (s, t) or (w, t) near r̄ ¼ 0, r̄ ¼ r̄0, and r̄ → ∞, respectively. The subscript “ E” indicates that only even
powers are present in the expansion, while “ 1=2” and “ 1=3”indicate that fractional powers are present. Specific number of free parameters
is given before and after removing two parameters by the gauge freedom (14) in the Kundt coordinates. In physical coordinates, only one
parameter can be removed by rescaling (20). The symbols “(S)” or “(nS)” indicate that a class of solutions contains or does not contain
the Schwarzschild black hole, respectively.

Family [n, p] or ½N;P�∞ Parameters Free parameters Interpretation

(s, t) r̄ → 0

ð2; 2Þ0 [1, 0] a0, c0, c1, c2, r0 5 → 3 Bachian singularity (nS)
ð2; 2Þ0;E ½1; 0�c1¼0¼c3 a0, c0, r0 3 → 1 Bachian singularity (nS)
ð1;−1Þ0 ½−1; 3�∞ A0, C0, C1, C3 4 → 2 Schwa-Bach black holes (S)
ð0; 0Þ0 ½−1; 2�∞ A0, C1, C2 3 → 1 Bachian vacuum (nS)

(w, t) r̄ → r̄0

ð1; 1Þr̄0 [0, 1] a0, c0, c1, r0 ¼ rh 4 → 2 Schwa-Bach black holes (S)
ð3=2; 1=2Þr̄0;1=2 ½0; 1�a1¼0 a0, c0, r0 3 → 1 “Unusual” horizon (nS)
ð0; 0Þr̄0 [0, 0] a0, a1, c0, c1, c2, r0 6 → 4 Generic solution (S)
ð1; 0Þr̄0;1=2 ½0; 0�a1¼0 a0, c0, c1, c2, r0 5 → 3 Half-integer wormhole (nS)
ð1; 0Þr̄0;E ½0; 0�a1¼0¼c1¼c3

a0, c0, r0 3 → 1 Symmetric wormhole (nS)
ð4=3; 0Þr̄0;1=3 ½0; 0�a1¼0¼a2 a0, c0, c1, r0 4 → 2 Not known (nS)—new

(s, t) r̄ → ∞

ð0; 0Þ∞ ½−1; 2� a0, c1, r0 3 → 1 Schwarzschild black hole (S)

6We obtained this value from the Mathematica code kindly
provided by H. Lü, cf. also [8] for a very close value of b.
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The key observation for estimating the radius of con-
vergence can be made from Fig. 1. Interestingly, the ratios
of subsequent terms αn

αn−1
and − γn

γn−1
given by the recurrent

relations (105) are approaching a constant asymptotically.
This suggests that both series given by αn and γn behave as
geometric series for large n, with the ratio q being
apparently equal for both the series. Therefore, the series
for Ω and H, given by (102), (103), should be convergent
for −1 − 1

q < r < −1þ 1
q, where q ≈ 1.494, that is in the

interval r ∈ ð−1.67;−0.33Þ.
Figure 2 illustrates the convergence of the metric

functions ΩðrÞ and HðrÞ in the Kundt coordinate r. In
the domain of convergence, denoted by vertical dashed
lines, the solution fully agrees with the numerical solution
of the field equations.
For comparison, Fig. 3 illustrates the convergence of the

corresponding metric functions fðr̄Þ and hðr̄Þ in the
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0
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5

FIG. 2. The metric functions ΩðrÞ (left) and HðrÞ (right) for the Schwarzschild-Bach solution [0, 1]. The first 20 (red), 50 (orange),
100 (green), and 500 (blue) terms of the series (102), (103) forΩ andH are also compared with a numerical solution (black). Boundaries
of the domain of convergence are denoted by vertical dashed lines. Within this radius of convergence, all these functions overlap with the
numerical solution, except the lowest shown 20th order of Ω near the top right corner on the left graph.
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FIG. 3. The metric functions fðr̄Þ (left) and hðr̄Þ (right) for the Schwarzschild-Bach solution [0,1] in the standard coordinates. The first
20 (red), 50 (orange), 100 (green), and 300 (blue) terms of the series are plotted. A numerical solution (black) overlaps with the blue
curve, even far above the horizon located at r̄h ¼ 1 (here up to r̄ ¼ 20r̄h).
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FIG. 1. The Schwarzschild-Bach solution [0, 1] given by (102),
(103). The ratios αn

αn−1
(blue) and − γn

γn−1
(red) for the first 3000

coefficients αi and γi given by the recurrent formula (105) are
plotted.
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standard spherically symmetric coordinates. The solution
quickly converges, and approaches a numerical solution
even at a large distance from the horizon located at r̄h ¼ 1.
From the value of ΩðrÞ≡ r̄ at the lower boundary of the

domain of convergence shown in Fig. 2, we can easily read
off its value r̄ ≈ 0.53 in the usual radial coordinate. In
contrast, the value of the coordinate r̄ given by ΩðrÞ at the
upper boundary remains unclear since it depends on the
precise value of the series (102) at the upper boundary of
the domain of convergence. In fact, we cannot even say
with certainty that the radius of convergence in the standard
spherical coordinate r̄ is finite—it may well extend up
to r̄ → ∞.
Finally, it is illustrative to show explicitly that, in

contrast to the Schwarzschild solution, the metric functions
fðr̄Þ and hðr̄Þ for the Schwarzschild-Bach black holes
are not equal. This is clearly seen from their plots in Fig. 4.
There are three classes of solutions containing the

Schwarzschild black hole as a special case, namely the
[0, 0] class with four free parameters and the classes [0, 1]
and ½−1; 3�∞, both with two free parameters, see Table III.
(The class ½−1; 2� contains only the Schwarzschild solu-
tion.) The solution [0, 0] describes a generic point of a
static, spherically symmetric spacetime in QG, including
also black-hole and wormhole solutions. A natural question
is whether the solutions [0, 1] and ½−1; 3�∞ describe the
same black hole at two different regions (near the horizon
and near the singularity, respectively). We have not arrived
at a definite answer yet. Nevertheless the Bach invariant
(31) for the class ½−1; 3�∞ approaches a finite constant as
jrj → ∞ corresponding to r̄ → 0, see expression (192),
while analytical and numerical results describing the
behavior of the Bach invariant of the [0, 1] class of
solutions as the value of r decreases below the horizon
seems to suggest that in this case the Bach invariant is
unbounded; see Fig. 5. If this is indeed the case, then
the classes [0, 1] and ½−1; 3�∞ must describe distinct

generalizations of the Schwarzschild black hole admitting
a nontrivial Bach tensor.

XIII. MAIN PHYSICAL PROPERTIES OF THE
SCHWARZSCHILD-BACH BLACK HOLES

A. Specific observable effects on test particles
caused by the Bach tensor

In this section we demonstrate that the two parts B1, B2

of the Bach tensor (27), (28), entering the invariant (31),
that distinguish the Schwa-Bach and the Schwarzschild
black holes, can be explicitly observed via a specific
influence on particles. It is well known that a relative
motion of freely falling test particles (observers) directly
encodes specific components of the spacetime curvature,
such as the tidal deformation in the vicinity of a black hole,
or a transverse effect of gravitational waves measurable by
a laser interferometer detector. This is described by the
equation of geodesic deviation; see [18,19] for a recent
review with historical remarks and description of the
formalism that we are going to employ here.

1. Interpreting solutions to quadratic gravity using
geodesic deviation

To obtain physically measurable information about the
relative motion, we have to choose an orthonormal frame
feð0Þ; eð1Þ; eð2Þ; eð3Þg such that eðaÞ · eðbÞ ¼ ηab, where the
timelike vector eð0Þ ¼ u is the observer’s 4-velocity.
Projecting the equation of geodesic deviation onto this
frame, we obtain

Z̈ðiÞ ¼ RðiÞ
ð0Þð0ÞðjÞZ

ðjÞ; i; j ¼ 1; 2; 3; ð229Þ
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FIG. 4. The metric functions fðr̄Þ (blue) and hðr̄Þ (red) in the
near-horizon region for the Schwarzschild-Bach solution [0,1].
These two functions are clearly distinct. They both vanish at the
horizon, located here at r̄h ¼ 1.
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FIG. 5. The Bach invariant (31) inside the horizon of the
Schwarzschild-Bach black holes [0, 1] calculated from first 20
(red), 50 (green), and 300 (blue) terms, compared with the
numerical solution (black). The lower boundary of the domain of
convergence is indicated by the vertical dashed line. The horizon
is located at rh ¼ −1. The insert in the upper right corner shows
the numerical value to much lower value of the coordinate r,
indicating a possible divergence as r → −∞, that is as r̄ → 0.
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where

Z̈ðiÞ ≡ eðiÞa
D2Za

dτ2
¼ eðiÞa Za

;cducud;

and RðiÞð0Þð0ÞðjÞ ≡ Rabcd eaðiÞu
bucedðjÞ: ð230Þ

Spacetime curvature, characterized by the Riemann tensor,
can then be decomposed into the traceless Weyl tensor, the
Ricci tensor, and the scalar curvature R. Its projection (230)
gives

RðiÞð0Þð0ÞðjÞ ¼ CðiÞð0Þð0ÞðjÞ þ
1

2
ðRðiÞðjÞ − δijRð0Þð0ÞÞ −

1

6
Rδij:

ð231Þ

Moreover, the vacuum field equations (8) of quadratic
gravity (including the Einstein-Weyl theory), Rab ¼ 4kBab
implying R ¼ 0, can be employed. Substituting these
relations into (231), we finally obtain the invariant form
of the equation of geodesic deviation (229) as

Z̈ðiÞ ¼ CðiÞð0Þð0ÞðjÞZðjÞ þ 2kðBðiÞðjÞZðjÞ − Bð0Þð0ÞZðiÞÞ: ð232Þ

Of course, CðiÞð0Þð0ÞðjÞ ¼ CðiÞ
ð0Þð0ÞðjÞ and BðiÞðjÞ ¼ BðiÞ

ðjÞ since the
spatial part of the frame is Cartesian. The Weyl tensor
projections CðiÞð0Þð0ÞðjÞ can be further decomposed and
expressed in terms of the Newman-Penrose scalars ΨA
with respect to the (real) null frame fk; l;mig which is
defined by

k ¼ 1ffiffiffi
2

p ðuþ eð1ÞÞ; l ¼ 1ffiffiffi
2

p ðu − eð1ÞÞ;

mi ¼ eðiÞ for i ¼ 2; 3: ð233Þ

Thus, k and l are future oriented null vectors, and mi are
two spatial vectors orthogonal to them, normalized as
k · l ¼ −1 andmi ·mj ¼ δij. Such a generic decomposition
was found in [18,19].
Using these results, we obtain the corresponding general

form of the equation of geodesic deviation (232) in
quadratic gravity/the Einstein-Weyl theory:

Z̈ð1Þ ¼ Ψ2SZð1Þ þ 1ffiffiffi
2

p ðΨ1Tj −Ψ3TjÞZðjÞ

þ 2k½ðBð1Þð1Þ − Bð0Þð0ÞÞZð1Þ þ Bð1ÞðjÞZðjÞ�; ð234Þ

Z̈ðiÞ ¼−
1

2
Ψ2SZðiÞþ 1ffiffiffi

2
p ðΨ1Ti−Ψ3TiÞZð1Þ−

1

2
ðΨ0ijþΨ4ijÞZðjÞ

þ2k½BðiÞð1ÞZð1ÞþBðiÞðjÞZðjÞ−Bð0Þð0ÞZðiÞ�; ð235Þ

where we have used the relation Ψ2TðijÞ ¼ 1
2
Ψ2S δij valid in

D ¼ 4, see [19]. This system of equations admits a clear

physical interpretation: The Newtonian component Ψ2S of
the gravitational field causes classical tidal deformations,
Ψ3Ti , Ψ1Ti are responsible for longitudinal motions, while
Ψ4ij , Ψ0ij represent the transverse effects of gravitational
waves (propagating in the directions eð1Þ;−eð1Þ, respec-
tively). The additional specific effects caused by the
nonvanishing Bach tensor are encoded in the frame
components BðaÞðbÞ.

2. Geodesic deviation in the Schwarzschild-Bach
black hole spacetimes

Let us concentrate on the spherically symmetric black
hole metric in the form (12), or (15) with (17). In particular,
we introduce the “interpretation” orthonormal frame asso-
ciated with a radially falling observer, i.e., assuming
_x ¼ 0 ¼ _y. Such a frame reads

eð0Þ ≡ u ¼ _r∂r þ _u∂u;

eð1Þ ¼
1

2
½ðΩ2 _uÞ−1 −H _u�∂r − _u∂u;

eðiÞ ¼ Ω−1
�
1þ 1

4
ðx2 þ y2Þ

�
∂i; ð236Þ

where the normalization of the observer’s four-velocity
u · u ¼ −1 implies _r ¼ 1

2
½ðΩ2 _uÞ−1 þH _u�. Using (233), the

associated null interpretation frame thus takes the form

k ¼ 1ffiffiffi
2

p
_uΩ2

∂r; l ¼ _uHffiffiffi
2

p ∂r þ
ffiffiffi
2

p
_u∂u;

mi ¼ Ω−1
�
1þ 1

4
ðx2 þ y2Þ

�
∂i: ð237Þ

A direct calculation shows that the only nonvanishing Weyl
tensor component with respect to (237) is

Ψ2S ≡ Cabcdkalblckd ¼
1

6
Ω−2ðH00 þ 2Þ: ð238Þ

This is consistent with the fact that the spherically
symmetric black hole metric (12) is of algebraic type D.
The explicit Bach tensor projections with respect to the
orthonormal frame (236) are

Bð0Þð0Þ ¼
1

24Ω6 _u2

�
−ð1 −Ω2H _u2Þ2H0000

þ 2Ω2 _u2
�
H0H000 −

1

2
H002 þ 2

��
; ð239Þ

Bð1Þð1Þ ¼
1

24Ω6 _u2

�
−ð1þΩ2H _u2Þ2H0000

− 2Ω2 _u2
�
H0H000 −

1

2
H002 þ 2

��
; ð240Þ
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Bð0Þð1Þ ¼ −
1

24Ω6 _u2
ð1 −Ω4H2 _u4ÞH0000; Bð0ÞðiÞ ¼ 0;

ð241Þ

BðiÞðjÞ ¼
δij

12Ω4

�
HH0000 þH0H000−

1

2
H002þ2

�
; Bð1ÞðiÞ ¼0:

ð242Þ

Therefore, the equation of geodesics deviation (234), (235)
explicitly becomes

Z̈ð1Þ ¼ 1

6
Ω−2ðH00 þ2ÞZð1Þ

−
1

3
kΩ−4

�
HH0000 þH0H000−

1

2
H002þ2

�
Zð1Þ; ð243Þ

Z̈ðiÞ ¼−
1

12
Ω−2ðH00 þ2ÞZðiÞ

þ 1

12
kΩ−4

�
ðΩ2H _u2Þ−1þΩ2H _u2

�
HH0000ZðiÞ: ð244Þ

We conclude that there is a classical tidal deformation
caused by the Weyl curvature (238) proportional to
Ω−2ðH00 þ 2Þ, i.e., the square root of the invariant (32).
Moreover, in quadratic gravity (with k ≠ 0) there are two
additional effects caused by the presence of a nonvanishing
Bach tensor. The first can be observed in the longitudinal
component of the acceleration (243), while the second can
be observed in the transverse components (244).
Interestingly, up to a constant they are exactly the square
roots of the two parts of the invariant (31), that is the
amplitudes B1, B2 given by (27), (28).
The influence of these two distinct components B1 and

B2 of the Bach tensor Bab on test particles is even more
explicitly seen in the geodesic deviation of initially static
test particles with _r ¼ 0. The 4-velocity normalization then
implies Ω2H _u2 ¼ −1, which simplifies (243), (244) to

Z̈ð1Þ ¼ 1

6
Ω−2ðH00 þ 2ÞZð1Þ −

1

3
kΩ−4ðB1 þ B2ÞZð1Þ; ð245Þ

Z̈ðiÞ ¼ −
1

12
Ω−2ðH00 þ 2ÞZðiÞ −

1

6
kΩ−4B1ZðiÞ: ð246Þ

From these expressions, it immediately follows that the first
component B1 of the Bach tensor is directly observed in the
transverse components of the acceleration (246) along eð2Þ,
eð3Þ, that is ∂x, ∂y (equivalent to ∂θ, ∂ϕ), while the second
component B2 only occurs in the radial component (245)
along eð1Þ ¼ − _uð∂u þH∂rÞ ¼ −HΩ0 _u∂ r̄, proportional
to ∂ r̄.
Interestingly, on the horizon there is only the radial

effect given by B2ðrhÞ since B1ðrhÞ ¼ 0 due to (27) and
(19), see also (108).

It can also be proven by direct calculation that the
specific character of B1, B2 cannot mimic the Newtonian
tidal effect in the Schwarzschild solution, i.e., cannot be
“incorporated” into the first terms Ω−2ðH00 þ 2Þ in (245),
(246). Therefore, by measuring the free fall of a set of
test particles, it is possible to distinguish the pure
Schwarzschild black hole from the Schwarzschild-Bach
black hole geometry which has nonvanishing Bach ten-
sor Bab ≠ 0.

B. Thermodynamic properties: Horizon area,
temperature, entropy

It is also important to determine main geometrical and
thermodynamic properties of the family of Schwarzschild-
Bach black holes. The horizon in these spherically sym-
metric spacetimes is generated by the rescaled null Killing
vector ξ≡ σ∂u ¼ σ∂t, considering the time-scaling free-
dom (20) represented by a parameter σ. Thus it appears at
zero of the metric function HðrÞ, where the norm of ξ
vanishes, see (19). In the explicit form (102), (103) this is
clearly located at r ¼ rh since HðrhÞ ¼ 0. By simply
integrating the angular coordinates of the metric (12),
we immediately obtain the horizon area as

A ¼ 4πΩ2ðrhÞ ¼
4π

r2h
¼ 4πr̄2h: ð247Þ

The only nonzero derivatives of ξ are ξu;r ¼ −ξr;u ¼
1
2
σðΩ2HÞ0, and thus ξr;u ¼ −ξu;r ¼ Ω−4ξu;r. From the

definition [20] of surface gravity κ2 ≡ − 1
2
ξμ;νξ

μ;ν, we
obtain κ ¼ − 1

2
σðH0 þ 2HΩ0=ΩÞ. On the horizon, where

H ¼ 0, using (103) this simplifies to

κ=σ ¼ −
1

2
H0ðrhÞ ¼ −

rh
2
¼ 1

2r̄h
: ð248Þ

It is the same expression as for the Schwarzschild solution
(in which case κ ¼ 1=4m). The standard expression for
temperature of the black hole horizon T ≡ κ=ð2πÞ, which
is valid even in higher-derivate gravity theories [21], thus
yields

T=σ ¼ −
rh
4π

¼ 1

4πr̄h
; ð249Þ

independent of the Bach parameter b.
However, in higher-derivative theories it is not possible

to use the usual formula S ¼ 1
4
A to determine the black

hole horizon entropy. Instead, it is necessary to apply the
generalized formula derived by Wald [22,23], namely

S ¼ 2π

κ

I
Q; ð250Þ

where the Noether charge 2-form Q on the horizon is
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Q ¼ 1

2
εμναβQμνdxα ∧ dxβ;

Qμν ¼ 2Xμνρσξρ;σ þ 4Xμνρσ
;ρξσ and Xμνρσ ≡ ∂L

∂Rμνρσ
;

ð251Þ

in which L is the Lagrangian of the theory. In the case of
quadratic gravity (1), it can be shown that

Xμνρσ ¼ 1

16π

��
γ þ 2

3
ð2αþ 3βÞR

�
gν½σgρ�μ

− 4αgκ½νgμ�½ρgσ�λRκλ

�
: ð252Þ

Subsequent lengthy calculation for the metric (12) with
Λ ¼ 0 then leads to

QðrhÞ¼−
1

16π
Ω2H0

�
γþ4

3
kα

B1þB2

Ω4

�����
r¼rh

sinθdθ∧ dϕ:

ð253Þ

Evaluating the integral (250), and using (247), (248), (108),
we finally obtain

S ¼ 1

4G
Að1 − 4kr2hbÞ ¼

1

4G
A
�
1 − 4k

b
r̄2h

�
: ð254Þ

This explicit formula for the Schwarzschild-Bach black
hole entropy agrees with the numerical results presented in
[6], with the identification k ¼ α and b ¼ δ�. In fact,
it gives a geometrical interpretation of the “non-
Schwarzschild parameter” δ� as the dimensionless Bach
parameter b that determines the value of the Bach tensor on
the horizon rh, see relations (108). Of course, for the
Schwarzschild black hole (b ¼ 0) or in Einstein’s general
relativity (k ¼ 0) we recover the standard expression
S ¼ 1

4GA. Notice also from (254) that for a given b ≠ 0,
the deviation from this standard Schwarzschild entropy is
larger when the Schwarzschild-Bach black holes are
smaller because they have smaller r̄h.

XIV. CONCLUSIONS

The class of spherically symmetric black holes in
quadratic gravity and the Einstein-Weyl theory was studied
in many previous works, in particular [4–8], often by
numerical methods applied to complicated field equations
corresponding to the standard form of the spherical metric
(9). In [10,11], using a convenient form of the line element
(12) conformal to a simple Kundt seed, we obtained a
surprisingly simple form of the field equations (25), (26).
This enabled us to find an explicit form of their exact
solutions. Moreover, we identified the Bach tensor as the

key ingredient which makes the Schwarzschild solution
geometrically distinct from the other branch of “non-
Schwarzschild” ones. This is a direct consequence of the
extension of Einstein’s theory to include higher derivative
corrections.
The present paper contains a thorough analysis of all

such solutions and their derivation, including the details
which had to be omitted in our brief letter [10].
We have started with the conformal-to-Kundt metric

ansatz (12). Together with the Bianchi identities, this leads
to a compact form of the quadratic gravity field equa-
tions (8), assuming R ¼ 0, namely the autonomous system
of two ordinary differential equations (25) and (26) for
two metric functions ΩðrÞ and HðrÞ. They have been
solved in terms of power series representing these metric
functions, expanded around any fixed point r0 (39), (40),
or using the asymptotic expansion (43), (44), respectively.
The field equations have become the algebraic constraints
(46), (47) in the fixed point case (near r0), and (158), (159)
in the asymptotic region (as r → ∞). Their dominant
orders restrict the admitted solutions to (42) and (45),
respectively. The detailed discussion of all the possible
six main classes, together with a suitable fixing of the
gauge freedom, can be found in subsequent Secs. VIII
and X. The classes are summarized in Tables I and II
in Sec. XI.
The most prominent case corresponds to the spherically

symmetric black hole spacetimes with (in general) non-
vanishing Bach tensor. This solution has been expanded
around the event horizon, see Sec. VIII B. The metric
functions ΩðrÞ and HðrÞ are given by the series (102),
(103) with the initial coefficients specified by (104), and all
other coefficients determined by the recurrent relations
(105). Thus we have obtained the two-parametric family of
black holes characterized by the radial position rh of the
horizon and by the additional parameter b. The new Bach
parameter distinguishes this more general Schwarzschild-
Bach solutions (b ≠ 0) from the classical Schwarzschild
spacetime with vanishing Bach tensor (b ¼ 0). The main
mathematical properties of the Schwarzschild-Bach metric
functions are presented and visualized in Sec. XII.
Subsequent Sec. XIII contains the physical and geometrical
analysis. We have discussed specific behavior of freely
falling test observers, described by the equation of geodesic
deviation, and demonstrated that their relative motion
encodes the presence of the Bach tensor. The physical
investigation is completed by a fully explicit evaluation of
the thermodynamic quantities. In particular, the expression
for entropy (254) exhibits the key role of the Bach
parameter b.
Finally, for convenience, in Sec. XI we have also

summarized all the admitted classes of solutions, including
their physical interpretation, the number of free parameters
and, most importantly, relations to previous works. See, in
particular, Table III.
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We hope that our approach to spherically symmetric
vacuum solutions to quadratic gravity and the Einstein-
Weyl theory may elucidate some of their properties that are
not easily accessible by numerical simulations. Of course,
we are aware of many remaining open questions. For
example, complete analytic identification of the same
physical solution in distinct classes and their mutual
relations are still missing. It is also of physical interest
to understand the effect of nontrivial Bach tensor in the
Schwarzschild-Bach spacetimes on perihelion shift and
light bending, studied thoroughly during the last century in
Einstein’s theory using the Schwarzschild solution.
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APPENDIX A: THE RICCI AND BACH TENSORS
FOR THE KUNDT SEED

We start with the seed Kundt metric (17). Its nontrivial
metric components gab are

gKundtxx ¼ gKundtyy ¼
�
1þ 1

4
ðx2 þ y2Þ

�
−2
; gKundtru ¼ −1; gKundtuu ¼ H; ðA1Þ

so that the contravariant components gab read

gxxKundt ¼ gyyKundt ¼
�
1þ 1

4
ðx2 þ y2Þ

�
2

; gruKundt ¼ −1; grrKundt ¼ −H: ðA2Þ

Recall that the spatial 2-metric gij is a round sphere of unit
radius, with the Gaussian curvature K ¼ 1 and thus its
Ricci scalar is R ¼ 2K ¼ 2. The nontrivial Christoffel
symbols for this metric are

Γr
ru ¼ −

1

2
H0; Γr

uu ¼
1

2
HH0;

Γu
uu ¼

1

2
H0; Γk

ij ¼ SΓk
ij; ðA3Þ

where SΓk
ij ≡ 1

2
gklð2glði;jÞ − gij;lÞ are the symbols with

respect to the spatial metric gij of the 2-sphere. The only
nontrivial Riemann curvature tensor components are

RKundt
ruru ¼ −

1

2
H00; RKundt

kilj ¼ gklgij − gkjgil; ðA4Þ

and the only nontrivial Ricci tensor components of (A1) are

RKundt
ru ¼ −

1

2
H00; ðA5Þ

RKundt
uu ¼ −HRKundt

ru ; ðA6Þ

RKundt
xx ¼ RKundt

yy ¼ gxx; ðA7Þ

while the Ricci scalar reads

RKundt ¼ H00 þ 2; ðA8Þ

so that the only nontrivial Weyl tensor components are

CKundt
ruru ¼ −

1

6
RKundt; ðA9Þ

CKundt
riuj ¼ 1

12
RKundtgij; ðA10Þ

CKundt
kilj ¼ 1

6
RKundtðgklgij − gkjgilÞ; ðA11Þ

CKundt
uiuj ¼ −HCKundt

riuj : ðA12Þ

The nonzero components of the Bach tensor are

BKundt
rr ¼ −

1

6
H0000; ðA13Þ

BKundt
ru ¼ 1

12

�
2HH0000 þH0H000 −

1

2
H002 þ 2

�
; ðA14Þ

BKundt
uu ¼ −HBKundt

ru ; ðA15Þ

BKundt
xx ¼ BKundt

yy ¼ 1

12
gxx

�
HH0000 þH0H000 −

1

2
H002 þ 2

�
;

ðA16Þ

involving up to the fourth derivative of the metric function
HðrÞ.

APPENDIX B: THE RICCI AND BACH TENSORS
FOR THE CONFORMAL METRIC

Taking the class of Kundt geometries (17) as a seed,
we can generate the metric of spherically symmetric
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geometries by the conformal transformation (15),
that is

ds2 ¼ Ω2ðrÞ
�

dx2 þ dy2

ð1þ 1
4
ðx2 þ y2ÞÞ2 − 2dudrþHðrÞdu2

�
:

ðB1Þ

Now, it is well known [20] that under a conformal
transformation of the seed metric

gab ¼ Ω2gKundtab ; ðB2Þ

the Ricci scalar and the Ricci and Bach tensors transform as

R ¼ Ω−2RKundt − 6Ω−3
□Ω; ðB3Þ

Rab ¼ RKundt
ab − 2Ω−1∇a∇bΩ −Ω−1gKundtab □Ω

þ Ω−2ð4Ω;aΩ;b − gKundtab gcdKundtΩ;cΩ;dÞ; ðB4Þ

Bab ¼ Ω−2BKundt
ab : ðB5Þ

For the Kundt seed metric gKundtab (A1), its Ricci and Bach
tensors RKundt

ab and BKundt
ab are given by (A5)–(A7) and

(A13)–(A16), respectively. The nontrivial derivatives (with
respect to the Kundt seed) of the conformal factor ΩðrÞ are,
in view of (A3),

Ω;r ≡Ω0;

∇r∇rΩ ¼ Ω00; ∇r∇uΩ ¼ 1

2
H0Ω0 ¼ ∇u∇rΩ;

∇u∇uΩ ¼ −
1

2
HH0Ω0;

□Ω ¼ −ðHΩ00 þH0Ω0Þ: ðB6Þ

Employing (B4), the nonvanishing Ricci tensor compo-
nents of the metric (B1) are thus

Rrr ¼ −2Ω−2ðΩΩ00 − 2Ω02Þ; ðB7Þ

Rru ¼ −
1

2
Ω−2ðΩ2HÞ00; ðB8Þ

Ruu ¼ −HRru; ðB9Þ

Rxx ¼ Ryy ¼ Ω−2gxx½ðHΩΩ0Þ0 þΩ2�; ðB10Þ

and using (B3) we obtain

R ¼ 6Ω−3
�
HΩ00 þH0Ω0 þ 1

6
ðH00 þ 2ÞΩ

�
: ðB11Þ

The nonvanishing Bach tensor components Bab are
obtained by a trivial rescaling (B5) of (A13)–(A16).

APPENDIX C: DERIVATION
AND SIMPLIFICATION OF
THE FIELD EQUATIONS

The vacuum field equations in the Einstein-Weyl theory
and also general quadratic gravity for the metric gab are (8),
that is

Rab ¼ 4kBab: ðC1Þ

Using the expressions (B7)–(B10) and (B5) with (A13)–
(A16), these field equations explicitly read

ΩΩ00 − 2Ω02 ¼ 1

3
kH0000; ðC2Þ

ðΩ2HÞ00 ¼ −
2

3
k

�
2HH0000 þH0H000 −

1

2
H002 þ 2

�
;

ðC3Þ

ðHΩΩ0Þ0þΩ2¼1

3
k

�
HH0000þH0H000−

1

2
H002þ2

�
: ðC4Þ

The equations (C2), (C3), (C4) represent the nontrivial
components rr, ru, xx (identical to yy), respectively. The
uu component of the field equations is just the ð−HÞ-
multiple of (C3).
Moreover, recall that the trace of the field equations (C1)

is R ¼ 0, cf. (7). Using (B11) we obtain the explicit
condition

T ≡HΩ00 þH0Ω0 þ 1

6
ðH00 þ 2ÞΩ ¼ 0: ðC5Þ

It can be checked that this is a direct consequence of
Eqs. (C2)–(C4). Notice that it is a linear differential
equation for the function HðrÞ, and also linear differential
equation for ΩðrÞ.
We have thus obtained three nontrivial field equations

(C2)–(C4) for two unknown functions ΩðrÞ and HðrÞ, and
also their consequence (C5). Therefore, this coupled
system seems to be overdetermined. However, now we
prove that the key metric functions ΩðrÞ and HðrÞ are, in
fact, solutions of just two coupled equations.
To this end, let us introduce the auxiliary symmetric

tensor Jab defined as

Jab ≡ Rab −
1

2
Rgab − 4kBab: ðC6Þ

Using Jab, the vacuum field equations (2) of quadratic
gravity (assuming a constant R and Λ ¼ 0) or Einstein-
Weyl gravity (with β ¼ 0 ¼ Λ) are simply
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Jab ¼ 0: ðC7Þ

Now, by employing the contracted Bianchi identities
∇bRab ¼ 1

2
R;a and the conservation property of the Bach

tensor ∇bBab ¼ 0, see (4), we obtain

∇bJab ≡ 0: ðC8Þ

Interestingly, this is actually a geometrical identity which is
valid without employing any field equations, namely (C7),
or (C1) in particular.
An explicit evaluation of the identity (C8) for the metric

gab of the form (B1) leads to the following equations, which
are always satisfied:

∇bJrb ¼ −Ω−3Ω0ðJijgij þHJrrÞ

− Ω−2
�
HJrr;r þ Jru;r þ

3

2
H0Jrr

�
≡ 0; ðC9Þ

∇bJub ¼ −2Ω−3Ω0ðJuu þHJruÞ
−Ω−2ðJuu þHJruÞ;r ≡ 0; ðC10Þ

∇bJib ¼ Ω−2Jikklgkl ≡ 0: ðC11Þ

Here the spatial covariant derivative k is calculated
with respect to the spatial part gij of the Kundt seed metric
(A1). Moreover, a direct calculation of Jab defined by (C6)
gives

Juu ¼ −HJru; Jxx ¼ J ðrÞgxx ¼ Jyy; ðC12Þ

where the function J ðrÞ is defined as

J ≡Ω−2
h
ðHΩΩ0Þ0 þΩ2 − 3T Ω

−
1

3
k

�
HH0000 þH0H000 −

1

2
H002 þ 2

��
; ðC13Þ

and

Jrr ¼ 2Ω−2
�
−ΩΩ00 þ 2Ω02 þ 1

3
kH0000

�
; ðC14Þ

Jru ¼ Ω−2
�
−
1

2
ðΩ2HÞ00 þ 3T Ω

−
1

3
k

�
2HH0000 þH0H000 −

1

2
H002 þ 2

��
: ðC15Þ

By substituting the relations (C12) into (C10) and (C11),
it can be seen immediately that these two conditions are
automatically satisfied. Interestingly, the remaining Bianchi
identity (C9) gives a nontrivial result. If the metric
functions ΩðrÞ and HðrÞ satisfy the two field equations
Jrr ¼ 0 and Jru ¼ 0 then necessarily Jijgij ≡ 0, that is
Jxxgxx þ Jyygyy ¼ 2J ðrÞ ¼ 0 and thus Jxx ¼ 0 ¼ Jyy.
Therefore, we conclude that all field equations for the

metric (B1) reduce just to two key equations, namely
Jrr¼0 and Jru¼0. Since gabJab ¼ 0, it also implies R ¼ 0
and thus T ¼ 0, cf. (C5). This coupled system of two
equations completely determines all possible exact vacuum
solutions of the type (B1) in Einstein-Weyl gravity, and
since R ¼ 0, also in a general quadratic gravity. The key
point is that, due to the Bianchi identities, the two key
equations imply the nontrivial field equations Jxx¼0¼Jyy
since necessarily J ¼ 0, that is using (C13)

ðHΩΩ0Þ0 þΩ2−3T Ω¼ 1

3
k

�
HH0000 þH0H000−

1

2
H002þ2

�
:

ðC16Þ

The equation Jrr ¼ 0 is exactly Eq. (C2), and Eq. (C3) is
simply Jru ¼ 0 with T ¼ 0. Finally, substituting T ¼ 0
into (C16), we immediately obtain (C4). This completes the
proof of the equivalence.
To integrate the field equations, it is necessary to solve

Eq. (C2). Simultaneously, we must solve the equation

ðΩ2HÞ00 − 6T Ω ¼ −
2

3
k

�
2HH0000 þH0H000 −

1

2
H002 þ 2

�
:

ðC17Þ

Remarkably, this equation can further be simplified by
expressing the term H0000 from (C2). We thus finally obtain
two very simple field equations

ΩΩ00 − 2Ω02 ¼ 1

3
kH0000; ðC18Þ

ΩΩ0H0 þ3Ω02HþΩ2¼ 1

3
k
�
H0H000−

1

2
H002þ2

�
; ðC19Þ

for the two metric functions ΩðrÞ and HðrÞ. Alternatively,
instead of solving the single Eq. (C19), it is also possible to
solve any two of the three Eqs. (C3)–(C5).
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