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We consider a recently proposed class of extended teleparallel theories of gravity, which entail a scalar
field which is nonminimally coupled to the torsion of a flat, metric-compatible connection. This class of
scalar-torsion theories of gravity is constructed in analogy to and as a direct extension of the well-studied
class of scalar-curvature gravity theories, and has various common features, such as the conformal frame
freedom. For this class we determine the parametrized post-Newtonian limit, both for a massive and for a
massless scalar field. In the massive case, we determine the effective gravitational constant and the post-
Newtonian parameter γ, both of which depend on the distance between the gravitating and test masses. In
the massless case, we calculate the full set of parameters and find that only γ and β potentially deviate from
their general relativity values. In particular, we find that for a minimally coupled scalar field, the theory
becomes indistinguishable from general relativity at this level of the post-Newtonian approximation.
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I. INTRODUCTION

One of the most challenging questions in modern
gravitational physics is posed by cosmological observa-
tions, such as the accelerating expansion of the Universe at
present and early times in its history, known as dark energy
and inflation, as well as observations of galaxies and the
large-scale structure, which hint towards the presence of an
unknown, dark matter component, which is apparent only
by its gravitational effects. Besides models originating from
particle physics, a potential explanation of these observa-
tions is given by modified gravity theories. An important
class of such theories is constituted by scalar-curvature
theories of gravity [1,2]. These theories have in common
that they contain one or more scalar fields, which in general
are nonminimally coupled to the curvature of the Levi-
Civita connection arising from the metric geometry of
spacetime. The gravitational dynamics of the theory is then
determined by the interaction of these fundamental metric
and scalar fields.
A class of such theories of particular interest is defined in

terms of four free functions in the action functional, where
any specific choice of these functions defines a concrete

theory [3]. A remarkable property of this class of scalar-
tensor theories is their behavior under conformal trans-
formations of the metric which relate different theories
within this class to each other. It is an ongoing debate
whether these conformally related theories lead to physi-
cally equivalent predictions [4–15]. As an important con-
tribution to this debate, a number of invariant quantities
have been identified, which can be used to express physical
observables independently of the choice of the conformal
frame [16,17].
While the aforementioned class of theories, like many

other modified gravity theories, are readily interpreted as
modifications of general relativity in its most well-known
formulation in terms of the curvature of the torsion-free,
metric-compatible Levi-Civita connection, one may con-
sider alternative starting points for modifications. These
starting points may be provided by the equivalent for-
mulations of general relativity either in terms of the torsion
of a flat, metric-compatible connection, or in terms of the
nonmetricity of a flat, torsion-free connection, or even a
combination of both [18,19]. These formulations have
received increasing interest during recent years due to
the fact that they exhibit more similarities to other gauge
field theories, thus potentially providing a link to the
theories describing the other fundamental interactions of
nature. In this article, we will focus on so-called teleparallel
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models of gravity, where torsion takes the role of curvature
as the quantity which mediates the gravitational interaction
[20–24]. There are different possibilities of how this flat,
metric-compatible connection may be implemented. In its
original formulation of the teleparallel equivalent of general
relativity (TEGR) and its modifications, the Weitzenböck
connection of a tetrad was assumed, which possesses a
vanishing spin connection. While in TEGR, the spin
connection does not contribute to the field equations,
and so there is no harm in a priori fixing it; this is not
the case in modified theories. One potential issue arising
from this fact is a possible breaking of local Lorentz
invariance [25,26] and the appearance of spurious degrees
of freedom [27–30]. There are different possibilities to
resolve this issue. One such possibility is the use of the
Palatini approach to implement the flat, metric-compatible
connection [31]. Another approach, which is the one we
will make use of here, is the covariant formulation, which
features an arbitrary, flat, metric-compatible spin connec-
tion [32–35].
The teleparallel equivalent of general relatively has been

the starting point for numerous modified gravity theories,
most of which aim at answering the aforementioned
questions raised by general relativity in the light of
cosmological observations and the tensions with particle
physics [29,36–43]. While most of these theories, including
extensions by scalar fields, make use of the Weitzenböck
connection to implement the teleparallel geometry, a
Lorentz covariant formulation of scalar-torsion gravity
has also recently been proposed [44], and we will make
use of this proposal here. It turns out that a large class of
scalar-torsion theories can be constructed following this
principle of Lorentz covariance [45–47]. Focusing on
similarities to scalar-curvature theories, one finds a par-
ticular subclass of scalar-torsion theories whose action is
characterized by one more free function of the scalar field
compared to the classical scalar-curvature theories [3], and
it reduces to the latter for a particular choice of this function
[47]. This class of theories also exhibits invariance under
conformal frame rescalings, again in analogy to scalar-
curvature gravity. This is the class of theories we will study
in this article.
An important criterion allowing us to restrict the large

class of scalar-torsion theories is their compatibility with
observations on smaller scales, such as the Solar System.
A well-established tool for testing the viability of metric
theories of gravity is the parametrized post-Newtonian
(PPN) formalism [48–50], which characterizes any given
theory of gravity by a set of ten (usually constant)
parameters. Comparing these parameters obtained from a
theory with high-precision measurements of their values in
Solar System experiments thus yields bounds on the
allowed classes of theories.
The application of the PPN formalism to particular

scalar-torsion gravity theories—in particular, to the original

teleparallel dark energy model [51] and theories with a
general coupling function and potential [40]—has shown
that these theories yield the same values for the PPN
parameters as general relativity, and thus cannot be dis-
tinguished by the aforementioned measurements. However,
it has also been found that more general theories, including
a nonminimal coupling to the teleparallel boundary term,
lead to a deviating post-Newtonian limit [52]. The aim of
this article is to extend these earlier studies to the general
class of scalar-torsion theories of gravity mentioned above
[47]. Since we are using the covariant formulation of these
theories, we make use of a recently developed adaptation of
the PPN formalism to covariant teleparallel gravity theories
[53], which we further adapt to theories based on a scalar
field and a tetrad [54], thereby building upon numerous
previous studies of the post-Newtonian limit of translation
and Poincaré gauge theory [55–60]. In particular, we study
how the coupling to the teleparallel boundary term, which
can equivalently be described by a kinetic coupling
between the scalar field and the vector torsion, is related
to the deviation of the PPN parameters from their general
relativity values. During this work, we make use of the
conformal frame freedom of scalar-torsion gravity to
calculate the PPN parameters in the Jordan frame and to
express them in terms of frame-independent quantities.
The outline of this article is as follows: We start with a

brief review of the dynamical variables and field equations
of the class of scalar-torsion theories we consider in Sec. II.
Another brief review of the PPN formalism is presented in
Sec. III, together with its adaptation to scalar-torsion
gravity. We then come to the main part of the paper, with
the derivation of the PPN parameter γ for the massive scalar
field case in Sec. IV, as well as the full set of PPN
parameters for a massless scalar field in Sec. V. We apply
our results to a few example theories in Sec. VI, before we
conclude with a discussion and outlook in Sec. VII.
In this article, we use uppercase latin letters A;B;… ¼

0;…; 3 for Lorentz indices, lowercase greek letters
μ; ν;… ¼ 0;…; 3 for spacetime indices, and lowercase
latin letters i; j;… ¼ 1;…; 3 for spatial indices. In our
convention, the Minkowski metric ηAB and ημν have the
signature ð−;þ;þ;þÞ.

II. FIELD VARIABLES AND THEIR DYNAMICS

We start our discussion of the post-Newtonian limit of a
recently proposed class of scalar-torsion theories of gravity
[47] with a brief review of their field content, action, and
field equations. These theories make use of the covariant
formulation of scalar-torsion gravity [44], where the
dynamical fields are given by a tetrad θAμ, a flat Lorentz
spin connection ωA

Bμ, and a scalar field ϕ. From these field
variables, one derives the metric

gμν ¼ ηABθ
A
μθ

B
ν ð1Þ
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and the torsion

Tρ
μν ¼ eAρð∂μθ

A
ν − ∂νθ

A
μ þ ωA

Bμθ
B
ν − ωA

Bνθ
B
μÞ; ð2Þ

where eAμ is the inverse tetrad defined such that θAμeAν ¼
δνμ and θAμeBμ ¼ δAB. The metric further defines a Levi-

Civita connection ∇∘ together with its respective curvature
tensors; all quantities derived from this connection will be
denoted with an empty circle.
The action we consider here will be of the form

S½θAμ;ωA
Bμ;ϕ; χI� ¼ Sg½θAμ;ωA

Bμ;ϕ� þ Sm½eαðϕÞθAμ; χI�
ð3Þ

and thus splits into a gravitational part Sg and a matter part
Sm. The latter depends, in addition to the aforementioned
dynamical fields, on an arbitrary set χI of matter fields. In
this article, we will assume the matter source to be given by
a perfect fluid, as discussed in detail in the following
Sec. III. We further assume that there is no direct coupling
between the matter fields χI and the teleparallel spin
connection ωA

Bμ, and that the coupling to the tetrad and
the scalar field is mediated only via the conformally
rescaled metric e2αðϕÞgμν ¼ e2αðϕÞηABθAμθBν with a free
function α of the scalar field. It follows from this
assumption that the variation of the matter action with
respect to the dynamical fields, after performing integration
by parts, is of the form

δSm½eαðϕÞθAμ; χI� ¼
Z
M
½ΘA

μðδθAμ þ α0ðϕÞθAμδϕÞ

þϖIδχ
I�θd4x; ð4Þ

where the prime in α0ðϕÞ ¼ dα=dϕ denotes the derivative
with respect to ϕ, and that the energy-momentum tensor
Θμν ¼ θAμgνρΘA

ρ is symmetric, Θ½μν� ¼ 0. Here θ denotes
the determinant of the tetrad θAμ, andϖI ¼ 0 are the matter
field equations.
For the gravitational part of the action, we assume the

form

Sg½θAμ;ωA
Bμ;ϕ� ¼

1

2κ2

Z
M
½−AðϕÞT þ 2BðϕÞX

þ 2CðϕÞY − 2κ2VðϕÞ�θd4x; ð5Þ

where the torsion scalar

T ¼ 1

2
Tρ

μνSρμν ð6Þ

is defined via the superpotential

Sρμν ¼
1

2
ðTνμρ þ Tρμν − TμνρÞ − gρμTσ

σν þ gρνTσ
σμ; ð7Þ

and we have used the scalar field kinetic term

X ¼ −
1

2
gμνϕ;μϕ;ν; ð8Þ

as well as the derivative coupling term

Y ¼ gμνTρ
ρμϕ;ν: ð9Þ

Any particular action of this class is defined by a choice of
the free functions A, B, C, V of the scalar field, in addition
to the free function α in the matter action. The combined
action [Eq. (3)] keeps its form under conformal trans-
formations θ̄Aμ ¼ eγðϕÞθAμ of the tetrad and redefinitions
ϕ̄ ¼ fðϕÞ of the scalar field [47], with arbitrary functions
γðϕÞ and fðϕÞ. This allows us to reduce the number of free
functions in the action. During the remainder of this article,
we will choose to work in the Jordan frame, and hence
assume αðϕÞ≡ 0, which can be achieved by performing a
conformal transformation with γ ¼ α.
We also remark that the derivative coupling term, which

is necessary to render the gravitational action invariant
under conformal transformations as shown in Ref. [47], can
also be written as

2CðϕÞY ¼ 2∇∘ ν½C̃ðϕÞTμ
μν� − C̃ðϕÞB; ð10Þ

where C ¼ C̃0 and we introduce the teleparallel boundary
term

B ¼ R
∘ þ T ¼ 2∇∘ νTμ

μν: ð11Þ

Omitting the total divergence in Eq. (10), we may thus
regard the derivative coupling as a coupling to the boundary
term B instead.
Following the derivation detailed in Ref. [47], we can

decompose the field equations into three separate sets of
equations, which we write in the form

EðμνÞ ¼ κ2Θμν; E½μν� ¼ 0; E ¼ 0: ð12Þ

The first two equations are obtained by variation of the
action with respect to the tetrad θAμ, further using the tetrad
and the metric in order to convert both indices to lower
spacetime indices, and finally splitting the resulting equa-
tions into their symmetric and antisymmetric parts. Their
left-hand side, obtained from variation of the gravitational
part of the action [Eq. (5)], reads
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EðμνÞ ¼ ðA0 þ CÞSðμνÞρϕ;ρ þA
�
R
∘
μν −

1

2
R
∘
gμν

�

þ
�
1

2
B − C0

�
ϕ;ρϕ;σgρσgμν − ðB − C0Þϕ;μϕ;ν

þ Cð∇∘ μ∇
∘
νϕ −□

∘
ϕgμνÞ þ κ2Vgμν ð13Þ

for the symmetric part and

E½μν� ¼ ðA0 þ CÞTρ½μνϕ;ρ� ð14Þ

for the antisymmetric part. The latter field equation can also
be obtained by varying the action with respect to the spin
connection ωA

Bμ, allowing only such variations which
preserve its vanishing curvature. The third and last field
equation is obtained by variation with respect to the scalar
field. Its left-hand side takes the form

E ¼ 1

2
A0T − B□

∘
ϕ −

1

2
B0gμνϕ;μϕ;ν þ C∇∘ μTν

νμ þ κ2V 0:

ð15Þ

While it would be possible to solve these equations directly
using the perturbative expansion discussed in the following
section, it turns out that one can significantly simplify this
task by performing a number of transformations on the field
equations. We start by replacing the symmetric part of the
field equations with its trace-reversed form, which we
define as

ĒðμνÞ ¼ κ2Θ̄μν; ĒðμνÞ ¼ EðμνÞ −
1

2
gμνgρσEρσ;

Θ̄μν ¼ Θμν −
1

2
gμνgρσΘρσ: ð16Þ

After this transformation, the left-hand side of the corre-
sponding field equations reads

ĒðμνÞ ¼ ðA0 þ CÞðSðμνÞρ þ gμνTχ
χρÞϕ;ρ þAR

∘
μν

þ 1

2
C0gμνϕ;ρϕ;σgρσ − ðB − C0Þϕ;μϕ;ν þ C∇∘ μ∇

∘
νϕ

þ 1

2
C□

∘
ϕgμν − κ2Vgμν: ð17Þ

The second transformation we apply concerns the scalar
field equation. Note that the left-hand side [Eq. (15)]
contains second-order derivatives of the tetrad, which enter
through the covariant derivative of the torsion. These can be
eliminated by adding a suitable multiple of the trace of the
tetrad field equations, so that the transformed scalar field
equation takes the form

Ē ¼ 2AEþ CgμνEμν ¼ κ2CΘ; ð18Þ

where the left-hand side is now given by

Ē ¼ ðA0 þ CÞðAT − 2CTμ
μνϕ;νÞ − ð2AB þ 3C2Þ□

∘
ϕ

þ ðBC −AB0 − 3CC0Þgμνϕ;μϕ;ν þ 2κ2ðAV 0 þ 2CVÞ:
ð19Þ

These are the equations we will use in the remainder of this
article. In order to solve them, we will perform a perturba-
tive expansion of the dynamical fields. This will be
discussed in the following section.

III. POST-NEWTONIAN APPROXIMATION

We continue with a brief review of the parametrized post-
Newtonian formalism [48–50], which we will then apply to
the class of theories discussed in the previous section. Note
that there are different versions of this formalism; here, we
will use the notation and definitions in their classical form
[48]. This formalism has recently been adapted to the
covariant formulation of teleparallel gravity theories [53],
which will be the basis for the formalism we use here. For
our purpose, we further adapt the formalism to also include
a scalar field besides the tetrad [54].
Basic assumption of the PPN formalism is that the

energy-momentum tensor corresponds to a perfect fluid
with rest energy density ρ, specific internal energy Π,
pressure p, and four-velocity uμ, which is given by

Θμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν: ð20Þ

The four-velocity uμ is normalized by the metric gμν, so that
uμuνgμν ¼ −1. One then assumes that there exists a given
frame of reference, conventionally identified with the
Universe rest frame, in which the velocity vi ¼ ui=u0 of
the source matter is small compared to the speed of light,
which we set to unity, c≡ 1. One then introduces velocity
orders OðnÞ ∝ jv⃗jn as perturbation parameters in which all
dynamical quantities are expanded. Here we choose to
work in the Weitzenböck gauge, so that ωA

Bμ ≡ 0 at all
perturbation orders [53], and we must expand only the
tetrad and the scalar field. The zeroth order Oð0Þ is the
background solution, for which we choose the diagonal
tetrad ΔA

μ ¼ diagð1; 1; 1; 1Þ, as well as a constant back-
ground value Φ of the scalar field. We then write the
perturbative expansion of the tetrad in the form

θAμ ¼ ΔA
μ þ τAμ

¼ ΔA
μ þ τ

1 A
μ þ τ

2 A
μ þ τ

3 A
μ þ τ

4 A
μ þOð5Þ; ð21Þ

while the scalar field ϕ expansion reads

ϕ ¼ Φþ ψ ¼ Φþ ψ
1 þ ψ

2 þ ψ
3 þ ψ

4 þOð5Þ: ð22Þ
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Here we have used overscript numbers to denote velocity

orders—i.e., each term τ
n A

μ (and, respectively, ψ
n
) is of order

OðnÞ. Velocity orders beyond the fourth order are not
considered in the PPN formalism and will not be necessary
for the derivation of the PPN parameters.
Together with the scalar field, we also have to expand the

free functionsA;B; C;V in the action [Eq. (5)] into velocity
orders. For this purpose, we use a Taylor expansion of the
form

AðϕÞ ¼
X∞
k¼0

ψk

k!
dk

dϕk AðϕÞ
����
ϕ¼Φ

; ð23Þ

and analogously for the other functions, and we introduce
roman letters instead of the script letters to denote the
values of the derivatives at the cosmological background
value of the scalar field, which appear in the Taylor
coefficients, i.e.,

A ¼ AðΦÞ; A0 ¼ A0ðΦÞ;
A00 ¼ A00ðΦÞ; A000 ¼ A000ðΦÞ;…: ð24Þ

The Taylor series [Eq. (23)] is then further expanded into
velocity orders, where all Taylor coefficients are assumed
to be of velocity order Oð0Þ.
Further following the teleparallel PPN formalism [53],

we introduce another convenient expression for the tetrad
perturbations. For this purpose, we lower the Lorentz index
using the Minkowski metric ηAB and convert it into a
spacetime index using the background tetrad ΔA

μ. This
yields the expressions

τμν ¼ ΔA
μηABτ

B
ν; τ

n
μν ¼ ΔA

μηABτ
n B

ν; ð25Þ

with pure spacetime indices. In order to determine the PPN
parameters, not all components of the tetrad and the scalar
field need to be expanded to the fourth velocity order, while
others vanish due to Newtonian energy conservation or
time-reversal symmetry. For the scalar-torsion model, it
turns out that the only relevant, nonvanishing components
of the field variables we need to determine in this article are
given by

τ
2

00; τ
2

ij; τ
3

0i; τ
3

i0; τ
4

00; ψ
2
; ψ

4
:

ð26Þ

Using the perturbative expansion [Eq. (21)] and the tetrad
components listed above, we can expand all terms appear-
ing in the field equations up to their relevant velocity
orders. Of most importance for our calculation is the metric,
whose background solution follows from the diagonal
background tetrad ΔA

μ to be a flat Minkowski metric,

g
0

μν ¼ ημν, and which is expanded around this background
in terms of velocity orders in the form

g
2

00 ¼ 2τ
2

00; g
2

ij ¼ 2τ
2

ðijÞ;

g
3

0i ¼ 2τ
3

ði0Þ; g
4

00 ¼ −ðτ2 00Þ2 þ 2τ
4

00: ð27Þ

Further in the field equations appears the torsion, which can
be expanded in the form [53]

T
2
0
0i ¼ τ

2

00;i; T
2
i
jk ¼ 2δilτ

2

l½k;j�;

T
3
i
0j ¼ δikðτ2 kj;0 − τ

3

k0;jÞ; T
3
0
ij ¼ 2τ

3

0½i;j�;

T
4
0
0i ¼ τ

2

00τ
2

00;i − τ
3

0i;0 þ τ
4

00;i: ð28Þ
For the derivatives of the tetrad and the scalar field, we need
the additional assumption that the gravitational field is
quasistatic, so that changes are only induced by the motion
of the source matter. Time derivatives ∂0 of the tetrad
components and scalar field are therefore weighted with an
additional velocity order Oð1Þ.
Finally, we use the expansion of the metric tensor

[Eq. (27)] in order to expand the energy-momentum tensor
[Eq. (20)] into velocity orders and tetrad perturbations.
Using the standard PPN assignment of velocity orders also
to the rest mass density, specific internal energy, and
pressure, which is based on their orders of magnitude in
the Solar System, and which assigns velocity orders Oð2Þ
to ρ and Π and Oð4Þ to p [48], the energy-momentum
tensor [Eq. (20)] can then be expanded in the form

Θ00 ¼ ρð1þ Πþ v2 − 2τ
2

00Þ þOð6Þ; ð29aÞ

Θ0j ¼ −ρvj þOð5Þ; ð29bÞ
Θij ¼ ρvivj þ pδij þOð6Þ: ð29cÞ

For later use, we also expand the trace-reversed energy
momentum tensor introduced in the field equations
[Eq. (16)] in terms of velocity orders and obtain the
expressions

Θ̄00 ¼
1

2
ρþ 1

2
ρΠþ ρv2 − ρτ

2

00 þ
3

2
pþOð6Þ; ð30aÞ

Θ̄0j ¼ −ρvj þOð5Þ; ð30bÞ

Θ̄ij ¼
1

2
ρδij þ

1

2
ρΠδij þ ρvivj þ ρτ

2

ðijÞ −
1

2
pδij þOð6Þ:

ð30cÞ
Note in particular that at the zeroth velocity order, the

energy-momentum tensor vanishes, Θ
0

μν ¼ 0, so that we
are left with solving the vacuum field equations. Inserting

our assumed background values θ
0
A
μ ¼ ΔA

μ for the tetrad

and ϕ
0

¼ Φ into the respective field equations [Eq. (12)], we

POST-NEWTONIAN LIMIT OF SCALAR-TORSION THEORIES … PHYS. REV. D 101, 024017 (2020)

024017-5



find that their gravitational part at the zeroth order is
given by

E
0

00 ¼ −κ2V; E
0

ij ¼ κ2Vδij; E
0 ¼ κ2V 0: ð31Þ

It thus follows that the perturbation ansatz is consistent with
the vacuum field equations only if the parameter functions
satisfy V ¼ V 0 ¼ 0. We will therefore restrict ourselves to
theories satisfying these conditions during the remaining
sections of this article. While these conditions may seem
very restrictive at first sight, this is not necessarily the case.
The condition V ¼ 0 simply implies that any cosmological
constant is sufficiently small to leave the Solar System un-
affected, which is a reasonable assumption. Further, V 0¼0
may appear as an attractor in scalar-torsion cosmology, and
is therefore also reasonable in the late Universe [61].

IV. MASSIVE CASE: PPN PARAMETER γ

We now come to the derivation of the post-Newtonian
limit of the class of scalar-torsion theories displayed in
Sec. II. In this section, we will consider a general potential
V for the scalar field, on which we impose no restrictions
except for the consistency conditions V ¼ V 0 ¼ 0 ex-
plained in the preceding section. To solve the perturbative
field equations, we consider the simple case of a static point
mass as the source matter, which we explain in Sec. IVA.
Under this assumption, we solve the field equations at the
second velocity order: for the scalar field in Sec. IV B,
and for the time and space components of the tetrad in
Secs. IV C and IV D, respectively. From these solutions, we
can determine the second-order metric perturbations and
PPN parameter γ in Sec. IV E.

A. Static point mass source

The starting point of our calculation is the assumption
that the source of the gravitational field is given by a single
pointlike mass M, whose energy-momentum tensor is of
the form in Eq. (20), with

ρ ¼ Mδðx⃗Þ; Π ¼ 0; p ¼ 0; vi ¼ 0: ð32Þ

We thus assume that the point mass is at rest in our chosen
coordinate system. In the following, we will use spherical
coordinates, with r denoting the radial coordinate, and the
point mass located at the origin r ¼ 0. Further, we will
denote by UðrÞ ¼ M=r the Newtonian gravitational poten-
tial of this source.

B. Scalar field at second order

At the second order, we can write the equation (18) with
Eq. (19) for the scalar field in the form

Δψ2 −m2
ϕψ
2 ¼ −cϕρ; ð33Þ

where Δ ¼ δij∂i∂j is the Laplace operator and we have
introduced the abbreviations

m2
ϕ ¼ 2κ2AV 00

2ABþ 3C2
; cϕ ¼ −κ2C

2ABþ 3C2
: ð34Þ

We see that the equation is given by a screened Poisson
equation, where mϕ can be interpreted as the mass of the
scalar field. The solution of the second-order equation (33)
is thus given by

ψ
2 ðrÞ ¼ M

4πr
cϕe−mϕr; ð35Þ

which has the form of a Yukawa potential.

C. Temporal tetrad components at second order

In the next step, we can write the second order of the
trace-reversed tetrad field equation (16) with Eq. (17) for

the time component Ē
2

00, which takes the form

2Δτ2 00 ¼ c1ψ
2 − c2ρ: ð36Þ

Here we have introduced the additional abbreviations

c1 ¼ −
C
A
m2

ϕ; c2 ¼ −
cϕC

A
þ κ2

A
: ð37Þ

Substituting the previously found solution (35) for ψ
2
into

Eq. (36) and then solving it, we get

τ
2

00 ¼ GeffðrÞUðrÞ ¼ M
8πr

�
c2 þ

c1cϕ
m2

ϕ

ðe−mϕr − 1Þ
�
: ð38Þ

In the expression above, we have introduced the effective
gravitational constant, which is given by

GeffðrÞ ¼
1

8π

�
c2 þ

c1cϕ
m2

ϕ

ðe−mϕr − 1Þ
�
; ð39Þ

and hence depends on the distance r between the observer
(or test mass) and the gravitating mass. We see that the
effective gravitational potential consists of the superposi-
tion of a pure Newtonian potential and a Yukawa-type term.
Further, we find that in the case C → 0 no Yukawa term
arises, and the gravitational constant becomes truly a
constant, Geff → κ2=8πA. This is related to the fact that
in this case the source term in the scalar field equation
vanishes, and hence no second-order scalar field is excited.
However, also in this case the gravitational constant still
depends on the background value A of the function A in
front of the torsion scalar T in the action [Eq. (5)], as one
expects [62].
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D. Spatial tetrad components at second order

We then come to the second order of the trace-reversed
tetrad field equation (16) with Eq. (17) for the space

component Ē
2

ij, which takes the form

2Δτ2 ij ¼ ðc3ψ2 − c4ρÞδij; ð40Þ
where we denote

c3 ¼
C
A
m2

ϕ; c4 ¼
cϕC

A
þ κ2

A
: ð41Þ

Substituting the solution [Eq. (35)] for the second-order

scalar field ψ
2
into the field equation (40), we find the

solution

τ
2

ijðrÞ ¼
M
8πr

�
c3 −

c4cϕ
m2

ϕ

ðe−mϕr − 1Þ
�
δij: ð42Þ

Again, we find a superposition of a pure Newtonian part
and a Yukawa-type term.

E. PPN metric and parameters

For the static point source [Eq. (32)], we find that the
spherically symmetric post-Newtonian metric is of the
general form

g00 ¼ −1þ 2τ
2

00 ¼ −1þ 2GeffðrÞUðrÞ þOð4Þ; ð43aÞ

g0j ¼ Oð5Þ; ð43bÞ

gij ¼ δij þ 2τ
2

ðijÞ ¼ ½1þ 2GeffðrÞγðrÞUðrÞ�δij þOð4Þ:
ð43cÞ

Here γðrÞ is the post-Newtonian parameter we aim to
determine. From our solution for the tetrad, we find that it is
given by

γðrÞ ¼ 2ωþ 3 − e−mϕr

2ωþ 3þ e−mϕr
; ð44Þ

where we introduce ω ¼ AB
C2 , while the scalar field mass mϕ

is defined by the relation in Eq. (34). We find that the result
agrees with the well-known case of a massive scalar field in
various scalar-curvature-type theories [63–68]. In particu-
lar, it agrees with general relativity in the limit ω → ∞ of a
vanishing kinetic coupling or mϕ → ∞ of an infinitely
heavy scalar field.

V. MASSLESS CASE: ALL PPN PARAMETERS

To proceed further and also solve the perturbative field
equations at higher velocity order, we restrict ourselves to

theories in which the scalar field is massless, and where its
potential satisfies the additional conditions V 00 ¼ V 000 ¼ 0.
It turns out that in this case we can express all perturbations
of the tetrad and the spin connection in terms of standard
PPN potentials. They are obtained by solving the field
equations order by order: the second-order scalar field in
Sec. VA, the second-order time component of the tetrad in
Sec. V B, its second-order space components in Sec. V C,
its third-order components in Sec. V D, and finally the
fourth-order components in Sec. V E. From these solutions
we obtain the full metric and post-Newtonian parameters,
which we display in Sec. V F.

A. Scalar field at second order

Similarly to the case of a massive scalar field, we start by
solving the scalar field equation (18) with Eq. (19) at the
second velocity order. In the massless case, the second-
order equation is given by

−ð2ABþ 3C2ÞΔψ2 ¼ −κ2Cρ: ð45Þ

This is now an ordinary Poisson equation, which has the
general solution

ψ
2 ¼ −

κ2C
4πð2ABþ 3C2ÞU ð46Þ

for an arbitrary source mass density ρ, where the Newtonian
potential is defined as the solution of the Poisson equation

ΔU ¼ −4πρ ⇔ Uðt; x⃗Þ ¼
Z

d3x0
ρðt; x⃗0Þ
jx⃗ − x⃗0j : ð47Þ

Note that without a mass term, no Yukawa-type depend-
ence arises.

B. Temporal tetrad components at second order

We then continue with the second-order trace-reversed
tetrad equation (16) with Eq. (17). Its time component reads

−AΔτ2 00 −
C
2
Δψ2 ¼ κ2

2
ρ: ð48Þ

Using the solution in Eq. (46) for the second-order scalar
field, we thus find the solution

τ
2

00 ¼
κ2

4πA
ABþ 2C2

2ABþ 3C2
U: ð49Þ

Writing the solution in the form τ
2

00 ¼ GU, we can read off
the gravitational constant

G ¼ κ2

4πA
ABþ 2C2

2ABþ 3C2
; ð50Þ
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which is now truly a constant and not an effective quantity
depending on the distance between source and test mass.
Hence, we drop the subscript “eff.” We will use this
expression later to normalize the coupling constant κ.
Note that also here we find G → κ2=8πA for C → 0 as
in the massive case [62].

C. Spatial tetrad components at second order

In the next step, we come to the spatial part of the trace-
reversed tetrad equation at the second velocity order, which
reads

Aðτ2 00;ij − τ
2

kk;ij − Δτ2 ðijÞ þ τ
2

ðijkj;jÞk þ τ
2

kði;jÞkÞ

þ C
2
ð2ψ2 ;ij þ Δψ2 δijÞ ¼

κ2

2
ρδij: ð51Þ

In order to solve this equation, we make use of the
diffeomorphism invariance of the theory, which allows
us to choose the post-Newtonian coordinate system
[48,69], and introduce the gauge condition

0 ¼ Ki ¼ hij;j −
1

2
hjj;i þ

1

2
h00;i þ

C
A
ψ ;i ð52Þ

on the metric perturbations hμν ¼ gμν − ημν, which is a
direct adaptation of the gauge condition introduced in
Ref. [70] for scalar-curvature gravity. Expanding this gauge
condition at the second velocity order and substituting the
tetrad perturbations, we find

K
2

i ¼ τ
2

ij;j þ τ
2

ji;j − τ
2

jj;i þ τ
2

00;i þ
C
A
ψ
2

;i: ð53Þ

We can implement this gauge condition by adding a
suitable multiple to the trace-reversed field equations
[Eq. (16)]. Hence, instead of solving the original field
equations, we solve the equations

Ē
2

ij −
A
2
ðK2 i;j þ K

2

j;iÞ ¼ κ2Θ̄
2

ij; ð54Þ

which are equivalent to the original equations if the gauge
condition [Eq. (52)] is satisfied. The second-order tetrad
equation then simplifies to

−AΔτ2 ðijÞ þ
C
2
Δψ2 δij ¼

κ2

2
ρδij: ð55Þ

We thus find the solution

τ
2

ðijÞ ¼
κ2

4πA
ABþ C2

2ABþ 3C2
Uδij ð56Þ

for the symmetric part of the spatial tetrad components.
Note that the antisymmetric part of the tetrad components is
not yet determined by the field equations at this velocity
order.

D. Tetrad at third order

We then continue with the third velocity order. At this
stage, we need to consider only the symmetric part of the
tetrad field equations, which reads

Aðτ2 ðijÞ;0j − τ
2

jj;0i − Δτ3 ð0iÞ þ τ
3

ð0jÞ;ijÞ þ Cψ
2

;0i ¼ −κ2ρvi;

ð57Þ
since the remaining equations are satisfied identically. Also
in this case we must introduce a gauge condition to fix the
post-Newtonian coordinate system [48,69]. Here we again
follow Ref. [70] and choose the condition

0 ¼ K0 ¼ h0i;i −
1

2
hii;0 þ

C
A
ψ ;0: ð58Þ

At the third velocity order and with the tetrad perturbations
substituted, this gauge condition reads

K
3

0 ¼ τ
3

0i;i þ τ
3

i0;i − τ
2

ii;0 þ
C
A
ψ
2

;0: ð59Þ

We then proceed in a similar fashion as for the second
velocity order above and subtract a suitable multiple of the
gauge condition from the field equations. Hence, the
equations we solve are given by

Ē
3

ð0iÞ −
A
2
ðC3 0;i þ C

2

i;0Þ ¼ κ2Θ̄
3

ð0iÞ: ð60Þ

Again we remark that these are equivalent to the original
equations, provided that the gauge condition [Eq. (58)] is
satisfied. We thus obtain the equations

−AΔτ3 ð0iÞ −
A
2
τ
2

00;0i ¼ −κ2ρvi: ð61Þ

Using the previously found solution [Eq. (49)], we thus find

τ
3

ð0iÞ ¼ −
κ2

16πAð2ABþ 3C2Þ ½ð7ABþ 10C2ÞVi

þ ðABþ 2C2ÞWi�; ð62Þ
where the post-Newtonian potentials Vi and Wi satisfy

ΔVi ¼ −4πρvi; ΔWi ¼ −4πρvi þ 2U;0i; ð63Þ
see Eq. (4.32) in Ref. [48] for their definition. Also, in this
case we only determine the symmetric part of the tetrad.
However, we will see shortly that this will be sufficient for
our purpose of determining the post-Newtonian limit.

E. Temporal tetrad components at fourth order

We finally come to the fourth velocity order, where we
must determine the temporal tetrad component. For this
purpose, we use the temporal component of the fourth-
order tetrad field equations, which reads
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− AΔτ4 00 þ 2Aτ
3

ð0iÞ;0i − Aτ
2

ii;00 þ Aτ
2

00Δτ
2

00 þ 2Aτ
2

ijτ
2

00;ij þ 2Aτ
2

00;iτ
2

ðijÞ;j

− Aτ
2

00;iτ
2

jj;i −
C
2
Δψ4 þ 3C

2
ψ
2

;00 þ Cτ
2

00Δψ
2 þ Cτ

2

ijψ
2

;ij − A0Δτ2 00ψ
2

þ
�
C
2
− A0

�
τ
2

00;iψ
2

;i þ Cτ
2

ðijÞ;jψ
2

;i −
C
2
τ
2

jj;iψ
2

;i −
C0

2
ψ
2Δψ2 −

C0

2
ψ
2

;iψ
2

;i ¼ κ2ρ

�
−τ2 00 þ v2 þ Π

2
þ 3p

2ρ

�
: ð64Þ

In order to eliminate the fourth-order scalar field, which appears in the form of the term Δψ4 , we use the corresponding
fourth-order scalar field equation, which is given by

ð2ABþ 3C2Þð−Δψ4 þ ψ
2

;00 þ 2τ
2

ijψ
2

;ij þ τ
2

ij;jψ
2

;iÞ − 2ðBA0 þ AB0 þ 3CC0Þψ2Δψ2

þ AðA0 þ CÞ
�
4τ
2

00;iτ
2

j½j;i� þ 4τ
2

i½i;j�τ
2

k½j;k� þ τ
2

ðijÞ;kτ
2

ðijÞ;k þ
1

2
τ
2

ij;kτ
2

kj;i − τ
2

ij;kτ
2

jk;i −
1

2
τ
2

ij;kτ
2

ik;j

�

þ ðBC − AB0 − 3CC0Þψ2 ;iψ
2

;i þ ð2ABþ C2 − 2CA0Þðτ2 ji;jψ
2

;i − τ
2

jj;iψ
2

;i þ τ
2

00;iψ
2

;iÞ ¼ κ2½Cð3p − ρΠÞ − C0ψ
2
ρ�: ð65Þ

In the latter equation, the antisymmetric part of the second-order tetrad also appears, which we obtain by solving the fourth-
order antisymmetric equation

E
4

½ij� ¼ ðA0 þ CÞðτ2 00;½iψ
2

;j� − τ
2

kk;½iψ
2

;j� þ τ
2

k½i;jkjψ
2

;j� − τ
2

k½i;j�ψ
2

;kÞ ¼ 0; ð66Þ

which is the lowest order in the perturbative expansion of
the antisymmetric equation (14), since its zeroth and
second orders vanish identically. Also, note that the
right-hand side vanishes—see Eq. (12)—due to the fact
that the energy-momentum tensor derived in Eq. (4) is
symmetric. Since all remaining terms in this equation
arising from scalar fields and symmetric tetrad components
are of the form U;½iU;j� and thus vanish, this is identically

solved by setting τ
2

½ij� ¼ 0. With the lower-order solutions,
and following the steps above, one finally obtains for the
fourth-order tetrad field equation the form

Δτ4 00 ¼ w1U;00 þ w2U;iU;i þ w3ρU þ w4ρΠ

þ w5ρv2 þ w6p; ð67Þ
where the constants are given by

w1 ¼ 0; ð68aÞ

w2 ¼ −
κ4

32π2A2

4A3B3 − 6C5ðA0 − 3CÞ − ABC3ð8A0 − 33CÞ − A2C½2B2ðA0 − 10CÞ þ B0C2 − 2BCC0�
ð2ABþ 3C2Þ3 ; ð68bÞ

w3 ¼ −
κ4

4πA2

2A3B3 þ 6A0C5 þ 2ABC3ð4A0 þ 3CÞ þ A2C½B2ð2A0 þ 7CÞ þ B0C2 − 2BCC0�
ð2ABþ 3C2Þ3 ; ð68cÞ

w4 ¼ −
κ2

A
ABþ 2C2

2ABþ 3C2
; ð68dÞ

w5 ¼ −
κ2

A
; ð68eÞ

w6 ¼ −
3κ2

A
ABþ C2

2ABþ 3C2
: ð68fÞ

One recognizes that the terms on the right-hand side correspond to the fourth-order post-Newtonian potentials, which
satisfy the relations
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ΔΦ1 ¼ −4πρv2; ΔΦ2 ¼ −4πρU; ΔΦ3 ¼ −4πρΠ;

ΔΦ4 ¼ −4πp; ΔðAþℬ −Φ1Þ ¼ −2U;00; ð69Þ

where Φ1;…;Φ4;A;ℬ are defined in Eq. (4.35) of
Ref. [48]. The solution is therefore given by

τ
4

00 ¼
w2

2
U2 þ

�
w1

2
−
w5

4π

�
Φ1 −

�
w2 þ

w3

4π

�
Φ2 −

w4

4π
Φ3

−
w6

4π
Φ4 −

w1

2
A −

w1

2
ℬ: ð70Þ

We have thus determined all components of the tetrad
which are necessary for calculating the post-Newtonian
limit.

F. PPN metric and parameters

Using the tetrad components obtained from the calcu-
lation detailed above, we can now calculate the post-
Newtonian metric components. Using the formula (27),
we find the components

g
2

00 ¼ 2U; ð71aÞ

g
2

ij ¼ 2
ABþ C2

ABþ 2C2
Uδij; ð71bÞ

g
3

0i ¼ −
1

2

�
7ABþ 10C2

ABþ 2C2
Vi þWi

�
; ð71cÞ

g
4

00 ¼
�
3þ AB

ABþ 2C2

�
Φ1 þ 2Φ3 þ

�
3þ 3AB

ABþ 2C2

�
Φ4

þ 8A3B3 þ 6C5ðA0 þ 3CÞ þ ABC3ð8A0 þ 45CÞ þ A2C½2B2ðA0 þ 17CÞ þ B0C2 − 2BCC0�
ðABþ 2C2Þ2ð2ABþ 3C2Þ Φ2

−
8A3B3 − 6C5ðA0 − 7CÞ − ABC3ð8A0 − 73CÞ − A2C½2B2ðA0 − 21CÞ þ B0C2 − 2BCC0�

2ðABþ 2C2Þ2ð2ABþ 3C2Þ U2; ð71dÞ

where we have eliminated κ by using the normalizationG≡ 1 for the gravitational constant [Eq. (50)]. By comparison with
the standard PPN metric [see Eq. (4.48) of Ref. [48] ], which reads

g
2

00 ¼ 2U; ð72aÞ

g
2

ij ¼ 2γUδij; ð72bÞ

g
3

0i ¼ −
1

2
ð3þ 4γ þ α1 − α2 þ ζ1 − 2ξÞVi −

1

2
ð1þ α2 − ζ1 þ 2ξÞWi; ð72cÞ

g
4

00 ¼ −2βU2 − 2ξΦW þ ð2þ 2γ þ α3 þ ζ1 − 2ξÞΦ1 þ 2ð1þ 3γ − 2β þ ζ2 þ ξÞΦ2

þ 2ð1þ ζ3ÞΦ3 þ 2ð3γ þ 3ζ4 − 2ξÞΦ4 − ðζ1 − 2ξÞA; ð72dÞ

we see that this metric is already in the PPN gauge, sinceℬ does not appear, so that we can immediately read off the PPN
parameters. We find that the only nontrivial parameters are given by

γ ¼ 1 −
C2

ABþ 2C2
ð73Þ

and

β ¼ 1 −
Cf6C4ðCþ A0Þ þ ABC2ð7Cþ 8A0Þ þ A2½2B2ðCþ A0Þ þ B0C2 − 2BCC0�g

4ðABþ 2C2Þ2ð2ABþ 3C2Þ ; ð74Þ

while all other PPN parameters vanish: ξ ¼ α1 ¼ α2 ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ 0. Theories of this type are called fully
conservative, as they do not exhibit any preferred-frame or preferred-location effects or violation of the total momentum
conservation.
We may also express this result in terms of conformal invariants [47], which are related to the Jordan frame parameter

functions we have been using by
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I1 ¼
1

A
; G ¼ 1

2
B; K ¼ 1

2
C: ð75Þ

In terms of these invariant parameter functions, the PPN parameters are given by

γ ¼ 1 −
2K2I1

Gþ 4K2I1
ð76Þ

and

β ¼ 1þ K½ðGþ 2K2I1ÞðGþ 6K2I1ÞI01 − ð2G2 þ 14GK2I1 þ 24K4I21 þ G0K − 2GK0ÞKI21�
4I1ðGþ 3K2I1ÞðGþ 4K2I1Þ2

: ð77Þ

Note that here G does not denote the gravitational constant,
but the constant background value G ¼ GðΦÞ of the
function G. We finally remark that the function K (or C
in the Jordan frame, which we used for the calculation), and
hence its first Taylor coefficient K ¼ KðΦÞ, determines the
nonminimal kinetic coupling of the scalar field to the
teleparallel geometry. We thus see that in the minimal
coupling limit K → 0, both γ and β obtain their general
relativity values. Hence, such theories cannot be distin-
guished from general relativity by their PPN parameters,
and more sophisticated methods must be employed to study
their phenomenology.
This concludes our derivation of the PPN parameters for

the general class of scalar-torsion theories. Particular
examples will be discussed in the following section.

VI. EXAMPLE THEORIES

In order to further illustrate our results presented in the
preceding two sections, we consider a few more specific
classes of example theories and calculate their PPN para-
meters. In Sec. VI A, we discuss the teleparallel equivalent
of scalar-curvature gravity. Teleparallel dark energy and its
generalizations are discussed in Sec. VI B. Finally, we
discuss theories with a nonminimal coupling to the boun-
dary term in Sec. VI C.

A. Teleparallel equivalent of scalar-curvature gravity

For the special case C ¼ −A0, it can be shown that the
gravitational part of the action reduces to the well-known
scalar-tensor gravity action [3] up to a boundary term,
which we neglect here [47]:

Sg½θa;ωa
b;ϕ�

¼ 1

2κ2

Z
M
½AðϕÞR∘ þ 2BðϕÞX − 2κ2VðϕÞ�θd4x: ð78Þ

Substituting C with −A0, we find that our results in both
the massive and massless cases indeed reduce to earlier
results on the post-Newtonian limit of scalar-curvature
gravity [16,63–65,71].

B. Teleparallel dark energy and its generalizations

The second class of theories we discuss is conventionally
expressed in the Jordan frame α≡ 0, and its members
feature a vanishing kinetic coupling of the scalar field to the
torsion, C≡ 0, and a general scalar field potential V. This
class features numerous well-studied contender theories,
which are summarized under the name of (generalized)
teleparallel dark energy models, and whose actions are
given as follows:
(1) The classical teleparallel dark energy model [36]:

Sg ¼
Z
M

�
−

T
2κ2

þ 1

2
ðgμνϕ;μϕ;ν − ξϕ2TÞ

− VðϕÞ
�
θd4x; ð79Þ

with the coupling constant ξ and potential V. By
comparison with the general form in Eq. (5), we
find the parameter functions A ¼ 1þ 2κ2ξϕ2 and
B ¼ −κ2.

(2) Interacting dark energy [38]:

Sg ¼
Z
M

�
−

T
2κ2

þ 1

2
ðgμνϕ;μϕ;ν − ξFðϕÞTÞ

− VðϕÞ
�
θd4x; ð80Þ

where the function A is replaced by A ¼ 1þ
2κ2ξFðϕÞ.

(3) Brans-Dicke-type action with a general coupling to
torsion [29]:

Sg ¼
Z
M

�
−
FðϕÞ
2κ2

T − ωgμνϕ;μϕ;ν − VðϕÞ
�
θd4x;

ð81Þ

where A ¼ FðϕÞ and B ¼ 2κ2ω.
(4) Brans-Dicke-type action with a dynamical kinetic

term [40]:
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Sg ¼
Z
M

�
−

ϕ

2κ2
T −

ωðϕÞ
ϕ

gμνϕ;μϕ;ν − VðϕÞ
�
θd4x;

ð82Þ

where A ¼ ϕ and B ¼ 2κ2ωðϕÞ=ϕ.
Due to the fact that all of these models have vanishing
kinetic coupling, C ¼ 0, we find that the PPN parameters
we calculated, in the massive case γ [Eq. (44)] and in the
massless case γ [Eq. (73)] and β [Eq. (74)], take the values
γ ¼ β ¼ 1. Hence, we conclude that the post-Newtonian
limit of these theories agrees with general relativity, so that
these theories cannot be distinguished by measurements of
the PPN parameters. For the models in Eqs. (79) and (82),
our result thus reduces to the PPN parameters found in
previous studies [40,51].

C. Nonminimal coupling to the boundary term

The last model we consider employs a nonminimal
coupling of the scalar field to the teleparallel boundary
term and is defined by the action [41]

Sg ¼
Z
M

�
−

T
2κ2

þ 1

2
ðgμνϕ;μϕ;ν − ξϕ2T − χϕ2BÞ

− VðϕÞ
�
θd4x ð83Þ

with constants ξ; χ and a general potential V, and where the
boundary term B is defined via the relation in Eq. (11). In
order to bring the action to the form of Eq. (5), one has to
perform integration by parts. After this step, one finds the
parameter functions

A ¼ 1þ 2κ2ξϕ2; B ¼ −κ2; C ¼ 4κ2χϕ: ð84Þ

Here we restrict ourselves to the massless case V ¼ 0; see
Ref. [52] for a discussion of the post-Newtonian limit of the
theory with a massive scalar field. Note that the parameter
functions explicitly depend on κ, so that for the normali-
zation G ¼ 1 of the gravitational constant we must insert
them into the expression (50). This yields the solution

κ2¼ 16π

1−32πðξ−6χ2ÞΦ2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−64πχ2Φ2Þð1−576πχ2Φ2Þ

p
ð85Þ

as the only solution which yields κ2 → 8π in the limit
Φ → 0, as one would expect. Further, observe that C → 0 in
the limit χ → 0. It is thus helpful to expand the PPN
parameters in a Taylor series in χ, since they approach their
general relativity values for χ → 0. This yields the result

γ ¼ 1þ 128πχ2Φ2 þOðχ4Þ;
β ¼ 1þ 32πξχΦ2 þ 32πχ2Φ2 þOðχ3Þ: ð86Þ

Comparison of these results with observations of the PPN
parameters thus yields bounds on the appearing constants.
However, this would lead beyond the scope of this article.

VII. CONCLUSION

We have derived the post-Newtonian limit and PPN
parameters for a general class of scalar-torsion theories of
gravity featuring a nonminimal kinetic coupling between
the scalar field and the vector part of the torsion. We found
that for the consistency of the post-Newtonian approxima-
tion, we must assume a vanishing cosmological back-
ground value of the scalar field potential and its first
derivative. For the case of a massive scalar field, we
calculated the PPN parameter γ under the assumption of
a static point mass source. We could drop this assumption
in the case of a massless scalar field, for which we
calculated the full set of PPN parameters. Our findings
show that the class of scalar-torsion theories of gravity is
fully conservative in the sense that only the PPN parameters
β and γ potentially deviate from their general relativity
values, which implies no preferred frame or preferred
location effects, as well as the conservation of energy-
momentum. We also found that deviating values for β and γ
are obtained only for a nonminimal kinetic coupling to
vector torsion. Further, we expressed the PPN parameters in
terms of quantities which are invariant under conformal
transformations.
To illustrate our findings, we applied them to a number

of particular models within the class of scalar-torsion
theories we considered, and which have been previously
considered in the literature mainly as cosmological models.
Many of these theories are minimally coupled, and are
therefore identical to general relativity at the level of the
PPN parameters. We also considered the teleparallel
equivalent of scalar-curvature gravity theories, and found
that their PPN parameters reproduce the values found for
their classical representation through the curvature of the
Levi-Civita connection. This confirms the consistency of
our approach with previous results.
The work we present here allows for various extensions

and generalizations. For example, one may consider more
general scalar-torsion theories which include a free func-
tion of the torsion and the scalar field [44], and possibly
also the scalar field kinetic terms [46,72]. This can further
be generalized by including more involved kinetic coupling
terms to the scalar field, which appear in the teleparallel
extension of Horndeski gravity [73] or are obtained by
applying disformal transformations to the gravitational
action [74]. Studying these theories would also extend a
previous result on the post-Newtonian limit of Horndeski
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gravity [68]. Further, one could consider theories with more
than one scalar field, which are constructed similarly [47],
and calculate their post-Newtonian limit in analogue to the
related multi-scalar-curvature theories [75]. One might also
consider another similarly constructed class of theories, in
which the scalar fields couples to the nonmetricity of a
likewise flat, but torsion-free connection [76,77].
Another possible direction of future research is to

calculate higher perturbation orders. There are different
approaches which may be pursued. One possibility is to
replace the static point mass source we considered with a
homogeneous sphere, in order to calculate also the param-
eter β in the massive case [78]. Another possibility would
be the application of higher-order perturbation theory in

order to study the emission of gravitational waves during
the inspiral phase of a binary black hole merger or similar
events [79].
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