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When formulated in terms of connection and coframes, and in the time gauge, the phase space of general
relativity consists of a pair of conjugate fields: the flux 2-form and the Ashtekar connection. On this phase-
space, one has to impose the Gauss constraints, the vector, and scalar Hamiltonian constraints. These are
respectively generating local SU(2) gauge transformations, spatial diffeomorphisms, and time diffeo-
morphisms. We write the Gauss and space diffeomorphism constraints as conservation laws for a set of
boundary charges, representing spin and momenta, respectively. We prove that these kinematical charges
generate a local Poincaré ISU(2) symmetry algebra. This gives strong support to the recent proposal of
Poincaré charge networks as a new realm for discretized general relativity [Classical Quantum Gravity 36,
195014 (2019)].

DOI: 10.1103/PhysRevD.101.024012

I. INTRODUCTION

General relativity is a fully constrained theory of
spacetime geometry, which means that its whole physical
content is encoded in its gauge transformations and the
resulting symmetries and conserved charges induced on the
boundaries of space-time. The goal of the present work is to
revisit the Hamiltonian analysis of general relativity in its
first order formulation à la Cartan in terms of coframe and
connection, with a special focus on boundary terms and
symmetries.
This analysis is based on a new perspective in the way

one handles differentiability of gauge generators in the
presence of boundaries. In this approach one allows for the
presence of boundary degrees of freedom (d.o.f.), the edge
modes, which are acting upon by the boundary symmetry
charges. There is growing understanding that edge modes
must play a key role in quantum gravity. They are central in
the quantization of 2d Yang-Mills and 2d gravity [1–3],
They play a key role in 3d quantum gravity [4–7]. They are
essential to the understanding of boundary dynamics and to
the construction of defects operators in Chern-Simons
theory [8–11]. In four and higher space-time dimensions,
edge modes have been argued to be essential to under-
standing black hole entropy [12–15]. Finally they are now
understood to be a key ingredient in the holographic nature
of gravity [16–19] and they provide a new understanding in
the quantization of geometric observables [20–22].

In [20], relying on the assumption that curvature on the
boundary is distributional (i.e., it vanishes on the boundary,
except at the location of a given set of points or punctures),
we exploited the local holographic nature of gravity to put
forward an extension of the kinematical quantum d.o.f.
given by the spin networks in loop quantum gravity. The
analysis of [20], motivated by a realization of quantum
gravity as dynamical networks of quantum edge modes, led
to a novel construction of tubular networks dressed by
representations of the Euclidean isoð3Þ algebra generated
by the fluxes and momentum operators (plus the additional
higher mode quantum numbers). This is done by gluing
together 3D regions bounded by 2D surfaces with punctures
where the edge modes live and which are presumed to carry
all the dynamical information of the 3D bulk geometry. The
most natural reduction or coarse-graining which traces out
the higher modes of these tubular networks leads to these
generalized spin networks, dubbed Poincaré networks,
which then carry a representation of the SU(2) charges
from the Gauss constraint and also of the momentum
charges associated with the diffeomorphism constraint.
In the present paper, we review the classical setup and

provide further details, both at the conceptual and the
technical level, of the novel framework developed in [20].
The key idea we develop is twofold. First we show that the
constraints on the phase space of general relativity can be
written as conservation laws of local charges. These
charges can be integrated along a 2-dimensional surface
after smearing with local symmetry parameters. Then we
also show that the conserved charges, properly supple-
mented with boundary terms, do generate the correct gauge
transformations. These boundary terms involve edge modes

*lfreidel@perimeterinstitute.ca
†etera.livine@ens-lyon.fr
‡dpranzetti@perimeterinstitute.ca

PHYSICAL REVIEW D 101, 024012 (2020)

2470-0010=2020=101(2)=024012(12) 024012-1 © 2020 American Physical Society

https://orcid.org/0000-0001-7888-2064
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.024012&domain=pdf&date_stamp=2020-01-03
https://doi.org/10.1088/1361-6382/ab40fe
https://doi.org/10.1088/1361-6382/ab40fe
https://doi.org/10.1103/PhysRevD.101.024012
https://doi.org/10.1103/PhysRevD.101.024012
https://doi.org/10.1103/PhysRevD.101.024012
https://doi.org/10.1103/PhysRevD.101.024012


propagating on the boundary and carrying a boundary
symplectic form. The edge modes are would-be-gauge
d.o.f. induced on the boundary, shadows of the bulk gauge
transformations, which ensure that the conserved charges
are properly differentiable with respect to field variations,
both in the bulk and on the boundary.
In our analysis, we assume the time gauge, i.e., we fix

the time direction in the internal space to the 4-vector
nI ¼ ð1; 0; 0; 0Þ, which partially gauge-fixes the local
Lorentz transformations down to local SU(2) transforma-
tions. The phase space of general relativity then consists
of the canonical pair of conjugate fields, the Ashtekar-
Barbero SU(2) connection A and the cotriad or flux 2-form
Σ ¼ e ∧ e, supplemented with first class constraints gen-
erating local SU(2) gauge transformations and space-time
diffeomorphisms. We focus on the kinematics of the theory,
analyzing the SU(2) gauge transformations and space
diffeomorphisms while postponing studying the fate of
time diffeomorphisms and the time evolution of the
geometry to future work. In the first part of this work,
we show that the constraints generating the SU(2) gauge
transformations and space diffeomorphisms can be recast in
terms of conservation of boundary charges satisfying a
Poincaré algebra ISU(2). While the SU(2) sector of
Poincaré obviously corresponds to the local gauge trans-
formations, the space diffeomorphisms are now written as
field dependent translations.
More precisely, we consider a bounded 3D region B

within the canonical space-like Cauchy hypersurface and
call its boundary S. We establish the validity of the Poincaré
algebra for the boundary charges Gα and Pφ which are
respectively the local generators of local internal rotations
and translations:

fGα; Gβg ¼ Gðα×βÞ; fGα; Pφg ¼ Pðα×φÞ;

fPφ; Pξg ¼ 0; ð1Þ
where α, β, φ, ξ are suð2Þ-valued scalar fields on the
hypersurface and α × β denotes the cross product. Now,
coming back to the diffeomorphisms, we can map an
arbitrary vector field φ̂ ¼ φ̂a∂a to a suð2Þ-valued scalar
field φi ¼ ιφ̂ei ¼ φ̂aeia and identify the charge correspond-
ing to the 3D diffeomorphism as a field-valued translational
charge:

Dφ̂ ¼ Pιφ̂e: ð2Þ
This allows us to show that, while the translational charges
commute with each other, the covariant diffeomorphism
algebra admits an extension proportional to the boundary
curvature on S:

fDξ̂; Dφ̂g ¼ D½ξ̂;φ̂� þ Gιξ̂ιφ̂F
: ð3Þ

This realization of the algebra of conserved charges as a
Poincaré algebra comes in support of the recent proposal of

discretizing general relativity in terms of Poincaré charge
networks [20].
In the Sec. II below, we review the bulk phase space for

general relativity with the constraints written as conserva-
tion laws for electric, magnetic and translation charges. In
the following Sec. III, we introduce the edge modes and
correct the conserved charges with the appropriate boun-
dary terms. We show that they generate as expected the
SU(2) gauge transformations and 3Ddiffeomorphisms. In the
final Sec. IV,we compute the algebra of charges and show that
they are effectively repackaged as a Poincaré algebra.

II. BULK PHASE SPACE AND CONSTRAINTS

Given a spacelike Cauchy hypersurface M in a 3þ 1
decomposition of spacetime, we consider a bulk 3D region
B ⊂ M with a 2D boundary S. The bulk phase space of first
order gravity in connection formulation is parametrized by
the Ashtekar–Barbero SU(2) connection and the suð2Þ-
valued flux 2-form, namely

Ai ≔ Γi þ γKi; Σi ¼
1

2
ðe × eÞi; ð4Þ

where we denote the SU(2) bracket ðf × gÞi ¼ ϵijkfj ∧ gk

for arbitrary suð2Þ-valued forms f and g, with the indices
i; j; k ∈ f1; 2; 3g labeling the Pauli matrices as a basis of
the suð2Þ Lie algebra. Above, Γi is the 3d spin connection,
ei the normalized1 3d-frame field, and Ki the extrinsic
curvature one-form:

dΓei ¼ 0; Ki ≔ dωni; ð5Þ

with ni the hypersurface internal normal and ω the Lorentz
connection. In the time gauge we have e0 ¼ n.
The Ashtekar-Barbero connection and the flux 2-form

form a pair of conjugate fields, so that the bulk presym-
plectic 2-form reads (see [23] for a review of the canonical
analysis of general relativity):

ΩB ¼
Z
B
ðδAi ∧ δΣiÞ: ð6Þ

We focus our attention on the kinematical theory, which
means that the phase space is restricted by the action of two
sets of kinematical constraints: the Gauss law and the space
diffeomorphism constraints. We postpone to future work
the investigation of the full dynamical theory that takes
into account the time diffeomorphism constraint. These
kinematical constraints are usually [23] written in terms of
the canonical variables Ai

a and the densitized triad Ẽa
i ≔

ϵabcΣi
bc as

1This means that we have rescaled the coframe field by
ei → eiffiffiffiffi

κγ
p .
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Gi ¼ ∇aẼa
i ¼ 0; Da ¼ Fi

abẼ
b
i ¼ 0: ð7Þ

It is nevertheless convenient to keep working with differ-
ential forms, in which case the Gauss law is written as a
conservation law Gi ≔ dAΣi ¼ 0 for the Lie algebra valued
two-form Σi identified as the electric charge aspect. A
central point of our approach [20] is to show that the
diffeomorphism constraint can similarly be written as a
conservation law for a momentum aspect defined as:

Pi ≔ dAei: ð8Þ
To do so, we use an isomorphism between vector fields, and
Lie-algebra valued functions

ΓðTBÞ → Cðsuð2ÞÞ
φ̂ ↦ φi ≔ ιφ̂ei: ð9Þ

In the following, we will denote vector fields with a hat
φ̂ ¼ φ̂a∂a, which should be distinguished from the corre-
sponding scalar functions φi ≔ ιφ̂ei ¼ φ̂aeia. The diffeo-
morphism constraint associated with the vector field φ̂
is denoted Dφ̂. We can now witness the “caterpillar
to butterfly” transformation of the 3D diffeomorphism
generator:

Dφ̂ ¼ ðφ̂aFi
abẼ

b
i Þ

¼ ιφ̂Fi ∧ Σi

¼ −Fi ∧ ιφ̂Σi

¼ Fi ∧ ðe × ιφ̂eÞi
¼ ðF × eÞiφi

¼ ðd2AeiÞφi

¼ ðdAPiÞφi; ð10Þ
where we have used the useful relation ðF × ηÞi ¼ d2Aη

i

valid for any suð2Þ-valued n-form ηi. This shows that the
diffeomorphism constraint follows from a conservation
law, namely the conservation of momenta dAPi ¼ 0.
This momentum aspect Pi ¼ dAei actually measures the

torsion of the Ashtekar-Barbero connection A. Let us
remember that the Ashtekar-Barbero connection A ¼ Γþ
γK combines the 3D spin-connection Γ and the extrinsic
curvature K. Since the spin-connection is by definition
torsionless, dΓe ¼ 0, the Ashtekar-Barbero torsion dAei
simply measures the extrinsic curvature up to a factor given
by the Immirzi parameter, P ¼ dAe ¼ γðK × eÞ. This
provides a direct geometrical interpretation of the momen-
tum aspect 2-form P in terms of the extrinsic curvature of
the hypersurface.
Putting the Gauss law dAΣi ¼ 0 together with the 3D

diffeomorphism constraint dAPi ¼ 0, we get two conser-
vation laws, to which it is natural to add the Bianchi identity
dAFi ¼ 0 satisfied automatically by the Ashtekar-Barbero

connection. This means that the theory at the kinematical
level is defined by the following three conservation laws in
the bulk:

dAΣi ≃ 0; Electric Gauss law; ð11Þ

dAPi ≃ 0; Translation constraint; ð12Þ

dAFi ≃ 0; Magnetic Gauss law: ð13Þ

The first two are first class constraints to be imposed on the
phase space variables, while the last one is a topological
constraint directly implied by the definition of the curvature
tensor FðAÞ and the exterior derivative d for the differential
calculus. An interesting relationship exists between these
constraints:

dAΣ ¼ P × e; dAP ¼ F × e; dAF ¼ 0; ð14Þ

which hints at an intriguing hierarchy and order between
these conservation laws. The first identity says that any
source to the Gauss constraint is a source of angular
momenta since P × e can be understood as the angular
momenta density associated with the momenta P. The
second equality is more surprising as it suggests that the
momenta density, which appears on the right-hand side
(RHS) of the momentum constraints, is itself an “angular
momenta” associated with the monopole charge aspect, or
curvature F. Note that the last equations stay sourceless
since any source would be a gravitational monopole, which
is excluded. The full meaning of these equations remains to
be unraveled.
The associated charges that are covariantly conserved are

the electric, the translational and the magnetic charges2

Qe
α ¼

Z
S
αiΣi; Qt

φ ¼
Z
S
φiPi; Qm

β ¼
Z
S
βiFi;

ð15Þ

where αi and βi respectively denote the SU(2) electric
and magnetic gauge parameters. Using the isomorphism

2The conservation law in the bulk dAΣ ¼ 0 implies by an
integration by parts that the boundary charge is given by the bulk
integral of the covariant variation of the electric gauge parameter:

dAΣ ¼ 0 ⇒ Qe
α ¼

Z
S
αiΣi ¼

Z
B
dAαi ∧ Σi:

If the electric gauge parameter is held covariantly constant in the
bulk, then the boundary charge vanishes Qe

α ¼ 0. In particular, if
the boundary consists in two disjoints parts, e.g., if the 3D bulk is
an open cylinder between an initial surface and a final surface,
then the initial surface charge and final surface charge are equal.
The same holds for the translational and magnetic boundary
charges.
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between vector fields φ̂ ¼ φ̂a∂a and suð2Þ-valued scalar
functions φi, the diffeomorphism charge can then be
written as a field dependent translation associated with
the vector φ̂

Qd
φ̂ ≔ Qt

{φ̂e ¼
Z
S
{φ̂eidAei ¼

1

2

Z
S
eiLφ̂ei; ð16Þ

where Lφ̂ ≔ dAιφ̂ þ ιφ̂dA is the covariant Lie derivative
along the vector field φ̂.
As it is well known, any first class constraint also plays

the role of canonical generators for an associated gauge
transformation. This dual role of the constraints, often
phrased by pointing out that each first class constraint kills
two d.o.f., reflects the fact that initial data differing by an
infinitesimal gauge transformation again solve the con-
straints. In other words, (A, Σ) and an infinitesimal
variation ðAþ δA;Σþ δΣÞ represent the same data but
in different gauges, as long as

δαA ¼ fA;Hαg; δαΣ ¼ fΣ; Hαg; ð17Þ

where Hα is the Hamiltonian generating the given trans-
formation δα, namely

δHα ¼ ΩBðδα; δÞ ¼ IδαΩB; ð18Þ

where we denote by I contraction in field space, namely
IδΩ represents the contraction between the (field space)
vector field δ and the (field space) 2-form Ω.
In order for δα to be a gauge transformation one needs its

Hamiltonian generator Hα to vanishes identically on
solutions. On the other hand, the Hamiltonian generator
of a symmetry transformation that does not vanish on-shell
generates truly physical canonical transformations that
change the system. In the presence of a boundary, it is
well known that some of the would-be gauge transforma-
tions are in fact symmetries. This becomes especially
important when analyzing the edge modes propagating
on the boundary, which are the modes conjugated to the
boundary symmetry generators. The Poisson bracket of two
Hamiltonian generators is given by:

fHα; Hβg ¼ δβHα ¼ ΩBðδα; δβÞ; ð19Þ

where δα, δβ are the Hamiltonian vector fields generated by
the two Hamiltonians.
As such, the covariant phase space formalism provides

efficient tools to identify the gravitational gauge charges
and to study their algebra. An important feature of this
formalism is the requirement that the Hamiltonian gener-
ator be differentiable with respect to (all) field variations, as
demanded by the definition of the Poisson bracket. This
requirement has far reaching implications in the presence of
boundaries [16]. To understand this crucial aspect clearly,

let us first notice that differentiability of the Hamiltonians
implies that some of the constraints need to be integrated by
parts. For instance, when the bulk region B is bounded by a
surface S, the generator of electric gauge transformations
requires an appropriate boundary term in order to take a
differentiable form:

Gα ¼
Z
B
αi ∧ dAΣi −

Z
S
αi ∧ Σi ¼ −

Z
B
dAαi ∧ Σi: ð20Þ

We see that in the presence of a boundary and in the
absence of edge modes,3 the gauge transformations are only
the ones associated with a gauge parameter vanishing at the
boundary, while symmetries correspond to transformations
with nonvanishing boundary parameter. We could then
follow the same strategy also for the translation constraint
(12) and the magnetic Gauss law (13) and introduce the
corresponding bulk generators

Pφ ¼ −
Z
B
dAφi ∧ dAei; ð21Þ

Fβ ¼ −
Z
B
dAβi ∧ FiðAÞ: ð22Þ

However, even after this integration by parts, the generators
(21), (22) are still not differentiable, as their variation still
yields a boundary contribution. At this point, to define the
generators of translations and magnetic transformations as
proper Hamiltonians, one can follow two strategies. The
first option is the most standard: one imposes boundary
conditions by demanding that the phase space field

variations vanishes on the boundary. In particular, δei¼S 0
ensures the differentiability of the translation generators.

While δAi¼S 0 ensures the differentiability of the magnetic

gauss generator (here ¼S denotes an equality for forms
pulled-back to S). However, such substantial restrictions
can kill boundary d.o.f., which may play an important
physical role (see, e.g., [24] for the role of edge modes in
the description of the quantum Hall effect). Physically, this
means that we consider physical processes restricted to a
charge superselection sector. That is processes that do not
change the value of the boundary charges: δQα ¼ 0. The
second strategy aims to allow such processes and more
flexible boundary conditions by extending the bulk phase
space with boundary edge modes. This allows for a
physical interpretation of the boundary charges, in particu-
lar for momentum charges associated with the diffeo-
morphism constraint, and a symmetric treatment of the
Gauss and diffeomorphism constraints. We describe in
detail this alternative approach in the next section.

3That is, in the absence of the introduction of explicit new
boundary d.o.f.
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III. EXTENDED PHASE SPACE

In this section we perform a phase space extension by
introducing the electric edge modes. This allows us to
define differentiable Hamiltonian generators of both elec-
tric and translational gauge transformations, which we
compute explicitly. We postpone to future investigation
the study of magnetic gauge transformations associated to
the Bianchi identity.

A. Boundary presymplectic 2-form

In order to allow for boundary field variations, we can
extend the bulk phase space by adding a boundary term to
the presymplectic 2-form (6). In the present work, we focus
on electric gauge transformations and translations, and we
postpone the detailed study of magnetic gauge transforma-
tions to future investigation. This means that we will allow
arbitrary boundary field variations for the triad field ewhile
keeping the Ashtekar-Barbero connection fixed on the
boundary. In this setting, we see from the expression
(21) that, in order for the translation generator to become
differentiable, we need to parametrize the boundary pre-
symplectic 2-form in terms of a boundary coframe field ei,
which we distinguish from the bulk frame ei. Therefore, if
we allow for arbitrary boundary variations δei, while still

keeping the boundary connection fixed δAi¼S 0, and thus the
boundary curvature fixed, δFiðAÞ¼S 0, we introduce the
extended presymplectic 2-form, as shown in the earlier
work [21,22]:

Ω ¼ ΩB þΩS ¼
Z
B
ðδAi ∧ δΣiÞ þ

1

2

Z
S
ðδei ∧ δeiÞ: ð23Þ

Within this extended phase space, the translation generator
(21) becomes differentiable. However, this spoils the
Hamiltonian nature of the electric generator (20). In order
to remedy this, it is necessary to add a boundary term to
(20) in terms of the boundary coframe field. The require-
ment that the Hamiltonian generator vanishes on-shell
dictates the form of such boundary term. More precisely,
if we demand the boundary simplicity constraint

Si ≔ Σi −
1

2
ðe × eÞi¼S 0 ð24Þ

to hold,4 then the canonical generators for the gauge
transformations associated with the electric and transla-
tional constraints (11), (12) are given by:

Gα ¼ −
Z
B
dAαi ∧ Σi þ

1

2

Z
S
αiðe × eÞi; Electric gauge

ð25Þ

Pφ ¼ −
Z
B
dAφi ∧ dAei þ

Z
S
φidAðei − eiÞ;

Spatial translation: ð26Þ

We see that with the introduction of the boundary electric
edge modes ei, Gα vanishes on-shell even for parameters αi
that are nonvanishing on S; explicitly,

Gα ¼
Z
B
αidAΣi −

Z
S
αiSi¼̂ 0; ð27Þ

where ¼̂ denotes on-shell of (24), or equivalently

si ≔ ei − ei¼S 0. This is in agreement with the general
philosophy of [18] where it is shown that the restoration
of boundary gauge symmetry goes hand-in-hand with the
introduction of edge modes.
On the other hand, the translation Hamiltonian generator

(26) does not vanish on-shell in general for translations that
do not vanish on the boundary; explicitly,

Pφ ¼
Z
B
φidAPi −

Z
S
φidAei¼̂ −

Z
S
φiPi; ð28Þ

where we have used the translation constraint dAPi ≃ 0. In

[20] the boundary condition Pi¼SP0 was assumed, where SP
is a punctured boundary sphere. This means that nonzero
symmetry charges were associated only to the punctures,
where the source of momenta were located. While we are
not going to introduce distributional curvature and momen-
tum at the punctures here, as we are simply interested in the
classical algebra of the gravitational kinematical charges,
one can think of (26) as the generator of gauge translation
in the bulk and on the boundary at the locus of vanishing
Pi, and as a generator of boundary symmetry otherwise.
Before looking in more detail at the symmetry algebra,

let us conclude this part with an interesting observation
concerning the momentum Pi (26) which plays a key role
in the symplectic structure. Pi is simply the canonical
momentum conjugate to the coframe ei. In fact, assuming
the simplicity constraint in the form e ¼ e on the boundary,
and denoting ω the integrand of the symplectic structure,
we have:

ω ¼ δAi ∧ δΣi þ
1

2
dðδei ∧ δeiÞ

¼ δAi ∧ ðe × δeÞi þ
1

2
dAδei ∧ δei −

1

2
δei ∧ dAδei

¼ ðδA × eÞi ∧ δei þ dAδei ∧ δei

¼ δPi ∧ δei: ð29Þ

4This can be equivalently written as the constraint that the
boundary coframe equals the pull-back of the bulk frame field

ei¼S ei.
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This shows that the bulk plus boundary phase space
ðAi;Σi; eiÞ, supplemented by the matching condition
e ¼ e on the boundary, can be expressed equivalently in
terms of the canonical pair ðPi; eiÞ.
In Sec. III C, we establish explicitly that the generators

(25), (26) give respectively the electric and the translational
gauge transformations. As a first step, we introduce a useful
duality map between suð2Þ-valued 1-forms and suð2Þ-
valued 2-forms below in Sec. III B.

B. A duality map

In order to write the phase space field transformations in
a symplectic manner, we need to introduce the following
map from Lie algebra valued 2-forms to Lie algebra valued
1-forms:

ρ∶ Ω2ðsuð2ÞÞ → Ω1ðsuð2ÞÞ
Bi ↦ ρðBÞi ≔ B̃i

such that ðB̃ × eÞi ¼ Bi:

ð30Þ

This “tilde” map is the inverse of Ai → ðA × eÞi from
Ω1ðsuð2ÞÞ → Ω2ðsuð2ÞÞ. It exists as long as e is invertible.
An explicit formula can be given. In order to do so, we
expand the forms in the corresponding basis

Bi ¼ Bi
jΣj; B̃i ¼ B̃i

jej: ð31Þ

The components of the forms are related using shifts by
their traces B ¼ Bi

i and B̃ ¼ B̃i
i:

Bi
j ¼ B̃δji − B̃j

i; B̃j
i ¼

B
2
δji − Bi

j: ð32Þ

The trace B ¼ Bi
i appears naturally when evaluating the

3-form

Bi ∧ ei ¼ 2B̃i ∧ Σi ¼ B detðeÞ; ð33Þ

where detðeÞ ¼ e1 ∧ e2 ∧ e3 is the volume form.5 This
duality map Bi → B̃i defines a symmetric product on
Ω2ðsuð2ÞÞ since

Ãi ∧ Bi ¼ Ai ∧ B̃i ¼ ðÃ B̃−Ãi
jB̃j

iÞ detðeÞ: ð35Þ

Examples of the value of the map on some relevant
suð2Þ-valued 2-forms include

Σ̃i ¼ 1

2
ei; ð gα × ΣÞi ¼ ðα × eÞi; P̃i ¼ gdAei ¼ γKi:

ð36Þ

Another useful identity that follows from ðφ × BÞi ¼
ðιφ̂B × eÞi þ ιφ̂ðe × BÞi, where φ̂i ¼ ιφ̂ei, is

ð gφ × BÞi ¼ ιφ̂Bi þ gιφ̂ðe × BÞi: ð37Þ

C. Gauge transformations

1. Electric gauge transformations

The electric gauge transformations generated by the
constraint Gα given in (25) act on the bulk and boundary
fields in the following way:

δeαΣi ¼ ðα × ΣÞi; δeαAi ¼ −dAαi; δeαei ¼ ðα × eÞi:
ð38Þ

This in turn implies that

δeαei ¼ ðα × eÞi δeαPi ¼ ðα × PÞi; δeαFi ¼ ðα × FÞi:
ð39Þ

In particular, e and e transform in the same way, so that the
simplicity constraint is preserved under electric gauge
transformations. We also see that all the charge aspects
ðΣ; P; FÞ transform in the same manner.
In order to derive these gauge transformations, one

evaluates the extended presymplectic form Ω given in
(23) on the Hamiltonian vector field generated by the
constraint Gα:

IδeαΩ ¼ −
Z
B
dAαi ∧ δΣi −

Z
B
δAi ∧ ðα × ΣÞi

þ
Z
S
ðα × eÞi ∧ δei

¼ −
Z
B
ðδA × αÞi ∧ Σi −

Z
B
dAαi ∧ δΣi

þ
Z
S
αiðe × δeÞi ¼ δGα: ð40Þ

This establishes (38).

2. Translational gauge transformations

The translational transformations generated by the con-
straint Pφ given in (26) act on the bulk and boundary fields
in the following way:

δtφΣi ¼ dAðφ × eÞi; δtφAi ¼ ð gφ × FÞi; δtφei¼S dAφi:

ð41Þ

5One uses that

ei ∧ Σj ¼ δij detðeÞ: ð34Þ
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These relations imply that the action of the translations
takes the same form on all the electric, momentum and
curvature aspects:

δtφΣi ¼ dAð gφ × ΣÞi; δtφPi ¼ dAð gφ × PÞi;
δtφFi ¼ dAð gφ × FÞi: ð42Þ

In order to show that these expression are gauge trans-
formations canonically generated by Pφ, we evaluate the
variation of the momentum constraint:

δPφ ¼ −
Z
B
ðδA × φÞi ∧ dAei −

Z
B
dAφi ∧ ðδA × eÞi

−
Z
B
dAφi ∧ dAδei þ

Z
S
dAφi ∧ δðei − eiÞ

−
Z
S
δAi ∧ ðφ × sÞi

¼ −
Z
B
δAi ∧ ðφ × dAeÞi −

Z
B
δAi ∧ ðdAφ × eÞi

−
Z
B
ðF × φÞi ∧ δei þ

Z
S
dAφi ∧ δei

−
Z
S
δAi ∧ ðφ × sÞi; ð43Þ

where we have denoted the boundary simplicity constraint
by si ≔ ei − ei. Using the duality map, we can now write
the variation of Pφ as

δPφ ¼ −
Z
B
δAi ∧ dAðφ × eÞi −

Z
B
ð gF × φÞi ∧ ðe × δeÞi

þ
Z
S
dAφi ∧ δei −

Z
S
δAi ∧ ðφ × sÞi

¼ −
Z
B
δAi ∧ dAðφ × eÞi þ

Z
B
ð gφ × FÞi ∧ δΣi

þ
Z
S
dAφi ∧ δei −

Z
S
δAi ∧ ðφ × sÞi

¼ IδtφΩ −
Z
S
δAi ∧ ðφ × sÞi; ð44Þ

where in the last equality we have used the action of the
translations given in (41). This shows that Pφ is the
generator of translation (41) if the boundary Gauss law
si ¼ 0 is satisfied. From the transformation of the flux 2-
form Σ we deduce the transformation of the frame field e:

δtφei ¼ dAφi þ ð gφ × PÞi: ð45Þ

This shows that the translation acts on the momenta as
follows:

δtφPi ¼ δtφðdAeÞi ¼ ðδtφA × eÞi þ dAδtφei

¼ ðφ × FÞ þ d2Aφ
i þ dAð gφ × PÞi

¼ dAð gφ × PÞi; ð46Þ

which allows us to recover the transformation law for the
momentum P anticipated in (42).
As one can see from above by comparing the action of

the translation given above in (41) and (45), the bulk frame
field e does not transform in the sameway as the edge mode
e on the boundary. This means that boundary translations
do not generally preserve the boundary simplicity con-
straint. More precisely, we find that

δtφSi ¼ ðdAφ× sÞi þ ðφ×PÞi; δtφsi ¼ ð gφ×PÞi: ð47Þ

As wewill see in the next section, this puzzling feature does
not affect the computation of the charge algebra, but it
simply means that the charge algebra only closes on the
support of the boundary constraint si ¼ 0.

D. Translation versus diffeomorphism

Now that we have derived the expressions of the trans-
lational gauge transformations, we have to compare them to
the diffeomorphisms. First, using the expressions (41), and
the identity (37), we can relate the action of translations
to the action of the covariant diffeomorphisms given by the
covariant Lie derivative Lφ̂ ≔ ιφ̂dA þ dAιφ̂:

δtφei ¼ Lφ̂ei − ιφ̂Pi; δtφΣi ¼ Lφ̂Σi − ιφ̂ðdAΣÞi;
δtφAi ¼ ιφ̂Fi − gιφ̂ðdAPiÞ: ð48Þ

We see that translations induce an extra-term besides the
Lie derivative, which vanishes on-shell for both the flux
2-form Σ and the Ashtekar-Barbero connection A.
Diffeomorphism can actually be understood as field

dependent translations. In order to show this, let us start
with the covariant diffeomorphism generator defined by

Dφ̂ ¼ −
Z
B
ιφ̂Σi ∧ Fi −

1

2

Z
S
ei ∧ Lφ̂ei: ð49Þ

This operator generates the covariant diffeomorphism
symmetry δdφ̂

6

6δdφ̂ is equivalent on-shell to the action of the covariant Lie
derivative. More precisely we have that

ðLφ̂ − δdφ̂ÞΣi ¼ {φ̂dAΣi; ðLφ̂ − δdφ̂ÞAi ¼ 0; ðLφ̂ − δdφ̂Þei ¼ 0:

ð50Þ
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δdφ̂Σi ¼ dA{φ̂Σi; δdφ̂A
i ¼ ιφ̂FiðAÞ; δdφ̂e

i ¼ Lφ̂ei:

ð51Þ

We derive these diffeomorphism transformation properties
(51) by evaluating the extended presymplectic form Ω on
the constraint Dφ̂ and using that the boundary value of φ̂ is
tangent to S:

δDφ̂ ¼ −
Z
B
ιφ̂δΣi ∧ Fi −

Z
B
ιφ̂Σi ∧ dAδAi

−
Z
S
ðδAi × ιφ̂eiÞ ∧ ei −

Z
S
δei ∧ Lφ̂ei;

¼
Z
B
ιφ̂Fi ∧ δΣi −

Z
B
δAi ∧ dAιφ̂Σi

−
Z
S
δAi ∧ ιφ̂Si þ

Z
S
Lφ̂ei ∧ δei

¼ IδtφΩ −
Z
S
δAi ∧ ιφ̂Si; ð52Þ

from which we can read the transformations (51). We have
used that Si ¼ Σi − 1

2
ðe × eÞi.

We can then compute the difference between translations
and diffeomorphisms:

ðδdφ̂ − δtφÞΣi ¼ 0; ðδdφ̂ − δtφÞAi ¼ gιφ̂ðdAPiÞ;
ðδdφ̂ − δtφÞei ¼ ιφ̂Pi: ð53Þ
As expected, the difference between transformations van-
ishes on-shell (when dAΣ ¼ dAP ¼ 0) for the bulk varia-
bles. The key difference between the translation and
diffeomorphism shows up in their action on the boundary
variable e. This in turns implies that the diffeomorphism
generator always preserves the boundary simplicity con-
straints, namely δdφ̂s

i ¼ 0, even if the translations do not.

Finally, it is straightforward to show that the difference
between a field dependent translation and the diffeomor-
phism generator vanishes on-shell of the boundary sim-
plicity constraints.

Dφ̂¼̂ Pιφ̂e: ð54Þ

IV. CHARGE ALGEBRA

Now that we have established the Hamiltonians (25),
(26) as the canonical generators of electric and translational
gauge symmetry, we can study the algebra of the
Hamiltonian charges associated to these gauge symmetries.
We rely on the expression of the Poisson bracket between
two Hamiltonian generators in terms of the generators
variations, namely

fHα; Hβg ¼ δβHα: ð55Þ
Moreover, since thegenerators of gauge transformations δα ¼
fHα; ·g form a closed algebra ½δα; δβ� ¼ −δ½α;β�, the Jacobi
identity implies the consistency condition fHα;Hβg¼
H½α;β�þcðα;βÞ where cðα; βÞ is central.
We can thus analyze the various sectors of the algebra

formed by the generators Gα and Pφ by means of the
transformation properties under electric gauge transforma-
tions (38) and under translations (41) derived in the previous
section. This will lead us to show that the constraintsGα and
Pφ form an isuð2Þ Poincaré Lie algebra.

A. Electric-electric sector

The electric-electric sector consists of the Poisson
brackets of the electric gauge generators G with each
other. This is the simplest case, as it is immediate to check
that using the electric gauge transformations (38), we
obtain the following brackets:

fGα; Gβg ¼ δeβGα ¼ −
Z
B
ðδβA × αÞi ∧ Σi −

Z
B
dAαi ∧ δβΣi þ

Z
S
αiðe × δβeÞi

¼
Z
B
ðdAβ × αÞi ∧ Σi −

Z
B
dAαi ∧ ðβ × ΣÞi þ

Z
S
αiðe × ðβ × eÞÞi

¼ −
Z
B
dAðα × βÞi ∧ Σi þ

1

2

Z
S
ðα × βÞiðe × eÞi

¼ Gðα×βÞ: ð56Þ
The electric-electric sector thus closes and we recover the expected suð2Þ Lie algebra, as for the flux observables in loop
quantum gravity.

B. Electric-translation sector

The electric-translation sector consists of the Poisson brackets of the electric gauge generators Gα with the translation
generators Pφ. For this mixed sector we start with the definition of the electric constraint (25) and compute its variation
under translations using (41). After a sequence of elementary operations involving the duality map, the cross product and
integrations by part, we obtain:
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fGα; Pφg ¼ δtφGα ¼ −
Z
B
ðδtφA × αÞi ∧ Σi −

Z
B
dAαi ∧ δtφΣi þ

Z
S
αiðδtφe × eÞi

¼ −
Z
B
ð gφ × FÞi ∧ ðα × ΣÞi −

Z
B
dAαi ∧ dAðφ × eÞi þ

Z
S
αiðdAφ × eÞi

¼ −
Z
B
ðφ × FÞi ∧ ð gα × ΣÞi −

Z
B
d2Aαi ∧ ðφ × eÞi þ

Z
S
dAαi ∧ ðφ × eÞi þ

Z
S
ðα × dAφÞi ∧ ei

¼
Z
B
ðF × φÞ ∧ ðα × eÞi −

Z
B
ððF × αÞ × φÞi ∧ ei þ

Z
S
dAðα × φÞi ∧ ei þ

Z
S
ðα × dAφÞi ∧ ðei − eiÞ

¼
Z
B
ððF × ðφ × αÞÞi ∧ ei þ

Z
S
dAðα × φÞi ∧ ei þ

Z
S
ðα × dAφÞi ∧ ðei − eiÞ

¼ −
Z
B
dAðα × φÞi ∧ dAei −

Z
S
dAðα × φÞi ∧ ðei − eiÞ þ

Z
S
ðdAα × φÞi ∧ ðei − eiÞ;

¼ Pðα×φÞ þ
Z
S
ðdAα × φÞi ∧ si: ð57Þ

The extra-term vanishes on-shell of the boundary Gauss
Law si ¼ ei − ei¼S 0. Thus, assuming the boundary sim-
plicity ei¼S ei, we recover the expected Poisson bracket,
namely

fGα; Pφg¼̂ Pðα×φÞ: ð58Þ
Instead of starting with the generator Gα and computing

its variation under translations, we can do the reverse and
start with the generator Pφ as defined in (26) and compute

its variation under electric gauge transformations using
(38). This allows to check that the gauge transformations
(38), (41) are indeed consistent with the antisymmetry of
the Poisson bracket, namely that

δtφGα ¼ −δeαPφ: ð59Þ
So, in order to check this, we plug in the electric variations
(38) in the general expression (44) for the variation of the
translation generator δPφ and compute:

fPφ; Gαg ¼ δeαPφ ¼ −
Z
B
δeαAi ∧ dAðφ × eÞi þ

Z
B
ð gφ × FÞi ∧ δeαΣi þ

Z
S
dAφi ∧ δeαei −

Z
S
δeαAi ∧ ðφ × sÞi

¼
Z
B
dAαi ∧ dAðφ × eÞi þ

Z
B
ðφ × FÞi ∧ ðα × eÞi þ

Z
S
dAφi ∧ ðα × eÞi þ

Z
S
dAαi ∧ ðφ × sÞi

¼
Z
B
ðF × αÞi ∧ ðφ × eÞi −

Z
B
ðF × φÞi ∧ ðα × eÞi −

Z
S
dAαi ∧ ðφ × eÞi þ

Z
S
ðdAφ × αÞi ∧ ei

¼
Z
B
ðφ × αÞi ∧ ðF × eÞi þ

Z
S
dAðφ × αÞi ∧ ei

¼ −
Z
B
dAðφ × αÞi ∧ dAei þ

Z
S
ðφ × αÞi ∧ dAðe − eÞi

¼ Pðφ×αÞ. ð60Þ

This shows that the electric and translation transformations
are indeed consistent when si ¼ 0. And we have estab-
lished that the electric-translation sector closes when the
boundary simplicity constraint is satisfied, in which case
the bracket (58) holds.

C. Translation-translation sector

Finally, we turn to the translation-translation sector. We
now want to prove that the translation generators commute
on-shell, that is we want to establish that

fPξ; Pφg ≃ 0; ð61Þ

where the equality ≃ means we are on-shell of the three
conservation laws (11), (12), (13). Although this is the
simplest commutation relation in the end, it turns out that
this is the most involved evaluation. We start by plugging the
transformations (41) into (44) which, together with the

identity (37) for the dualitymap, yieldswhen si ¼ ei − ei¼S 0:
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fPξ; Pφg ¼ δtφPξ¼̂ −
Z
B
ð gφ × FÞi ∧ dAðξ × eÞi þ

Z
B
ð gξ × FÞi ∧ dAðφ × eÞi þ

Z
S
dAξi ∧ dAφi

¼ −
Z
B
ιφ̂Fi ∧ dAðξ × eÞi þ

Z
B
ιξ̂Fi ∧ dAðφ × eÞi −

Z
S
ðφ × ξÞiFi

−
Z
B

gιφ̂ðe × FÞi ∧ dAðξ × eÞi þ
Z
B

gιξ̂ðe × FÞi ∧ dAðφ × eÞi; ð62Þ

where we have integrated by parts on the sphere and introduced vectors ðφ̂; ξ̂Þ related to the translation gauge parameters
ðφi; ξiÞ via {φ̂ei ¼ φi.
Let us focus on the term

ιφ̂Fi ∧ dAðξ × eÞi ¼ −Fi ∧ ιφ̂dAιξ̂Σi: ð63Þ

The key commutation of Cartan calculus, ½Lξ̂; ιφ̂� ¼ ι½ξ̂;φ̂� between Lie derivative and interior product, implies the identity

ιξ̂dAιφ̂ − ιφ̂dAιξ̂ ¼ ι½ξ̂;φ̂� − dAðιξ̂ιφ̂Þ − ιξ̂ιφ̂dA: ð64Þ

This allows us to compute:

ιφ̂Fi ∧ dAðξ × eÞi − ιξ̂Fi ∧ dAðφ × eÞi ¼ Fi ∧ ðιξ̂dAιφ̂ − ιφ̂dAιξ̂ÞΣi;

¼ Fi ∧ ðι½ξ̂;φ̂� þ ιφ̂ιξ̂dA − dAιξ̂ιφ̂ÞΣi: ð65Þ

We thus obtain

fPξ; Pφg¼̂
Z
B
ι½ξ̂;φ̂�Fi ∧ Σi −

Z
B
Fi ∧ dAðιφ̂ιξ̂ΣiÞ −

Z
B
Fi ∧ ιφ̂ιξ̂dAΣi −

Z
S
ðφ × ξÞiFi

−
Z
B

gιφ̂ðe × FÞi ∧ dAðξ × eÞi þ
Z
B

gιξ̂ðe × FÞi ∧ dAðφ × eÞi

¼
Z
B
Fi ∧ ι½φ̂;ξ̂�Σi þ

Z
B
dAFiðιφ̂ιξ̂ΣiÞ −

Z
B
ιφ̂ιξ̂F

idAΣi

−
Z
B

gιφ̂ðe × FÞi ∧ dAðξ × eÞi þ
Z
B

gιξ̂ðe × FÞi ∧ dAðφ × eÞi

¼ −
Z
B
ðι½φ̂;ξ̂�eiÞdAPi þ

Z
B
ðιφ̂ιξ̂ΣiÞdAFi −

Z
B
ðιφ̂ιξ̂FiÞdAΣi

þ
Z
B

gιφ̂dAPi ∧ dAðξ × eÞi −
Z
B

gιξ̂dAPi ∧ dAðφ × eÞi

≃ 0: ð66Þ

This expression vanishes on-shell, i.e., when assuming the
constraints and Bianchi identity, dAΣ ¼ dAP ¼ dAF ¼ 0.
This concludes our proof that the electric and translational
charges form indeed a closed Poincaré algebra.

D. Diffeomorphisms algebra

As we have checked that the electric and momentum
constraints, with the appropriate boundary terms, form a

Poincaré Lie algebra on-shell, it is interesting to turn
back to the diffeomorphisms. We come back to the
expression (49) of the diffeomorphism constraints as
field dependent translations, and we would like to verify
that we recover the correct diffeomorphisms algebra.
Plugging the diffeomorphism transformations (51) in the

general variation of the diffeomorphism generators (52), we
can compute the bracket
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fDξ̂; Dφ̂g ¼ δdφ̂Dξ̂ ¼
Z
B
dAιφ̂Σi ∧ ιξ̂Fi −

Z
B
ιφ̂Fi ∧ dAιξ̂Σi−

Z
S
ιφ̂Fi ∧ ðιξ̂e × eÞi −

Z
S
Lφ̂ei ∧ Lξ̂ei

¼
Z
B
ðιφ̂dAιξ̂Σi − ιξ̂dAιφ̂ΣiÞ ∧ Fi −

Z
S
ðdAιφ̂ei ∧ dAιξ̂ei þ ιξ̂ιφ̂dAei ∧ dAeiÞ

−
Z
S
ðιξ̂dAιφ̂ei − ιφ̂dAιξ̂e

iÞ ∧ dAei−
1

2

Z
S
ιξ̂ιφ̂F

i ∧ ðe × eÞi: ð67Þ

We now use again the Cartan calculus identity (64) to obtain

fDξ̂; Dφ̂g ¼ −
Z
B
ι½ξ̂;φ̂�Σi ∧ Fi þ

Z
B
ιξ̂ιφ̂dAΣi ∧ Fi þ

Z
B
dAðιξ̂ιφ̂ΣiÞ ∧ Fi

−
Z
S
ι½ξ̂;φ̂�eidAei −

Z
S
dAφi ∧ dAξi−

1

2

Z
S
ιξ̂ιφ̂F

i ∧ ðe × eÞi

¼ D½ξ̂;φ̂� þ
Z
B
dAΣiιξ̂ιφ̂F

i −
Z
B
ιξ̂ιφ̂ΣidAFi þ

Z
S
ιξ̂ιφ̂ΣiFi þ

Z
S
ðξ × φÞiFi−

1

2

Z
S
ιξ̂ιφ̂F

i ∧ ðe × eÞi

¼ D½ξ̂;φ̂� þ
Z
B
ιξ̂ιφ̂F

idAΣi −
Z
B
ιξ̂ιφ̂ΣidAFi−

1

2

Z
S
ιξ̂ιφ̂F

i ∧ ðe × eÞi
≃D½ξ̂;φ̂� þ Gιξ̂ ιφ̂F

: ð68Þ

In the last line we have used the Bianchi identity—or
magnetic Gauss law—dAF ¼ 0 and the definition (27) of
the electric gauge generator in terms of the bulk electric
Gauss law and boundary simplicity constraint, leading to
the gauge generator Gιξ̂ιφ̂F

which generates gauge trans-
formation with gauge parameter ιξ̂ιφ̂F. This is consistent
with the action of covariant diffeomorphism since the
covariant Cartan calculus implies that

½Lξ̂; Lφ̂� ¼ L½ξ̂;φ̂� þ ιξ̂ιφ̂F×; ð69Þ
showing how the connection curvature F deforms the
commutator of the covariant Lie derivatives.

V. CONCLUSION

We have revisited general relativity in its first order
formulation in terms of frame field and connection in
the presence of boundaries. We have seen that the gravity
bulk phase space needs to be appropriately extended by a
set of boundary edge modes to allow for arbitrary frame
field variations on the boundary. We have shown that,
quite remarkably, the kinematical constraints can be under-
stood as conservation of boundary charges. We have
demonstrated that these charges are the Hamiltonian gen-
erators of electric gauge transformations and translations.
We have proven that these charges form a closed Poincaré
algebra, as anticipated in [20].
One has to wonder whether we can extend these results

to the dynamical constraints. It has already been established
in [25], that Einstein equations projected along null
surfaces can be understood, in the metric formulation, as
conservation equations for charges aspects associated with
energy and momenta. The canonical structure of these

charges has not been revealed yet. A relevant analysis in the
first order as recently been performed in [26].
At this point, a fascinating question would be whether

magnetic gauge transformations can also be included or not
as phase space transformation. The physical implications of
including the dual magnetic sector in the boundary phase
space have been explored in [27] for electromagnetism.
One may expect the magnetic charges to play an equally
important role also in the case of gravity in order to unravel
the full boundary symmetry group. Indeed, although the
Bianchi law dAF ¼ 0 is a purely geometric identity, it is
tempting to interpret it as a magnetic Gauss law. In this
scenario, the integrated generator Fβ ¼

R
dAβi ∧ Fi½A�

would play the role of the generator of magnetic gauge
transformations. One expects, following [27], that it is
necessary to introduce magnetic edge modes to render this
generator differentiable. It seems natural to expect these
magnetic edge modes to be encoded in a boundary
connection field. Either by providing with a Chern-
Simons-like boundary symplectic term [28–30] or with a
mixed term coupling the boundary connection to the
boundary frame field [31] as was derived in the case of
isolated horizon boundary conditions.
Similarly if one wants to ensure that the translations

respect the boundary Gauss law, one would also have,
according to the general philosophy of boundary charges
and symmetries [18], to allow for nontrivial translational
edge modes. This is left to future investigation.
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