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Extra dimensions, which led to the foundation and inception of string theory, provide an elegant
approach to force unification. With bulk curvature as high as the Planck scale, higher curvature terms,
namely, fðRÞ gravity, seem to be a natural addendum in the bulk action. These can not only pass the classic
tests of general relativity but also serve as potential alternatives to dark matter and dark energy. With
interesting implications in inflationary cosmology, gravitational waves, and particle phenomenology, it is
worth exploring the impact of extra dimensions and fðRÞ gravity in black hole accretion. Various classes of
black hole solutions have been derived that bear nontrivial imprints of these ultraviolet corrections to
general relativity. This, in turn, gets engraved in the continuum spectrum emitted by the accretion disk
around black holes. Since the near horizon regime of supermassive black holes manifest maximum
curvature effects, we compare the theoretical estimates of disk luminosity with quasar optical data to
discern the effect of the modified background on the spectrum. In particular, we explore a certain class of
black hole solution bearing a striking resemblance to the well-known Reissner-Nordström–de Sitter/anti–
de Sitter/flat spacetime, which, unlike general relativity, can also accommodate a negative charge
parameter. By computing error estimators like chi square, Nash-Sutcliffe efficiency, index of agreement,
etc., we infer that optical observations of quasars favor a negative charge parameter, which can be a
possible indicator of extra dimensions. The analysis also supports an asymptotically de Sitter spacetime
with an estimate of the magnitude of the cosmological constant whose origin is solely attributed to fðRÞ
gravity in higher dimensions.
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I. INTRODUCTION

General relativity (GR) is a classic example of a
scientific theory that is elegant, simple, and powerful. To
date, it is the most successful theory of gravity in explain-
ing a plethora of observations, namely, the perihelion
precession of mercury, bending of light, and gravitational
redshift of radiation from distant stars, to name a few [1–3].
Very recently, the shadow of the black hole in M87
observed by the Event Horizon Telescope has further added
to its phenomenal success [4–6]. Yet it is instructive to
subject GR to further tests since it is marred with unre-
solved issues like singularities [7–9] and falls short in
explaining the nature of dark energy and dark matter
[10–14]. Moreover, the quantum nature of gravity is still
elusive and ill understood [15–17]. All this makes the quest
for a more complete theory of gravity increasingly com-
pelling such that it yields GR in the low energy limit.
Consequently, a surfeit of alternate gravity models have
been proposed that can potentially fulfill the deficiencies in

GR. A viable alternate gravity theory must be free from
ghost modes, be consistent with solar-system-based tests,
should not engender a fifth force in local physics, and
should successfully explain observations that GR fails to
address. The alternate gravity models that fulfill these
benchmarks can be broadly classified into three categories:
(i) modified gravity models where the gravity action is
supplemented with higher curvature terms, e.g., fðRÞ
gravity [18–21], Lanczos-Lovelock models, etc. [22–26],
(ii) extra-dimensional models that alter the effective four-
dimensional gravitational field equations due to the bulk
Weyl stresses and higher order corrections to the stress
tensor [27–33], and (iii) scalar-tensor theories of gravity,
which include the Brans-Dicke theory and the more general
Horndeski models [34–37].
In this work, we will consider modifications to the

gravity sector by introducing fðRÞ gravity in five dimen-
sions. Among the various modified gravity models, fðRÞ
theories have attracted the attention of physicists for a long
time [18,38–40] since they invoke the simplest modifica-
tion to the Einstein-Hilbert action and yet exhibit sufficient
potential to address a host of cosmological and astrophysi-
cal observations. These include, but are not limited to, the
late-time acceleration [41,42] and the initial power-law
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inflation of the Universe [43], the four cosmological phases
[19,44], the rotation curves of spiral galaxies [45,46], and
the detection of gravitational waves [47–49]. Although
these models are plagued with ghost modes, certain fðRÞ
models, e.g., fðRÞ theory on a constant curvature hyper-
surface, can be shown to be ghost free [50–52]. In addition,
they can successfully surpass the Solar System tests that
only impose constraints on f00ðRÞ and hence on the model
parameters [53–55].
Extra dimensions, on the other hand, were mainly

invoked to provide a framework to unify gravity and
electromagnetism [56–58]. This subsequently provided a
framework for string theory and M theory that succeeded in
unifying all the known forces under a single umbrella [59–
61]. The large radiative corrections to the Higgs mass
arising due to the huge disparity between the electroweak
scale and the Planck scale [62–66] led to the emergence
of a diversity of string inspired brane world models. Most
of these models assume that the observable Universe is
confined in a 3-brane where all the Standard Model
particles and fields reside while gravity permeates to the
bulk [62–68]. They possess interesting phenomenological
implications [69–74] and distinct observational signa-
tures, including production of miniature black holes
which can be tested in present and future collider
experiments [75,76]. On the galactic scale, they offer
an alternative to the elusive dark matter [45,77–80], while
in cosmology they have interesting implications in the
inflationary epoch [81–87] and also serve as a possible
proxy to dark energy [31,88–93]. Since the ultraviolet
nature of gravity is unknown, it is often believed that, in
the high energy regime, the deviations from Einstein
gravity may manifest through the existence of extra
dimensions. Moreover, the bulk curvature is expected
to be as high as the Planck scale and hence higher order
corrections to the gravity action should become relevant
in the high energy regime.
In this work, we consider a single brane world

scenario with a positive tension that is embedded in a
five-dimensional bulk containing fðRÞ gravity. The
addition of fðRÞ gravity in higher dimensions causes
substantial modification to the effective gravitational
field equations on the brane [27,30,33,94,95], which
are obtained from the Gauss-Codazzi equation and the
junction conditions [96]. Such deviations from Einstein’s
equations are expected to become more conspicuous in
the high energy and high curvature domain. Therefore,
the near horizon regime of black holes, where the
curvature effects are maximum, seems to be an ideal
astrophysical laboratory to test these models against
observations.
Various classes of vacuum solutions of these field

equations have been obtained [28,29,32,97,98], which
possess distinct signatures of extra dimensions and fðRÞ
gravity. In the event the vacuum solutions are static and

spherically symmetric, the electric part of the Weyl tensor
can be decomposed into terms involving “dark radiation”
and “dark pressure.” Suitable integrability conditions lead
to different classes of vacuum solutions, which determine
the spacetime geometry. The solutions thus derived
exhibit substantial modification from the well-known
Schwarzschild spacetime, which are attributed to the non-
local effects of the bulk Weyl tensor and fðRÞ gravity in the
action. These deviations in the background spacetime are
sculpted in the continuum spectrum emitted from the
accretion disk around black holes. In particular, since the
curvature effects are maximum in supermassive black
holes, the quasar continuum spectra can act as potential
astrophysical probes to establish, falsify, or constrain these
models.
In a recent work [99], we explored an exact black hole

solution in the brane with bulk Einstein gravity. It resem-
bles the well-known Reissner-Nordström spacetime in
general relativitywhere the tidal charge parameter can
assume both signatures. By comparing the disk luminosity
of quasars in such a background with the corresponding
observations, we conclude that a negative charge parameter
is favored, which is characteristic of brane world black
holes. Adding fðRÞ gravity in the bulk action adds a
vacuum energy term to the aforesaid black hole solution,
where the cosmological constant owes its origin to terms
involving fðRÞ gravity in higher dimensions. In this work,
we investigate the effect of such a spacetime on the quasar
continuum spectrum, which enables us to explore the
signature of the tidal charge parameter in the presence
of the cosmological constant term in the metric.
Subsequently, we also derive constraints on the magnitude
of the cosmological constant from quasar optical data.
Further, we also investigate the effect of other black hole
solutions on the quasar continuum spectrum, which are
derived by altering the relations connecting the dark
radiation and dark pressure.
The paper is organized as follows: In Sec. II, we

discuss the modifications induced in the gravitational
field equations due to the presence of bulk fðRÞ gravity.
The static, spherically symmetric, vacuum solutions of
these field equations are reviewed in Sec. III. In Sec. IV,
we examine the properties of the black hole continuum
spectrum in presence of the background spacetimes
discussed in Sec. III. Section V is dedicated to numeri-
cal analysis where the theoretically computed luminos-
ities from the accretion disk of 80 quasars are compared
with the corresponding observed values. Finally, we
conclude with a summary and discussion of our results
in Sec. VI.
Throughout this paper, the Greek indices denote the

four-dimensional spacetime and capitalized Latin letters
represent the five-dimensional bulk indices. We work in
geometrized units with G ¼ 1 ¼ c and the metric con-
vention is mostly positive.
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II. STATIC, SPHERICALLY SYMMETRIC BLACK
HOLE SOLUTIONS IN HIGHER DIMENSIONAL

f ðRÞ GRAVITY

In this section, we consider fðRÞ gravity in the bulk
action and derive the effective gravitational field equations
on the brane. The bulk action A assumes the form

A ¼
Z

d5x
ffiffiffiffiffiffiffi
−G

p �
fðRÞ
2κ25

þ Lm

�
; ð1Þ

whereGAB is the bulk metric, R is the bulk Ricci scalar, and
Lm is the matter Lagrangian. The bulk indices are denoted
by capitalized Latin letters, e.g., A, B, which run over all
spacetime dimensions, while Greek letters denote the brane
coordinates. The gravitational field equation obtained by
varying the bulk action with respect to GAB is given by

f0ðRÞRAB −
1

2
GABfðRÞ þGAB□f0ðRÞ −∇A∇Bf0ðRÞ

¼ κ25TAB; ð2Þ

where RAB is the bulk Ricci tensor, κ25 ¼ 8πG5 is the
five-dimensional gravitational constant, and the prime
denotes the derivative with respect to R. The bulk
energy-momentum tensor can be written as

TAB ¼ −Λ5GAB þ δðϕÞð−λTgμν þ τμνÞeμAeνB; ð3Þ

where Λ5, the negative vacuum energy density on the bulk,
the brane tension λT , and the brane energy-momentum
tensor τμν are the sources of the gravitational field on the
bulk. The various physical quantities on the bulk are
projected onto the brane with the help of the projector
eμA. The brane is located at ϕ ¼ 0 (where ϕ represents the
extra coordinate) and the induced metric on the ϕ ¼ 0
hypersurface is represented by gμν.
In order to obtain the effective gravitational field

equations on the brane, the Gauss-Codazzi equation is
used, which connects the bulk Riemann tensor to that of the
brane with the help of the projector eμA and the extrinsic
curvature tensor Kμν. The extrinsic curvature is related to
the covariant derivative of the normalized normals to the
brane nA and encodes the embedding of the brane into the
bulk. The presence of a brane energy-momentum tensor
leads to a discontinuity in Kμν across the brane. Israel
junction conditions and a Z2 orbifold symmetry relates this
discontinuity in the extrinsic curvature to the brane energy-
momentum tensor. For a detailed derivation, one is referred
to [29,32,33,96].
With the above considerations, the effective four-

dimensional gravitational field equations on the brane
assume the form

Rμν−
1

2
Rgμν ¼−Λ4gμνþ8πG4τμνþ κ45πμνþQμν−Eμν;

ð4Þ

where

Λ4 ¼
1

2
κ25

�
Λ5

f0ðRÞ þ
1

6
κ25λ

2
T

�
; ð5Þ

G4 ¼
κ45λT
48π

; ð6Þ

πμν ¼ −
1

4
τματ

α
ν þ

1

12
ττμν þ

1

8
gμνταβταβ −

1

24
gμντ2; ð7Þ

Qμν ¼
�
hðRÞgμνþ

2

3

∇A∇Bf0ðRÞ
f0ðRÞ ðeAμeBν þnAnBgμνÞ

�
ϕ¼0

;

ð8Þ

hðRÞ ¼ 1

4

fðRÞ
f0ðRÞ −

1

4
R −

2

3

□f0ðRÞ
f0ðRÞ ; ð9Þ

Eμν ¼ CABCDeAμnBeCν nD; ð10Þ

ð11Þ

In Eq. (4), Rμν and R refer to the Ricci tensor and Ricci
scalar on the brane, while Λ4 and G4 represent the four-
dimensional cosmological constant and gravitational con-
stant, respectively. Equation (5) serves as the fine balancing
relation of the Randall-Sundrum single brane model
[27,67], which enables the brane tension to be tuned
appropriately with the bulk cosmological constant to yield
de Sitter, anti–de Sitter, or flat branes. In Eq. (4), πμν
represents higher order terms associated with the brane
energy-momentum tensor due to the local effects of the
bulk on the brane. The term Qμν arises because of
the presence of higher curvature terms in the bulk action.
In the event fðRÞ¼R,Qμν¼ 0 and we recover the projected
field equations on the brane due to pure Einstein gravity in
the bulk. The expression for Qμν can be simplified further
by assuming that ∂μR ¼ 0 when the second term in Eq. (8)
vanishes (see, for example, [32]) such that

Qμν ¼
�
hðRÞgμν þ

2

3

∇A∇Bf0ðRÞ
f0ðRÞ nAnBgμν

�
ϕ¼0

¼ F ðRÞgμν:

ð12Þ

Since the bulk Ricci scalar is expected to be a well-behaved
quantity, it can be expanded in a Taylor series around
ϕ ¼ 0, i.e.,
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R ¼ R0 þ R1ϕþ R2

ϕ2

2
þOðϕ3Þ; ð13Þ

where the coefficients are constants since R is independent
of the brane coordinates. This implies that the derivatives of
R evaluated at ϕ ¼ 0 in Eq. (12) will result in a constant
contribution independent of the brane coordinates.
The last term on the right-hand side of Eq. (4) is

Eμν, which epitomizes the electric part of the bulk Weyl
tensor with its origin in the nonlocal effect from the
free bulk gravitational field. It is the transmitted projection
of the bulk Weyl tensor CABCD on the brane, such that
EAC ¼ CABCDnBnD with the property Eμν ¼ EABeAμeBν .
The conservation of the matter energy-momentum
tensor on the brane, i.e., Dντ

ν
μ ¼ 0 (where Dν represents

the brane covariant derivative), leads to the constraint
DνEν

μ − κ45Dνπ
ν
μ ¼ 0, since DνF ðRÞδνμ ¼ 0 as the bulk

Ricci scalar depends only on ϕ.
The symmetry properties of Eμν allows an irreducible

decomposition of the tensor in terms of a given four-
velocity field uμ [29,100],

Eμν ¼−k4
�
UðrÞ

�
uμuνþ

1

3
ζμν

�
þ2QðμuνÞ þPμν

�
; ð14Þ

where k ¼ κ5
κ4
with κ24 ¼ 8πG4, and ζμν ¼ gμν þ uμuν is the

projector orthogonal to uμ. Note that κ24 ¼ κ45λT=6,
such that we retrieve general relativity in the limit
λ−1T → 0 [29]. In Eq. (14), the scalar UðrÞ ¼
− 1

k4 Eμνuμuν is often known as the dark radiation term.
The second term on the right-hand side of Eq. (14) consists
of a spatial vector Qμ ¼ 1

k4 ζ
α
μEαβuβ, whereas the third

term consists of a spatial, trace-free, symmetric tensor
Pμν ¼ − 1

k4 ½ζαðμζ
β
νÞ −

1
3
ζμνζ

αβ�Eαβ.

In order to obtain vacuum solutions on the brane, the
brane should be source free such that τμν ¼ πμν ¼ 0. Thus,
the gravitational field equations on the brane reduce to

Rμν −
1

2
Rgμν ¼ −Λ4gμν þ F ðRÞgμν − Eμν: ð15Þ

In such a scenario, the effective four-dimensional cosmo-
logical constant is given by Λ̃ ¼ Λ4 − F ðRÞ, while the
conservation of the energy-momentum tensor on the brane
simplifies to DνEν

μ ¼ 0. Additionally, if the solutions are
static, the term Qμ in Eq. (14) should vanish such that the
conservation of brane energy-momentum tensor leads to

1

3
D̄μU þ 4

3
UAμ þ D̄νPνμ þ AνPνμ ¼ 0; ð16Þ

where Aμ ¼ uνDνuμ is the four acceleration and D̄ denotes
the covariant derivative on the spacelike hypersurface
orthonormal to uμ. Further, if the solutions are spherically

symmetric, we may write Aμ ¼ AðrÞrμ, while the term Pμν

can be written as

Pμν ¼ PðrÞ
�
rμrν −

1

3
ζμν

�
; ð17Þ

where AðrÞ and PðrÞ (also known as the dark pressure) are
scalar functions of the radial coordinate r and rμ is the unit
radial vector.
In order to derive static, spherically symmetric solutions

of Eq. (15), we consider a metric ansatz of the form

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ ð18Þ

and solve for νðrÞ, λðrÞ, UðrÞ, and PðrÞ, since Eq. (18)
satisfies Eqs. (15) and (16). One can show that the solution
of these equations leads to the following form for e−λ [32]:

e−λ¼ 1 −
Λ4 − F ðRÞ

3
r2 −

QðrÞ
r

−
C
r
; ð19Þ

where C is an arbitrary integration constant and QðrÞ is
defined as

QðrÞ ¼ 3

4πG4λT

Z
r2UðrÞdr: ð20Þ

From the form of e−λ it can be inferred that QðrÞ is the
gravitational mass originating from the dark radiation and
can be interpreted as the “dark mass” term. It is important
to emphasize that, in the limit fðRÞ → R, Λ4 → 0, and
U → 0, we get back the standard Schwarzschild solution
and the constant of integration can then be identified with
C ¼ 2G4M, where M is the mass of the gravitating body.
Further, one can show that, for a static, spherically

symmetric spacetime, the ordinary differential equations
for dark radiation UðrÞ and dark pressure PðrÞ satisfy [32]

dU
dr

¼ −2
dP
dr

− 6
P
r

−
ð2U þ PÞ½2G4M þQþ fαðU þ 2PÞ þ 2χ=3gr3�

r2ð1 − 2G4M
r − QðrÞ

r − Λ4−F ðRÞ
3

r2Þ
ð21Þ

and

dQ
dr

¼ 3αr2U; ð22Þ

where α¼ 1
4πG4λT

and χ¼−Λ̃¼F ðRÞ−Λ4. Equations (21)
and (22) can be recast into a more convenient form, namely,

dμ
dθ

¼−ð2μþpÞ q̃þ
1
3
ðμþ2pÞþ l

3

1− q̃þ l
6

−2
dp
dθ

þ2μ−2p; ð23Þ
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dq̃
dθ

¼ μ − q̃; ð24Þ

by defining the variables

q̃ ¼ 2G4M þQ
r

; μ ¼ 3αr2U;

p ¼ 3αr2P; θ ¼ ln r; 2χr2 ¼ l: ð25Þ

Equations (23) and (24) can be referred to as the differential
equations governing the source terms on the brane. For a
detailed derivation of the differential equations for the
metric components and the source terms, one is referred to
[29,32]. In the next section, we shall review various static,
spherically symmetric and vacuum solutions of Eq. (15) on
the brane.

III. VARIOUS CLASSES OF SOLUTIONS
ON THE BRANE

The source equations (23) and (24) for dark radiation and
dark pressure cannot be solved simultaneously until we
impose some further conditions on them. Hence, we choose
some specific relations between dark radiation U and dark
pressure P, necessarily defining the various equations of
state in the framework of the brane world model. We will
note that the different choices of equations of state will lead
to very distinct solutions.

A. Case A: P= 0

This is the vanishing dark pressure case. The dark
radiation and the dark mass can be evaluated by solving
the coupled equations (23) and (24). With P ¼ 0, these two
equations simplify to

dq̃
dθ

¼ μ − q̃; ð26Þ

dμ
dθ

¼ 2μ

�
6 − l − 2μ − 12q̃

6þ l − 6q̃

�
; ð27Þ

respectively. The above two equations can be combined to
produce a single differential equation given by

ð6þ l − 6q̃Þ d
2q̃

dθ2
þ ð26q̃ − 6þ 3lÞ dq̃

dθ
þ 4

�
dq̃
dθ

�
2

þ 2q̃ð14q̃ − 6þ lÞ ¼ 0: ð28Þ

Since l is not a constant in Eq. (28) we apply some
approximate methods to find a solution for q̃ðθÞ. By taking
the Laplace transformation of Eq. (28) and using the
convolution theorem, we get an integral solution for q̃ðθÞ,

q̃ðθÞ ¼ q̃0ðθÞ þ
Z

θ

θ0

gðθ − xÞ
�
3q̃

d2q̃
dx2

− 13q̃
dq̃
dx

− 2

�
dq̃
dx

�
2

− 14q̃2 − χe2x
d2q̃
dx2

− 3χe2x
dq̃
dx

− 2χe2xq̃
�
dx ð29Þ

with the associated functions

gðθ − xÞ ¼ 1

9
½e2ðθ−xÞ − e−ðθ−xÞ�; ð30Þ

q̃0ðθÞ ¼ B1e−θ þ B2e2θ; ð31Þ

B1 ¼ ½3q̃ðθ0Þ − μðθ0Þ�
eθ0

3
¼ M0 − αUðr0Þr30; ð32Þ

B2 ¼ μðθ0Þ
e−2θ0

3
¼ αUðr0Þ; ð33Þ

where θ0 ¼ ln r0 is an arbitrary point that can be associated
with the vacuum boundary of a compact astrophysical
object [29,32] and M0 ¼ 2G4M þQðr0Þ.
Equation (29) can be solved by applying successive

approximation methods. The zeroth-order solution denoted
by q̃0 is derived by considering only the linear part of
Eq. (28). The full solution can thus be expressed as q̃ðθÞ ¼
limm→∞q̃mðθÞ (m ∈ N being the order of the equation)
such that the iterative solution at mth order is connected
to the (m − 1)th order by the following differential equation
[29,32]:

q̃mðθÞ¼
Z

θ

θ0

Hðθ−xÞ
�
3q̃m−1

d2q̃m−1

dx2
−13q̃m−1

dq̃m−1

dx

−2

�
dq̃m−1

dx

�
2

−14q̃2m−1−χe2x
d2q̃m−1

dx2

−3χe2x
dq̃m−1

dx
−2χe2xq̃m−1

�
dxþ q̃m−1ðθÞ: ð34Þ

Once we determine the solution for q̃ðθÞ we can derive
the solution for the metric components by using the
gravitational field equations on the brane and the condition
for the conservation of energy-momentum tensor. In the
zeroth order, the static and spherically symmetric solution
to the field equations is given by [29,32]

U ¼ B2

α
; ð35Þ

eν ¼ C0

ffiffiffiffiffiffi
α

B2

r
; ð36Þ

e−λ ¼ 1 −
B1

r
− B2r2; ð37Þ

where C0 is an arbitrary constant of integration. Since α is
positive, Eq. (36) implies that B2 and, consequently, Uðr0Þ
should be positive. Also, the gtt component of the metric
should be positive, which implies C0 > 0.
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Iterating once more, we get the approximate expressions for UðrÞ and eνðrÞ up to first order,

U ¼ e−2νðrÞ; ð38Þ

eνðrÞ ¼ C0

ffiffiffiffiffiffi
α

B2

r
þ

ffiffiffiffiffiffiffi
αr0
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

B2ðr0 − rÞ½B1 þ B2rr20 þ B2r0r2� þ 1
3
B2χrr0ðr20 − r2Þ

r
: ð39Þ

Since we are interested in the distances much smaller
compared to the cosmological horizon r0, it is reasonable to
assume r ≪ r0. Under this assumption, Eq. (39) simplifies
considerably,

eνðrÞ ≃ C0

ffiffiffiffiffiffi
α

B2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α

2B1B2

r
ρ−1=2

�
1þ 1

ρr

�
−1=2

; ð40Þ

where ρ ¼ r2
0

B1
ðB2 þ χ

3
Þ. It is evident from Eq. (40) that B2 þ

χ
3
should be positive, while B1 can assume both signatures.

Further, if r > 1=ρwe can perform a binomial expansion of
Eq. (40), giving rise to a solution of the form

eνðrÞ ≃ δþ β −
β

2ρr
; ð41Þ

where δ ¼ C0

ffiffiffiffi
α
B2

q
and β ¼ 1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

2B2
2
þ2B2χ

3

q
. Note that the

dependence on fðRÞ gravity comes from the parameter
χ. Equation (41) can be rescaled such that the gtt compo-
nent of the metric assumes the form

eνðrÞ ≃ 1 −
r1
2r

1

C0r0ð2B2 þ 2χ
3
Þ1=2 þ 1

≃ 1 −
2G4M̃

r
; ð42Þ

where

r1 ¼
1

ρ
¼ M0 − αUðr0Þr30

r20ðαUðr0Þ þ χ=3Þ : ð43Þ

Therefore, it is clear from Eq. (42) that, in the regime
r1 ≪ r ≪ r0, the gtt component of the approximate metric
is very similar to the Schwarzschild spacetime in general
relativity, although the ADM mass M̃ has contributions
from the inertial massM as well as the higher curvature and
higher dimension terms. The gtt component solely deter-
mines the photon sphere rph and the radius of the margin-
ally stable circular orbit rms of massive test particles. The
photon sphere rph is obtained from the solution of

2gtt − rgtt;r ¼ 0; ð44Þ

while the marginally stable circular orbit rms is evaluated
from the solution of

rgttgtt;rr ¼ 2rg2tt;r − 3gttgtt;r : ð45Þ

Note that M̃ should be positive, otherwise rph and rms

become negative, which is unphysical. Since M̃ and C0 are
both positive, together they ensure that B1 > 0.
In order to simplify our calculations, we scale the radial

distance r in units of the gravitational radius rg ¼ G4M̃=c2,
such that Eq. (42) assumes the form

eνðrÞ ≃ 1 −
2

r̃
; ð46Þ

where r̃ ¼ r=rg ¼ r=M̃ (with G4 ¼ c ¼ 1). The deviation
of the approximate metric from the Schwarzschild space-
time is manifested in the grr term, where

grr ¼ e−λðrÞ ≃ 1 −
ε̃

r̃
− 3γ̃ r̃þη̃r̃2 þ σ̃r̃4; ð47Þ

where

ε̃ ¼ ε

rg
¼ 1

rg

��
M0 −

αUðr0Þr30
5

�
½1 − αUðr0Þr20�

−
4

5
αUðr0Þr30

�
1þ χr20

3

��
;

γ̃ ¼ γrg ¼ B1B2rg;

η̃ ¼ ηr2g ¼ r2g

��
B2 þ

χ

3

�
½1 − 2B2r20� − 2B2

�
1 −

B1

r0

��
;

σ̃ ¼ σr4g ¼ r4g
6B2

5

�
B2 þ

χ

3

�
:

Since we are interested in black hole solutions, the
curvature singularity at r ¼ 0 must be covered by an event
horizon. The radius of the event horizon rEH is obtained
from the real positive solutions of e−λðrÞ ¼ 0. Since grr ¼ 0
is a fifth-order algebraic equation, it always has at least one
real root. For the real root to be positive, we need to choose
the values of ε̃, γ̃, η̃; and σ̃ judiciously. From the previous
discussion, it is evident that γ̃ and σ̃ are always positive,
while ε̃ and η̃ can assume any signature. Further constraints
on the values of ε̃, γ̃, η̃, and σ̃ are established from the fact
that rEH < rph < rms.
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The disadvantage of this choice of equation of state is
that the metric does not represent an exact black hole
solution. Following the same iterative procedure, we can
approximate the metric to the second and next higher
orders. However, we have to work out the properties of this
metric (namely, the rEH, rph, and rms) order by order, which
is not a desirable feature. In the next section, we consider
another choice of equation of state, which will turn out to
be more useful.

B. Case B: 2U +P= 0

In this section, we consider an interesting scenario where
the dark radiation U and the dark pressure P satisfy the
constraint 2U þ P ¼ 0. For this specific choice, Eq. (21)
leads to

dP
dr

¼ −4
P
r
: ð48Þ

Therefore, the general solution for the dark pressure and the
dark radiation is given by

PðrÞ ¼ P0

r4
and UðrÞ ¼ −

P0

2r4
; ð49Þ

where P0 is an arbitrary constant of integration.
Consequently, from Eq. (22), the dark mass assumes the
form

QðrÞ ¼ Q0 þ
3αP0

2r
; ð50Þ

with the integration constant Q0. Using these forms for the
source terms, the metric components can be computed,
where

eνðrÞ ¼ e−λðrÞ ¼ 1 −
2G4M þQ0

r
−
3αP0

2r2
þ F ðRÞ − Λ4

3
r2

¼ 1 −
2G4M̃

r
þ Q̃
r2

−
Λ̃
3
r2: ð51Þ

This solution is interesting primarily because it represents
an exact solution, which is very difficult to obtain in the
presence of fðRÞ gravity in higher dimensions. Although
Eq. (51) resembles the de Sitter/anti–de Sitter Reissner-
Nordström metric in general relativity, there are several
differences. First, the ADM mass M̃ and the tidal charge
parameter Q̃ have completely different physical origins,
i.e., have contributions from the nonlocal effects of the bulk
Weyl tensor, which does not happen in general relativity. In
Eq. (51), Q̃ can assume both signatures, while in general
relativity Q̃ is always positive. The cosmological constant
Λ̃ arises naturally in these models and owes its origin to
fðRÞ gravity in higher dimensions. Depending on the
relative dominance of Λ4 and F ðRÞ, Λ̃ can be positive,

negative, or zero, such that the resultant metric is asymp-
totically de Sitter, anti–de Sitter, or flat. Recent cosmo-
logical observations of distant type Ia supernovae and the
anisotropies in the cosmic microwave background radiation
strongly indicate an accelerated expansion of the Universe
[101–105], which can be explained by a repulsive cosmo-
logical constant with positive Λ̃. Therefore, it is essential to
explore the ramifications of Λ̃ in various astrophysical
situations. In what follows, we will investigate the influ-
ence of the cosmological constant in the continuum
spectrum emitted by the accretion disk around quasars,
which exhibit strong curvature effects near the horizon.
Note, however, in our case, the origin of the cosmological
constant is more physically motivated.
Again, for convenience of future computations, we

redefine the metric components in terms of the gravitational
radius, which for metric Eq. (51) is given by rg ¼ G4M̃
(with c ¼ 1), such that the metric components assume the
form

eνðrÞ ¼ e−λðrÞ ¼ 1 −
2

r̃
þ q
r̃2

− Λr̃2; ð52Þ

where q ¼ Q̃=r2g and Λ ¼ Λ̃r2g=3.

IV. SPECTRUM FROM THE ACCRETION DISK
AROUND BLACK HOLES IN THE BRANE

EMBEDDED IN BULK f ðRÞ GRAVITY

In order to probe the observable effects of fðRÞ gravity in
higher dimensions, we consider the near horizon regime of
quasars (which host supermassive black holes at the
center), where deviations from general relativity is
expected. The electromagnetic emission from the accretion
disk around quasars bears the imprints of the background
spacetime and hence can be used as a suitable tool to study
the nature of strong gravity. In this section, we compute the
signatures of higher dimensional fðRÞ gravity in the
continuum spectrum emitted by the accretion disk around
quasars.
The continuum spectrum of black holes depends not

only on the nature of the background spacetime but also on
the characteristics of the accretion flow. Depending on the
equation of state governing the dark radiation and the dark
pressure, the background metric is given by Eqs. (42) and
(47) or (51). For the present work, we will approximate the
accretion flow in terms of the well-established “thin-disk
model” [106,107], where the accreting fluid is assumed to
be confined to the equatorial plane of the black hole, such
that the resultant accretion disk is geometrically thin with
hðrÞ ≪ r [hðrÞ being the height of the disk at a radial
distance r]. The azimuthal velocity uϕ of the accreting fluid
dominates the radial velocity ur and the vertical velocity uz,
such that uz ≪ ur ≪ uϕ. Therefore, such systems do not
harbor outflows. The presence of viscosity reduces the
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angular momentum of the accreting fluid and generates a
minimal amount of radial velocity, which facilitates slow
inspiral and fall of matter into the black hole. The
gravitational pull of the black hole is assumed to be much
stronger compared to the radial pressure gradients and
shear stresses, such that the accreting gas falls in nearly
circular geodesics.
The energy-momentum tensor associated with the

accreting fluid is given by

Tμ
ν ¼ ρ0ð1þ ΠÞuμuν þ tμν þ uμqν þ qμuν; ð53Þ

where ρ0uμuν is the stress tensor associated with the
geodesic flow (ρ0 being the proper density and uα as the
four velocity of the accreting fluid), Πρ0uμuν constitutes
the stress-energy tensor from the specific internal energy
(Π) of the system, tμν represents the energy-momentum
tensor evaluated in the local inertial frame of the accreting
fluid, and qμ is the heat flux relative to the local rest frame.
Note that both tμν and qμ are orthogonal to the four velocity,
such that uνtμν ¼ 0 ¼ uμqμ. In the thin-disk approxima-
tion, Π ≪ 1, such that the special relativistic corrections
to the local hydrodynamic, thermodynamic, and radiative
properties of the fluid can be safely neglected. Therefore,
the entire heat generated due to viscous dissipation is
completely radiated away and the accreting fluid retains no
heat. As a consequence, only the z component of the energy
flux vector qα has a nonzero contribution to the stress-
energy tensor. For a more elaborate description of the thin
accretion disk model, one is referred to [106–108].
The black hole is assumed to accrete at a steady rate _M0

and the accreting fluid is assumed to obey conservation of
mass, angular momentum, and energy. The conservation of
mass is given by

_M0 ¼ −2π
ffiffiffiffiffiffi
−g

p
Σur; ð54Þ

where g represents the determinant of the metric whose
effect on the spectrum we intend to study and Σ is the
surface density of the accreting fluid. The conservation of
angular momentum and energy assumes the forms

½ _M0L − 2π
ffiffiffiffiffiffi
−g

p
Wr

ϕ�;r ¼ 4π
ffiffiffiffiffiffi
−g

p
FL ð55Þ

and

½ _M0E − 2π
ffiffiffiffiffiffi
−g

p
ΩWr

ϕ�;r ¼ 4π
ffiffiffiffiffiffi
−g

p
FE; ð56Þ

respectively, where Ω is the angular velocity, L ¼ uϕ is the
specific angular momentum, and E ¼ −ut is the specific
energy of the accreting fluid. The flux from the disk is
given by F, where

F≡ hqzðr; hÞi ¼ h−qzðr;−hÞi; ð57Þ
while the height-averaged stress tensor in the averaged rest
frame is denoted by

Z
h

−h
dzhtαβi ¼ Wα

β: ð58Þ

The conservation laws can be manipulated such that the
flux FðrÞ from the accretion disk is given by

F ¼
_M0

4π
ffiffiffiffiffiffi−gp f̃; ð59Þ

where

f̃ ¼ −
Ω;r

ðE −ΩLÞ2
�
EL − EmsLms − 2

Z
r

rms

LE;r0dr0
�
: ð60Þ

Equation (59) is derived by assuming that the viscous stress
Wr

ϕ vanishes at the last stable circular orbit, such that the
accretion disk truncates at rms. After crossing the margin-
ally stable circular orbit, the accreting matter falls radially
into the black hole.
By studying the geodesic motion of massive test particles

in a given static, spherically symmetric spacetime, one can
derive the angular velocityΩ, the specific energy E, and the
specific angular momentum L in terms of the metric
components, such that

Ω ¼ dϕ
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fgϕϕ;rgfgtt;rg

p
gϕϕ;r

; ð61Þ

E ¼ −ut ¼
−gttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt −Ω2gϕϕ
q ; ð62Þ

and

L ¼ uϕ ¼ Ωgϕϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt −Ω2gϕϕ

q : ð63Þ

In Eq. (60), rms represents the radius of the marginally
stable circular orbit while Ems and Lms are specific energy
and specific angular momentum at rms. The marginally
stable circular orbit is obtained from the point of inflection
of the effective potential Veff in which the massive test
particles move. Therefore, it is obtained from the relation
Veff ¼ Veff ;r ¼ Veff ;rr ¼ 0, where Veff is given by

VeffðrÞ ¼
E2gϕϕ þ L2gtt

−gttgϕϕ
− 1: ð64Þ

Using Eqs. (62) and (63), Eq. (64) can be simplified to give
Eq. (45), which can be solved to obtain rms.
The photons thus generated in the system undergo

repeated collisionswith the accreting gas, such that a thermal
equilibrium is established between matter and radiation.
Such an accretion disk is therefore geometrically thin but
optically thick. Consequently, the disk radiates a Planck
spectrum at every radial distance r with peak temperature
given by TðrÞ ¼ ðF̃ðrÞ=σÞ1=4, where F̃ðrÞ ¼ FðrÞc6=G2

4
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(bringing back the G4 and c) and σ denotes the Stefan-
Boltzmann constant. By integrating the Planck function
BνðTðrÞÞ over the disk surface, one can compute the
luminosity Lν from the disk at an observed frequency ν,
such that

Lν ¼ 8π2r2g cos i
Z

rout

rms

ffiffiffiffiffiffiffiffiffi
−grr

p
BνðTðr̃ÞÞr̃dr̃ and

BνðTÞ ¼
2hν3=c2

expð hν
zgkT

Þ − 1
; ð65Þ

where rg denotes the gravitational radius, i represents the
inclination angle of the disk to the line of sight, and zg is the
gravitational redshift factor, which relates the modification
induced in the photon frequency while traveling from the
emitting material to the observer [109]. The gravitational
redshift factor is given by

zg ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt −Ω2gϕϕ

q
E −ΩL

: ð66Þ

Since the spectrum from the accretion disk is an envelope of a
series of blackbody spectra emitted at different peak temper-
atures, it is often called a multicolor/multitemperature black-
body spectrum. Note that the theoretical spectrum depends
chiefly on the gtt component of the metric, while the grr
component is required only during the integration of the flux
to obtain the luminosity [see Eq. (65)] [108].

A. Effect of bulk f ðRÞ gravity on the emission
from the accretion disk

In the present work, we are interested in investigating the
modifications induced in the continuum spectrum of
quasars due to the presence of fðRÞ gravity in higher

dimensions. The background spacetime is therefore given
by Eqs. (46) and (47) for equation of state P ¼ 0, while
(52) denotes the background metric when the equation of
state is given by 2U þ P ¼ 0.
In Fig. 1, we plot the theoretically derived spectrum from

the accretion disk when the equation of state is given by
P ¼ 0 for two different masses of supermassive black
holes, namely, 107 M⊙ [Fig. 1(a)] and 109 M⊙ [Fig. 1(b)].
For each of the masses, eight spectra (1–8) are plotted in
Fig. 1 by varying the various metric parameters in Eq. (47),
which are detailed in Table I. In each of the spectra, the gtt
component is similar to the Schwarzschild spacetime [see
Eq. (46)], while the grr component has several corrections to
the Schwarzschild metric [see Eq. (47)]. From Table I, it is
clear that the spectrum labeled by “1” corresponds to the
Schwarzschild scenario, although the ADM mass owes its
origin to fðRÞ gravity in higher dimensions in the action.
This difference in the origin of mass of the black hole cannot
be perceived by an external observer. In spectrum 2, the
spacetime is still Schwarzschild-like although themass term
in the gtt and grr components of the metric are not the same.

(a) (b)

FIG. 1. The above figure illustrates variation of the theoretically derived luminosity from the accretion disk with frequency for two
different masses of supermassive black holes. The background is given by Eqs. (46) and (47). Both (a) and (b) exhibit a set of eight
spectra, which are drawn to explain the impact of various metric parameters on the theoretical spectrum. The metric parameters
corresponding to spectra 1–8 are reported in Table I. The accretion rate assumed is 1 M⊙ yr−1 and cos i is taken to be 0.8.

TABLE I. Choice of metric parameters corresponding to
spectra 1–8 in Fig. 1.

Spectrum ε̃ γ̃ η̃ σ̃

1 2.0 0.0 0.0 0.0
2 0.5 0.0 0.0 0.0
3 2.0 9.0 0.0 1.0
4 2.0 10−7 0.0 1.0
5 2.0 1.0 100.0 100.0
6 2.0 1.0 −100.0 100.0
7 2.0 1.0 1.0 10−6

8 2.0 1.0 1.0 10−10
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From Fig. 1, it is clear that this change hardly affects the
theoretical spectrum. In spectra 3 and 4, the mass term in grr
is same as that of the gtt component, while σ̃ and γ̃ are
simultaneously changed as per Table I. Figure 1 shows that
change of σ̃ has an important effect in the spectrum (since
spectra 1 and3 showdeviations), while changing γ̃ barely has
any impact (since spectra 3 and 4 are overlapping). For
spectra 5–8, we fix ε̃ and γ̃; since we have understood their
effect on the spectrum.Overlap of spectra 5 and6 implies that
η̃ has a negligible effect on the spectrum. The variation in
spectra 1, 3, and 5 is chiefly due to the disparity in the values
of σ̃. However, once σ̃ is lowered below 10−6 the spectrum
becomes insensitive to the changes. This is inferred from the
overlap of spectra 7 and 8.
Figure 2 depicts the variation of the theoretically derived

luminosity with frequency for black hole masses 107 M⊙
and 109 M⊙ when the background spacetime is given by
Eq. (52), which corresponds to the equation of state
2U þ P ¼ 0. The values of the metric parameters corre-
sponding to the nine spectra illustrated in Fig. 2 are given in
Table II. Spectra 1, 4, and 7 correspond to a constant
magnitude of q ¼ −3, spectra 2, 5, and 8 are commensurate
with q ¼ 0, while spectra 3, 6, and 9 are in tandem with
q ¼ 0.95. For each set of constant q spectra, the cosmo-
logical constant Λ is variable according to Table II. From
the virtual overlap of the spectra with constant q but
variable Λ, it is quite explicit that the tidal charge parameter
q has a more significant impact on the spectrum than the
cosmological constant Λ. Only for q ¼ −3 does the
spectrum with Λ < 0 appear to be deviated from its Λ ≥
0 counterparts. Note that we cannot choose the magnitude
of Λ arbitrarily large, as this is in odds with the cosmo-
logical observations [102,105]. On the other hand, if Λ is
extremely small, it will hardly affect the spectrum. The
magnitude of Λ should therefore be chosen in an opti-
mal range.

Moreover, from a theoretical point of view, there are
restrictions on the maximum positive value of Λ. This
stems from the fact that, unlike anti–de Sitter spacetime, a
de Sitter spacetime has a cosmological horizon rCH that is
obtained from the largest solution of e−λðrÞ ¼ 0 in Eq. (52).
Our region of interest r should therefore be confined in the
region rEH < r < rCH, i.e., the outer radius of the accretion
disk rout should be within rCH. The fact that the inner radius
of the disk rin truncates at rms automatically ensures that
rin > rEH. With an enhancement in Λ, rCH shrinks while
rEH increases, such that for Λ ¼ Λmax ¼ 1=27 (and q ¼ 0)
the two horizons coincide, and for higher values of Λ, the
horizons disappear leading to the formation of a naked
singularity [110]. The presence of q slightly modifies Λmax
with a negative qmarginally lowering the value, as opposed
to a positive q. Also note that we cannot arbitrarily increase
q, once again to preserve the cosmic censorship conjecture.
In the absence of Λ, the presence of an event horizon
requires q ≤ 1. On increasing the negative value of Λ, the
maximum value of q gets marginally lowered (e.g., qmax ∼
0.925 if Λ ∼ −0.1), while the presence of a de Sitter Λ
enhances the qmax (e.g., qmax ∼ 1.01 if Λ ∼ 0.05). However,
no real value ofΛ can raise qmax up to 1.1. Therefore, for all
practical purposes, we will confine ourselves to Λ < 1=27
and q ≤ 1.
A more stringent constraint on Λmax is established from

the fact that no stable circular orbit exists for Λ > 2.37 ×
10−4 in the absence of the charge parameter [110]. Once
again, the presence of a negative q further lowers Λmax,
while a positive q raises this value up to a maximum of
Λ ∼ 7 × 10−4. Since our accretion disk truncates at rms, we
need to keep the maximum value of Λ well below
2.37 × 10−4. The choice of Λ automatically restricts the
maximum extent of the accretion disk. This is because a
positiveΛ has a repulsive effect, as opposed to the attractive
force offered by the central black hole. Therefore, the
physically relevant region for accretion is the regime where
the attractive force due to the black hole dominates. This is
given by the static radius rs, where the attractive force due
to the black hole and the repulsive force due to Λ nullify.
The value of rs diminishes with an increase in Λ and is

FIG. 2. The above figure illustrates effect of the metric Eq. (52)
on the theoretically derived spectrum from the accretion disk for
two different masses of supermassive black holes. The accretion
rate assumed is 1 M⊙ yr−1 and cos i is taken to be 0.8.

TABLE II. Choice of metric parameters corresponding to
spectra 1–9 in Fig. 2.

Spectrum q Λ

1 −3.0 0.0
2 0.0 0.0
3 0.95 0.0
4 −3.0 7 × 10−9

5 0.0 7 × 10−9

6 0.95 7 × 10−9

7 −3.0 −2 × 10−7

8 0.0 −2 × 10−7

9 0.95 −2 × 10−7
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evaluated from the turning point of the pseudo-Newtonian
potential Ψ experienced by the test particles while moving
in a given spacetime, in our case Eq. (52), where

Ψ ¼
Z

dr
L2

E2
r3; ð67Þ

and E and L are given by Eqs. (62) and (63). The outer
radius of the accretion disk rout must be less than rs for
accretion to take place.
In this work, we will take rout ∼ 500Rg, which is just a

typical choice [111,112]. This further brings down the
maximum allowed value for Λ ≤ 7 × 10−9 ¼ Λmax.
Although the outer radius of the accretion disk can deviate
from our choice, it will not affect the results substantially
since a greater rs (and hence a larger rout) will diminish
Λmax by orders of magnitude, which will have negligible
effect on the spectrum. A smaller rout, on the other hand,
will increaseΛmax, but the effective disk luminosity will not
change much since the flux is integrated over a smaller area
of the disk. In fact, one can verify that by raising Λmax ∼
10−6 the deviation from the Schwarzschild/Reissner-
Nordström scenario [110,113] is minimal. Since the mag-
nitude of Λ is very small, one needs to choose rout
judiciously in order to detect an observable effect of the
cosmological constant on the spectrum.
A feature common to both Figs. 1 and 2 is that the disk

luminosity of a lower mass black hole peaks at a higher
frequency. This is because the peak temperature of the local
blackbody emission is inversely proportional to the mass,
TðrÞ ∝ M−1=4 [see discussion above Eq. (65)]. Hence, disk
emission from stellar-mass black holes peak in soft x rays,
while for supermassive black holes the maximum emission
occurs in the optical domain. We also note that the spectra
in Figs. 1 and 2 are different in the sense that the deviation
from GR shows up in the low energy domain in Fig. 1 and
high energy regime in Fig. 2. This is attributed to the fact
that the grr term of the background metric governing Fig. 1
has a σ̃r̃4 contribution in the denominator, which sup-
presses the luminosity from the Schwarzschild scenario. It
is evident from Fig. 1 that even a minimal deviation of
σ̃ ∼ 10−6 causes a substantial departure from the general
relativistic counterpart (see Table I and Fig. 1). The r̃4

dependence of the grr component of the metric ensures that
the outer disk, which emits in lower frequencies, has the
dominant contribution in luminosity. Hence, the deviation
from general relativity in Fig. 1 becomes evident in the
lower frequencies. On the contrary, the metric components
corresponding to Fig. 2 have inverse powers of r̃, hence
deviations from GR are manifested chiefly in the inner disk,
which emits high energy radiations.

V. NUMERICAL ANALYSIS

In this section, we use the thin-disk approximation for
the accretion flow in the background spacetime given by

Eq. (52), since this represents an exact black hole solution,
to evaluate the theoretical estimates of optical luminosities
for a sample of 80 Palomar-Green quasars [114,115]. We
compute Lopt ≡ νLν at the wavelength 4861 Å following
Davis and Laor [115]. The masses of these quasars have
been determined previously by the method of reverberation
mapping [116–119], and for a small subsample of 13
quasars, the masses are also known by the M − σ method
[120–122]. The bolometric luminosities of these quasars
have been estimated using observed data in the optical [123],
UV [124], far-UV [125], and soft x-ray [126] domain. For all
the quasars in the sample, the accretion rates and the
observed estimates of the optical luminosity are reported
in [115]. Sincewe aremodeling the accretion disk of quasars
whose emission peaks are in the optical part of the spectral
energy distribution, we are primarily interested in accurate
and precise estimates of the optical luminosity.
In order to compute the theoretical optical luminosity the

inclination of the accretion disk, “i” is also required
[Eq. (65)]. For quasars, “cos i” generally ranges from
0.5 to 1, since emissions from nearly edge-on systems
are likely to be obscured. This permits us to neglect the
effect of light bending while computing the spectrum from
the accretion disk. Such effects become conspicuous for
disks with high inclination angles [127,128]. In this work,
we assume a typical value of cos i ∼ 0.8 for all the quasars
[115]. This is further supported by the fact that the error
(e.g., reduced χ2, Nash-Sutcliffe efficiency, index of agree-
ment, etc.) between the theoretical and observed luminos-
ities for nonrotating black holes with a fixed q gets
minimized when cosi lies between 0.77 and 0.82 [99].
The inclination angles of some of the quasars in our sample
have been independently determined by Piotrovich et al.
[129] by estimating the degree of polarization of the
scattered radiation from the accretion disk. It turns out
that their estimates are consistent with our choice.
In order to understand whether the presence of bulk fðRÞ

gravity provides a better approximation to the observed
spectra, we calculate the theoretical estimates of the optical
luminosity Lopt for all the 80 quasars with known masses,
accretion rates, and disk inclination. This is compared with
the corresponding observed values Lobs to deduce the most
favored choice of the metric parameters (q and Λ) that
explains observations the best. To arrive at the preferred
model for q and Λ, we discuss several error estimators.

A. Chi square χ 2

If fOig represents a set of observed data with possible
errors fσig, and Ωiðq;ΛÞ denotes the corresponding model
estimates of the observed quantity with model parameters q
and Λ, then the χ2 of the distribution is given by

χ2ðq;ΛÞ ¼
X
i

fOi − Ωiðq;ΛÞg2
σ2i

: ð68Þ
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For our sample, the error fσig corresponding to optical
luminosities of individual quasars is not reported. Hence,
we assign equal weight to every observation. The values of
q and Λ that minimize χ2 represent the most favored values
of the metric parameters.
It is interesting to note that, although χ2 turns out to be a

valid error estimator, reduced chi square χ2Red ¼ χ2=ν (with
ν being the degrees of freedom (d.o.f.)) is not useful in our
case since the number of d.o.f. for our model is not very
well defined. This is attributed to the fact that there are
restrictions to the values of both q and Λ (see Sec. IVA).
Such systems are known as models with prior where
definition of d.o.f. requires additional input apart from
the number of parameters in the model [130].
Figure 3 shows the constant χ2 contours for different

values of the metric parameters q and Λ. The values of the
brane cosmological constant Λ are expressed in units of
10−7r−2g . From the figure, it is clear that χ2 achieves a
minimum value ∼1.78 (denoted by the black dot) for a
negative tidal charge parameter q ∼ −0.6 and a positive
Λ ∼ 7 × 10−9. Since general relativity cannot account for a
negative tidal charge parameter, this may signal higher
dimensions at play in the strong gravity regime around
quasars. Note that the signature of q is more important than
its exact value, since negative tidal charge parameters do
not arise in general relativity. A positive Λ, on the other
hand, signifies that a de Sitter spacetime is preferred from
the continuum spectra of quasars. This is in agreement with
the cosmological observations [102,105]. In the next

section, we will comment on how the value of Λ estimated
from our analysis compares with the cosmological constant
measured from observations related to distant type Ia
supernovae and cosmic microwave background radiation.
Before that, we discuss a few more error estimators to
confirm the robustness of our results.

B. Nash-Sutcliffe efficiency and its modified form

Nash-Sutcliffe efficiency E [131–133] is given by

Eðq;ΛÞ ¼ 1 −
P

ifOi − Ωiðq;ΛÞg2P
ifOi −Oavg2

: ð69Þ

It relates the sum of the absolute squared differences
between the theoretical predictions Ωi and the observed
values Oi, normalized by the variance of the observed
values. In Eq. (69), Oav denotes the mean observed optical
luminosity of the quasars. E can assume a maximum value
of 1. A model with E ∼ 1 is ideal since it predicts the
observations with greatest accuracy. From Eq. (69), it is
clear that E can acquire negative values and may go up to
−∞. A model with negative E indicates that the average of
the observed data is a better predictor than the model.
Since Nash-Sutcliffe efficiency E is susceptible to being

oversensitive to higher values of the luminosity, a modified
version of the same is proposed, which is denoted by E1

[132]. This is due to the presence of the square of the error
in the numerator in Eq. (69). Accordingly, the modified
Nash-Sutcliffe efficiency E1 is defined to be

E1ðq;ΛÞ ¼ 1 −
P

ijOi −Ωiðq;ΛÞjP
ijOi −Oavj

; ð70Þ

such that it succeeds to enhance the sensitivity of the
estimator toward lower values of optical luminosity. Similar
to E, the most favored model of q and Λ should maxi-
mize E1.
In Figs. 4(a) and 4(b), we plot contours of constant E and

E1, respectively, as functions of q and Λ. As before, the
black dot in both figures indicates the coordinates of
maximum E and E1. The figures explicitly elucidate that
both the error estimators maximize for negative q and
positive Λ ∼Oð10−9Þ, which is in agreement with our
previous findings. This may be an indication of some new
physics at play in the strong gravity regime: higher
dimensions being one such possibility.

C. Index of agreement and its modified form

It turns out that the Nash-Sutcliffe efficiency and its
modified form remain insensitive toward the differences
between the observed and predicted means and variances.
To overcome this shortcoming, the index of agreement is
proposed [132–135]. It is denoted by d and assumes the
following mathematical form:

FIG. 3. Contours of constant χ2 as a function of the metric
parameters q and Λ. The values of Λ are in the units of 10−7r−2g .
The minimum of the χ2 is denoted by the black dot. It is evident
from the plot that χ2 minimizes for a negative value of q ∼ −0.6
and a positive Λ ∼Oð10−9Þ. While a negative q marks a clear
deviation from general relativity, a positive Λ indicates that a de
Sitter spacetime is favored by electromagnetic observations from
quasars.
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dðq;ΛÞ¼ 1−
P

ifOi−Ωiðq;ΛÞg2P
ifjOi−Oavjþ jΩiðq;ΛÞ−Oavjg2

: ð71Þ

The denominator, often known as the potential error,
denotes the maximum deviation of each pair of observed
and predicted luminosities from the average luminosity.
Again, due to the presence of square terms in the

numerator, the index of agreement suffers from over-
sensitivity to higher values of optical luminosity, and
hence, its modified version d1 is proposed, where

d1ðq;ΛÞ¼ 1−
P

ijOi−Ωiðq;ΛÞjP
ifjOi−Oavjþ jΩiðq;ΛÞ−Oavjg

: ð72Þ

From Eqs. (71) and (72), it is clear that the best model for
q and Λ corresponds to the maximum value for d and d1,

which cannot be greater than 1. Since the denominators in
Eqs. (71) and (72) are greater than Eqs. (69) and (70),
respectively, the index of agreement and its modified form
always assume greater values compared to E and E1.
Figures 5(a) and 5(b) illustrate the constant contours of
d and d1 with variation in q and Λ. From the coordinates of
the black dot, which denote the maximum of E and E1, it is
clear that the index of agreement and its modified form
also attain a maxima for a negative value of q and a positive
Λ. The maximum value of d and d1 is achieved for q ∼
−0.6 and q ∼ −0.2, respectively. The value of Λ that
maximizes d and d1 corresponds to 7 × 10−9r−2g . Since
Figs. 5(a) and 5(b) replicate the trend exhibited by Figs. 4(a)
and 4(b), respectively, the conclusions drawn previously
remain unaltered. Therefore, the behavior of the error

(a) (b)

FIG. 4. Contours of constant (a) Nash-Sutcliffe efficiency E and (b) the modified form of the Nash-Sutcliffe efficiency E1 with the
tidal charge parameter q and Λ. As before, the values of Λ are in units of 10−7r−2g . Both the error estimators maximize for negative values
of q and positive Λ ∼Oð10−9Þ.

(a) (b)

FIG. 5. Contours of constant (a) index of agreement d and (b) its modified form d1 with variations in the tidal charge parameter q and
brane cosmological constant Λ. The black dot indicates the values of q and Λ, where d and d1 attain the maximum. Both the error
estimators maximize for negative values of q and positive Λ ∼Oð10−9Þ. Note that the values of Λ are in units of 10−7r−2g .
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estimators indicate that a negative tidal charge parameter and
a positive Λ is favored by optical observations of quasars.

VI. SUMMARY AND CONCLUSIONS

In this work, our chief goal was to extricate the imprints
of bulk fðRÞ gravity from the quasar continuum spectrum,
which are ideal astrophysical probes to explore the nature
of gravitational interaction in extreme situations. Extra
dimensions and higher curvature corrections are often
believed to be manifestations of the ultraviolet nature of
gravity, with interesting consequences in inflationary cos-
mology, late-time cosmic acceleration, gravitational waves,
and collider physics. Hence, it is instructive to investigate
their impact on the electromagnetic spectrum emitted by
the accretion disk around quasars, which are expected to
exhibit maximum curvature effects, especially near the
horizon. The presence of fðRÞ gravity in higher dimensions
substantially modifies the effective gravitational field
equations on the brane, such that they evince significant
deviations from Einstein’s equations. Even in the absence
of any matter energy on the brane, the electric part of the
Weyl tensor, which represents the nonlocal gravitational
effects of the bulk, acts a source for gravity in four
dimensions. In addition, the interplay of the bulk cosmo-
logical constant, brane tension, and higher curvature terms
in the bulk action naturally induce a cosmological constant
in the brane, whose origin is physically motivated. A
positive cosmological constant is often invoked to interpret
the observations related to distant type Ia supernovae and
the anisotropies in the cosmic microwave background
radiation, which signifies an accelerated expansion of
the Universe. Therefore, the effect of such a term in the
black hole continuum spectrum is worth exploring.
As a first approximation, static, spherically symmetric

and vacuum solutions of these modified field equations
are explored since they represent the simplest deviation
from the standard Schwarzschild scenario in general
relativity. These approximations permit a decomposition
of the electric part of the Weyl tensor into dark radiation
and dark pressure, such that various equations of state
connecting them lead to different classes of black hole
solutions. We consider two such solutions in this work,
corresponding to equations of state P¼ 0 and 2U þ P ¼ 0.
While the former leads to a perturbative solution, the latter
assumes an exact black hole spacetime, bearing a striking
resemblance to the Reissner-Nordström–de Sitter/anti–de
Sitter/flat metric in general relativity. The asymptotic
character of the exact solution is determined by the
signature and the magnitude of the brane cosmological
constant, while the trademark of extra dimensions is
encoded in the charge parameter, which can assume a
negative sign, unlike GR. Although we analyze the effect of
both backgrounds on the quasar continuum spectrum, we
perform a comparison with observations only with the

exact spacetime, since the perturbative background is
subject to vary with higher order corrections to the metric.
It is important to note that the exact solution is

characterized by two parameters, namely, the tidal charge
parameter and the brane cosmological constant. In a
previous work [99], we explored the sole impact of the
charge parameter on the continuum spectrum of 80 quasars
to infer that optical observations of quasars favor a negative
charge parameter. This work is subsequently generalized to
axisymmetric spacetimes [136], where the metric resem-
bles the familiar Kerr-Newmann solution in GR. Inclusion
of black hole rotation not only corroborates our earlier
finding, but also enables us to estimate the spin of the
quasars [136]. This is further supported by the study of
quasiperiodic oscillations in the black hole power spec-
trum, where a negative charge parameter is reported to be
favored by observations [137].
The present work aims to examine the effect of the

charge parameter on the continuum spectrum in the
presence of the brane cosmological constant. In order to
accomplish this, we compute the theoretical estimates of
optical luminosity for the sample of 80 quasars by varying
the two relevant metric parameters (q and Λ) and compare
them with the corresponding observed values. By comput-
ing several error estimators, namely, chi squared, Nash-
Sutcliffe efficiency, index of agreement, and the modified
versions of the last two, we conclude that optical obser-
vations of quasars indeed favor a negative tidal charge
parameter and a small positive Λ. A negative charge
parameter that potentially arises in a higher dimensional
scenario marks a clear deviation from general relativity and
this is in accordance with our previous findings. A positive
Λ, on the other hand, is in concordance with the afore-
mentioned cosmological observations. We further mention
that the tidal charge is related to the compactification scale
of the extra dimension since the signature and magnitude of
q determines the extent of the extra dimension as well as the
penetration of the horizon of the black hole into the bulk
spacetime [138]. This is achieved by evolving the brane
metric to the bulk, which involves studying the evolution
of the extrinsic curvature along the extra dimension. In
particular, negative values of qmodify the bulk metric from
a black string to a black cigar, thereby making the extra
dimension more compactified and hence seeming to be
more natural [138]. In particular, the observationally
favored value of q ∼ −0.6 makes the extra dimension
compactified by 1% compared to the general relativistic
scenario. The compactification scale, however, continues to
be the Planck scale.
Our analysis also enables us to provide an estimate of the

magnitude of Λ from the quasar optical data, which turns
out to be Oð10−9Þ in units of inverse squared of the
gravitational radius rg. Since rg varies with the mass of
the quasar, it might appear that Λ deduced by us is mass
dependent. However, one can verify that this choice of units
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does not affect the order of magnitude estimate of Λ, which
is based on the maximum mass Mmax of the quasar in the
sample. For lower mass quasars with mass M, we should
have ideally chosen a cosmological constant M2=M2

max
times smaller than the Λ of Mmax while performing the
error analysis. SinceΛ is inherently very tiny, one can check
that it will be even smaller for the low mass quasars, and
therefore, their impact on the spectrum will be negligible.
WithMmax ∼ 109 M⊙, it can be shown thatΛ ∼ 10−38 cm−2

and it is remarkable that such a tiny value of the cosmo-
logical constant can be discerned from the accretion data. A
variation of the outer radius rout allows us to consider a
marginally higher value for the repulsiveΛ, which enhances
the magnitude of estimated Λ roughly by an order. Our
analysis, therefore, establishes a strong constraint on the
upper limit ofΛ from the quasar optical data. Note that this is
a much stronger constraint compared to the work of Pérez

et al. [113], which is based on the observation of only a
single stellar-mass black hole source Cygnus X-1. With
enhanced precision in observing the inner regions of the disk
by future telescopes and including the effects of the corona
in modeling the spectral energy distribution of the quasars, a
tighter constraint onΛ can be established. A similar analysis
on a different sample of quasars and microquasars with
known masses and accretion rates is also worth exploring.
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