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Due to the nonindependence of entropy and thermodynamic volume for spherically symmetric black
holes in the anti–de Sitter (AdS) spacetime, when applying the Ruppeiner thermodynamic geometry theory
to these black holes, we often encounter an unavoidable problem of the singularity about the line element of
thermodynamic geometry. In this paper, we propose a basic and natural scheme for dealing with the
thermodynamic geometry of spherically symmetric AdS black holes. We point out that enthalpy, not
internal energy, is the fundamental thermodynamic characteristic function for the Ruppeiner thermody-
namic geometry. Based on this fact, we give the specific forms of the line element of thermodynamic
geometry for the Schwarzschild AdS (SAdS) black hole in different phase spaces, and the results show that
the thermodynamic curvatures obtained in different phase spaces are equivalent. It is shown that the
thermodynamic curvature is negative which may be related to the information of attractive interaction
between black hole molecules for the SAdS black hole. Meanwhile we also give an approximate expression
of the thermodynamic curvature of the Schwarzschild black hole which shows that the black hole may be
dominated by repulsion on the low temperature region and by attraction on the high temperature region
phenomenologically or qualitatively.
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I. MOTIVATION

“If you can heat it, it has microscopic structure”. The
view of Boltzmann provides a good basis to determine
whether the system has microstructure or not. With the
foundational works of Hawking and Bekenstein that the
black hole has temperature and entropy on an event horizon
[1,2], there is no doubt that a black hole has microstructure.
This issue plays a decisive role in the study of black hole
physics and even gravitation theory. The development of
black hole thermodynamics contributes to exploring the
microscopic state of the black hole more intuitively and
conveniently [3–7]. Especially in recent years, the propo-
sition of the thermodynamic geometry of the black hole
[8–16] and the hypothesis of the black hole molecule [17]
have promoted the study of the microstructure of the black
hole completely from the thermodynamic point of view.
What is more interesting is the introduction of the

extended phase space with a pair of new conjugate
quantities of the thermodynamic pressure P and thermo-
dynamic volume V [18]. Black holes exhibit abundant
phase transition behavior and microstructure in the

extended phase space [19–22]. The key to introducing
extended phase space is to interpret the cosmological
constant Λ as the thermodynamic pressure P with

P ¼ −
Λ
8π

¼ 3

8πl2
; ð1Þ

where l represents the curvature radius of the anti–de
Sitter (AdS) spacetime. Then the black hole massM can be
identified with the enthalpy, rather than the internal
energy [18].
For spherically symmetric black holes in the AdS

spacetime, like the Schwarzschild AdS (SAdS) black hole,
Reissner-Nordström AdS (RN-AdS) black hole, Gauss-
Bonnet AdS (GB-AdS) black hole etc., with the introduc-
tion of extended phase space fP; Vg, the biggest difference
between the thermodynamic properties of these black holes
and those of ordinary thermodynamic systems is that these
black hole thermodynamic systems have a zero heat
capacity at constant volume, i.e., CV ≔ Tð∂S=∂TÞV ¼ 0,
where S is the entropy and T is Hawking temperature of the
black hole. The reason is that the entropy S and thermo-
dynamic volume V of these black holes are not independent
(both of them are just functions of the horizon radius). This
is also the unique property of black hole thermodynamics.
When we apply the Ruppeiner thermodynamic geometry
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theory to this kind of black hole system, we should be
careful, because there are some subtle differences in the
thermodynamic geometry of these black holes compared
with those without AdS background. Due to a vanishing
heat capacity at constant volume or nonindependence of
entropy and thermodynamic volume, this renders the line
element of Ruppeiner thermodynamic geometry singular,
which brings about a divergent thermodynamic curvature.
Consequently some microinformation of the associated
black hole is not revealed from the thermodynamic geom-
etry. One of the feasible solutions is the introduction of
normalized thermodynamic curvature proposed by the
authors [23–25] by treating the heat capacity at constant
volume as a constant very close to 0. Thus, the microscopic
behaviors of RN-AdS and GB-AdS black holes have been
analyzed in detail with the help of the normalized thermo-
dynamic curvature.
Now in the present paper, we propose another feasible,

more direct and natural solution to the problem of singu-
larity about the line element of Ruppeiner thermodynamic
geometry caused by nonindependence of entropy and
thermodynamic volume. This scheme is probably the most
fundamental for the thermodynamic geometric analysis of
spherically symmetric black holes in the AdS spacetime.
Our starting point is that the thermodynamic differential
relation of internal energy dU ¼ TdS − PdV will no longer
hold because entropy and thermodynamic volume are not
independent and the most basic thermodynamic differential
relation for such spherically symmetric black holes in the
AdS spacetime is about that of enthalpy M,

dM ¼ TdSþ VdPþ other works: ð2Þ
Based on the fundamental relationship Eq. (2), we give the
general form of the line element of Ruppeiner thermody-
namic geometry for the SAdS black hole and the specific
forms in phase space fS; Pg and fT; Vg. The results show
that thermodynamic curvatures obtained in the two phase
spaces are equivalent, and the thermodynamic curvature is
always negative, which may be related to the information
of attractive interaction between black hole molecules for
the SAdS black hole. Meanwhile we also give an approxi-
mate expression of the thermodynamic curvature of the
Schwarzschild black hole, which shows that the black hole
is dominated by repulsion on the low temperature region
and by attraction on the high temperature region phenom-
enologically or qualitatively.

II. RUPPEINER THERMODYNAMIC GEOMETRY

The Ruppeiner thermodynamic geometry, which is based
on the fluctuation theory of equilibrium thermodynamics, is
established on the language of Riemannian geometry [8].
Now it is dealt with as a new attempt to extract the
microscopic interaction information from the axioms of
thermodynamics [9–11]. Its line element can be written in
terms of entropy representation

Δl2 ¼ −
∂2S

∂Xμ∂Xν ΔX
μΔXν; ð3Þ

where Xμ represents some independent thermodynamic
quantities. In ordinary thermodynamics, for some better
understood statistical mechanical models, it is an empirical
observation that negative (positive) thermodynamic curva-
ture is associated with attractive (repulsive) microscopic
interactions [10]. For black hole systems, it is observed in
[9,11,17,23–25] that there should be similar results with
ordinary thermodynamic systems. In [26], the author Dolan
analyzed the thermodynamic geometry in internal energy
and entropy representations under the extended phase space
framework and pointed out for the first time that it is not at
all clear whether or not this interpretation (attractive micro-
scopic forces tend to give negative Ruppeiner curvature
while repulsive forces give positive curvature) accounts for
the changing sign of thermodynamic curvature for black
holes. Because there does not exist hitherto an underlying
theory of quantum gravity, the exploration on the micro-
scopic structure of black holes is bound to some speculative
assumptions. Based on the well-established black hole
thermodynamics, as an analogy analysis and a primary
description of the microbehavior of black holes, it can be
said that the Ruppeiner thermodynamic geometry phenom-
enologically or qualitatively provides the information about
interactions of black holes, like the reports in [9,11,17,23–
25], i.e., negative (positive) curvature may be related to the
information of attractive (repulsive) interaction between
black hole molecules. Meanwhile, the value of the thermo-
dynamic curvature measures the strength of the interactions
in some sense [27]. In [28], the authors claim that
thermodynamic flatness is not a sufficient condition to
establish the absence of interactions in the underlying
microscopic model of a thermodynamic system and propose
an alternative energy representation for Kerr-Newman black
holes which results in the thermodynamic curvature diverg-
ing only at absolute zero temperature. They pointed out that
a criterion for the choice of an appropriate energy repre-
sentation in an arbitrary thermodynamic system (or equiv-
alently, a coordinate-free definition of Ruppeiner metric) is
still missing. Here in the present paper, as an attempt, we
propose the enthalpy and Helmholtz free energy represen-
tations to deal with the static spherically symmetric black
holes in the AdS spacetime and the results show that
thermodynamic curvatures obtained in these two represen-
tations are equivalent.
Now we consider the four-dimensional SAdS black hole

and its metric is [19]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdφ2Þ; ð4Þ

and here the function fðrÞ is
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fðrÞ ¼ 1 −
2M
r

þ r2

l2
:

The basic thermodynamic quantities of the SAdS black
hole are listed below in terms of the horizon radius rh,
which is regarded as the largest root of equation fðrÞ ¼ 0
[19,29,30],

Temperature∶ T ¼ 1

4πrh
þ 2Prh; ð5Þ

Entropy∶ S ¼ πr2h; ð6Þ

Thermodynamic volume∶ V ¼ 4πr3h
3

; ð7Þ

and the heat capacity at constant pressure CP ¼ −2Sð1þ
8PSÞ=ð1 − 8PSÞ which first appeared in [19]. Further-
more the most basic thermodynamic differential relation is
dM ¼ TdSþ VdP and we adjust this relation to get

dS ¼ 1

T
dM −

V
T
dP: ð8Þ

Now we set Xμ ¼ ðM;PÞ, and then the conjugate quantities
corresponding to Xμ are Yμ ¼ ∂S=∂Xμ ¼ ð1=T;−V=TÞ.
Hence the line element Eq. (3) becomes Δl2 ¼ −ΔYμΔXμ.
After some simple mathematical derivation, we can write
the line element Eq. (3) as a universal form for the SAdS
black hole,

Δl2 ¼ 1

T
ΔTΔSþ 1

T
ΔVΔP: ð9Þ

(i) When the phase space is fS; Pg, the line element
takes the form in terms of enthalpy representation

Δl2 ¼ 1

CP
ΔS2 þ 2

T

�∂T
∂P

�
S
ΔSΔPþ 1

T

�∂V
∂P

�
S
ΔP2;

ð10Þ
where CP ≔ Tð∂S=∂TÞP and we have used the
Maxwell relation ð∂T=∂PÞS ¼ ð∂V=∂SÞP based on
the thermodynamic differential relation dM ¼ TdSþ
VdP. The third term in the above Eq. (10) equals 0
because of the nonindependence of entropy and
thermodynamic volume, i.e., ð∂V=∂PÞS ¼ 0. Never-
theless, the line element Eq. (10) is still well and has
no singularity.

(ii) When the phase space is fT; Vg, the line
element reads as in terms of Helmholtz free energy
representation

Δl2 ¼ CV

T2
ΔT2 þ 2

T

�∂P
∂T

�
V
ΔTΔV þ 1

T

�∂P
∂V

�
T
ΔV2;

ð11Þ

where we have used the Maxwell relation
ð∂S=∂VÞT ¼ ð∂P=∂TÞV based on the thermody-
namic differential relation dF ¼ −SdT − PdV and
F is Helmholtz free energy. The first term in the
above Eq. (11) vanishes due to the zero heat capacity
at constant volume, i.e., CV ¼ 0. Anyway, the line
element Eq. (11) is still well.

Then we return to the SAdS black hole. With the help of
Eqs. (5)–(7), we can obtain the thermodynamic scalar
curvature in different phase spaces.
In the phase space fS; Pg, we have

RSP ¼ −
1

Sð1þ 8PSÞ : ð12Þ

In the phase space fT; Vg, we get

RTV ¼ −
1

3πTV
: ð13Þ

Meanwhile we can directly find RSP ¼ RTV . Hence for
convenience, we label the two curvatures as R. It is clear
that the curvature is negative, i.e., R < 0, which may be
related to the information of attractive interaction between
black hole molecules for the SAdS black hole.
Next we consider the case of fixed AdS spacetime, i.e.,

P ¼ constant, and analyze the relationship between
thermodynamic curvature and temperature. After a simple
calculation, we have rescaled temperature Tr and rescaled
thermodynamic scalar curvature Rr,

Tr ¼
ffiffiffiffiffiffi
π

2P

r
T ¼ x

1
2 þ x−

1
2

2
; Rr ¼

R
4P

¼ −
2

xðxþ 1Þ ;

ð14Þ
where x ¼ 8PS. Here, along the direction of increasing x,
we show the curve of temperature Tr and curvature Rr in
Fig. 1. With the decrease of absolute value of curvature, i.e.,
the interaction gradually weakening, the black hole temper-
ature shows a trend of decreasing first and then increasing
sharply. The increase of temperature means that the
irregular free motion of black hole molecules is dominant,
while the decrease of temperature means that the interaction
is significant, which inevitably suppresses the temperature.
Finally we turn to the thermodynamic microbehavior of

Schwarzschild black hole by means of the Ruppeiner
thermodynamic geometry. Regardless of how the phase space
is chosen, the line element of thermodynamic geometry of the
Schwarzschild black hole is always singular, and we have to
analyze itsmicrobehavior from the thermodynamic geometry
with the help of the results of other black holes, like the SAdS
black holewe are concerned about in this paper.WhenP ¼ 0,
that is to say, no AdS background, according to Eq. (12), we
can obtain the expression of the thermodynamic scalar
curvature with respect to the temperature for Schwarzschild
black hole RSchwarzschild ¼ −16πT2

Schwarzschild. From the
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formula, we see that the thermodynamic scalar curvature
is negative, which may be related to the information of
attractive interaction between black hole molecules for the
Schwarzschild black hole. On the other hand, based on the
analysis of the thermodynamic geometric behavior of the RN
black hole in our previous work [31], we have the expression
of the thermodynamic scalar curvature with respect to the
temperature for Schwarzschild black hole RSchwarzschild ¼
16πT2

Schwarzschild. It is always positive which may be related
to the information of repulsive interaction between black
hole molecules for the Schwarzschild black hole. It is
all about the Schwarzschild black hole, but we have two
opposite results; how do we understand them? According
to the theory of black hole in general relativity, it is clear that
the SAdS black hole is close to the Schwarzschild black
hole in small scale, while the RN black hole is similar to the
Schwarzschild black hole in large scale. To be clear, let us
consider the behaviors of the temperature for Schwarzschild,
SAdS, RN and RN-AdS black holes based on the expres-
sion of the temperature of RN-AdS black hole [21,32–34]

TRN-AdS ¼
1

4πr
þ 2Pr −

Q
4πr3

; ð15Þ
where r is the horizon radius andQ is the square of charge of
RN-AdS black hole. When Q ¼ 0, Eq. (15) is the temper-
ature of the SAdSblack hole, andwhenP ¼ 0, it is that of the
RNblack hole, andwhenP ¼ 0 andQ ¼ 0, it degenerates to
that of the Schwarzschild black hole. In Fig. 2, we show the
temperature curves of these four black holes. One can clearly
see that the behavior of temperature of the SAdSblack hole is
close to that of the Schwarzschild black hole in small scale,
while the behavior of temperature of RNblack hole is similar
to that of the Schwarzschild black hole in large scale.
The SAdS black hole may be dominated by attractive
interaction, while the RN black hole may be dominated
by repulsive interaction [31]. Thereforewe can conclude that

the Schwarzschild black holemay be dominated by repulsion
on large scale and by attraction on small scale. In addition,
we see that the temperature curves of the Schwarzschild
black hole and the RN-AdS black hole have intersection.
Hence we can approximate that this intersection is the
transition point of repulsion and attraction for the
Schwarzschild black hole.
Consequently we can approximately write an expression

of the thermodynamic curvature of the Schwarzschild
black hole as

RSchwarzschild ¼ 16πT2
Schwarzschildsgn

�
2Pr −

Q
4πr3

�

¼

8>><
>>:

16πT2
Schwarzschild; large r

0; 2Pr ¼ Q
4πr3

−16πT2
Schwarzschild; small r

: ð16Þ

According to the behavior of the temperature of the
Schwarzschild black hole in Fig. 2, we can obtain that the
Schwarzschild black hole may be dominated by repulsion
on the low temperature region and by attraction on the high
temperature region phenomenologically or qualitatively.
However, some more precise and detailed microscopic
analyses and how the thermodynamic curvature behavior of
the Schwarzschild black hole will behave, especially on the
intermediate temperature region (or intermediate scale), are
still unknown. In addition, what principle drives the
interaction between molecules of Schwarzschild black hole
to present this pattern also needs to be further explored.

III. SUMMARY AND DISCUSSION

Because the entropy and thermodynamic volume are not
independent for spherically symmetric black holes in the
AdS spacetime, it is believed that the most basic thermo-
dynamic characteristic function is enthalpy MðS; PÞ,
not internal energy UðS; VÞ. Based on this fact, we give
the general form of the line element of Ruppeiner
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FIG. 1. The diagram of the rescaled temperature Tr with respect
to the rescaled thermodynamic scalar curvature Rr and arrows
indicate the direction in which x increases for SAdS black hole.
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FIG. 2. The diagram of the temperature with respect to horizon
radius for Schwarzschild black hole (P ¼ 0, Q ¼ 0), SAdS black
hole (P ¼ 3=ð800πÞ; Q ¼ 0), RN black hole (P ¼ 0,Q ¼ 1), and
RN-AdS black hole (P ¼ 3=ð800πÞ; Q ¼ 1).
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thermodynamic geometry of the SAdS black hole and the
specific forms in phase space fS; Pg and fT; Vg. The
results show that the thermodynamic curvatures obtained in
the two phase spaces are equivalent, and the thermody-
namic curvature is always negative which may be related to
the information of attractive interaction between black hole
molecules for the SAdS black hole. Meanwhile with the
help of our results of the SAdS black hole and the previous
results of the RN black hole, we also give an approximate
expression of the thermodynamic curvature of the
Schwarzschild black hole. This shows that the black hole
may be dominated by repulsion on the low temperature
region and by attraction on the high temperature region
phenomenologically or qualitatively.
Here for the black holes with CV ¼ 0 in extended

thermodynamics due to the nonindependence of entropy
and thermodynamic volume, we make some comments. We
are very grateful to the anonymous referee for pointing out
that the work [20] first noted and resolved the problem of
lack of independence of entropy and thermodynamic
volume for the nonrotating SAdS black hole. The author
Dolan in [20] dealt with rotating black holes, for which
entropy and thermodynamic volume are independent and
then take the limit of the angular momentum J → 0. Like
the SAdS black hole, the RN-AdS black hole and GB-AdS
black hole (and various other simple static black hole
solutions of the pure Einstein gravity or higher-derivative
generalizations thereof), when we deal with these black hole
systems separately, we find that the thermodynamic volume
is consistent with the expression of the geometric volume.
Furthermore these black holes have zero CV because the
entropy and thermodynamic volume depend only on the
horizon radius rh; that is to say, a fixed thermodynamic
volume V means a fixed horizon radius rh, resulting in a
fixed entropy S. Hence in our current point of view, we
consider the SAdS black hole as an independent thermo-
dynamic system. We only need to deal with the system
itself, and recognize that such a system has vanishing CV ,
without the aid of other black hole systems to analyze.
However the above phenomenon is no longer true for the

rotating black hole (for exampleKerr-AdS black hole) and its
thermodynamic volume does not look like any geometric
volume [20]. The same thing also happens with the STU-
AdS [35,36], Taub-NUT/Bolt-AdS [37] and charged (and
exotic) Banados-Teitelboim-Zanelli (BTZ) black holes

[38,39]. When we adopt the correct procedure of calculating
thermodynamic derivative first and then taking some para-
meter limits, like J → 0 for rotating black holes in [20],
although the form of solution can be returned to the case of
the Schwarzschild AdS black hole, we get the expression of
thermodynamic volume which is completely different from
the result of direct calculation from the Schwarzschild AdS
black hole (which means this moment the thermodynamic
volume and entropy are independent). We thank an anony-
mous referee for pointing out the key and an interesting topic.
This is probably due to the unclear definition of black hole
volume, which is also a very significant research issue in
black hole thermodynamics. For nonvanishing CV systems
(or the entropy and thermodynamic volume are indepen-
dent), the first law is still dM ¼ TdSþ VdPþ � � �, where
the ADM mass of black holeM is the enthalpy. Our current
thermodynamic geometric analysis based on enthalpy and
Helmholtz free energy representations is still effective, but
the difference is that the third term in Eq. (10) and the first
term in Eq. (11) are no longer 0.
In addition, our present scheme can also be applied to

other black holes, like RN-AdS and GB-AdS black holes
[23–25,32,34,40–42], to analyze some interesting behaviors
of black holes in phase transition. Another topic of concern
is the relationship between stability analysis of black holes
and thermodynamic geometry. Because the entropy and
thermodynamic volume of are not independent, the positive
definiteness of the Hessian matrix may not be preserved.
This issue is probably related to the thermal stability of
black holes, which we are very concerned about and will be
discussed in detail in the future.
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