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We study neutrino oscillations within the framework of extended theories of gravity. Based on the
covariant reformulation of Pontecorvo’s formalism, we evaluate the oscillation probability of neutrinos
propagating in static spacetimes described by gravitational actions quadratic in the curvature invariants.
Calculations are carried out in the two-flavor approximation, for oscillations both in vacuum and matter. It
is shown that the neutrino phase is sensitive to the violation of the strong equivalence principle. By way of
illustration, we specialize our analysis to various extended models of gravity in order both to quantify such
a violation and to understand how the characteristic free parameters of these models affect the neutrino
phase. The possibility to fix new bounds on these parameters and to constrain extended theories of gravity
is finally discussed.
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I. INTRODUCTION

Neutrinos are among the most enigmatic entities in
particle physics. Because of their zero charge and
extremely small masses, they impinge on matter (almost)
only by the weak interaction. Such an elusive nature
justifies the nearly three-decades delay between Pauli’s
prediction of the existence of the (anti)neutrino in 1930 and
its real detection by Reines and Cowan, Jr., [1] in 1956.
Since then, neutrino physics has been largely addressed,
drawing even more attention after Pontecorvo’s pioneering
idea of flavor mixing and oscillations [2]. Although a firm
treatment of these phenomena has now been set up both at
the theoretical [3] and experimental [4] levels, in vacuum
[5] and in matter [6], puzzling questions such as the correct
quantum field theoretical definition of flavor states [7,8],
the nature of neutrino masses (Dirac or Majorana) [9], and
the dynamical origin of the nonvanishing neutrino masses
and mixings [10,11] are still under investigation.
All of the above is set in flat spacetime. Neutrino

oscillations in the presence of gravity were first studied
by Stodolsky [12], and their relevance in cosmology and
astrophysics was later pointed out in Refs. [13,14].
Recently, a similar analysis in accelerated frames burst
into the spotlight [15–17] in connection with the contro-
versy on the asymptotic nature of mixed neutrinos in the
decay of accelerated protons [18]. These studies, however,
have been carried out within the framework of Einstein’s

General Relativity (GR). Despite providing the most
successful description of gravitational interaction [19], it
is nowadays commonly thought that GR might not be the
ultimate theory, because of its incompleteness at short
distances or, in other words, at high energies (think of
classical singularities and lack of renormalizability), and its
failure to explain issues such as the cosmic inflation or the
possible existence of dark matter and dark energy. This
paves the way for a strenuous search of new models [20]
that may encompass these problems in a self-consistent
scheme, preserving at the same time the positive results
of GR.
Among all the extended theories of gravity formulated

throughout the years, the most straightforward approaches
are the so-called quadratic theories, which consist of
generalizing the Einstein-Hilbert gravitational action by
including contributions quadratic in the curvature invari-
ants. In this context, worthy of note are the results achieved
by Stelle [21], who realized that a description of gravity
arising from the Einstein-Hilbert action containing the
squared scalar curvature and squared Ricci tensor, R2

and RμνRμν, is power-counting renormalizable. However,
such a theory lacks of predictability above a certain cutoff,
which is given by the mass of a spin-2 ghost degree of
freedom (d.o.f.) appearing in the theory when the standard
quantization is adopted. Developments have been sub-
sequently gained in the Starobinsky model of cosmic
inflation [22], which only involves the R2 term, and also
in other scenarios [23]. Interesting results have been also
highlighted in nonlocal quadratic theories [24–31].
Understanding which of the above extended theories

may be considered as the best candidate to generalize GR
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and, as a consequence, how it affects physical phenomena
is certainly a crucial task [19,20]. For instance, a recent
attempt to fulfill this aim has been made in the context of
the Casimir effect in Refs. [32,33], in which nontrivial
bounds on the free parameters appearing in such theories
have been inferred by the evaluation of Casimir energy
density and pressure. In the present paper, we will face this
issue by analyzing neutrino flavor oscillations both in
matter and vacuum and computing the correction to the
quantum mechanical phase arising from the extra terms in
the gravitational action. In this regard, we remark that a
similar analysis has been carried out in Brans-Dicke theory
in Ref. [34] and in other extended models in Ref. [20].
On the other hand, differently from the previous

approaches, we will also discuss the possibility to pinpoint
phenomenological implications of the strong equivalence
principle (SEP) on neutrino propagation, as already inves-
tigated in Refs. [35]. Indeed, there is a common agreement
on the SEP violation occurrence in some extended models
of gravity [19]. For instance, in the context of the afore-
mentioned Brans-Dicke theory, one can evaluate the inertial
and gravitational mass of the source of gravity and notice
that the presence of the dynamical scalar field is the
responsible for the discrepancy between the two terms
[36,37]. Such a violation can be also extended to fðRÞ
models, in light of the close bond they share with scalar-
tensor theories, which has been the subject of an intense
line of research (i.e., see, for example, Refs. [20,38]).
Motivated by these ideas, one of our primary aims is to seek
the contribution to the neutrino oscillation phase that can be
associated to SEP violation.
The layout of the paper is the following. In Sec. II, we

analyze the standard formalism of vacuum neutrino oscil-
lations in the Minkowski framework. We also introduce the
covariant formulation of Ref. [14]. The same consider-
ations are then extended to the case of oscillations in matter.
Section III is devoted to a review of the most important
features of some quadratic theories of gravity. Corrections
to the neutrino quantum mechanical phase and to the
related oscillation probability are explicitly calculated in
Sec. IV. Aside from this, we discuss the possibility of fixing
constraints on the free parameters appearing in the con-
sidered theories. Section V contains a thorough application
of the aforementioned general notions to several quadratic
models of gravity of which the relevance has been proven
in a quantum field theoretical framework. Moreover, we
explicitly point out the contribution to the covariant
oscillation phase that is directly related to the SEP.
Concluding remarks can be found in Sec. VI.
Throughout the work, we assume natural units

ℏ ¼ c ¼ 1 and the mostly negative metric convention,
ημν ¼ diag½1 − 1;−1;−1�. Furthermore, we consider a
simplified two-flavor model for neutrinos: the obtained
results can be easily extended to a more general three-flavor
description with CP violation.

II. NEUTRINO OSCILLATIONS IN
CURVED SPACETIME

A. Vacuum oscillations

Let us consider a flavor neutrino emitted via weak
interaction at a generic spacetime point. According to
Pontecorvo’s quantummechanical formalism [2], the flavor
state jναi (α ¼ e; μ) can be expressed as a superposition of
the mass eigenstates jνki (k ¼ 1; 2) as1

jναi ¼
X
k¼1;2

UαkðθÞjνki; ð1Þ

where UαkðθÞ is the generic element of the Pontecorvo
mixing matrix

UðθÞ ¼
�

cos θ sin θ

− sin θ cos θ

�
: ð2Þ

The states that indeed propagate are the mass ones, the
energy Ek and 3-momentum p⃗k of which are related by the
usual mass-shell condition E2

k ¼ m2
k þ jp⃗kj2.

In Minkowski spacetime, the propagation of the state
jνki from a point AðtA; x⃗AÞ to a point BðtB; x⃗BÞ can be
described by a plane wave as

jνkðxÞi ¼ exp ½−iφkðxÞ�jνki; ð3Þ

where the phase Φk is defined as

φk ¼ EkðtB − tAÞ − p⃗k · ðx⃗B − x⃗AÞ: ð4Þ

Therefore, by using Eqs. (1) and (4), the probability that a
neutrino produced with flavor α at the point A is detected
with flavor β at the point B takes the form

Pα→β ¼ jhνβðtB; x⃗BÞjναðtA; x⃗AÞij2

¼ sin2ð2θÞsin2
�
φ12

2

�
; ð5Þ

where the phase shift is given by φ12 ¼ φ1 − φ2.
For relativistic neutrinos, by assuming the mass eigen-

states to be energy eigenstates with a common energy E,
one can show that

φ12 ≃
Δm2

2E
Lp; ð6Þ

where Δm2 ≡ jm2
2 −m2

1j is the mass-squared difference
and Lp ¼ jx⃗B − x⃗Aj is the distance traveled by neutrinos.

1In what follows, we denote flavor (mass) indices by greek
(latin) indices.
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The above formalism can be generalized in a straightfor-
ward way to curved spacetime by rewriting the phase (4) as
the eigenvalue of the covariant operator [14]

Φ ¼
Z

λB

λA

Pμ
dxμnull
dλ

dλ; ð7Þ

where Pμ is the generator of spacetime translations of
neutrino mass eigenstates and dxμnull=dλ is the null tangent
vector to the neutrino worldline parametrized by λ. For
neutrino propagating in flat spacetime, the above relation
recovers Eq. (4), as it should.
The quantity Pμdx

μ
null=dλ in Eq. (7) can be calculated

starting from the covariant Dirac equation for a doublet of
spinors ν of different masses [39]

½iγâeμâð∂μ þ ΓμÞ −M�ν ¼ 0; ð8Þ

where M ¼ diag½m1; m2� and γâ are the Dirac matrices.
The general curvilinear and locally inertial sets of coor-
dinates are denoted without and with a hat, respectively,
and they are related by the vierbein field eμâ. The explicit
expression for the Fock-Kondratenko connection is
Γμ ¼ 1

8
½γb̂; γĉ�eν

b̂
eĉν;μ, where the semicolon stands for the

covariant derivative.
Note that the Dirac equation (8) can be simplified by

means of the relation [14]

γâeμâΓμ ¼ γâeμâ

�
iAGμ

�
−g−1=2

γ5

2

��
; ð9Þ

where g≡ jdet gμνj, γ5 ¼ iγ0̂γ1̂γ2̂γ3̂ and the vector potential
Aμ is given by

Aμ
G ¼ 1

4
g1=2eμâϵ

â b̂ ĉ d̂ðeb̂ν;σ − eb̂σ;νÞeνĉeσd̂: ð10Þ

Here, ϵâ b̂ ĉ d̂ is the totally antisymmetric Levi-Civita symbol
with component ϵ0̂ 1̂ 2̂ 3̂ ¼ þ1.
In the above setting, the momentum operator Pμ used to

calculate the neutrino oscillation phase can be derived from
the generalized mass-shell relation

ðPμ þ Aμ
GPLÞðPμ þ AGμPLÞ ¼ M2; ð11Þ

where PL ≡ ð1 − γ5Þ=2 is the left-hand projector and we
have added a term proportional to the identity without any
physical consequences [14]. By neglecting terms of order
OðA2

GÞ and OðAGM2Þ and considering relativistic neutri-
nos, we then obtain

Pμ
dxμnull
dλ

¼
�
M2

2
−
dxμnull
dλ

AGμPL

�
; ð12Þ

where we have required Pi ≈ pi and P0 ¼ p0 [14]. In this
regard, we emphasize that E≡ P0 ¼ g0νPν.
Finally, by denoting the differential proper distance at

constant t by dl, we can write

dλ ¼ dl
�
−gij

dxi

dλ
dxj

dλ

�−1
2

¼ dl
�
g00

�
dx0

dλ

�
2

þ 2g0i
dx0

dλ
dxi

dλ

�−1
2

; ð13Þ

where we have exploited the condition of null trajec-
tory ds2 ¼ 0.

B. Matter effects

The weak-field approximation, which we use throughout
this paper, is suitable for the description of solar and
supernovae neutrinos [13,34,40]. However, in these cases, a
matter effect such as the Mikheyev-Smirnov-Wolfenstein
effect [6] cannot be disregarded. Following the treatment of
Ref. [14], we shall treat these extra contributions in a
fashion similar to the gravity-induced corrections com-
puted above.
Let us assume that only electron neutrinos weakly

interact with an electron background fluid. In this case,
the generalized mass-shell relation takes the form

ðPμ þ Aμ
fPLÞðPμ þ AfμPLÞ ¼ M2

f; ð14Þ

where M2
f ≡UðθÞM2U†ðθÞ and

Aμ
f ≡

�
−

ffiffiffi
2

p
GFN

μ
e 0

0 0

�
ð15Þ

is the interaction term in the flavor basis, GF is the Fermi
constant, and Nμ

e ¼ neuμ is the number current of the
electron fluid. Here, ne and uμ are the electron density in
the fluid rest frame and the fluid’s 4-velocity, respectively.
Finally, by taking into account both geometric and matter

effects, the generalization of Eq. (12) reads

Pμ
dxμnull
dλ

¼
�
M2

2
−
dxμnull
dλ

AμPL

�
: ð16Þ

III. QUADRATIC THEORIES OF GRAVITY

In this section, we introduce a wide class of extended
theories of gravity for which the neutrino oscillation
phenomenon will be studied.
Let us consider the gravitational action, which is the

most general parity-invariant and torsion-free action around
maximally symmetric backgrounds [24,28],
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S ¼ 1

2κ2

Z �
Rþ 1

2
½RF 1ð□ÞRþRμνF 2ð□ÞRμνþ

þRμνρσF 3ð□ÞRμνρσ�
� ffiffiffiffiffiffi

−g
p

d4x; ð17Þ

where κ ≡ ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1=Mp is the inverse of the reduced
Planck mass, □ ¼ gμν∇μ∇ν is the curved d’Alembertian,
and the three differential operators F ið□Þ are generic
functions of □∶

F ið□Þ ¼
XN
n¼0

fi;n□n; i ¼ 1; 2; 3: ð18Þ

Here, we deal with both positive (n > 0) and negative
(n < 0) powers of the d’Alembertian; namely, we analyze
both ultraviolet and infrared modifications of Einstein’s
GR. When N is finite (N < ∞) and n > 0, we have a local
theory of gravity of which the derivative order is 2N þ 4,
while if N ¼ ∞ and/or n < 0, the corresponding gravita-
tional theory is nonlocal, and the form factors F ið□Þ are
nonpolynomial differential operators of □.
Since we are interested in computing and studying the

neutrino oscillation phase in presence of a weak gravita-
tional field, we can work in the linear regime by expanding
the action in Eq. (17) around the Minkowski background

gμν ¼ ημν þ κhμν; ð19Þ

where hμν is the metric perturbation.
In our perturbative approach, we truncate the action in

Eq. (17) at order2 Oðh2Þ [26],

S ¼ 1

4

Z �
1

2
hμνfð□Þ□hμν − hσμfð□Þ∂σ∂νhμν

þ hgð□Þ∂μ∂νhμν −
1

2
hgð□Þ□h

þ 1

2
hλσ

fð□Þ − gð□Þ
□

∂λ∂σ∂μ∂νhμν
�
d4x; ð20Þ

where h≡ ημνhμν is the trace of the metric perturbation and
we have defined

fð□Þ ¼ 1þ 1

2
F 2ð□Þ□; ð21Þ

gð□Þ ¼ 1 − 2F 1ð□Þ□ −
1

2
F 2ð□Þ□: ð22Þ

The corresponding linearized field equations are given by

2κ2Tμν ¼ fð□Þð□hμν − ∂σ∂νhσμ − ∂σ∂μhσνÞ
þ gð□Þðημν∂ρ∂σhρσ þ ∂μ∂νh − ημν□hÞ

þ fð□Þ − gð□Þ
□

∂μ∂ν∂ρ∂σhρσ; ð23Þ

where the stress-energy tensor sourcing the gravitational
field is defined by

Tμν ≃ −2
δSm
δhμν

; ð24Þ

with Sm being the matter action.
We are interested in finding the expression for the

linearized spacetime metric in the presence of a static
pointlike source,

ds2 ¼ ð1þ 2ϕÞdt2 − ð1 − 2ψÞðdr2 þ r2dΩ2Þ; ð25Þ

where dΩ ¼ dθ2 þ sin2 θdφ2 and ϕ and ψ are the two
metric potentials, while the matter sector is described by

Tμν ¼ mδ0μδ
0
νδ

ð3Þðr⃗Þ: ð26Þ

By setting κh00 ¼ 2ϕ, κhij ¼ 2ψδij, κh ¼ 2ðϕ − 3ψÞ, and
using the assumption of static pressureless source, i.e.,□ ≃
−∇2 and T ¼ ηρσTρσ ≃ T00, the modified Poisson equa-
tions for the two metric potentials read

fðf − 3gÞ
f − 2g

∇2ϕðrÞ ¼ 8πGmδð3Þðr⃗Þ; ð27Þ

fðf − 3gÞ
g

∇2ψðrÞ ¼ −8πGmδð3Þðr⃗Þ; ð28Þ

where f ≡ fð∇2Þ, g≡ gð∇2Þ are now functions of the
Laplace operator.
The two modified Poisson equations (27) and (28) can be

solved with the use of the Fourier transform method, by
going to momentum space and then antitransforming back
to coordinate space. Thus, we obtain

ϕðrÞ ¼ −8πGm
Z

1

k2
f − 2g

fðf − 3gÞ e
ik⃗·r⃗ d3k

ð2πÞ3

¼ −
4Gm
πr

Z
∞

0

f − 2g
fðf − 3gÞ

sinðkrÞ
k

dk; ð29Þ

ψðrÞ ¼ 8πGm
Z

1

k2
g

fðf − 3gÞ e
ik⃗·r⃗ d3k

ð2πÞ3

¼ 4Gm
πr

Z
∞

0

g
fðf − 3gÞ

sinðkrÞ
k

dk; ð30Þ

2In this regime, the term RμνρσF 3ð□ÞRμνρσ in Eq. (17) can be
neglected. Indeed, the identity Rμνρσ□

nRμνρσ ¼ 4Rμν□
nRμν −

R□
nRþOðR3Þ þ div, where div takes into account total

derivatives and OðR3Þ only contributes at order Oðh3Þ, holds
true. Hence, in the linearized regime, we can set F 3ð□Þ ¼ 0
without loss of generality.
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where f ≡ fð−k2Þ and g≡ gð−k2Þ are now functions of the
Fourier momentum squared.
For a first check, we can notice that in the case f ¼ g we

recover the weak-field limit of Einstein’s GR,

f ¼ g ¼ 1 ⇒ ϕðrÞ ¼ ψðrÞ ¼ −
Gm
r

; ð31Þ

as expected.

IV. OSCILLATION PHASE EXPRESSION

In this Section, we want to study the form that the
covariant oscillation phase acquires when the spacetime is
described by several quadratic models of gravity of which
the action is given by Eq. (17). Specifically, we refer to the
phase that appears in the expression of the flavor transition
probability (5)

Pα→β ¼ sin2ð2θÞ sin2
�
φ12

2

�
; ð32Þ

where now φ12 ≡ φ1 − φ2 denotes the oscillation phase in
curved background, i.e.,

Φjνki ¼ φkjνki; ð33Þ

with Φ given by Eq. (7).

A. Vacuum oscillations

Let us start by considering only geometric effects (matter
effects will be accommodated later). Since our attention is
focused on the analysis of a radial propagation, it is
possible to prove that, in all the upcoming discussions,
we have AGμ ¼ 0. Actually, this is always true for such
diagonal metrics as the one in Eq. (25) (see, e.g.,
Refs. [14,41,42]). In fact, a brief analysis of Eq. (10)
shows that a nonvanishing AGμ requires nonzero off-
diagonal components of the tetrads. It is immediate to
verify that, in our case,

e0
0̂
¼ 1 − ϕ; ei

ĵ
¼ ð1þ ψÞδij: ð34Þ

At this point, the phase φ12 takes the form [14,42]

φ12 ¼
Δm2

2

Z
λB

λA

dλ ¼ Δm2

2

Z
lB

lA

dl
El

; ð35Þ

where we have made use of Eq. (13) in the second step and
El ¼ e0

0̂
E is the energy measured by a locally inertial

observer momentarily at rest in the curved spacetime and E
represents the energy measured by an inertial observer at
rest at infinity. Since we are assuming to work with a
stationary metric, it is worth emphasizing that E≡ P0 is a
conserved quantity.

By use of Eq. (34), Eq. (35) can be rephrased as

φ12 ¼
Δm2

2E

Z
rB

rA

½1þ ϕðrÞ − ψðrÞ�dr; ð36Þ

given that dl2 ¼ ð1 − 2ψÞdr2 for radial motion.
In accordance with the reasoning exhibited so far, the

flavor oscillation probability can be rewritten as

Pα→β ¼ sin2ð2θÞsin2
�
Δm2

4E

Z
rB

rA

½1þ ϕðrÞ − ψðrÞ�dr
�

¼ sin2ð2θÞsin2
�
Δm2

4E
ðrB − rAÞ þ

φSEP

2

�
; ð37Þ

where we have introduced the shorthand notation

φSEP ¼
Δm2

2E

Z
rB

rA

½ϕðrÞ − ψðrÞ�dr; ð38Þ

the meaning of which will be clarified in the next
subsection.
Depending on the choice of the form factors in Eq. (17),

we expect Pα→β to be a function of the free parameters of
the selected quadratic theory of gravity. In turn, this implies
that the neutrino oscillation probability is strictly related to
the model used to investigate the geometric features of the
curved background.
In addition, it is possible to show that the covariant

oscillation phase can always be split in three different
contributions. Guided by this idea, one can check that
Eq. (36) always includes the terms

φ12 ¼ φ0 þ φGR þ φQ; ð39Þ

where φ0 is formally the same as the usual “flat” phase
when m ¼ 0 (6), φGR is the quantity associated to GR,
whereas φQ includes all the corrections due to the quadratic
models of gravity. The feasibility of such a procedure is
guaranteed by the fact that the two metric potentials ϕ and
ψ can be always recast as ϕ ¼ ϕGR þ ϕQ and ψ ¼ ψGRþ
ψQ ¼ ϕGR þ ψQ, respectively (since ψGR ¼ ϕGR, as seen
in the previous section). At this point, the appearance
of φ0 ensues from a simple consideration: starting from
Eq. (36), indeed, we can cast E in terms of the local energy
by using El ¼ ð1 − ϕÞE and then introduce the proper
distance covered by the neutrino propagating on a curved
background:

Lp ¼
Z

rB

rA

ffiffiffiffiffiffiffiffiffi
−grr

p
dr ¼

Z
rB

rA

½1 − ψðrÞ�dr: ð40Þ

In view of these notions, the covariant phase (36) can be
expressed as
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φ12 ¼
Δm2Lp

2El

�
1 − ϕðrBÞ þ

1

Lp

Z
rB

rA

ϕðrÞdr
�
: ð41Þ

Hence, the first term on the rhs precisely returns the phase
in Eq. (6), with the difference that here it is written as a
function of the local energy and the proper propagation
distance. Since we are interested in a slightly curved
background (i.e., in the weak-field regime), we will now
report the explicit linearized expressions for φGR [42],

φGR ¼ Δm2Lp

2El

�
Gm
rB

−
Gm
Lp

ln

�
rB
rA

��
; ð42Þ

while the contribution to the phase only due to the quadratic
theories correction is

φQ ¼ Δm2Lp

2El

�
1

Lp

Z
rB

rA

ϕQðrÞdr − ϕQðrBÞ
�
: ð43Þ

Let us remark that we are working in the linear regime,
where we can always perform analytical computations.
Interesting physical scenarios in which our analysis and
outcomes may be tested are the ones of solar and supernova
neutrinos, the latter being relevant due to the extremely
large fluxes of particles produced in a wide range of
energies. A detailed study of these aspects, however, goes
beyond the scope of the present manuscript and will be
treated elsewhere. We refer back to the existing literature
for more specific discussions on this (see, for instance,
Refs. [13,34,40] and references therein). Furthermore, we
emphasize that, consistently with our work assumption, the
term jφ0j will be always larger than the gravitational
corrections; indeed, we can have the two cases jφ0j >
jφGRj ≳ jφQj and jφ0j > jφQj≳ jφGRj, which are both
compatible with the linearized approximation. Given such
inequalities and by making a comparison with experiments,
one can eventually put constraints on the free parameters of
the given gravitational theory.

B. Link with the equivalence principle violation

Before applying the aforementioned considerations to
several quadratic theories of gravity, it is worth focusing
attention on a possible connection between the covariant
phase (37) and the violation of the strong equivalence
principle [19]. In particular, by looking at Eq. (37), we refer
to the term proportional to ϕ − ψ , which in the case of pure
GR would be identically zero. However, this difference can
be recognized as a clear signal for SEP violation, since the
two metric potentials are not equal [19,43].
In view of the last consideration, one can indeed evaluate

the Eddington-Robertson-Schiff parameter γ that arises
from a post-Newtonian limit and which is related to how
much space curvature is produced by the unit rest mass of
the gravitational source (for a detailed review of this topic,

see Refs. [19,44]). If we adopt the metric (25), one can
show that

γ ¼ ψ

ϕ
; ð44Þ

but since we have already pointed out that both metric
potentials can be decomposed in a term related to GR and a
correction due to the presence of quadratic contributions in
the gravitational action, the previous equation can be also
cast into the (more convenient) form

γ − 1 ¼ ψQ − ϕQ

ϕ
: ð45Þ

As expected, if the gravitational action is the Einstein-
Hilbert one, we have ϕQ ¼ ψQ ¼ 0, which means γ ¼ 1,
that is the known value of such a parameter in the case
of GR.
At this point, in order to properly quantify the violation

of SEP, it is customary to analyze the so-called Nordtvedt
parameter η [45,46], defined as

η ¼ 4ðβ − 1Þ − ðγ − 1Þ; ð46Þ

where the post-Newtonian parameter β quantifies nonlinear
gravitational effects. The strong equivalence principle is
violated as long as η ≠ 0 [46].
In reporting the expression (46), we have tacitly required

the absence of anisotropies and preferred-frame effects
[19,44], which should have been described by other post-
Newtonian parameters that have been set to zero in the
current analysis (see Ref. [46] for more details). If we
perform the further assumption that nonlinear effects are
essentially described by the contributions coming from GR,
then β ¼ 1 [19], which in turn entails

η ¼ 1 − γ: ð47Þ

In principle, for a given metric as in Eq. (25), the quantity γ
depends on the position, namely, γ ≡ γðrÞ. However, we
can assume to investigate the scenario in which γ is slowly
varying with respect to the spatial coordinates.3 Therefore,
we may treat it as a constant, in such a way as to render all
the considerations centered around η enforceable. Indeed,
the analysis performed on the SEP violation with the aid
of the Nordtvedt parameter has been developed by taking
the post-Newtonian expansion coefficients to be constant.
Now, we can observe from Eq. (45) that the deviation

from the GR prediction is strictly related to the difference of
the metric potentials associated to the quadratic part of the
gravitational action. By means of Eq. (47), such a discrep-
ancy is an evident indication of the SEP violation. Hence,

3In other words, we can restrict attention to the spatial region in
which variations of γ are negligible.
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from Eq. (37), it follows that the neutrino oscillation phase
does discriminate whether the particle propagates in the
conditions in which SEP is satisfied or not. This explains
the meaning of φSEP in Eq. (38).
The reason for the occurrence of SEP violation could

be readily attributed to the emergence of a nonstandard
term in the Dirac Hamiltonian that explicitly depends upon
the difference ϕ − ψ ; this aspect will be investigated in
future works.

C. Matter effects

Let us now discuss how to generalize our previous
considerations when effects of background matter are taken
into account as shown in Sec. II B.
Neutrino flavor states evolution can be described as [14]

jνfðλBÞi ¼ exp

�Z
λB

λA

�
M2

f

2
−
dxμnull
dλ

AfμPL

�
dλ

�
jνfi; ð48Þ

where

jνfðλÞi ¼
� jνeðλÞi
jνμðλÞi

�
ð49Þ

is the doublet of spinors in the flavor basis and jναi ¼
jναðλAÞi (α ¼ e, μ) is defined as in Eq. (1). Here, we have
taken into account that the gravitational corrections in the
present case are vanishing, i.e., AGμ ¼ 0.
By assuming that the experimental setup is at rest with

respect to the electron background, we get

jνfðλÞi ¼ exp

�
1

2E

Z
rB

rA

M̃2
f

2
dr

�
jνfi; ð50Þ

with

M̃2
f ≡M2

fð1þ ϕ − ψÞ þ Vfð1 − ψÞ; ð51Þ

where Vf is defined by

Vf ≡
�
vðrÞ 0

0 0

�
; ð52Þ

and vðrÞ ¼ 2
ffiffiffi
2

p
EGFneðrÞPL.

We now diagonalize the matrix (51) via the transformation

M̃2 ¼
�
m̃2

1 0

0 m̃2
2

�
≡ U†ðθ̃ÞM̃2

fUðθ̃Þ; ð53Þ

where

tan 2θ̃ ¼ Δm2½Δm2 cos 2θ − vð1þ ϕÞ� sin 2θ
ðΔm2 cos 2θ − vÞ2 : ð54Þ

By following Ref. [14], we assume the resonance condition
θ̃ ¼ π=4, which leads to

vðrÞ≡ v ¼ Δm2 cos 2θ: ð55Þ

This means that the interaction between the electron back-
ground and gravity is negligible in the weak field approxi-
mation, thus yielding a constant value of v.
Equation (50) can be rewritten as

jνfðλÞi ¼ Uðθ̃Þ exp
�
1

2E

Z
rB

rA

M̃2

2
dr

�
jν̃mi; ð56Þ

where

jν̃mi ¼
� jν̃1i
jν̃2i

�
≡U†ðθ̃Þjνfi: ð57Þ

Therefore, the flavor oscillation probability takes the form

Pα→β ¼ sin2
�
φ̃12

2

�
; ð58Þ

where we have exploited the condition sin2ð2θ̃Þ ¼ 1 and

φ̃12 ¼
Δμ2

2E

Z
rB

rA

½1þ ϕðrÞ − ψðrÞ þ χϕðrÞ�dr: ð59Þ

Here, we have used the following notation:

χ ≡ Δm2ðΔm2 þ v cos 2θÞ
ðΔμ2Þ2 − 1; ð60Þ

Δμ2 ≡ ðΔm̃2Þϕ¼ψ¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2Þ2 þ v2 − 2Δm2v cos 2θ

q
:

ð61Þ

Now, as in the case of vacuum oscillations, φ̃12 can be
expanded as

φ̃12 ¼
Δμ2

2E
ðrB − rAÞ þ

χΔμ2

2E

Z
rB

rA

ϕðrÞdrþ φ̃SEP; ð62Þ

where we have defined

φ̃SEP ≡ Δμ2

2E

Z
rB

rA

½ϕðrÞ − ψðrÞ�dr: ð63Þ

In terms of local quantities, Eq. (62) becomes

φ̃12 ¼
Δμ2Lp

2El

�
1 − ϕðrBÞ þ

ð1þ χÞ
Lp

Z
rB

rA

ϕðrÞdr
�
: ð64Þ
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Note that, when matter effects are negligible or absent
(v → 0), then Δμ2 → Δm2 and χ → 0, thus recovering
Eq. (41). Let us also remark that considerations on the
possibility of constraining the free parameters of extended
theories can be easily repeated as in the case of vacuum
oscillations.

V. APPLICATIONS

To better explore the above scenario, in the following, we
determine φQ and φSEP appearing in the oscillation formula
for several quadratic theories of which the relevance has
been pointed out in the recent literature. For simplicity, we
only compute the oscillation phases in vacuum as their
generalization to the presence of matter is straightforward.
Indeed, for each gravitational theory we consider below,
once the vacuum formula (41) for the phase is known, one
can obtain the corresponding expression including matter
effects by making the following substitutions4:

Δm2 → Δμ2; ð65Þ

1

Lp

Z
rB

rA

ϕðrÞdr → 1þ χ

Lp

Z
rB

rA

ϕðrÞdr: ð66Þ

Before going any further, it is worth mentioning that all the
theories we will study are characterized by new physical
scales which are described by free parameters. The best
constraints on such parameters come from torsion balance
experiments [47] with which Newton’s law has been tested
up to roughly 10 mm.

A. f ðRÞ gravity
We first address the easiest extension of the Einstein-

Hilbert action by including a Ricci squared contribution
with a constant form factor α

F 1 ¼ α;F 2 ¼ 0 ⇒ f ¼ 1; g ¼ 1 − 2α□: ð67Þ

This choice belongs to the class of fðRÞ theories, in which
the Lagrangian is truncated up to the order OðR2Þ,

fðRÞ ≃Rþ α

2
R2; ð68Þ

and the cosmological constant is set to zero.
For the above selection of the form factors, the two

metric potentials in Eqs. (29) and (30) become

ϕðrÞ ¼ −
Gm
r

�
1þ 1

3
e−m0r

�
; ð69Þ

ψðrÞ ¼ −
Gm
r

�
1 −

1

3
e−m0r

�
; ð70Þ

wherem0 ¼ 1=
ffiffiffiffiffiffi
3α

p
is the mass of the spin-0 massive d.o.f.

coming from the Ricci scalar squared contribution.
The Eddington-Robertson-Schiff parameter γ for this

model turns out to be

γ ¼ 1 − 1
3
e−m0r

1þ 1
3
e−m0r

≃ 1 −
2

3
e−m0r; ð71Þ

where after the second equality we have performed an
expansion for small values of the exponential function
correction. Such a limit is feasible because we expectm0 to
be large. Note that the GR limit (and therefore γ ¼ 1) is
restored for m0 → ∞.
By using ϕ ¼ ϕGR þ ϕQ, with

ϕQðrÞ ¼ −
1

3

Gm
r

e−m0r; ð72Þ

and relying on Eq. (43), we obtain

φQ ¼ Δm2Lp

2El

�
Gme−m0rB

3rB
−
Gm
3Lp

½Eið−m0rÞ�rBrA
�
; ð73Þ

where the special function

EiðxÞ ¼ −
Z

∞

−x

e−ξ

ξ
dξ ð74Þ

is known as the exponential integral function [48] and we
have introduced the shorthand notation

½fðxÞ�xBxA ≡ fðxBÞ − fðxAÞ: ð75Þ

Moreover, from Eq. (38), one can evaluate the SEP
violating phase as follows:

φSEP ¼
Δm2Gm
3El

½Eið−m0rÞ�rBrA : ð76Þ

This term can be identified with the second contribution in
the rhs of Eq. (73).

B. Stelle’s fourth-order gravity

Let us now consider Stelle’s fourth-order gravity [21],
which is achieved with the following form factors:

F 1 ¼ α; F 2 ¼ β ⇒ f ¼ 1þ 1

2
β□;

g ¼ 1 − 2α□ −
1

2
β□: ð77Þ

Unlike the fðRÞ case, the Ricci tensor squared contribution
in the action is clearly recognizable through a constant,

4We recall that the following analysis is carried out by
assuming the resonance condition (55).
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nonvanishing form factor. It is possible to check that the
gravitational action related to this model turns out to be
renormalizable [21].
For the above choice of the form factors, the two metric

potentials in Eqs. (29) and (30) now read

ϕðrÞ ¼ −
Gm
r

�
1þ 1

3
e−m0r −

4

3
e−m2r

�
; ð78Þ

ψðrÞ ¼ −
Gm
r

�
1 −

1

3
e−m0r −

2

3
e−m2r

�
; ð79Þ

where m0 ¼ 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12αþ β

p
and m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð−βÞp

correspond
to the masses of the spin-0 and of the spin-2 massive mode,
respectively. To avoid tachyonic solutions, we need to
require β < 0. Additionally, the spin-2 mode is a ghostlike
d.o.f. Such an outcome is not surprising, since it is known
that, for any local higher derivative theory of gravity,
ghostlike d.o.f. always appear.5

The factor γ appearing in Eq. (44) for Stelle’s fourth-
order gravity is given by

γ ¼ 1 − 1
3
e−m0r − 2

3
e−m2r

1þ 1
3
e−m0r − 4

3
e−m2r

≃ 1 −
2

3
e−m0r þ 2

3
e−m2r: ð80Þ

As for the previous case, the limit of large masses m0,
m2 → ∞ returns GR.
If we single out the contribution of this quadratic model

to the potential ϕ, we note that

ϕQðrÞ ¼ −
1

3

Gm
r

e−m0r þ 4

3

Gm
r

e−m2r: ð81Þ

Hence, the phase φQ turns out to be

φQ ¼ Δm2Lp

2El

�
Gme−m0rB

3rB
−
4Gme−m2rB

3rB

−
Gm
3Lp

½Eið−m0rÞ�rBrA þ
4Gm
3Lp

½Eið−m2rÞ�rBrA
�
: ð82Þ

The SEP violating phase (38) is now

φSEP ¼
Δm2Gm
3El

½Eið−m0rÞ − Eið−m2rÞ�rBrA : ð83Þ

C. Sixth-order gravity

Let us now deal with a sixth-order gravity model, which
is an example of super-renormalizable theory [51,52],

F 1 ¼ α□; F 2 ¼ β□

⇒ f ¼ 1þ 1

2
β□2; g ¼ 1 − 2α□2 −

1

2
β□2: ð84Þ

It is possible to show that the two metric potentials in
Eqs. (29) and (30) assume the expressions

ϕ ¼ −
Gm
r

�
1þ 1

3
e−m0r cosðm0rÞ −

4

3
e−m2r cosðm2rÞ

�
;

ð85Þ

ψ ¼ −
Gm
r

�
1 −

1

3
e−m0r cosðm0rÞ −

2

3
e−m2r cosðm2rÞ

�
;

ð86Þ

where the masses of the spin-0 and spin-2 d.o.f. are now
given by m0 ¼ 2−1=2ð−3α − βÞ−1=4 and m2 ¼ ð2βÞ−1=4,
respectively. Note that, in this case, tachyonic solutions
are avoided for −3α − β > 0, which can be satisfied by the
requirement α < 0 and −3α > β, with β > 0. The current
higher-derivative theory of gravity has no real ghost modes
around the Minkowski background, but a pair of complex
conjugate poles with equal real and imaginary parts [52],
and corresponds to the so called Lee-Wick gravity [53]. It is
worth noting that in this model the unitarity condition is not
violated; indeed, the optical theorem still holds [49,54,55].
The parameter γ related to SEP violation now reads

γ ¼ 1 − 1
3
e−m0r cos ðm0rÞ − 2

3
e−m2r cos ðm2rÞ

1þ 1
3
e−m0r cos ðm0rÞ − 4

3
e−m2r cos ðm2rÞ

≃1 −
2

3
e−m0r cos2 ðm0rÞ þ

2

3
e−m2r cos2 ðm2rÞ: ð87Þ

For this model, we have

ϕQðrÞ ¼ −
1

3

Gm
r

e−m0r cosðm0rÞ þ
4

3

Gm
r

e−m2r cosðm2rÞ:
ð88Þ

Accordingly, the gravitational phase due to the quadratic
part of the action reads

φQ ¼ Δm2Lp

2El

�
Gme−m0rA

3rB
cos ½m0rB�

−
4Gme−m2rB

3rB
cos ½m2rB�

−
Gm
6Lp

½Eiðk1m0rÞ þ Eiðk2m0rÞ�rBrA

þ 2Gm
3Lp

½Eiðk1m2rÞ þ Eiðk2m2rÞ�rBrA
�
; ð89Þ

5See Refs. [49,50] for recent works in which the authors have
shown that both renormalizability and unitarity can be made to
coexist by implementing a new quantization prescription.
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with

k1 ¼ −1 − i; k2 ¼ −1þ i: ð90Þ

The SEP violating phase is now

φSEP ¼
Δm2Gm
3El

f½Eiðk1m2rÞ þ Eiðk2m2rÞ�rBrA
− ½Eiðk1m0rÞ þ Eiðk2m0rÞ�rBrAg: ð91Þ

D. Ghost-free infinite derivative gravity

We now consider an example of ghost-free nonlocal
theory of gravity [24–31,56–62]. For the sake of clarity, we
adopt the simplest ghost-free choice for the nonlocal form
factors [26]

F 1 ¼ −
1

2
F 2 ¼

1 − e□=M2
s

2□
⇒ f ¼ g ¼ e□=M2

s ; ð92Þ

where Ms is the scale at which the nonlocality of the
gravitational interaction should become manifest. Note
that, for the special ghost-free choice in Eq. (92), no extra
d.o.f. other than the massless transverse spin-2 graviton
propagate around the Minkowski background.
Since we have chosen f ¼ g, the metric potentials of

Eqs. (29) and (30) coincide

ϕðrÞ ¼ ψðrÞ ¼ −
Gm
r

Erf

�
Msr
2

�
; ð93Þ

where

ErfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

e−t
2

dt ð94Þ

is the error function [48].
Note that, since the metric potentials are equal, we

automatically obtain γ ¼ 1 as in GR, which means that, at
least from our study, there is no additional contribution to
the neutrino oscillation phase that can be directly related to
SEP violation. Indeed, because of our assumptions, for this
theory, it is straightforward to check that the reduced
Nordtvedt parameter in Eq. (47) identically vanishes.
By introducing the complementary error function [48],

ErfcðxÞ ¼ 1 − ErfðxÞ; ð95Þ

one can prove that

ϕQðrÞ ¼
Gm
r

Erfc

�
Msr
2

�
: ð96Þ

Therefore, the phase associated to this quadratic model is
equal to

φQ ¼ Δm2Lp

2El

�
−
Gm
rB

Erfc

�
MsrB
2

�
þ Gm

Lp
ln

�
rB
rA

�

−
Gm
Lp

�
Msrffiffiffi
π

p 2F2

�
1

2
;
1

2
;
3

2
;
3

2
;−

M2
sr2

4

��
rB

rA

�
; ð97Þ

where we have employed the generalized hypergeometric
function [48]

pFqða1;…; ap;b1;…; bq; zÞ ¼
X∞
n¼0

ða1Þn…ðapÞn
ðb1Þn…ðbqÞn

zn

n!
; ð98Þ

with ðxÞn being the Pochhammer symbol [48]

ðxÞ0 ¼ 1; ðxÞn ¼ xðxþ 1Þðxþ 2Þ…ðxþ n − 1Þ: ð99Þ

E. Nonlocal gravity with nonanalytic form factors

For the last case, we consider two models of a nonlocal
infrared extension of Einstein’s GR, in which form factors
are nonanalytic functions of □. These theories are inspired
by quantum corrections to the effective action of quantum
gravity [63–69].

1. First model

The first model is described by the following choice of
the form factors:

F 1 ¼
α

□
; F 2 ¼ 0 ⇒ f ¼ 1; g ¼ 1 − 2α: ð100Þ

The two metric potentials are infrared modifications of the
Newtonian one:

ϕðrÞ ¼ −
Gm
r

�
4α − 1

3α − 1

�
; ð101Þ

ψðrÞ ¼ −
Gm
r

�
2α − 1

3α − 1

�
: ð102Þ

Since we expect α to be small, we can deduce that the
Eddington-Robertson-Schiff parameter for this model is
represented by

γ ¼ 2α − 1

4α − 1
≃ 1þ 2α: ð103Þ

Starting from (101) and (102), we obtain

ϕQðrÞ ¼ −
α

3α − 1

Gm
r

; ð104Þ

and consequently

φQ ¼ α

3α − 1
φGR: ð105Þ
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The SEP violating phase takes the form

φSEP ¼ −
Δm2Gm

El

α

3α − 1
ln

�
rB
rA

�
: ð106Þ

2. Second model

The nonlocal form factors for the second model are

F 1 ¼
β

□
2
; F 2 ¼ 0 ⇒ f ¼ 1; g ¼ 1 −

2β

□
: ð107Þ

In this framework, the infrared modification is not a
constant, but the metric potentials show a Yukawa-like
behavior,

ϕðrÞ ¼ −
4

3

Gm
r

�
1 −

1

4
e−

ffiffiffiffi
3β

p
r

�
; ð108Þ

ψðrÞ ¼ −
2

3

Gm
r

�
1þ 1

2
e−

ffiffiffiffi
3β

p
r

�
: ð109Þ

Also, for the current nonlocal model, GR is recovered in the
limit β → 0. Therefore, an expansion around this parameter
allows us to cast γ of Eq. (44) in the following form:

γ ¼ 1þ 1
2
e−

ffiffiffiffi
3β

p
r

2 − 1
2
e−

ffiffiffiffi
3β

p
r
≃ 1 −

2

3

ffiffiffiffiffi
3β

p
r: ð110Þ

The gravitational potential associated to the purely quad-
ratic part of this model reads

ϕQðrÞ ¼ −
1

3

Gm
r

ð1 − e−
ffiffiffiffi
3β

p
rÞ: ð111Þ

The phase related to the previous potential is given by

φQ ¼ Δm2Lp

2El

�
Gm
3rB

ð1 − e−
ffiffiffiffi
3β

p
rBÞ

−
Gm
3Lp

ln

�
rB
rA

�
þ Gm
3Lp

½Eið−
ffiffiffiffiffi
3β

p
rÞ�rBrA

�
: ð112Þ

The SEP violating phase now reads

φSEP ¼
Δm2Gm
3El

�
½Eið−

ffiffiffiffiffi
3β

p
rÞ�rBrA − ln

�
rB
rA

��
: ð113Þ

VI. CONCLUSIONS

In this work, we have studied neutrino oscillation within
the framework of quadratic theories of gravity. Specifically,
we have shown to what extent the quadratic part of the
action (17) contributes to the covariant phase φ12 via the
emergence of extra terms into the flavor oscillation

probability. In light of this, we have stressed that it is
always possible to split φ12 into different terms, among
which we have recognized the analog of the flat phase φ0,
the GR-induced phase φGR, and the corrections pertaining
to the quadratic sector φQ. Calculations have been per-
formed for neutrino oscillations both in vacuum and matter,
noticing that formulas in the latter case can be obtained
from the corresponding equations in vacuum by accounting
for the redefinitions (65) and (66).
Apart from their intrinsic theoretical relevance, it would

be interesting to analyze our results in connection with
possible experimental applications. For instance, it has
been shown that nontrivial gravitational contributions to
the neutrino oscillation phase might have significant
effects in supernova explosions [40], for which also matter
effects play an important role. In light of this and by
exploiting the existing data on neutrino oscillations, the
present study may provide an important step toward a
deeper understanding of gravity, since it could help us to
shed some light in the current zoo of theories, both
validating or ruling them out at a fundamental level.
This aspect, however, will be investigated in more detail in
a future work.
Another crucial result we have pointed out is the

possibility of identifying a contribution associated to the
violation of the strong equivalence principle in the expres-
sion of the oscillation phase. Indeed, for different gravi-
tational potentials, ϕ ≠ ψ , we have observed that the
Nordtvedt parameter η does not vanish, which in turn
implies SEP violation. This occurrence has been achieved
by requiring all post-Newtonian terms of the examined
models to be equivalent to the GR ones, except for the
Eddington-Robertson-Schiff parameter γ. A more rigorous
treatment which includes the whole set of post-Newtonian
expansion coefficients would require a full-fledged analysis
that goes beyond the linearized approximation. However,
the generality of the aforesaid outcome is not affected by
the regime in which we have investigated such an in-
triguing issue.
Finally, we have implemented the above reasoning in

several quadratic theories of gravity. The purpose of this
application is to draw attention on the expressions for the
neutrino oscillation phase φQ related to the quadratic part of
the action. Furthermore, we have explicitly written the
contribution arising from the presence of SEP violation
φSEP, which enters in φQ and not in φGR, as expected.
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