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The self-force program aims at accurately modeling relativistic two-body systems with a small mass
ratio (SMR). In the context of the effective-one-body (EOB) framework, current results from this program
can be used to determine the effective metric components at linear order in the mass ratio, resumming
post-Newtonian (PN) dynamics around the test-particle limit in the process. It was shown in [Akcay et al.,
Phys. Rev. D 86, 104041 (2012).] that, in the original (standard) EOB gauge, the SMR contribution to the
metric component gefftt exhibits a coordinate singularity at the light-ring (LR) radius. In this paper, we adopt
a different gauge for the EOB dynamics and obtain a Hamiltonian that is free of poles at the LR, with
complete circular-orbit information at linear order in the mass ratio and non-circular-orbit and higher-order-
in-mass-ratio terms up to 3PN order. We confirm the absence of the LR divergence in such an EOB
Hamiltonian via plunging trajectories through the LR radius. Moreover, we compare the binding energies
and inspiral waveforms of EOB models with SMR, PN and mixed SMR-3PN information on a
quasicircular inspiral against numerical-relativity predictions. We find good agreement between numeri-
cal-relativity simulations and EOB models with SMR-3PN information for both equal- and unequal-mass
ratios. In particular, when compared to EOB inspiral waveforms with only 3PN information, EOB
Hamiltonians with SMR-3PN information improves the modeling of binary systems with small mass ratios
q≲ 1=3, with a dephasing accumulated in ∼30 gravitational-wave (GW) cycles being of the order of few
hundredths of a radian up to 4 GW cycles before merger.
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I. INTRODUCTION

Solving the two-body problem in general relativity (GR)
remains a challenge of both theoretical interest and astro-
physical relevance. Although an analytical solution is
lacking, advances in numerical relativity (NR) in the past
decades provided the first numerical evolutions of merging
compact objects [1–3], as well as catalogs of waveforms
[4–8]. On the analytical side of the problem, approxima-
tions to the binary motion and gravitational radiation, via
expansions in one or more small parameters, have been
applied to different domains of validity [9–11], providing
us with a variety of waveform models.
The effective-one-body (EOB) framework is a syner-

gistic approach that allows us to resum information from
several analytical approximations. NR-calibrated inspiral-
merger-ringdown models based on EOB theory [12–16]
were employed by LIGO-Virgo experiments to detect
gravitational waves (GWs) and infer astrophysical and
cosmological information from them [17–25]. In view of
the expected increase in the signal-to-noise ratio of signals
detected with upcoming LIGO-Virgo runs, and next gen-
eration detectors in space (LISA [26]) and on Earth

(Einstein Telescope [27] and Cosmic Explorer [28]), it is
important and timely to include more physics and build
more accurate waveforms in the EOB approach.
Historically, physical information from the two-body

problem has mostly entered EOB theory via the post-
Newtonian (PN) expansion [29–31], valid for bound orbits
at large distances and for velocities smaller than the speed
of light v2=c2 ∼ GM=rc2 ≪ 1 (here M ¼ m1 þm2 is the
total mass, with m1 the mass of the primary and m2 the
mass of the secondary body). PN conservative-dynamics
information has so far been calculated up to fourth order, in
the nonspinning case, using the Arnowitt-Deser-Misner
(ADM) [32–34], Fokker [35–37] and effective-field-theory
approaches [38,39] (which were also employed to deter-
mine the 5PN gravitational interaction in the static limit
[40,41]). In the quasicircular-orbit limit, 4PN information
has been successfully included in the EOB dynamics in
the form of an expansion in the inverse radius u≡
GM=rc2 ≪ 1 and in the momenta p2, with exact depend-
ence on the symmetric mass ratio ν ¼ m1m2=M2 [42].
Further resummations of this PN expansion form the
core of the EOB waveform models [12,43–46]. Post-
Minkowskian (PM) information, valid in the weak field
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GM=rc2 ≪ 1, but for all velocities v2=c2 ≤ 1, has also

provided valuable insight in the structure of EOB
Hamiltonians, for both spinning and nonspinning bound
systems [47–51].
The self-force (SF) program, initiated in Refs. [52,53]

and based on an expansion of Einstein’s equations in the
small mass ratio (SMR) q ¼ m2=m1, has been successful in
the calculation of the gravitational SF of a small body
around Schwarzschild [54,55], and recently Kerr black
holes [56–59], to first order in the mass ratio and for
generic bound orbits. The results, corroborated by the use
of several gauges and numerical techniques (see, e.g.,
Ref. [10] and references therein), have been already used
to evolve extreme-mass-ratio inspirals (EMRIs) around a
Schwarzschild black hole [60,61] and they represent a key
input for EMRI waveform modeling schemes recently
developed [62] and under development [63].
As the SF program employs different gauge-dependent

schemes to obtain its results [10], it is paramount to be
able to check results via gauge-invariant quantities, such as
the innermost-stable-circular-orbit (ISCO) shift [64], peri-
astron advance [65–67], spin-precession [68–73], tidal
invariants [74,75] and the Detweiler redshift [76–81].
For a particle with four-velocity ũα normalized in an

effective metric g̃αβ ¼ gð0Þαβ þ hRαβ [i.e., moving around a

Schwarzschild background gð0Þαβ perturbed by a regularized

metric hRαβ and such that g̃αβũαũβ ¼ −1þOðνÞ], the
Detweiler redshift is defined as the ratio between proper
time measured in an orbit around the effective metric g̃αβ,
dτ̃, and coordinate time, dτ1: z≡ ðũtÞ−1 ¼ dτ̃=dτ [10,76].
Recently, the Detweiler redshift has been used for cross-
cultural studies between approximations to the two-body
problem in GR [11,76,78,82,83], and it has provided an
important benchmark to check PN and SMR results in the
small-mass-ratio and weak-field domain, in which both
PN and SMR frameworks are expected to be valid. This
synergistic program has been extended to NR simulations
of equal-mass-ratio binaries with the computation of the
Detweiler redshift in Ref. [82].
As pointed out in Ref. [84], gauge-invariant SMR

quantities such as the Detweiler redshift can be also used
to inform the conservative sector of EOB Hamiltonians
[66,84–86]. There are two ways in which this valuable
information could be incorporated into the EOB approach:
it can be either used to partially determine high-order PN

coefficients of EOB Hamiltonians [87–96] or it can be
used to resum PN dynamics around the test-body limit
[85,86,97]. Here, we focus on the latter approach.
Currently available EOB Hamiltonians informed with

the Detweiler redshift cannot be reliably evolved near the
Schwarzschild light-ring (LR) radius, i.e., r ¼ 3GM=c2.
Such an issue, hereafter called the LR-divergence problem,
appears as a coordinate singularity of the effective
Hamiltonian at the Schwarzschild LR [85,97]. In this
paper, we address the problem and, adopting a different
EOB gauge, we obtain a Hamiltonian with SMR informa-
tion that exhibits no divergence at the LR radius. This result
allows us to use the precious near-LR, strong-field infor-
mation from SF calculations in the evolutions of EOB
Hamiltonians.
The organization of the paper is as follows. In Sec. II we

review the LR divergence arising from informing the
conservative sector of standard EOB Hamiltonians with
the Detweiler redshift and we discuss how a different
EOB gauge (introduced in Ref. [47] in the context of PM
calculations) helps to solve the issue. In Sec. III, we inform
the conservative sector of EOB Hamiltonians in the
alternative gauge with circular-orbit information from
the Detweiler redshift, and with both non-circular-orbit
and higher-order-in-mass-ratio information from the PN
approximation. In Sec. IV, we evolve quasicircular inspirals
from this LR-divergence-free Hamiltonian and show that
the evolution of the orbital separation crosses the LR radius
without encountering singularities. Moreover, we perform
systematic comparisons against NR predictions of phase
and binding energy for nonspinning systems with mass
ratios 1=10 ≤ q ≤ 1. We conclude in Sec. V. In the
Appendix we present high-precision fits to the Detweiler
redshift with improved data in the strong field. We use
geometric units G ¼ c ¼ 1 throughout the paper.

II. ON GAUGES AND THE LIGHT-RING
DIVERGENCE

We begin by noting some conventions to be used in
the following sections. In the present paper, we do not
consider spinning systems; we denote the reduced mass by
μ ¼ ðm1m2Þ=M and the total mass by M ¼ m1 þm2. We
work with generalized (polar) coordinates qa ≡ ðr;ϕÞ in
the orbital plane, with canonically conjugate momenta
pa ≡ ðpr; pϕÞ, and we often employ the mass-reduced
inverse orbital separation u≡M=r and the mass-reduced
momenta p̂r ≡ pr=μ and p̂ϕ ≡ pϕ=ðMμÞ.

A. The light-ring divergence

In the EOB approach, the real two-body motion is
mapped to the effective motion of a test body in an effe-
ctive deformed-Schwarzschild spacetime with coordinates
ðt; r; θ;ϕÞ, with the deformation parameter being the sym-
metric mass ratio ν. The mapping can be obtained via a

1As pointed out in Ref. [10], z does not correspond to the
gravitational redshift due to the use of the regularized perturba-
tion hRαβ in its definition. It does only in the full geometry, e.g.,
including a singular metric hSαβ at the location of the particle such
that the body perturbation is hαβ ≡ hRαβ þ hSαβ. A sounder physical
description can be obtained if the small companion is a black
hole, since the Detweiler redshift can then be linked to the surface
gravity κ of the small body [82].
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dictionary between the action integrals Ia ¼ ð2πÞ−1 H padqa
of a two-body system in the center-of-mass frame and
those of a test body moving in the effective metric geffμν .
Considering orbits in the equatorial plane θ ¼ π=2, identi-
fying the radial and angular action integrals of real and
effective systems, i.e., setting Irealr ¼ Ieffr and Irealϕ ¼ Ieffϕ ,
the EOB approach allows a simple relation between the
real HEOBðr; pr; pϕ; νÞ and effective Heffðr; pr; pϕ; νÞ
Hamiltonians [29]:

HEOB ≡MĤEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
: ð2:1Þ

Heff describes the motion of a test body with mass μ and is
determined by a mass-shell constraint of the form [31]

gμνeffpμpν þ μ2 þQðr; pr; pϕ; νÞ ¼ 0; ð2:2Þ

where the effective metric is given by

ds2 ¼ −Aðr; νÞdt2 þ ½Aðr; νÞD̄ðr; νÞ�−1dr2 þ r2dΩ2;

ð2:3Þ

with the potentials Aðr; νÞ and D̄ðr; νÞ depending on the
orbital separation r and the symmetric mass ratio ν. In terms
of the inverse radius u ¼ M=r, they reduce to A0ðuÞ ¼ 1–2u
and D̄0 ¼ 1 in the test-particle limit (ν → 0). Inserting the
inverse of the metric (2.3) into Eq. (2.2), and using
pμ ¼ ð−Heff ; pr; pθ ¼ 0; pϕÞ, the mass-reduced effective
Hamiltonian Ĥeff ≡Heff=μ is found to be [31]

Ĥ2
eff ¼ Aðu; νÞ½1þ p̂2

ϕu
2 þ Aðu; νÞD̄ðu; νÞp̂2

r

þ Q̂ðu; p̂r; p̂ϕ; νÞ�; ð2:4Þ

with Q̂≡Q=μ2. The nongeodesic function Q in Eq. (2.2)
has been introduced to extend the EOB Hamiltonian
through 3PN order without changing the mapping (2.1)
[for a geodesic one-body motion at 3PN order with an
energy map different from (2.1) see Appendix A in
Ref. [31] ]. Its mass-reduced form Q̂ðu; p̂r; p̂ϕ; νÞ in
Eq. (2.4) generically depends on both the mass-reduced
radial momentum p̂r and the mass-reduced angular
momentum p̂ϕ. Reference [31] showed that at 3PN order
Q̂ must be fourth order in the momenta, and that the
nongeodesic term is not uniquely fixed. By setting some
of the free parameters to zero, it is possible to make
the function Q̂ðu; p̂r; p̂ϕ; νÞ depend only on the radial
momentum [i.e., Q̂ðu; p̂r; p̂ϕ; νÞ → Q̂ðu; p̂r; νÞ]. Since
2000, this choice of Q̂ has been adopted in several
EOB papers (although see Refs. [98,99] for alternative
choices of Q̂). Henceforth, we shall denote the Q̂ function
that only depends on the radial momentum as

Q̂DJSðu; p̂r; νÞ, after the initials of the three authors of
Ref. [31]. We refer to the DJS EOB Hamiltonian as
the Hamiltonian that uses the Q̂DJSðu; p̂r; νÞ function.
Note that in this gauge, the angular momentum p̂ϕ only
appears in the second term in brackets in Eq. (2.4).
Moreover, in the circular-orbit limit (p̂r ¼ 0) the
conservative-dynamics information is fully described by
the Aðu; νÞ potential in this gauge, as found at 2PN order
[29]. The 4PN expressions for Aðu; νÞ, D̄ðu; νÞ and
Q̂DJSðu; p̂r; νÞ in the DJS gauge, for quasicircular orbits,
are obtained mapping Eq. (2.1) to the 4PN-expanded
Hamiltonian and can be found in Ref. [42].
The first efforts to incorporate SMR quantities in EOB

Hamiltonians sought to do so using the gauge of Eq. (2.4)
with Q̂ðu; p̂r; p̂ϕ; νÞ → Q̂DJSðu; p̂r; νÞ [65,86,97,100]. In
this gauge, the function Aðu; νÞ, having the complete
dynamical information for circular orbits, allows a linear-
in-ν expansion about the Schwarzschild limit:

Aðu; νÞ ¼ 1 − 2uþ νaðuÞ þOðν2Þ: ð2:5Þ

The aðuÞ function resums the complete circular-orbit PN
dynamics in linear order in ν. References [85,86] obtained
an expression for aðuÞ employing the linear-in-ν correc-
tion to the Detweiler redshift. Notably, the Detweiler
redshift is expanded around the Schwarzschild back-
ground, zðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3x
p þ νΔzðxÞ þOðν2Þ [where x≡

ðMΩÞ2=3 is the gauge-independent inverse radius], and
the Δz correction is linked to aðuÞ via the first law of
binary-black-hole mechanics [83]. The resulting expres-
sion reads

aðuÞ ¼ ΔzðuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3u

p
− u

�
1þ 1 − 4uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3u
p

�
: ð2:6Þ

In Eq. (2.6), Δz depends on the gauge-dependent inverse
radius u, rather than its gauge-independent counterpart x.
This is only correct if we restrict to first order in ν, since
x ¼ uþOðνÞ. The quantity ΔzðxÞ, has been fitted with
data extending to the LR [97], allowing precious strong-
field information to enter the EOB dynamics.
The form of aðuÞ is suggestive of trouble arising at

the Schwarzschild light ring, i.e., at uLR ¼ 1=3, where the
second term in Eq. (2.6) diverges. In principle, this
divergence might be tamed by the behavior of the redshift
ΔzðuÞ appearing in the first term in brackets, but data for
the redshift up to the LR show that this is not the case and
that aðuÞ indeed diverges there [97]. This is worrisome,
as aðuÞ directly enters the effective Hamiltonian and, via
the energy map, the EOB-resummed dynamics. The EOB
dynamics thus contains a divergence for generic orbits
(e.g., for any value of p̂ϕ and p̂r). It was pointed out in
Ref. [97] that the LR divergence is a phase-space coor-
dinate singularity that arises due to the use of the DJS
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gauge, and that can be solved adopting a different gauge in
which the function Q̂ grows as Q̂ ∝ p̂3

ϕ when p̂ϕ → ∞
and p̂r → 0.
It is worth mentioning that the argument in Ref. [97]

stems from a similar LR divergence that has appeared when
including tidal effects in the EOB approach [101]. Tidal
effects enter the potential AðuÞ via a correction in a tidal
expansion akin to Eq. (2.5): AðuÞ ¼ A2 pp þ μTaTðu; νÞþ
Oðμ2TÞ, where A2 pp is the two point-particle (pp) EOB
potential [101] and μT the small tidal parameter. It has been
found in Ref. [101] that, in the extreme-mass-ratio limit
and for circular orbits, the first-order correction scales as
aTðu; νÞ ∝ ð1 − 3uÞ−1 when u → uLR. An alternative EOB
Hamiltonian that includes dynamical tides without intro-
ducing poles at the LR has been introduced in Ref. [102];
this has been achieved by abandoning the DJS gauge (see,
e.g., their Appendix D).

B. The post-Schwarzschild effective-one-body gauge

Reference [47] has shown that it is possible to obtain a
different EOB gauge, hereafter the post-Schwarzschild (PS)
gauge, solving Eq. (2.2) with the Schwarzschild limit of the
metric (2.3). The mass-reduced effective Hamiltonian thus
obtained has the following form:

ĤPS
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĥ2

S þ ð1 − 2uÞQ̂PSðu; ν; ĤSÞ
q

; ð2:7Þ

where ĤS is the Schwarzschild Hamiltonian:

ĤSðu; p̂r; p̂ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2uÞ½1þ p̂2

ϕu
2 þ ð1 − 2uÞp̂2

r �
q

:

ð2:8Þ

In Ref. [47], the PS function Q̂PS has been derived to
2PM order via a scattering-angle calculation and to 3PN
order via a canonical transformation from the DJS
Hamiltonian at 3PN. In Ref. [51], these calculations have
been extended to 3PM and 4PN orders, respectively (the
latter only in the near-circular-orbit limit).
It is noticed that, in PS EOB Hamiltonians, all the

information on the two-body problem with ν ≠ 0 is
contained in Q̂PSðu; ν; ĤSÞ. This feature and the fact that
circular-orbit dynamics is contained also in the Q̂ func-
tion, significantly differentiate PS Hamiltonians from DJS
ones. The PS gauge is uniquely fixed resumming the
angular and radial momenta into the Schwarzschild
Hamiltonian (2.8). The powers of such momenta are
furthermore not bound in any way, due to the generic
functional dependence of Q̂PSðu; ν; ĤSÞ on ĤS. In prin-
ciple, then, arbitrary powers of p̂ϕ are contained in
Q̂PSðu; ν; ĤSÞ via ĤS. In particular, differently from

Q̂DJSðu; ν; p̂rÞ, powers of momentum enter at second
order in Q̂PSðu; ν; ĤSÞ instead of fourth order.
The unconstrained dependence of Q̂PS on ĤS makes

the use of PS Hamiltonians very appealing in the context
of our work. It was shown in Ref. [47] that, in the high
energy limit for which p̂ϕ → ∞, the LR divergence can be
captured by the coefficient of a term proportional to Ĥ3

S.
This result is in agreement with a point made in the
conclusions of Ref. [97]. As it approaches the LR radius,
the effective mass moving in a deformed-Schwarzschild
background described by Eqs. (2.5) and (2.6) has a
divergent-energy behavior that must be removed with
an appropriate energy-corrected mass-ratio parameter ν̃ ¼
νĤS. In the next section, building from this knowledge
and making use of a simple ansatz for Q̂PSðu; ν; ĤSÞ, we
construct a Hamiltonian in the PS gauge that contains
information from Δz, while remaining analytic at the LR.

III. CONSERVATIVE DYNAMICS OF
POST-SCHWARZSCHILD HAMILTONIANS

A. Information from circular orbits

In this section, we link the conservative sector of the
PS EOB Hamiltonian to the SMR contribution to Δz.
Following Ref. [86], we do so matching, at fixed frequency,
the circular-orbit binding energy at linear order in ν from
the EOB Hamiltonian with the binding energy in the same
limit from SF results. The latter is obtained in Ref. [85] and
is a consequence of the first law of binary-black-hole
mechanics. As a function of Δz and the gauge-invariant
inverse radius x, it reads [85]

ÊSF
bind ¼

1 − 2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p − 1þ νÊSMRðx;Δz;Δz0Þ þOðν2Þ;

ð3:1Þ

ÊSMRðx;Δz;Δz0Þ ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
−
x
3
Δz0ðxÞ

þ ΔzðxÞ
2

þ ð7 − 24xÞx
6ð1 − 3xÞ3=2 : ð3:2Þ

The prime denotes differentiation with respect to x. We find
it useful to rewrite the redshift as

ΔzðxÞ ¼ Δzð0ÞðxÞ
1 − 3x

þ Δzð1ÞðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p þ Δzð2ÞðxÞ
1 − 3x

lnE−2
S ðxÞ:

ð3:3Þ

In the above expression, we have defined ESðxÞ≡
ð1 − 2xÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3x
p

. In Appendix, Δzð0ÞðxÞ, Δzð1ÞðxÞ and
Δzð2ÞðxÞ are fitted to high-precision SF data and such to be
analytic at the LR. Equation (3.2) then reads
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ÊSMR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
− 1þ ð7 − 24xÞx

6ð1 − 3xÞ3=2 þ
1

2ð1 − 3xÞ
h
Δzð0ÞðxÞ þ Δzð1ÞðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
þ Δzð2ÞðxÞ lnE−2

S ðxÞ
i

−
x

3ð1 − 3xÞ
�
3Δzð0ÞðxÞ
1 − 3x

þ 3Δzð1ÞðxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p þ
�

1 − 6x
ð1 − 2xÞð1 − 3xÞ þ

3 lnE−2
S ðxÞ

ð1 − 3xÞ
�
Δzð2ÞðxÞ

þ ðΔzð0ÞÞ0ðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
ðΔzð1ÞÞ0ðxÞ þ ðΔzð2ÞÞ0ðxÞ lnE−2

S ðxÞ
�
: ð3:4Þ

For the remainder of this section, we consider the PS
EOB Hamiltonian HEOB, i.e., Eq. (2.1) with Heff=μ
replaced by ĤPS

eff of Eq. (2.7). We propose an ansatz for
Q̂PS of the following form:

Q̂PS
SMRðu;ν;ĤSÞ¼ν½f0ðuÞĤ5

Sþf1ðuÞĤ2
Sþf2ðuÞĤ3

S lnĤ
−2
S �:

ð3:5Þ

In the rest of this section, when matching to the SMR
results, we limit to circular orbits; thus we use ĤSðu; p̂r ¼
0; p̂ϕÞ in Eq. (3.5). The role of the Ĥ5

S term is to capture the
global divergence ð1 − 3xÞ−2 of Eq. (3.4),2 while the
second term Ĥ2

S is devised to incorporate the
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p

terms appearing in the numerator of the same equation,
which would make the Hamiltonian imaginary after the
light ring. The term proportional to ln Ĥ−2

S incorporates the
logs in the fit that would make the Hamiltonian nonsmooth
at the light ring. Setting pr ¼ 0 and using

_pr ¼ −
∂HEOB

dr
ðr; pr ¼ 0; pcirc

ϕ ; νÞ ¼ 0; ð3:6Þ

the (mass-reduced) circular-orbit momentum p̂circ
ϕ as a

function of the inverse radius u is determined at linear
order in ν [with f0iðuÞ ¼ dfi=du]:

p̂circ
ϕ ðu; νÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uð1 − 3uÞp þ ν
ð1 − 2uÞ2

4ð1 − 3uÞ3 ffiffiffi
u

p ½2ð1 − 2uÞ3f0ðuÞ þ 2ð1 − 3uÞ3=2f1ðuÞ þ 2ð1 − 2uÞð1 − 3uÞf2ðuÞ lnE−2
S ðuÞ

− ð1 − 2uÞ4f00ðuÞ − ð1 − 2uÞð1 − 3uÞ3=2f01ðuÞ − ð1 − 2uÞ2ð1 − 3uÞ lnE−2
S ðuÞf02ðuÞ� þOðν2Þ: ð3:7Þ

We further use the relation:

Ω ¼ ∂HEOB

dpϕ
ðr; pr ¼ 0; pcirc

ϕ ; νÞ; ð3:8Þ

and exploit its link to the gauge-independent inverse radius x given by x ¼ ðMΩÞ2=3. Inserting Eq. (3.7) in Eq. (3.8)
and inverting the obtained expression at linear order in ν, we establish a link between the gauge-dependent u and the
gauge-independent x inverse radii:

ucircðx; νÞ ¼ xþ xν

6ð1 − 3xÞ3=2
n
4 − 20xþ 24x2 − ð4 − 12xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
− 10ð1 − 2xÞ4f0ðxÞ

− 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
ð1 − 5xþ 6x2Þf1ðxÞ þ ½4 − 28xþ 64x2 − 48x3 − ð6 − 42xþ 96x2 − 72x3Þ lnE−2

S ðxÞ�f2ðxÞ
þ ð1 − 10xþ 40x2 − 80x3 þ 80x4 − 32x5Þf00ðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
ð1 − 7xþ 16x2 − 12x3Þf01ðxÞ

þ ð1 − 9xþ 30x2 − 44x3 þ 24x4Þ lnE−2
S ðxÞf02ðxÞ

o
þOðν2Þ: ð3:9Þ

To calculate the (mass-reduced) gauge-invariant, circular-orbit binding energy at linear order in ν fromHEOB, we employ
the definition:

ÊEOB
bind ≡ ðHEOB −MÞ=μ: ð3:10Þ

2In principle, a Ĥ3
S term will suffice to capture the divergence. However, we find that this minimal choice leads to evolutions that are

not well behaved for systems with comparable masses.
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Inserting Eqs. (3.7) and (3.9) in HEOB and retaining only terms up to first order in the mass ratio, we get

ÊEOB
bind ðx; νÞ ¼

1 − 2xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p − 1 −
ν

6ð1 − 3xÞ3 fð1 − 3xÞð6 − 37xþ 59x2 − 12x3Þ − 2ð1 − 3xÞ3=2ð3 − 14xþ 12x2Þ

− ð3 − 7x − 18x2Þð1 − 2xÞ4f0ðxÞ − ð1 − 3xÞ3=2ð3 − 16xþ 20x2Þf1ðxÞ
þ ð1 − 3xÞð1 − 2xÞ2½2xð1 − 6xÞ − ð3 − 9x − 6x2Þ lnE−2

S ðxÞ�f2ðxÞ þ 2xð1 − 2xÞ5ð1 − 3xÞf00ðxÞ
þ 2xð1 − 3xÞ5=2ð1 − 2xÞ2f01ðxÞ þ 2xð1 − 3xÞ2ð1 − 2xÞ3 lnE−2

S ðxÞf02ðxÞg þOðν2Þ: ð3:11Þ

Matching Eq. (3.1) [with correction given by Eq. (3.4)]
and Eq. (3.11), we obtain differential equations to be
solved for f0ðxÞ, f1ðxÞ and f2ðxÞ. Further splitting the
fi coefficients as follows:

f0ðxÞ ¼ f̃0ðxÞ þ
Xi¼2

i¼0

fðiÞ0 ðxÞΔzðiÞðxÞ ð3:12Þ

f1ðxÞ ¼ f̃1ðxÞ þ
Xi¼2

i¼0

fðiÞ1 ðxÞΔzðiÞðxÞ; ð3:13Þ

f2ðxÞ ¼ f̃2ðxÞ þ
Xi¼2

i¼0

fðiÞ2 ðxÞΔzðiÞðxÞ; ð3:14Þ

and imposing that the Hamiltonian coefficients be analytic
at the LR radius [i.e., that they do not contain

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
or lnE−2

S ðxÞ terms], we obtain the following nonzero
solutions3:

f̃0ðxÞ ¼ −
xð1 − 3xÞð1 − 4xÞ

ð1 − 2xÞ5 ; ð3:15aÞ

f̃1ðxÞ ¼ −
x

ð1 − 2xÞ2 ; ð3:15bÞ

fð0Þ0 ðxÞ ¼ 1 − 3x
ð1 − 2xÞ5 ; ð3:15cÞ

fð1Þ1 ðxÞ ¼ 1

ð1 − 2xÞ2 ; ð3:15dÞ

fð2Þ2 ðxÞ ¼ 1

ð1 − 2xÞ3 : ð3:15eÞ

The fiðxÞ coefficients are readily found via Eqs. (3.12),
(3.13) and (3.14) and then inserted in the nongeodesic term
in the effective Hamiltonian (3.5) to obtain

Q̂PS
SMR

ν
ðu; ν; ĤSÞ ¼ ð1 − 3uÞ

�
Δzð0ÞðuÞ
ð1 − 2uÞ5 −

ð1 − 4uÞu
ð1 − 2uÞ5

�
Ĥ5

S

þ
�
Δzð1ÞðuÞ
ð1 − 2uÞ2 −

u
ð1 − 2uÞ2

�
Ĥ2

S

þ Δzð2ÞðuÞ
ð1 − 2uÞ3 Ĥ

3
S ln Ĥ

−2
S : ð3:16Þ

We see that the resulting Hamiltonian concisely resums the
complete circular-orbit PN dynamics at linear order in ν.
The nongeodesic function Q̂PS

SMR does not contain any term
divergent at the LR, as Δzð0ÞðuÞ, Δzð1ÞðuÞ and Δzð2ÞðuÞ are
constructed to be analytic there.

B. Information from noncircular orbits and from
higher orders in the mass ratio

The calculation in Sec. III A is carried out in the circular-
orbit limit at linear order in the mass ratio. However, it is
possible to include more physical information to the
Hamiltonian, coming both from non-circular-orbit terms
and from terms at higher orders in the mass ratio. For
instance, self-force information for mildly eccentric orbits
can be obtained via the SMR correction to the periastron
advance ρSF [65], which can then be linked to the EOB
potentials. This was the strategy used in Refs. [84,86] to
obtain an expression for the potential D̄ðrÞ in terms of
ΔzðuÞ and ρSFðuÞ and introduce noncircular SF data
into the EOB Hamiltonian up to the Schwarzschild
ISCO (i.e., uISCO ¼ 1=6). Alternatively, one can exploit
the generalized redshift [77] and link it to D̄ðrÞ, as done in
Refs. [100,103]. Here, we insert generic-orbit PN informa-
tion in our Hamiltonian and leave the inclusion of non-
circular SMR information in Q̂PS to future work.
Post-Schwarzschild EOB Hamiltonians with PN infor-

mation from generic orbits have been already considered
in the literature. For example, the PS Hamiltonian at 3PN
order has been investigated in Ref. [47]. Using the PN

3Similarly to what is done in Ref. [86], we impose that the PN
expansion cannot admit half-integer powers of x. This allows us
to set all constants of integration to zero.
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parameters Y ≡ ðĤ2
S − 1Þ ∼Oð1=c2Þ and u, its expression

is given by

Q̂PS
3PN ¼ 3νu2Y þ 5νu3 þ

�
3ν −

9

4
ν2
�
u2Y2

þ
�
27ν −

23

4
ν2
�
u3Y

þ
�
175

3
ν −

41π2

32
ν −

7

2
ν2
�
u4: ð3:17Þ

As discussed, the above Hamiltonian contains two-body
information that is not captured by the calculation leading
to Q̂PS

SMR and that we wish to add to it.
To this end, we consider a mixed SMR-3PN nongeodesic

function of the following form:

Q̂PS
SMR-3PN ¼ Q̂PS

SMR þ ΔQ̂PS; ð3:18Þ

where Q̂PS
SMR is given by Eq. (3.16) and contains all the

circular-orbit terms at linear order in ν, while ΔQ̂PS is fixed
demanding that it contains all the additional PN informa-
tion from Eq. (3.17), in such a way not to contribute to the
linear-in-ν binding energy in the circular-orbit limit.
We opt to further split ΔQ̂PS into two contributions:

ΔQ̂PS
extra collects the extra terms up to 3PN order (including

both noncircular 3PN terms at linear order in ν and ν2

terms), while ΔQ̂PS
count is a counterterm whose functionality

is explained below. We then have

ΔQ̂PS ≡ ΔQ̂PS
extra − ΔQ̂PS

count: ð3:19Þ

The former contribution is readily obtained calculating the
difference between Eq. (3.17) and the 3PN expansion of
Eq. (3.16).4 The result reads

ΔQ̂PS
extra ¼ 3νu2Y þ

�
3ν −

9

4
ν2
�
u2Y2 þ 3νu3

þ
�
22ν −

23

4
ν2
�
u3Y þ

�
16ν −

7

2
ν2
�
u4:

ð3:20Þ

In the PS gauge, Q̂PS depends on momenta via ĤSðu; p̂r;
p̂ϕÞ, which cannot be separated into circular and non-
circular-orbit contributions. Because of that, the linear-in-ν
portion of Eq. (3.20) contributes to the linear-in-ν binding
energy for circular orbits. Therefore, the addition ofΔQ̂PS

extra

to ΔQ̂PS
SMR spoils the matching between EOB and SF

binding energies for circular orbits at linear order in the
mass ratio guaranteed by the sole presence of ΔQ̂PS

SMR.
The matching between the two binding energies can be

maintained with a particular choice of the second contri-
bution to Eq. (3.19), i.e., ΔQ̂PS

count. We choose a counterterm
that starts at 4PN, in order not to spoil the agreement at 3PN
for generic orbits guaranteed by Eq. (3.20):

ΔQ̂PS
count ¼ ν½qð3;2Þu3Y2 þ qð4;1Þu4Y þ qð5;0Þu5�: ð3:21Þ

We impose that the linear-in-ν binding energy from ΔQ̂PS

from Eq. (3.19) [calculated as done for Eq. (3.11) in
Sec. III A] vanishes and we obtain

qð3;2Þ ¼ 9; qð4;1Þ ¼ 96; qð5;0Þ ¼ 112: ð3:22Þ

The final PN correction ΔQ̂PS thus contains all the extra
information from generic orbits at 3PN that is not captured
by Q̂PS

SMR, without contributing to the linear in mass-ratio
binding energy for circular orbits. The exercise above
can be repeated at one PN order higher to obtain ΔQ̂PS

at 4PN starting from the 4PN EOB Hamiltonian in the PS
gauge. [51]. Such a computation does not present major
differences from the calculation above: the only feature
changing is the counterterm, which needs to start at 5PN
and include logarithmic terms. We have decided not to
include ΔQ̂PS at 4PN in this paper, as the 4PN Hamiltonian
from which it is constructed is only valid for near-circular
orbits. TheΔQ̂PS at 3PN that we obtain here is instead valid
for generic orbits.

IV. INSPIRALS IN EFFECTIVE-ONE-BODY
THEORY

A. Plunging through the light ring
with small-mass-ratio Hamiltonians

In this section, we evolve the EOB Hamiltonians con-
structed in Secs. III A and III B [i.e., Eq. (2.7) with
nongeodesic functions (3.16) and (3.18)], and the EOB
Hamiltonian with SMR information in the DJS gauge. We
refer to them as HEOB;PS

SMR , HEOB;PS
SMR-3PN and HEOB

SMR, see Table I
(which also includes our notation for the PN Hamiltonians
in both DJS and PS gauges).

TABLE I. Two-body EOB Hamiltonians.

HEOB;PS
SMR SMR Hamiltonian in PS gauge This paper

HEOB;PS
SMR-3PN SMR-3PN Hamiltonian in PS gauge This paper

HEOB
SMR SMR Hamiltonian in the DJS gauge

(with LR divergence)
[86]

HEOB;PS
nPN nPN Hamiltonian in PS gauge [47]

HEOB
nPN nPN Hamiltonian in DJS gauge [29,31]

4That is, Eq. (3.16) is expanded in the PN parameters u
and Y ¼ Ĥ2

S − 1. The redshift functions Δzð0ÞðuÞ, Δzð1ÞðuÞ and
Δzð2ÞðuÞ also need to be PN expanded: their expressions are
obtained matching the 3PN expansion of the redshift from
Ref. [89] and Eq. (3.3).
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The EOB approach is comprised of a conservative sector,
discussed in detail in Sec. II, and a dissipative sector,
responsible for the slow GW-driven inspiral of the compact
bodies towards merger. The basic set of equations for
inspiraling orbits in the EOB framework are the Hamilton
equations augmented with a radiation-reaction force FRR.
In terms of a generic mass-reduced EOB Hamiltonian
ĤEOBðr̂; p̂r� ; p̂ϕÞ, the equations read [12,30,99,104]

dr̂
dt̂

¼ Aðr̂Þffiffiffiffiffiffiffiffiffiffi
Dðr̂Þp ∂ĤEOB

∂p̂r�
; ð4:1aÞ

dϕ
dt̂

¼ ∂ĤEOB

∂p̂ϕ
; ð4:1bÞ

dp̂r�
dt̂

¼ −
Aðr̂Þffiffiffiffiffiffiffiffiffiffi
Dðr̂Þp ∂ĤEOB

∂r̂ þ FRR
p̂r�
p̂ϕ

; ð4:1cÞ

dp̂ϕ

dt̂
¼ FRR; ð4:1dÞ

where we have introduced the mass-reduced radius r̂≡
r=M and coordinate time t̂≡ t=M and used the mass-
reduced radial momentum p̂r� conjugate to the radius r� in
tortoise coordinates, defined for generic potentials Aðr̂Þ and
Dðr̂Þ5 by

dr̂�
dr̂

≡
ffiffiffiffiffiffiffiffiffiffi
Dðr̂Þp
Aðr̂Þ ¼ p̂r

p̂r�
: ð4:2Þ

In the evolution of the EOB Hamiltonian in the DJS gauge
we use the PN-expanded expressions for Aðr̂Þ, Dðr̂Þ and
Q̂DJS at the required PN order [29,31,42] (i.e., we use their
2PN and 3PN expressions in the evolutions of HEOB

2PN and
HEOB

3PN , respectively), whereas we use their test-body limits
in the evolutions of Hamiltonians in the PS gauge.6 The
Hamiltonians in both gauges depend on p̂r� , rather than p̂r.
The radiation-reaction force FRR drives the inspiral of

the system and it contains semianalytical two-body infor-
mation [43,104,105]. In this paper, we employ its non-
Keplerian form (with Ω̂≡ dϕ=dt̂ ¼ MΩ):

nKFRR ¼ −
1

νΩ̂
dE
dt

; ð4:3Þ

where dE=dt is the GW flux for quasicircular orbits [43]:

dE
dt

¼ Ω̂2

8π

Xlmax¼8

l¼2

Xl

m¼l−2
m2jr̂hlmj2: ð4:4Þ

The modes hlm are built from PN theory, but resummed
multiplicatively (see e.g., Ref. [43]). Here, we use the
resummation of the (nonspinning) modes and flux pre-
sented in Ref. [12] (which coincides with the state-of-the-
art modes and flux used in the EOB waveform model for
LIGO/Virgo data analysis [15], when spins are set to zero).
We do not include the “next-to-quasi-circular” (NQC)
coefficients [15], or any calibration parameter obtained
imposing better agreement with numerical-relativity wave-
forms. Our main motivation here is to compare how well
the conservative EOB dynamics of SMR models compare
to PN ones and with NR.
The result of the evolved orbital separations r̂ of both

DJS and PS Hamiltonians for q ¼ 1=10 are reported in
Fig. 1. Focusing on the evolution in the DJS case, it is seen
that the pole in the conservative part of the DJS
Hamiltonian affects the motion of the effective body close
to the LR radius. That is, HEOB

SMR diverges at r̂LRS ¼ 3, at
which point it acts as an infinite potential barrier that the
effective mass cannot cross. Conversely, the effective mass
plunges through the Schwarzschild LR radius in the cases
of HEOB;PS

SMR and HEOB;PS
SMR-3PN. This finding confirms that there

is no unphysical behavior at the LR radius for SMR
Hamiltonians in the PS gauge. To conclude, we also notice
that the evolutions of the HEOB;PS

SMR and HEOB;PS
SMR-3PN models

(red and blue dots) stop soon after the LR radius. In
principle we would expect them to stop at the
Schwarzschild horizon (u ¼ 1=2). This is not the case in
Fig. 1. In the PS gauge, the orbital frequency scales as

FIG. 1. Plunges through the light-ring radius: the evolved
orbital separation for the SMR Hamiltonians is presented. The
effective masses of modelsHEOB;PS

SMR andHEOB;PS
SMR-3PN plunge through

the LR radius rS ¼ 3M. Conversely, the plunge of the effective
mass of HEOB

SMR presents unphysical features associated to the LR
divergence.

5Here Dðr̂Þ is the inverse of D̄ðr̂Þ mentioned in Sec. II.
6The effective Hamiltonian in the PS gauge (2.7) is obtained

solving the Hamilton-Jacobi equations with the Schwarzschild
metric. The Aðr̂Þ and Dðr̂Þ are therefore fixed by their Schwarzs-
child limits.
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Ω ¼ ∂HEOB

dpϕ
∝
∂HPS

eff

∂pϕ
∝
∂HPS

eff

∂HS

∂HS

∂pϕ
; ð4:5Þ

where in the first proportionality relation we have used the
energy map (2.1) and in the second we have exploited the
fact that the PS effective Hamiltonian only depends on
the angular momentum pϕ via HS. The factor ∂HS=∂pϕ

vanishes at u ¼ 1=2 (corresponding to the usual
Schwarzschild horizon). However, we also find that, with
our Hamiltonian ansatz, the ∂ĤPS

eff=∂HS factor develops a
zero just below the LR radius. Consequently, Ω vanishes at
this point and we stop the evolution. We note that having
little model dynamics after the peak of the frequency, while
not presenting an issue by itself, could pose problems in the
modeling of EOB waveforms and frequencies during the
transition between plunge and merger-ringdown phases.

B. Comparisons against numerical relativity

Here we study the energetics of the HEOB;PS
SMR and

HEOB;PS
SMR-3PN models and the PN EOB models in both gauges

via comparisons of their binding energies against NR
predictions. The main reason why we choose to compare
SMR models to PN ones is to assess how useful SMR
information could be in improving the EOB models
currently in use, which are based on PN information.
The (quasi) gauge-invariant relations between the dimen-

sionless circular-orbit binding energy E≡ ðH −MÞ=μ and
angular momentum l≡ p̂ϕ ¼ pϕ=ðMμÞ (and orbital fre-
quency Ω̂) are used to draw comparisons against NR. This
type of comparison is useful to understand how information
of the real two-body motion is resummed into the
conservative dynamics [51]. In contrast to Ref. [51] and
Sec. III of this paper, where the binding energy is calculated
in the circular-orbit limit, the binding energies appearing in
this section are obtained evolving the EOB Hamiltonians
along quasicircular orbits. This more closely matches the
procedure used to extract the binding energy from NR
simulations of quasicircular inspirals, providing clearer
comparisons [106]. Finally, we calculate the dephasing
Δϕ22 ≡ ϕNR − ϕEOB of the ðl; mÞ ¼ ð2; 2Þ modes of the
HEOB;PS

SMR and HEOB;PS
SMR-3PN models against NR results. While

more thorough comparisons aimed at using the models for
LIGO inference studies would need a systematic calcu-
lation of the unfaithfulness (see e.g., Refs. [12,14–16]), we
find these comparisons illustrative to contextualize the
HEOB;PS

SMR and HEOB;PS
SMR-3PN models in this paper.

We employ a set of ten nonspinning NR simulations from
the Simulating eXtreme Spacetimes (SXS) Collaboration
[4,107], with mass ratios 1=10 ≤ q ≤ 1. We summarize the
details of these simulations in Table II. A description of how
the EðlÞ and EðΩ̂Þ curves were calculated for a subset of
these simulations can be found in Ref. [106].
We evolve EOB Hamiltonians with PN information up to

third order, since 3PN is the order at which PS-gauge

Hamiltonians can be uniquely derived for generic orbits (see
the Appendix of Ref. [51] for more details). It is worthwhile
to mention that the HEOB

3PN Hamiltonian has better energetics
and phases performances against NR than bothHEOB

4PN and the
SEOBNR Hamiltonian used as a baseline for the current
generation of EOB waveform models (defined, e.g., in the
Appendix of Ref. [102]), when calibration and NQC
parameters are turned off. Restricting ourselves to compari-
sons with HEOB

3PN only, we are therefore not running the risk
to overestimate the performance of SMR models when
comparing them to PN results.
Let us begin comparing the EðlÞ and EðΩ̂Þ curves. In

Figs. 2 and 3, the difference ΔE≡ jENR − EEOBj is plotted
for a variety of EOB models and for mass ratios q ¼ 1 and
q ¼ 1=10. We choose to present results for these mass
ratios only as we find them to be representative of the
behavior of the models across the parameter range con-
sidered in this study. Considering the EðlÞ relations first
and focusing on the SMR models, it is seen that for q ¼
1=10 both HEOB;PS

SMR and HEOB;PS
SMR-3PN perform better against

NR than the 3PN model in the same gauge, e.g., HEOB;PS
3PN .

The HEOB;PS
SMR-3PN model also performs better than both in the

comparable-mass case. A similar finding is obtained
investigating the EðΩ̂Þ curves, see Fig. 3. Taken together,
these results highlight the importance of SMR results to
improve the modeling of both equal- and unequal-mass
systems within the EOB approach. It is also seen that, for
both mass ratios considered and for both EðlÞ and EðΩ̂Þ
curves, HEOB;PS

SMR-3PN improves the predictions of HEOB;PS
SMR ,

suggesting that generic-orbit terms are important when
considering quasicircular-orbit binding energies (especially
in the equal-mass-ratio case).

TABLE II. Set of nonspinning NR simulations and alignment
time windows. We list the SXS IDs, the mass ratios q and the
number of orbital cycles Nmerg

orb from the beginning of the
simulation up to the binary-black-hole merger (peak of hNR22 ),
as reported in the SXS catalog. We further include the time taligin at

which the alignment procedure starts, the time taligfin at which it
ends (in units ofM) and the estimated NR error at merger Δϕmerg

NR
(in radians).

SXS ID: q−1 Nmerg
orb taligin taligfin Δϕmerg

NR

0180 1 28.18 820 2250 �0.25
1222 2 28.76 1000 2555 �1.26
1221 3 27.18 1800 3000 �0.21
1220 4 26.26 1800 3000 �1.82
0056 5 28.81 1500 3000 �0.39
0181 6 26.47 1000 2500 �0.01
0298 7 19.68 780 2180 �0.10
0063 8 25.83 1140 2540 �0.85
0301 9 18.93 780 2180 �0.13
0303 10 19.27 700 1900 �0.49
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PN Hamiltonians in the PS gauge generically perform
worse in binding energy comparisons than Hamiltonians
in the DJS gauge, as found out in the adiabatic approxi-
mation already in Ref. [51]. This finding suggests that,
notwithstanding the already good agreement between
SMR models and NR simulations for both mass ratios,
a better description for the EOB dynamics than the one
provided by the PS gauge could be pursued in order to
maximize the performance of evolutions from both PN
and SMR EOB models.
We complete our comparison study with the dephasing

Δϕ22 of the ðl; mÞ ¼ ð2; 2Þ modes from the EOB models
and the NR simulations. For a proper comparison, the EOB
and NRwaveforms must be aligned for each q. Here we use
the alignment procedure outlined in Ref. [12], which
amounts to minimizing the function:

ΞðΔt;ΔϕÞ ¼
Z

talig
2

talig
1

½ϕNRðtÞ − ϕEOBðtþ ΔtÞ − Δϕ�2dt;

ð4:6Þ

over the time and phase shifts, Δt and Δϕ. The integrating
interval [talig1 ; talig2 ] defines the time-domain window in
which the alignment is performed: conservatively, it must
be chosen in the inspiral of the NR simulation, large enough
to average out the numerical noise and such as to avoid junk
radiation at the beginning of the NR simulation [12]. From
the alignment procedure described above, one can obtain
the phase and amplitude time shift to be applied to the EOB
model to align it with the NR waveforms, i.e., the aligned
waveforms are

hNR22 ¼ ANRðtÞeiϕNRðtÞ; ð4:7Þ

hEOB22 ¼ AEOBðtþ ΔtÞei½ϕEOBðtþΔtÞþΔϕ�: ð4:8Þ

Our choices for the time windows are reported in
Table II. In Fig. 4, we show the results of our phase
comparisons for q ¼ 1 and q ¼ 1=10 up to merger. For
clarity, the upper panels only include the HEOB;PS

SMR and
HEOB;PS

SMR-3PN models and the NR simulations. They show the
real parts of Eqs. (4.7) and (4.8), from which we infer that

FIG. 2. SMR vs PN binding energies: we compare the differ-
ence ΔE in binding energy from NR for our SMR Hamiltonians
versus angular momentum l. We compare it to similar results for
PN models up to third order, in both PS and DJS gauges. The
estimated NR error is shown in grey.

FIG. 3. SMR vs PN binding energies: we compare the differ-
ence ΔE in binding energy from NR for our SMR Hamiltonians
versus frequency ðMΩÞ. We compare it to similar results for PN
models up to third order, in both PS and DJS gauges. The
estimated NR error is shown in grey.
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the SMR models do not accumulate a significant amount of
dephasing. Overall, they are in very good agreement with
NR for both q ¼ 1 and q ¼ 1=10. It is important to place
the above results in context. In the lower panel, the
dephasing of SMR models from NR is compared to that
of 3PN models.7 Interestingly, even in the equal-mass-ratio
case HEOB;PS

SMR and HEOB;PS
SMR-3PN compare much better than

the 3PN model in the same gauge, e.g., HEOB;PS
3PN . Their

dephasing is comparable to HEOB
3PN . In the q ¼ 1=10 case,

they have a smaller dephasing than any other PN model
considered in this study. In Table III, we report the
dephasing that the HEOB;PS

SMR , HEOB;PS
SMR-3PN, HEOB

3PN and
HEOB;PS

3PN models accumulate up to 8 and 4 GW cycles
before merger for all mass ratios (with the corresponding
estimated NR error).8

Next, we want to study how the dephasing of the above
models varies as a function of q. It would be tempting to
compare the Δϕ’s reported in Table III at a fixed number of
cycles before merger. While this remains a valid possibility,
such a comparison would neither take into account the
different lengths of the NR simulations used in this set, nor
the different number of GW cycles encompassed by the

time windows of Table II. To keep both parameters under
control, we realign our models with alternative time
windows that are dictated by the number of GW cycles
to merger ΔNGWðtÞ≡ NGWðtÞ − Nmerg

GW of the NR simu-
lations. That is, for each mass ratio we fix a different time
window [talig1 ; talig2 ], corresponding to the same interval of
cycles to merger [ΔNGWðtalig1 Þ, ΔNGWðtalig2 Þ]. The benefits
of this choice are twofold. To begin with, the alignment
windows thus calculated depends on the position of the
NR merger (peak of hNR22 ), which is a quantifiable feature
of every NR simulation. Moreover, this choice allows us
to assess trends across the mass ratios fairly, since the
waveforms thus aligned are compared in the same range of
GW cycles. A caveat for this alignment method is that the
GW cycles of evolutions with smaller q lie in a regime of
stronger gravity.
We choose to align the EOB models to NR in an

interval of NGW such that ½ΔNGWðtalig1 Þ;ΔNGWðtalig2 Þ� ¼
½−34;−24�, corresponding to the time-windows reported
in Table IV. This choice stems from the length of the
shortest NR simulation, e.g., q ¼ 1=9, which counts
Nmerg

GW ¼ 37.86 GW cycles at merger (the first ∼3 GW
cycles of this simulation are neglected in order to avoid
junk radiation). In Fig. 5, we plot the dephasing for the
three models that perform best in Fig. 4: that is, HEOB

3PN ,
HEOB;PS

SMR and HEOB;PS
SMR-3PN and study the trends across q.

For every simulation, we calculate the dephasing 8 and
4 GW cycles before merger to show the robustness of

FIG. 4. Dephasing of EOB models: in the top panels, the real partsRðh22Þ of the ðl; mÞ ¼ ð2; 2Þ mode EOB waveform for the SMR,
SMR-3PN models are shown and compared to the NR waveforms (in dashed-black, overlapping with the EOB waveforms up to few
GW cycles to merger). In the lower panels, the dephasing of SMR and PN EOB models from the NR simulations is calculated. Also
shown are the times corresponding to 8, 4 and 2 GW cycles before NR merger.

7In this comparison we do not include 2PN models, which we
find to have much larger dephasing than the 3PN models shown.

8We have checked that shifting the time windows by
Δt ¼ �100M, our Δϕ’s only change by a few hundredths of
a radian.
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the trends.9 Noticeably, the 3PN EOB waveform in the DJS
gauge starts degrading in accuracy as the mass ratio is
decreased, while the SMR and SMR-3PN ones improve:
remarkably, for most q’s, the SMR-3PN model only
dephases by a few hundredths of a radian up to 4 GW
cycles before merger. Moreover, we notice that SMR
models start performing better than HEOB

3PN for q≲ 1=3,
hinting again to the fact that SMR information, when
reorganized in the EOB framework, could be used to
model systems that are very close to the equal-mass-ratio
regime [66,86].
The picture emerging from Fig. 5 is that the SMR-3PN

model is the most consistent of the two models with
SMR information, corroborating the findings for q ¼ 1
and q ¼ 1=10 in the binding energy comparisons. The
small dephasing of the SMR-3PN model suggests that the
Hamiltonian upon which it is based is a possible starting
point to develop a new generation of EOB waveform

models able to tackle the currently challenging intermedi-
ate-mass-ratio regime.

V. DISCUSSION AND CONCLUSIONS

The complete EOB Hamiltonian at linear order in SMR
from Ref. [85] suffers from a coordinate singularity at the
LR radius in the deformed-Schwarzschild background.
Building on Refs. [47,97], we have constructed two
Hamiltonians in the PS reformulation of the EOB approach
[47,51] (both with the SMR correction to the Detweiler
redshift and with mixed SMR-3PN information), and
checked that they are not affected by poles at the LR
radius (and related unphysical features) by studying plung-
ing trajectories.
We have then explored the merits of the SMR and mixed

SMR-3PN Hamiltonians via comparisons of their wave-
forms and binding energies, and those of PN Hamiltonians
in different gauges, against NR predictions. Ultimately, we
find that:
(1) For both q ¼ 1 and q ¼ 1=10, the binding energies

of SMR and SMR-3PN EOB models (see Figs. 2
and 3) generally compare better against NR than
the binding energy of the PS Hamiltonian with 3PN
information.

(2) The generic-orbit 3PN information in the SMR-3PN
EOB Hamiltonian improves the binding energy and
phase comparisons of SMR EOB models.

(3) PN Hamiltonians in the EOB-PS gauge have binding
energies that compare worse than those from PN
Hamiltonians in the standard EOB gauge, confirm-
ing the findings of Ref. [51] and extending their
validity to nonadiabatic evolutions.

(4) The SMR-3PN EOB model agrees remarkably well
against NR simulations, see Fig. 5. The dephasing
up to 4 GW cycles before merger is a few hundredths
of a radian for q≲ 1=3 and a tenth of a radian for

TABLE III. Details of the dephasing comparison. We report the dephasing (in radians) of the SMR and 3PN models in both gauges at
8 and 4 GW cycles before NRmerger, as found using the timewindows of Table II. We also report the corresponding estimated NR error,
which we denote by ΔϕNR. The error for each NR simulation is estimated taking the phase differences between the highest two
resolutions of the NR simulation (at fixed extrapolation order) and between two successive extrapolation orders (at fixed resolution), and
adding them in quadrature.

8 GW Cycles before merger 4 GW Cycles before merger

q−1 ΔϕEOB;PS
SMR ΔϕEOB;PS

SMR-3PN ΔϕEOB;PS
3PN ΔϕEOB

3PN ΔϕNR ΔϕEOB;PS
SMR ΔϕEOB;PS

SMR-3PN ΔϕEOB;PS
3PN ΔϕEOB

3PN ΔϕNR

1 0.111 −0.033 −0.971 0.032 �0.032 0.352 −0.012 −2.630 0.084 �0.056
2 0.112 −0.061 −1.342 −0.023 �0.105 0.512 −0.021 −5.586 −0.043 �0.224
3 0.050 −0.021 −0.617 −0.023 �0.093 0.111 −0.026 −1.209 −0.048 �0.144
4 0.046 −0.038 −0.859 −0.078 �0.203 0.187 −0.041 −2.540 −0.212 �0.372
5 0.037 −0.034 −0.846 −0.086 �0.023 0.125 −0.044 −2.077 −0.211 �0.064
6 −0.035 −0.064 −0.433 −0.093 �0.006 −0.041 −0.082 −0.599 −0.126 �0.007
7 0.024 −0.009 −0.462 −0.070 �0.001 0.092 −0.003 −1.403 −0.211 �0.009
8 0.021 −0.021 −0.676 −0.107 �0.057 0.076 −0.025 −1.660 −0.260 �0.155
9 0.017 −0.005 −0.368 −0.068 �0.002 0.063 −0.005 −1.185 −0.220 �0.012
10 0.022 −0.001 −0.413 −0.076 �0.033 0.070 −0.004 −1.245 −0.233 �0.083

TABLE IV. Alternative alignment time windows. Time win-
dows (in units of M) employed for Fig. 5: here, taligin is the time
corresponding to 34 GW cycles before merger for each NR
simulation, whereas taligfin is chosen to encompass 10 GW cycles.
The time at merger is given by tmerg.

q−1 taligin taligfin tmerg q−1 taligin taligfin tmerg

1 5107 6911 9517 6 2971 4254 6000
2 5406 7078 9384 7 776 2083 4142
3 3940 5532 7858 8 2652 3918 5956
4 3479 4975 7200 9 513 1732 3692
5 4206 5641 7864 10 587 1771 3691

9We have also checked that the trends are unaffected by
variations in the number of orbital cycles in the alignment
window.
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q > 1=3. The only EOB PN model with comparable
dephasing is the 3PN EOB Hamiltonian in the DJS
gauge for q≳ 1=3.

The construction of the SMR EOB Hamiltonian in this
paper depends on a number of choices. First of all, we chose
to fix the coordinate freedom in the effective Hamiltonian
using the PS gauge. This was chosen because of its relative
simplicity, while allowing a natural path towards avoiding
singularities at the light ring. However, there may exist
different choices that are equally (or more) effective. Second,
while the EOB Hamiltonian in principle applies to generic
orbits, we fix the linear-in-ν part only by comparing to the
circular-orbit binding energy. Consequently, there is con-
siderable freedom in the “non-circular-orbit” part of the
Hamiltonian. In practice, we fix this freedom by choos-
ing the specific functional dependence of the effective
Hamiltonian on ĤS given by Eq. (3.5). This choice is in
part restricted by the requirement that the Hamiltonian be
analytic, but other options are available. Third and finally,
SMR data for the binding energy extends only to the light
ring. The Hamiltonian in the region u > 1

3
therefore depends

only on the analytic extension of the redshift data. Given that
this data is known only to finite numerical precision, there is
some freedom in the choice of the exact analytical form of its
fit. This choice can also affect the relative size of the different
coefficient functions in Eq. (3.5).
Our investigation opens up further avenues of research.

To begin with, one can study whether it is possible to
uniquely fix other EOB gauges that could accommodate the
Detweiler redshift (without introducing a LR divergence)
and study their merits via comparisons against NR. As
discussed already in Ref. [97], to solve the LR divergence
arising in this context the nongeodesic function Q̂ needs a
term proportional to p3

ϕ, possibly resummed in another

quantity (as done in the PS gauge using ĤS). It would be
quite interesting to see whether other gauges that allow
solving the LR divergence also improve the comparisons

against NR predictions. One concrete example of different
resummation that was shown to improve the comparisons of
the conservative sector of post-Minkowskian Hamiltonians
in PS form has been given in the Appendix of Ref. [51]. It is
worthwhile to study whether a similar choice could work for
the SMR and SMR-3PN models herein presented. The hope
is that using different resummations, and including infor-
mation from the second order in the SMR, one could obtain a
considerably improved EOB Hamiltonian that, after further
calibration to NR, would be very useful for LIGO/Virgo
analyses in the near future.
Further research endeavors could be directed towards

informing the EOB with different SMR quantities than the
circular-orbit Detweiler redshift. An example of a quantity
that still needs to be fully exploited is the generalized
redshift [77,78], which includes information for arbitrarily
eccentric orbits. We envision using EOB Hamiltonians at
linear and higher orders in the mass ratio for inference
studies in the future detectors’ era, when precise models
will be needed to properly characterize high signal-to-noise
systems, possibly having rather small mass ratios. In order
for this program to be achieved, not only should the
conservative sector be optimized with both results at second
order in q and (potentially) a better resummation, but
information from other crucial physical quantities should
also be incorporated: notably missing features in our
analysis are the spin and eccentricity. Furthermore, a more
comprehensive study of the dissipative sector must be
pursued. It would be desirable, for instance, to include
more self-force information in the flux. Lastly, we would
also need to build the full inspiral, merger and ringdown
waveforms, and calibrate them to NR simulations. We leave
these important investigations to future work.
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APPENDIX: DETWEILER-REDSHIFT
DATA AND FIT

The linear-in-ν Detweiler redshift Δz at a fixed x is given
by Refs. [76,78]:

Δz ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p
hRuuðxÞ þ

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p ; ðA1Þ

where hRuu is the double contraction of the regular part of the
metric perturbation generated by a particle on a circular
orbit with its 4-velocity. We determine hRuu in a range 0 <
x < 1=3 to a high precision using the numerical code
developed in Ref. [57]. In this code the regular part of the
metric perturbation is extracted using the mode-sum
formalism. As noted in Ref. [97], the convergence of the
mode sum decreases drastically as circular orbits approach
the light ring. This limits the accuracy with which hRuu can
be obtained. The code from Ref. [57] allows calculations
using arbitrary precision arithmetic, which allows us to
calculate Δz much closer to the light ring and at
much higher precision than previously done in Ref. [97].
For this paper, we have generated data for Δz using up
to 120l modes, which allows us to obtain Δz up to
ð1 − 3xÞ ≈ 4 × 10−5, with relative accuracy ≲2.5 × 10−5.
To utilize the Δz data in our SMR EOB model we need

an analytic fit to the data. Two aspects of this fit are
important to control for the behavior of the model. First, the
model is sensitive to the precise analytical structure of
the fit near the light ring. Second, we need to control the
behavior of the fit beyond the light ring x > 1=3, where we
have no self-force data. In light of these two considerations,
we want to fit the data with a model having a relatively low
number of parameters. To achieve this, we leverage the
analytic knowledge of the PN expansion of Δz, which
Ref. [79] calculated up to 21.5PN order. We construct a fit
of the overall form:

Δz ¼ Z0ðxÞ þ
ð1 − 2xÞ5
1 − 3x

ZPNðxÞ½1þ αðxÞZfitðxÞ�: ðA2Þ

The leading term

Z0ðxÞ ¼ x
1 − 4x
1 − 3x

þ xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3x

p ; ðA3Þ

is constructed such that it will exactly cancel the coef-
ficients f̃0 and f̃1 when matched to the SMR EOB
Hamiltonian.
The number of factors ð1 − 2xÞ in front of the second

term has been chosen such that the resulting contribution to
the effective Hamiltonian Q̂PS

SMR vanishes at the horizon of
the effective spacetime, x ¼ 1=2. The coefficient function,
ZPNðxÞ has the form:

ZPNðxÞ ¼ 2x3
X
i;j

ai;jxi=2logjx; ðA4Þ

where the coefficients ai;j are obtained by requiring that
the series expansion of Eq. (A2) matches the 21.5PN
expression from Ref. [79]. Since these coefficients are
numerous and lengthy, and are easily obtained using
computer algebra and the expressions available for the
Black Hole Peturbation Toolkit [108], we do not reproduce
them explicitly here.
The actual fit Zfit is multiplied by an attenuation

function:

αðxÞ ¼ exp

�
4 − x−2

6

�
; ðA5Þ

that suppresses the fit exponentially in the weak-field
regime, ensuring that the PN behavior of Δz is unaffected
by the fit. The function αðxÞ has been chosen such that
αð1=2Þ ¼ 1 and is at its steepest at x ¼ 1=3.
The fit Zfit itself is a polynomial in β≡ 9xð1 − 3xÞ

ð1 − 2xÞ and log½ 1−3x
ð1−2xÞ2� with arbitrary coefficients. We

perform a large number of linear fits for varying combi-
nations of five terms, and compare various “goodness of fit”
indicators such as the adjusted R2 value and Bayesian
information criterion. One model that consistently out-
performed the others is

Zfit ¼ c0 þ c1β þ c2β4 þ ðc3β þ c4β4Þ log
�

1 − 3x
ð1 − 2xÞ2

�
;

ðA6Þ

with

c0 ¼ 0.555947; ðA7aÞ

c1 ¼ −2.589868; ðA7bÞ

c2 ¼ 31.144986; ðA7cÞ

c3 ¼ 2.440115; ðA7dÞ

c4 ¼ −179.175818: ðA7eÞ
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With this fit the coefficient functions fi in Eq. (3.5)
become

f0ðxÞ ¼ ð1 − 3xÞZPNðxÞ½1þ αðxÞðc0 þ c1β þ c2β4Þ�;
ðA8Þ

f1ðxÞ ¼ 0; ðA9Þ

f2ðxÞ ¼ ð1 − 2xÞ2ZPNðxÞ½1þ αðxÞðc3β þ c4β4Þ�: ðA10Þ
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