
 

Scale invariant gravity and black hole ringdown

Pedro G. Ferreira* and Oliver J. Tattersall†

Astrophysics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH, United Kingdom

(Received 10 October 2019; published 3 January 2020)

Scale invariant theories of gravity give a compelling explanation to the early and late time acceleration of
the Universe. Unlike most scalar-tensor theories, fifth forces are absent, and it would therefore seem
impossible to distinguish scale invariant gravity from general relativity. We show that the ringdown of a
Schwarschild–de Sitter black hole may have a set of massive modes which are characteristic of scale
invariant gravity. In principle these new modes can be used to distinguish scale invariant gravity from
general relativity. In practice, we discuss the obstacles to generating these new massive modes and their
detectability with future gravitational wave experiments but also speculate on their role in Kerr black holes.
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I. INTRODUCTION

One of the overarching quests of modern physics is to
find fundamental symmetries of nature. These can be used
to unify theories through simplified mathematical struc-
tures. Gauge theories and general covariance are two
particularly fruitful examples. Another, intriguing, pos-
sibility is global scale invariance or Weyl invariance. Such a
symmetry arises when the theory is invariant under the
rescaling of the fundamental fields. For example, if the
theory consists of a metric, gμν, and a scalar field, φ, then it
will be invariant under a global transformation of the form
gμν → λ2gμν and φ → λ−1φ, where λ is a constant. This
symmetry can be made local, by gauging in a way which is
entirely analogous to what one does with Uð1Þ in scalar
electrodynamics.
Over the past few years, scale invariant gravity has been

extensively studied [1–23] (although see [24–29] for some
earlier work). It has been shown to have a novel form of
symmetry breaking—inertial symmetry breaking—in
which scale emerges spontaneously without recourse to
an explicitly symmetry breaking potential [30]. The sym-
metry broken state is an attractor of the dynamics and links
the ultraviolet behavior—the effective Planck mass—
with the infrared behavior—the effective cosmological
constant—through ratios of dimensionless, fundamental
constants. It has been shown that in certain, simple,
scenarios, it is possible to obtain an inflationary period
at early times as well as a late time period of accelerated
expansion. While the radiative stability of such a con-
struction can be problematic, the idea of quantum scale
invariance as a fundamental principle and how it is

incorporated in renormalization and regularization is a
fruitful avenue of research.
From the gravitational point of view, scale invariance has

been shown to lead to an intriguing phenomenon. Current
implementations of scale invariance involve scalar-tensor
theories. It is well known that scalar-tensor theories lead to
fifth forces which are tightly constrained astronomically as
well as in the laboratory. It has been shown, however, that
in scale invariant gravity, these fifth forces are absent. In
essence, the fifth force is mediated by the dilaton in the
theory which, in the case of a scale invariant matter sector is
completely decoupled [31,32]. Hence, scale invariant
gravity evades fifth force constraints. It would seem,
therefore, that it is impossible to identify an observable,
gravitational, signature of scale invariance.
One arena where one might look for signatures of scale

invariance is near black holes. A priori, such a regime might
not look too promising. As mentioned above, scale invari-
ance is implemented in scalar-tensor theories of gravity
which have been shown to satisfy variants of no-hair
theorems [33]. This means that black holes in such scale
invariant theories are indistinguishable from those in
general relativity (GR)—Schwarzschild or more generally
Kerr-Newman. It is conventionally assumed that, if the
black hole solutions of a modified theory gravity are
indistinguishable from those of GR, then it is impossible
to use them as laboratories or probes of new gravitational
physics (although see [34]).
It has been shown that, in fact, perturbations of

Schwarzschild and Kerr-Newman black holes will carry
information about extensions to general relativity [35–37].
For example, in general scalar-tensor theories, there will be
nonminimal coupling between the scalar and the metric
sector. This means, even though the background scalar field
(or fields) may be constant, perturbations in the scalar field
will source perturbations in the metric and will most
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notably affect the quasinormal modes that emerge during
the ringdown phase after black formation. A notable
example of when this may happen is in the final phase
of a binary black hole merger. Hence one might hope that a
signature of scale invariance may be present in the
quasinormal mode spectrum of black holes in scale
invariant gravity. In this paper we identify such signatures.
The structure of this paper is as follows. In Sec. II we lay

out a set of scale invariant theories involving one or
multiple scalar fields. We describe their phenomenology
and, in particular, how inertial symmetry breaking occurs.
In Sec. III we describe in some detail perturbations around
a Schwarzschild black hole and how to determine asso-
ciated quasinormal modes (QNM)—we emphasize here
that we will focus on these modes and not, for example,
quasibound states or other phenomena. We work our way
through the case of one, two, and then multiple scalar fields
identifying the associated eigenmodes of the perturbation
spectrum. Finally, in Sec. IV we discuss our results and link
them with previous findings about fifth forces and the
dynamics of the dilaton in such theories.

II. SCALE INVARIANT GRAVITY

Let us begin with the simplest version of scalar tensor,
scale invariant gravity:

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

12
αϕ2Rþ 1

2
∂μϕ∂μϕþ λϕ4

�
; ð1Þ

where gμν is the spacetime metric and ϕ is the scalar field.
This theory is invariant under gμν → λ2gμν and ϕ → λ−1ϕ,
where λ is a constant. Note that the effective Planck mass is
M2 ¼ −αϕ2=6, and hence α should be negative. Note also
that this theory is conformally invariant if α ¼ 1—in that
case we can promote λ to a field, λðxμÞ.
The evolution equation for the scalar field can be

rewritten in the form of a conserved current

∇αKα ¼ 0; ð2Þ

where ∇α is the covariant derivative and

Kα ¼ ð1 − αÞϕ∂αϕ: ð3Þ

Note that Kα can be expressed as

Kα ¼ ∂αK; ð4Þ

where the kernel K is given by

K ¼ 1

2
ð1 − αÞϕ2: ð5Þ

In a homogeneous, expanding, background,gαβ¼ð−1;a2δijÞ
where a grows with time, we have that K → K0 and scale

invariance is spontaneously broken even though no explicit
scale is introduced into the action; the final symmetry scale
is a remnant of the initial conditions of the scalar field. The
resulting nonscale invariant theory has

K0 ¼
1

2
ð1−αÞϕ2

0; M2
Pl ¼−

1

6
αϕ2

0; Λ¼−6
λ

α
ϕ2
0: ð6Þ

Thus, the ratios of all emergent scales in this theory are
dependent on the fundamental, dimensionless constants in
the action.
We can generalize this construction to multiple scalar

fields. We then have

S¼−
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

12

XN
i

αiϕ
2
i Rþ

1

2

XN
i

∂μϕi∂μϕiþWðϕ⃗Þ
�
;

ð7Þ

where the potential has the form

Wðϕ⃗Þ ¼
XN
i

XN
i

ϕ2
i λijϕ

2
j ;

which generalizes λϕ4 from the single field case. As in the
case of the single field case, we can find a kernel

K ¼ 1

2

XN
i¼1

ð1 − αiÞϕ2
i ; ð8Þ

which also evolves following Eqs. (2) and (4). Again, scale
invariance is spontaneously broken but now the broken
scale invariance phase lives on a higher dimensional
ellipsoid given by

XN
i¼1

ð1 − αiÞϕ2
i ¼ 2K0: ð9Þ

The direction connecting the origin to the ellipse is the
dilaton, the Goldstonemode of the broken global symmetry,
and decouples from the other degrees of freedom (d.o.f.).
While inertial symmetry pushes the fields onto the

ellipsoid, there is ultimately a fixed point. Minimizing
the effective potential (which included the effect of the
minimal coupling), one finds that the ratios of the fields are
constrained by

X
jk

ϕ2
jA

ðiÞ
jkϕ

2
k ¼ 0; ð10Þ

where

AðiÞ
jk ¼ λjk −

αj
αi

λik: ð11Þ
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If all the αi are different, the matrices AðiÞ
jk have rank N − 1

and the constraint corresponds to a line in field space. The
intersection of this line with the ellipsoid give us the fixed
point or ground state of the system. As in the case of the
single scalar field, we can then determine the effective
Planck mass and cosmological constant from the values of
the fields at this fixed point. It is around this vacuum that
we will study black hole solutions in later sections.
It is useful to focus on the particular case of two scalars

as it has been extensively studied before. In that case the
symmetry broken phase lies on an ellipse given by

ð1 − α1Þϕ2
1 þ ð1 − α2Þϕ2

2 ¼ 2K0 ð12Þ

and has a fixed point at

ϕ2
1;0

ϕ2
2;0

¼ α1λ22 − α2λ12
α2λ11 − α1λ12

: ð13Þ

We have that, at the fixed point, we can determine the
effective cosmological constant in terms of the scalar field

Λ ¼ 6
λ212 − λ11λ22
α1λ22 − α2λ12

ϕ2
1;0: ð14Þ

Note that, unlike in the case of the single scalar field, here
we can choose the coupling constants such that Λ ¼ 0

while ϕ2
1;0;ϕ

2
2;0 ≠ 0.

The cosmological evolution of the two-field case has
been extensively studied. It can be shown that there exists
an initial period of slow roll during which the universe
inflates. If α1 < α2, we have that M2

Pl is initially primarily
set by ϕ2. When α1ϕ

2
1 ¼ α2ϕ

2
2, the universe exits inflation,

and after a period of subluminal expansion, it ends up at the
fixed point with stable Planck and cosmological constants.
In this regime it would seem that the theory is indistin-
guishable from Einstein gravity.
It is well established that, in general, black holes in

scalar-tensor theories are indistinguishable from those in
Einstein gravity. This is normally stated as black holes
in scalar-tensor theories having no hair [38–40]. There are a
number of counterexamples (for example, coupling a scalar
field to the Gauss-Bonnet invariant [39]) violating assump-
tions that go into the no-hair theorems; an active field of
research is to determine how dynamics and environment
can lead to observable hair. Nevertheless, the parti-
cular models we look at here lie firmly in the region of
theory space which satisfy the no-hair theorem. In practice,
this means that black holes in these theories have the
Schwarzschild–de Sitter backgrounds.
As mentioned in the Introduction, the fact that black

holes have no hair in these theories does not mean it is
not possible to pick up a signature of the scalar field. We
have fleshed out the idea that, even though the back-
ground is indistinguishable from GR, perturbations on that

background might not be [35]. The idea (which will be
further developed in the next section) is that the extra d.o.f.
(i.e., the scalar fields) may be excited and through the
nonminimal coupling to the metric sector will contaminate
the gravitational wave sector. As a result, there will be a
superposition of quasinormal modes: the original, GR-like
modes and the new, scalar field sourced, modes. We have
argued that, under certain assumptions, these new modes
may be detected with future gravitational wave experi-
ments. Scale invariant theories give us clear, worked out
examples of how these new quasinormal modes can
emerge. In the following section we explore what happens.

III. PERTURBATIONS

When considering perturbations to spherically symmet-
ric spacetimes, it is natural to decompose perturbations
using tensorial spherical harmonics [41–45]. One finds that
perturbations possess a definite parity under inversion, odd
(or axial) and even (or polar). Much as how scalar, vector,
and tensor perturbations decouple from one another in
cosmological perturbation theory, the odd and even parity
perturbations decouple from one another when considering
perturbations of spherically symmetric black holes.
As the nonminimally coupled scalar fields present in scale

invariant gravity are of even parity, the odd sector of the
gravitational perturbations is completely unaffected. Thus
we recover the GR result that the odd parity metric d.o.f.
obeys the Regge Wheeler equation for a Schwarzschild–
de Sitter black hole [46,47].Wewill thus focus on even parity
perturbations of the black hole and scalar(s) for the rest of this
section.
We first decompose the metric g into the background

Schwarzschild–de Sitter and a small perturbation h,

gμν ¼ ḡμν þ hμν; ð15Þ
such that the ḡ is given by

ḡμνdxμdxν ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð16Þ

fðrÞ ¼ 1 −
2M
r

−
Λ
3
r2 ð17Þ

with M being the black hole mass (note that we are setting
G ¼ c ¼ 1 and so M has units of length) and Λ is a
(positive) effective cosmological constant.
The even parity metric perturbation is then given by (in

Regge-Wheeler gauge) [48]

hevenμν;lm¼

0
BBB@
H0ðrÞ H1ðrÞ 0 0

H1ðrÞ H2ðrÞ 0 0

0 0 KðrÞr2 0

0 0 0 KðrÞr2 sinθ

1
CCCAYlme−iωt:

ð18Þ
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We further choose to decompose perturbations of any scalar
fields ϕi such that

ϕi ¼ ϕi;0

�
1þ φiðrÞ

r
Ylme−iωt

�
; ð19Þ

with jφij ≪ ϕi;0. The Hi, K, and φi are radial wave
functions describing the perturbations, while the Ylm are
the usual spherical harmonics. Due to the static nature of
the background we have assumed a harmonic time depend-
ence of e−iωt. Note that we have suppressed spherical
harmonic indices on the radial wave functions and the ω; in
general the perturbations of both the metric and the scalar
fields will be represented by a sum over l of the modes (we
will find that the perturbations are independent of m due to
the spherical symmetry of the problem, and thus we are free
to set m ¼ 0).
Schematically, a field ψðrÞ propagating on a spherically

symmetric black hole background obeys (in most cases) an
equation of the form

�
d2

dr2�
þ ω2 − Vðl; r�Þ

�
ψðr�Þ ¼ S; ð20Þ

where r� is the tortoise coordinate defined by dr¼fðrÞdr�,
such that −∞ < r� < ∞ from the black hole horizon to
spatial infinity, and S is some source term (which may or
may not be zero depending on the details of the gravity
theory). We see that this equation is a second-order
Schrödinger style wave equation, where the role of the
“energy” is played by ω2.
One can show that, with boundary conditions such that

the propagating field ψ is purely outgoing at each boundary
of the domain (i.e., with no waves originating from within
the black hole horizon or from spatial infinity), the
solutions to Eq. (20) lead to a discrete spectrum of complex
frequencies ω for each value of l. Such frequencies are
known as the quasinormal modes (QNMs) of the system,
and they describe the oscillation and damping times of the
exponentially damped sinusoidal waves emitted by each
perturbed field. Thus at the end of a binary black hole
merger, for example, when we are left with a highly
perturbed remnant black hole, we expect to see this
“ringdown” section of exponentially damped gravitational
waves in the observed signal.
We note that we will focus solely on waves with these

boundary conditions in this paper. There are, however, other
alternatives; for example, sending the value of the wave to
zero at infinity may lead to a different phenomenon—
quasibound states—in which the scalar field accumulates
around the horizon [49,50]; superradiance [51–53], an
instability which emerges in the Kerr solution, may also
be triggered. Furthermore, in de Sitter space there exists
another family of modes associated with the cosmological
horizon, and which is present even in the absence of a black

hole (i.e., in the M ¼ 0 limit) [54–56]. In this paper we
choose not to look into these states and leave this to future
work, instead focusing on the familiar “photon sphere”
family of QNMs, which asymptote to the Schwarzschild
QNMs in the case of a vanishingly small cosmological
constant.
It is standard practice to use the fact thatHi and K can be

expressed in terms of single field Ψ through

Ψ ¼ 1

3M þ Lr

�
KðrÞr2 þ rfðrÞ

iω
H1ðrÞ

�
; ð21Þ

with 2L ¼ ðlþ 2Þðl − 1Þ, and where H0 and H2 are
shown to be auxiliary fields through the Einstein equations.
In the following sections we will see that the perturbed field
equations of scale invariant gravity can be manipulated in
such a way that Ψ can be combined with the scalar d.o.f. φi

into a single master variable Ψ̃ that obeys the Zerilli
equation, the wave equation in the form of Eq. (20) that
usually describes even parity metric perturbations in GR.
The scalar fields, on the other hand, form a coupled system
of similar style wave equations.
Despite the master variable Ψ̃ obeying the same Zerilli

equation as in GR, due to the presence of the scalar
perturbations in the definition of Ψ̃, we will see that the
scalar fields act as a source for the evolution of the metric
variables, driving the gravitational field oscillations at
characteristic frequencies associated with the scalar
QNM spectrum. This phenomenon has previously been
observed in the case of Chern-Simons gravity, where free
scalar perturbations are coupled to the odd parity metric
perturbation [57], while (for example) in [58,59] scalar
perturbations of Einstein-dilaton-Gauss-Bonnet black holes
are fully coupled to the even parity metric perturbations.
In this way, the gravitational wave emission from a
Schwarzschild–de Sitter black hole in scale invariant
gravity can be modified from that expected in GR due
to excitation of the scalar perturbations, due to the emission
of a gravitational wave at the “transient” frequencies
associated with the regular GR QNM spectrum, and those
oscillating at the forced scalar frequencies.

A. Single scalar field

Consider first the case of a single scalar field which is on
the fixed point. In this symmetry broken phase, we need to
study perturbations around a Schwarzschild–de Sitter
background with no nontrivial scalar hair but with an
effective cosmological constant Λ given by

Λ ¼ −6
λ

α
ϕ2
0: ð22Þ

We have, then, for the even parity sector of the perturbations
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�
d2

dr2�
þ ω2 − VZðrÞ

�
Ψ̃ðrÞ ¼ 0; ð23Þ

�
d2

dr2�
þ ω2 −U0ðrÞ

�
φðrÞ ¼ 0; ð24Þ

where Ψ̃ is related to the original “metric only” field Ψ
[given by Eq. (21)] through

Ψ̃ ¼ Ψþ 2r
3M þ Lr

φðrÞ: ð25Þ

So, even though the system is decoupled into a scalar
field perturbation φ equation and a combined metric-scalar
master variable Ψ̃ that obeys the standard GR Zerilli
equation for a Schwarzschild–de Sitter background, one
can see the explicit sourcing of the pure metric perturba-
tions Ψ by the scalar perturbation φ in Eq. (23).
The potentials are

VZðrÞ ¼
2fðrÞ

r3ð3M þ LrÞ2 ð9M
3 þ 3L2Mr2 þ L2ð1þ LÞr3

þ 3M2ð3Lr − r3ΛÞÞ; ð26Þ

Uμ2ðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ f0ðrÞ

r
þ μ2

�
: ð27Þ

We can see then a feature which was emphasized in [60]: as
well as the usual general relativistic modes that arise from
the Zerilli equation, there will be a new set of modes,
injected by the scalar field perturbations.
In this particular case, the additional modes are

those of a massless scalar field (i.e., μ2 ¼ 0) which is to
be expected. The scalar field plays the role of the
dilaton and, in the symmetry broken phase, is a massless
Goldstone boson. Hence, we are seeing the imprint of the
broken global symmetry on the equations and result-
ing QNMs.

Assuming a small Λ we can compare the l ¼ 2 modes
from the gravitational and scalar spectra (to three signifi-
cant figures) using the results of [61]

Mωg ¼ 0.374 − 0.0887iþ ΛM2ð−1.67þ 0.333iÞ
þOðΛ2M4Þ; ð28Þ

Mωs ¼ 0.484 − 0.0968iþ ΛM2ð−2.35þ 0.373iÞ
þOðΛ2M4Þ: ð29Þ

More accurate analytic expressions for the gravitational and
scalar frequencies as a function of Λ can be found in [61],
while the QNMs for a variety of fields on a Schwarzschild–
de Sitter background were calculated using sixth order
Wentzel-Kramers-Brillouin (WKB) methods in [62]. Note,
however, that corrections to the Schwarzschild QNM
spectra due to Λ are negligible: for solar mass black holes
we have ΛM2 ∼ 10−46 while for supermassive black holes
(which can be up to 109 times more massive) we have
ΛM2 ∼ 10−28. Furthermore, we note that (unlike in GR)
due to the presence of the scalar fields it is possible to
observe QNMs with l ¼ 0 and l ¼ 1. In GR these
monopole and dipole perturbations merely correspond to
a shift in the background black hole’s mass and angular
momentum, respectively (see, for example, the discussion
in [63]). To zeroth order in ΛM2, these new scalar-sourced
modes are given by [44,61]

Mωl¼0
s ¼ 0.110 − 0.105i;

Mωl¼1
s ¼ 0.293 − 0.0976i: ð30Þ

B. Two field model

We now consider the two field case which has more
involved dynamics. Recall that the symmetry broken phase
lies on an ellipse and the end point is a fixed point; it is
possible, however, to remain in the same vacuum by
moving along the ellipse. For even parity perturbations,
we again find that a master variable Ψ̃ obeys the Zerilli
equation as in Eq. (23) and is now given by

Ψ̃ ¼ Ψþ 2r
3M þ Lr

φ1ðrÞα1ðα1λ22 − α2λ12Þ þ φ2ðrÞα2ðα2λ11 − α1λ12Þ
α21λ22 þ α22λ11 − 2α1α2λ12

: ð31Þ

As for the single field case, if we were to again split Ψ̃ into
the pure metric field Ψ and scalar contributions, Eq. (23)
would show Ψ being sourced by both φ1 and φ2.
The perturbations from the two scalar fields form the

following coupled system of equations:

d2

dr2�

�
φ1

φ2

�
¼ U

�
φ1

φ2

�
; ð32Þ

where the potential matrix U is given by

U ¼ −
�ω2 − Uμ2

1
ðrÞ fðrÞμ21

fðrÞμ22 ω2 − Uμ2
1
ðrÞ

�
ð33Þ

and the effective masses μi are given by
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μ21 ¼
8ðα2 − 1Þðα1λ12 − α2λ11Þ2

ðα1 − 1Þα21λ22 þ ðα2 − 1Þα22λ11 − α1α2λ12ðα1 þ α2 − 2Þϕ
2
1;0; ð34Þ

μ22 ¼
8ðα1 − 1Þðα2λ12 − α1λ22Þ2

ðα1 − 1Þα21λ22 þ ðα2 − 1Þα22λ11 − α1α2λ12ðα1 þ α2 − 2Þϕ
2
2;0: ð35Þ

Despite U having nonconstant components, we find that
its eigenvectors are constant. Defining a matrix of (column)
eigenvectors T,

T ¼
�
1 −μ21=μ22
1 1

�
; ð36Þ

and making a field redefinition such that

�
φ1

φ2

�
¼ T

�
ϑ1

ϑ2

�
; ð37Þ

we find that the fields ϑ1 and ϑ2 decouple to form the
following system of equations:

d2

dr2�

�
ϑ1

ϑ2

�
¼ T−1UT

�
ϑ

υ

�
¼ Ū

�
ϑ1

ϑ2

�
; ð38Þ

where Ū12 ¼ Ū21 ¼ 0 and

−Ū11 ¼ ω2 −U0ðrÞ; ð39aÞ

−Ū22 ¼ ω2 −Uμ2þ
ðrÞ; ð39bÞ

where μ2þ ¼ μ21 þ μ22.
We see that the coupled system of the massive scalar

fields φ1 and φ2 is equivalent to a decoupled system of a
massless scalar field ϑ1 and a massive scalar field ϑ2, such
that the effective mass of ϑ2 is equal to the sum in
quadrature of the individual effective masses of φ1 and φ2.
If we now consider the “full,” rather than the fractional,

scalar perturbations δϕi ¼ ϕi;0φi where the background
values of the scalar fields are given by Eq. (13), we find the
following matrix of (column) eigenvectors T̄ in the δϕi
basis:

T̄ ¼
�
ϕ1;0 0

0 ϕ2;0

��
1 −μ21=μ22
1 1

�

¼ 1

ϕ2;0

�
ϕ1;0=ϕ2;0 −μ21ϕ1;0=μ22ϕ2;0

1 1

�
: ð40Þ

Using the background values of the scalar fields given by
Eq. (13) and the expressions for the μi given by Eq. (35),
the new (non-normalised) eigenvector corresponding to the
massive mode can be shown to be

emassive ¼
 
− α2−1

α1−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1λ12−α2λ11
α2λ12−α1λ22

q
1

!
: ð41Þ

This is nothing more than the tangent vector to the ellipse in
scalar field space defined in Eq. (8).
The massless eigenmode, on the other hand, is in the

direction

emassless ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2λ12−α1λ22
α1λ12−α2λ11

q
1

!
: ð42Þ

Again, this is the goldstone mode arising from the breaking
of the global symmetry, just as we saw in the case of the
single scalar field. If we look at analogous situations—that
of perturbations arising in inflation in this model—these
massless modes correspond to the isocurvature fluctuations
in the primordial universe.
An interesting point to note is that the potential matrix U

is not in general symmetric in either the δϕi or the φi
basis—the frequencies are complex—so we do not expect
the eigenvectors to be mutually orthogonal. This can be
understood geometrically: the massless mode is in the
direction of the position vector of the fixed point while the
massive direction is along the tangent. Only in the case of a
circle (α1 ¼ α2) do we have that these two directions are
orthogonal—in general they are not.
Including first order corrections in μ2þ and Λ to the scalar

frequencies, we find the following expressions for the
l ¼ 1, 2 scalar modes [61]:

Mωl¼1
s ¼ 0.293 − 0.0976iþ ΛM2ð−1.57þ 0.286iÞ

þ ðμþMÞ2ð0.449þ 0.269iÞ; ð43Þ

Mωl¼2
s ¼ 0.484 − 0.0968iþ ΛM2ð−2.35þ 0.373iÞ

þ ðμþMÞ2ð0.317þ 0.108iÞ: ð44Þ

We can see the corrections due to Λ are negligible but there
is now a potentially nontrivial correction due to the massive
mode. We will discuss this correction in more detail in
the Sec. IV.

C. Scale invariant Starobinsky model

A particularly interesting case arises if we consider a
scale invariant version of the Starobinsky inflationary
action [64,65] (but see also [66–74]),
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S¼−
Z
d4x

ffiffiffiffiffiffi
−g

p �
1

12
α1ϕ

2
1Rþ

1

6f20
R2þ1

2
∇μϕ1∇μϕ1þλ1ϕ

4
1

�
:

ð45Þ

This action can be recast as a two field scale invariant
model if we introduce ϕ2 as an auxiliary field. We then have
a model with no canonical kinetic term for ϕ2, such that the
action is given by

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

12
ðα1ϕ2

1 þ α2ϕ
2
2ÞR

þ 1

2
∇μϕ1∇μϕ1 þ λ11ϕ

4
1 þ λ22ϕ

4
2

�
; ð46Þ

and λ22 ¼ 3
2
f20ðα212Þ2. We find that ϕ2 can still have dynamics

through its coupling to R. For this model we find the same
background solutions for the ϕi as in the “normal” two field
model, while Eqs. (23) and (31) again hold for the metric
perturbations.
For the scalar field perturbations, with background

values again given by Eq. (13), the system of equations
given by Eq. (32) again holds with the same potential
matrix, only now the effective masses are given by

μ21 ¼ 8λ11ϕ
2
1;0; ð47aÞ

μ22 ¼ −4
ðα1 − 1Þðα1λ22Þ2

α32λ11
ϕ2
2;0: ð47bÞ

As the schematic form of the coupled system of scalar
equations has not changed, this system is also clearly
diagonalizable into a massive mode and a massless mode.
Due to the effective masses changing, however, we find that
the massive eigenmode in the δϕi basis is modified in this
model (the massless eigenmode, which is independent of
the effective masses, is unchanged):

emassive ¼
 
− α2

α1−1

ffiffiffiffiffiffiffiffi
α2λ11
α1λ22

q
1

!
: ð48Þ

If we modify Eq. (12) to reflect the lack of canonical
kinetic term for ϕ2, such that

ð1 − α1Þϕ2
1;0 − α2ϕ

2
2;0 ¼ 2K0; ð49Þ

then the massive eigenmode again lies tangential to this
ellipse.

D. N scalar fields

We now assume N conformally coupled scalar fields but
consider no explicit cross-couplings between the scalars in
the action, giving the following:

S¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �XN
i¼1

1

12
ðαiϕ2

i ÞRþ 1

2
∇μϕi∇μϕi þ λiϕ

4
i

�
:

ð50Þ

where we define λij ≡ λiδij with no summation assumed on
the right-hand side.
We find the following pattern for the system of equations

for the scalar perturbations φi:

d2φi

dr2�
þ ½ω2 − Uμ2i

�φi ¼ fðrÞαi
X
j≠i

φjcj; ð51Þ

where

ci ¼
4Λ
3

�
α2i ðαi − 1Þ

Y
k≠i

λk

��XN
j¼1

α2jðαj − 1Þ
Y

k≠jλk

�−1
;

ð52Þ

μ2i ¼ −αi
X
j≠i

cj: ð53Þ

This system is diagonalizable, leading to one massless
scalar mode and N − 1 massive modes with effective
masses m2

i , such that

XN
i¼1

μ2i ¼
XN−1

i¼1

m2
i : ð54Þ

For the metric perturbations, we find that the master
variable Ψ̃ that satisfies the usual Zerilli equation is
given by

Ψ̃¼Ψþ 2r
3MþLr

�XN
i¼1

α2iφi

Y
k≠i

λk

��XN
i¼1

α2i
Y

k≠iλk

�−1
:

ð55Þ

We see that, as before, the pure metric perturbations will be
sourced by the scalar fields, acting as N driving oscillators.
We have checked that these patterns hold for N ¼ 2, 3,

and we expect that they should continue to hold for general
N conformally coupled scalar fields with scale invariant
potentials and no explicit scalar-scalar interactions.

IV. DISCUSSION

Scale-invariant gravity has a number of features: it leads
to observationally consistent cosmological models, it can
evade stringent fifth force constraints, and it has attractive
quantum properties from the point of view of naturalness.
The question then arises: is there a distinct observational
signature which we can look for in the current or future
experimental and astronomical endeavors?
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We have chosen to look at black holes and gravitational
waves. Specifically, we have focused on the ringdown
phase of perturbed Scwarzschild–de Sitter black holes
(although our findings should be generalizable to Kerr
geometries). A priori one might think this is a lost cause:
scale invariant gravity is a scalar-tensor theory which is
known to obey variants of the no-hair theorem. In other
words, black holes in such theories should be indistin-
guishable from those in general relativity. Thus we might
not expect any distinctive signals marking the presence of
scale invariance.
We have recently shown, however, that, even in the case

of hairless black holes, the nonminimal coupling between
the scalar fields and the metric leads to new modes in the
gravitational wave spectrum of perturbations. In this paper
we have identified these modes for a range of scale
invariant models. Unsurprisingly, in the simplest case of
one scalar field, this mode is the goldstone boson of the
broken global scale invariance—the dilaton; it has a
massless spectrum, as one would expect. We also know
that the dilaton is completely decoupled from the standard
model if the universe is fully scale invariant. This means
that it is impossible to excite these modes to begin with: the
dilaton equations of motion are completely unsourced by
matter. Hence this new mode will not be present in the
ringdown of a black hole merger event.
The situation becomes far more interesting if we con-

sider two or more scalar fields. As has been shown
previously, the vacuum state of the system is on a fixed
point which lies on an ellipse where global scale invariance
has been broken. Now there are two new modes, on top of
the GR modes: the massless mode (the decoupled dilaton)
and a new massive mode. The massive mode is tangent to
the ellipse and is coupled to the rest of the universe. That is,
it should be possible to excite it in the merger of compact
objects (or neutron stars). Extending the scale invariance to
more scalar fields will lead to more extra modes but,
ultimately, the signature will be the same: a new, quasi-
normal, mode which will coexist with the normal GR
spectrum.
It is not enough to say that a new mode exists—we need

to be able to generate it. Unlike in the case of the dilaton,
nothing stops the new mode from being generated during a
merger or any other, violent astrophysical event. In prac-
tice, and as mentioned above, these theories satisfy no-hair
theorems. Consider then the merger of two black holes:
during the inspiral, these black holes will be hairless and,
unless there is some nontrivial dynamics during the merger,
there is no way to generate a nonamplitude of the newmode
that emerges during ringdown. If one of the objects
involved in the binary is a neutron star, the situation is
more promising. Furthermore, one can imagine the mergers
are complex, dirty events, immersed in time varying
cosmological backgrounds. These complexities break
the conditions of the no-hair theorems and may lead to

non-negligible scalar modes being excited and seeding the
new massless mode. This nondynamical generation of hair
is an open question and the subject of further investiga-
tion [75,76].
The new quasinormal mode depends on the effective

mass μ2þ which we will depend on the coupling constants of
the theory and the symmetry breaking scale. We will now
discuss three different regimes for the mass: the massless
limit (or when μþ ≃ Λ), the intermediate limit (when
μþM ∼ 1), and the very massive limit (μ ≃ μEW or other
high energy scales).
If we assume that μ2þ ∼ Λ, the new mode is effectively

massless and we have a clear prediction. To assess if it is
observable, we first note that the quasinormal frequency of
the (effectively) massless new mode is comparable (in
magnitude) to the dominant quasinormal mode frequency
from the normal, GR, spectrum. Let us then assume that the
mode is generated with some initial amplitude As. To find
out if it is detectable, we use the Fisher matrix analysis of
[60,77] and assume a gravitational waveform consisting of
a superposition of l ¼ 2 modes from the gravitational and
massless scalar spectra (assuming that the massless scalar
mode is not excited). We find the following leading order
requirement on the ratio of the amplitudes of the scalar (As)
and gravitational modes (Ag) in order to resolve distinct
frequencies and damping times in the gravitational wave
signal:

As

Ag
⪆
21

ρ
; ð56Þ

where ρ is the total signal to noise ratio (SNR) of the
gravitational wave signal and we are assuming that
the scalar amplitude will be subdominant compared to
the gravitational amplitude. With a SNR of ρ ∼ 102, which
is believed to be eminently achievable with LISA, with
third generation ground based detectors, or through stack-
ing several signals together [78–83], a scalar amplitude of
around tens of percent the strength of the gravitational
mode would be required to discern the presence of a
second mode.
One should, of course, be mindful that this analysis

assumes a simple two mode waveform model, with the
“fundamental” l ¼ 2 mode from each of the gravitational
and scalar spectra. To more accurately model ringdown and
extract parameters from a gravitational wave signal, one
should take into account higher overtones as well as
fundamental modes [84] and be aware that in some cases
the amplitudes of “less dominant” modes (e.g., those with
higher harmonic index l) may be comparable to the
dominant modes [85–88].
If μM ≃ 1, we can use the forecasts we presented above,

but there are some qualitatively interesting aspects that we
should highlight. The real part QNM frequency will grow
with μ2þ but depends very weakly on it. So large changes in
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μ2þ lead to small changes in ωR. More interestingly [89], the
imaginary part of the QNM frequency decreases with
increasing μ2þ which means that the decay time is longer
and thus these modes may be, marginally, more detectable.
A different regime is that μ2þ is, in fact, quite large.

To understand why this is so, we need to remind ourselves
that the threshold for whether the mode is massive or
massless is (replacing dimensionful constants) set by
ðGM⊙=c2Þ−1 ∼ 10−10 eV. Let us then see what kind of
masses we should expect in, for example, the Dilaton-
Higgs model [3,4]. Simplifying the analysis by assuming
Λ ≃ 0 we have then that the fixed point is�

ϕ1;0

ϕ2;0

�
2

≃ −
λ12
λ11

ð57Þ

(note that λ11λ22 − λ212 ≃ 0). If we assign to ϕ2 the role of
the Higgs [3,4], we have that its mass is given by

m2
H

M2
Pl

≃ 48λ12
ð1 − α1Þ − ð1 − α2Þ λ12

4λ22

α1ð1 − α1Þ − α2ð1 − α2Þ λ12
4λ22

þOðλ11Þ: ð58Þ

We now have that the Higgs self-coupling satisfies λ22 ∼ 1
while the rest of the potential couplings satisfy a hierarchy
λ11 ≪ λ12 ≪ λ22. Furthermore, from cosmological con-
straints [90] we have that jα1j < 0.019 and α2 < −0.048.
If we saturate the second bound, we can simplify our
expressions for both μ2þ and m2

H, and we find that

μ2þ ≃
48λ12
α1

M2
Pl ≃m2

H ≫ ð10−10 eVÞ2: ð59Þ

Alternatively one can estimate the magnitude of radiative
corrections to ϕ1 from its nonminimal coupling, generated
at one loop between ϕ1 and ϕ2 in the scale-invariant
Starobinsky model, and this is given by

δm2
1 ¼

1

4π
α1α2f40: ð60Þ

This coupling give a mass-squared correction to the
massive mode, of order δμ2þ ∼ α2M2

Plf
4
0. If this mode is

to be observable in the ringdown, it should be of order
δμ2þ < ð10−38Þ2M2

Pl. This allows us to place an upper limit
on f0,

f0 <
6

α1α2
× 10−10 GeV: ð61Þ

With this value of f0, the amplitude of density perturba-
tions would be far too small for the model to be viable
cosmologically.

The behavior of black hole perturbations for large
masses is more exotic. For a start, a WKB analysis [89]
shows that for QNMs to exist, there is an upperbound on
the mass set by the maximum of the Zerilli potential. For
small l this is of order μþM ≲ 1 but in the eikonal limit, it
is μþM ≲ l=4. This means that, for the high masses we are
considering here, only the very high lmodes will be QNM.
Additionally, for massive fields, new phenoma have to be

taken into account. As mentioned in Sec. III, there are
alternative modes: quasibound states and superradiance.
The latter which may appear in the case of a rotating black
hole leading to what has been dubbed a “black-hole bomb”
[53]. This goes beyond the spherically symmetric, pertur-
bative calculation we have undertaken here but certainly
merits further analysis.
While it seemed that any signature of the scale invariant

is experimentally illusive, we have shown that it may, in
principle, be possible to distinguish scale-invariant gravity
from GR through black hole spectroscopy. For a particu-
larly extreme choice of parameters, the signature is some-
what generic: a new massless mode in the QNM spectrum.
Such a mode will arise in any nonminimally coupled
scalar-tensor theory where the effective mass of the
scalar is negligible. But, as we know, such fields have
long range fifth forces which, generically, couple to matter
and are strongly constrained by laboratory and astronomi-
cal experiments. So, if one were to find such a QNM
yet no evidence of a new fifth scalar force, one might be
inclined to consider the possibility that gravity is scale
invariant.
More generally, and within the context of most of the

scale invariant models that have been proposed, the
new QNM mode will be too massive to be detected. Its
frequency (and as a result its decay time) will be far too
high for it to be observed in current and future gravitational
wave experiments. Instead, in that regime, instabilities may
emerge which can be a signature of the extra, massive d.o.f.
tied to scale-invariant gravity.
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