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In this article we derive the post-Newtonian limit of a class of teleparallel theories of gravity, where the
action is a free function LðT; X; Y;ϕÞ of the torsion scalar T and scalar quantities X and Y built from the
dynamical scalar field ϕ. We restrict the analysis to a massless scalar field in order to use the parametrized
post-Newtonian formalism without modifications, such as introducing an effective gravitational constant
which depends on the distance between the interacting masses. In particular the results show a class of fully
conservative theories of gravity, where the only nonvanishing parameters are γ and β. For a particular
choice of the function LðT; X; Y;ϕÞ the theory cannot be distinguished from general relativity in its post-
Newtonian approximation.
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I. INTRODUCTION

General relativity, being the most well-established and
successful theory of gravity, is challenged by a number of
open questions in modern physics. One of these challenges
is given by cosmological observations, such as the accel-
erating expansion of the Universe at present and early times
in its history, known as dark energy and inflation, as well as
the presence of an unknown, dark matter component, which
is apparent only by its gravitational effects. A potential
explanation of these observations is given by modified
gravity theories, of which a large and well-studied class is
constituted by scalar-tensor gravity theories [1,2]. These
theories have in common that they contain one or more
scalar fields, which in general is nonminimally coupled to
the metric of spacetime. The gravitational dynamics of the
theory is then determined through the curvature of the Levi-
Civita connection of the metric, as well as the dynamics of
the scalar fields.
Another issue of rather theoretical nature is our lack of

understanding of the quantum behavior of gravity and its
relation to the other fundamental forces present in the
standard model of particle physics. While the latter are
described by gauge theories, the gauge aspect is less obvious
in the standard formulation of general relativity through the
curvature of spacetime. However, equivalent formulations
exist in which the action becomes more similar to a Yang-
Mills type action, and inwhich curvature is replaced by either

torsion or nonmetricity, or even both at the same time [3,4].
Here we will focus on so-called teleparallel models of
gravity, where the gravitational interaction is attributed not
to the curvature of the Levi-Civita connection, but to the
torsion of a flat connection [5–9]. For the teleparallel
equivalent of general relativity (TEGR) one conventionally
assumes a fixed, vanishing spin connection, as it does not
contribute to the field equations. However, for modified
theories this approach potentially leads to the issue of local
Lorentz symmetry breaking [10,11], as spurious degrees of
freedom may appear [12–15]. This can be overcome by
making use of a covariant approach including an arbitrary,
flat, metric-compatible spin connection [16–18]. An alter-
native ansatz is the Palatini formulation [19].
Combining the two aforementioned approaches of scalar

field extensions and teleparallel gravity, one arrives at the
notion of scalar-torsion gravity theories [20–22]. Various
modelswithin this class have been studied in order to address
the challenges faced by general relativity [14,23–30], and a
Lorentz covariant formulation has recently been put forward
[31]. A large class of such scalar-torsion theories, for which
the name LðT; X; Y;ϕÞ theories has been introduced, is
defined by a Lagrangian which is a free function of four
scalar quantities derived from the torsion of the teleparallel
geometry and the scalar field [21]. This is the class of theories
we will focus on in this article.
Besides addressing the challenging issues mentioned

above, a viable gravitational theory must also pass any tests
on local scales, and thus in particular correctly describe the
motions in our solar system. A widely used framework for
such a check is the parametrized post-Newtonian (PPN)
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formalism [32–34]. It characterizes gravity theories by a set
of ten parameters, which have been measured with high
precision in various solar system experiments. Through the
availability of this high precision data, the PPN formalism
has become an important tool for assessing the viability of
gravity theories.
In order to calculate the post-Newtonian limit of scalar-

torsion gravity, an adaptation to theories based on a scalar
field and a tetrad is required [35]. In the context of extended
teleparallel gravity, such an analysis has first been per-
formed for the original teleparallel dark energy model [36]
and later extended to general coupling functions and
potentials [27]. It turned out that the post-Newtonian limit
of these theories is identical to that of general relativity.
Further including a nonminimal coupling to the teleparallel
boundary term, however, leads to a different post-
Newtonian limit [37,38]. In this article we make use of
a recently developed extension of the PPN formalism to
covariant teleparallel gravity theories [39], and use it in
order to generalize the analysis present in the aforemen-
tioned works. This allows us to derive the post-Newtonian
limit of the general LðT; X; Y;ϕÞ class of scalar-torsion
theories of gravity mentioned earlier [21].
The outline of this article is as follows. We start with a

brief review of the dynamical variables and field equations
of the class of scalar-torsion theories we consider in
Sec. II. Another brief review of the PPN formalism is
presented in Sec. III, together with its adaptation to scalar-
torsion gravity. We then come to the main part of the paper,
which is the calculation of the post-Newtonian tetrad
components leading to the derivation of the PPN param-
eters shown in Sec. IV. The resulting post-Newtonian
metric and PPN parameters, which can be used for a
comparison with observations and a possible restriction of
the free function of the theory, are displayed in Sec. V. We
apply our results to a few example theories in Sec. VI,
before we conclude with a discussion and outlook in
Sec. VII.
In this article we use uppercase Latin letters A;B;… ¼

0;…; 3 for Lorentz indices, lowercase Greek letters
μ; ν;… ¼ 0;…; 3 for spacetime indices and lowercase
Latin letters i; j;… ¼ 1;…; 3 for spatial indices. In
our convention the Minkowski metric ηAB and ημν has
signature ð−;þ;þ;þÞ.

II. FIELD VARIABLES AND THEIR DYNAMICS

Before we analyze the post-Newtonian limit of the
recently proposed class of scalar-torsion theories of gravity
[21], we review the action of the theory, the dynamical field
content and the field equations. The theory is formulated in
a covariant way [31], where the dynamical fields are the
tetrad θAμ, the flat Lorentz spin connection ωA

Bμ and the
additional scalar field ϕ. With the help of the tetrad we can
define the metric as

gμν ¼ ηABθ
A
μθ

B
ν ð1Þ

and the torsion tensor as

Tρ
μν ¼ eAρð∂μθ

A
ν − ∂νθ

A
μ þ ωA

Bμθ
B
ν − ωA

Bνθ
B
μÞ: ð2Þ

Here eAμ is the inverse tetrad, which is defined in a way that
θAμeAν ¼ δνμ and θAμeBμ ¼ δAB. We can define the Levi-

Civita connection ∇∘ and the curvature tensors via the
metric tensor defined above. Note that quantities with an
empty circle are derived from the Levi-Civita connection.
We consider the following action

S½θAμ;ωA
Bμ;ϕ; χI� ¼ Sg½θAμ;ωA

Bμ;ϕ� þ Sm½θAμ; χI�; ð3Þ

which splits into a matter part Sm and a gravitational action
Sg. The matter action depends on the tetrad and an arbitrary
set χI of matter fields. We furthermore assume, that the
matter source is given by a perfect fluid. See a further
discussion in Sec. III. Another assumption we make, is, that
the matter fields χI do not couple directly to the teleparallel
spin connection ωA

Bμ or the scalar field, and that the matter
action is invariant under local Lorentz transformations. By
taking into account all assumptions and performing inte-
gration by parts, we can write the variation of the matter
action with respect to the dynamical fields as

δSm½θAμ; χI� ¼
Z
M
½ΘA

μδθAμ þϖIδχ
I�θd4x: ð4Þ

The energy-momentum tensor Θμν ¼ θAμgνρΘA
ρ is sym-

metric, as a consequence of the assumed Lorentz invari-
ance, and the matter field equations are given by ϖI ¼ 0.
Furthermore the determinant of the tetrad is θAμ is denoted
by θ. We assume a gravitational action of the form

Sg½θAμ;ωA
Bμ;ϕ� ¼

1

2κ2

Z
M
LðT; X; Y;ϕÞθd4x ð5Þ

where

T ¼ 1

2
Tρ

μνSρμν ð6Þ

is the torsion scalar defined in terms of the superpotential

Sρμν ¼
1

2
ðTνμρ þ Tρμν − TμνρÞ − gρμTσ

σν þ gρνTσ
σμ: ð7Þ

X ¼ −
1

2
gμνϕ;μϕ;ν; ð8Þ

denotes the kinetic term of the scalar field and

Y¼gμνTρ
ρμϕ;ν: ð9Þ
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is a derivative coupling term. By varying the total action (3)
with respect to the tetrad we derive the tetrad field
equation [31]

Eμν¼−Lgμν−2∇∘ ρðLTSνμρÞ

−LT

�
Tρ

ρσTσ
μνþ2Tρ

ρσTðμνÞσ−
1

2
TμρσTν

ρσþTμρσTρσ
ν

�

−LXϕ;μϕ;νþ∇∘ νðLYϕ;μÞ−∇∘ σðLYϕ;ρÞgρσgμν
þLY

�
TðμνÞρϕ;ρ

þ1

2
Tρ

μνϕ;ρþTρ
ρμϕ;ν

�
−2κ2Θμν¼0;

ð10Þ

and similarly with respect to the scalar field we derive the
scalar field equation

Eϕ ¼ gμν∇∘ μðLYTρ
ρν − LXϕ;νÞ − Lϕ ¼ 0; ð11Þ

where LX;Y;T;ϕ is the partial derivative of the free function L
with respect to X, Y, T and ϕ, respectively. Note that we
have set α≡ 0, in other words, there is no coupling
between the scalar field and the matter field. These are
the equations we will use in the remainder of this article. In
order to solve them, we will perform a perturbative
expansion of the dynamical fields. This will be discussed
in the following section. In the following sections we will
use the definitions and notations of [32]; whereas [34] is
using a slightly different treatment.

III. POST-NEWTONIAN APPROXIMATION

In this section we review the parametrized post-
Newtonian (PPN) formalism [32–34], which is the main
tool we are using in this article. The formalism we are using
here, was used to analyze various scalar-torsion theories
before [35,38,39]. As already mentioned in the previous
section, the matter field is given by a perfect fluid

Θμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν; ð12Þ

with rest energy density ρ, specific internal energy Π,
pressure p and four-velocity uμ. The normalization of the
four velocity uμ is given by uμuνgμν ¼ −1. In order to use
the PPN formalism, we have to assume that the velocity
vi ¼ ui=u0 of the source matter in a given reference frame
is small in comparison to the speed of light. Then we can
use a perturbative expansion of the dynamical fields in
orders of the velocity OðnÞ ∝ jv⃗jn. Furthermore we use the
Weitzenböck gauge ωA

Bμ ≡ 0, which has been proposed
in [39]. We expand the tetrad θAμ around a flat diagonal
background tetrad ΔA

μ ¼ diagð1; 1; 1; 1Þ

θAμ ¼ ΔA
μ þ τAμ

¼ ΔA
μ þ τ

1 A
μ þ τ

2 A
μ þ τ

3 A
μ þ τ

4 A
μ þOð5Þ: ð13Þ

Furthermore we expand the scalar field ϕ

ϕ ¼ Φþ ψ ¼ Φþ ψ
1 þ ψ

2 þ ψ
3 þ ψ

4 þOð5Þ: ð14Þ

around its cosmological background valueΦ, which will be
assumed to be constant. We use overscript number to assign

velocity orders to each term. For example ψ
n
is of order

OðnÞ. If we assume a quasistatic gravitational field, then
the changes over time are only induced by the dynamics of
the source matter. Therefore time derivatives ∂0 have an
additional velocity order Oð1Þ. For the calculation of the
first post-Newtonian approximation of the metric, we can
neglect all velocity orders beyond the fourth order. A more
convenient way to write the tetrad perturbation τAμ is to first
lower the Lorentz index into a spacetime index with the
help of the Minkowski metric ηAB and the background
tetrad ΔA

μ. Then we introduce the tetrad perturbations as

τμν ¼ ΔA
μηABτ

B
ν; τ

n
μν ¼ ΔA

μηABτ
nB

ν: ð15Þ

It is not necessary to calculate all components of the tetrad
and the scalar field up to fourth velocity order. In addition
some of them simply vanish because of the Newtonian
energy conservations or symmetry with respect to time
reversal. The nonvanishing components of the field vari-
ables we have to calculate are [38]

τ
2

00; τ
2

ij; τ
3

0i; τ
3

i0; τ
4

00;ψ
2
;ψ
4
: ð16Þ

We expand all geometric quantities appearing in the field
equations using the components listed above and the
expansion (13) up to the relevant velocity order. The
perturbation of the metric around a flat Minkowski back-
ground is given by

g
2

00 ¼ 2τ
2

00; g
2

ij ¼ 2τ
2

ðijÞ;

g
3

0i ¼ 23
τ

ði0Þ; g
4

00 ¼ −ðτ200Þ2 þ 2τ
4

00: ð17Þ

The remaining terms calculated by using the perturbed
tetrad can be found in [39]. Next we can apply the post-
Newtonian expansion to the gravitational field equa-
tions (10) and (11). In order to apply it to the geometry
side of the equations, we have to expand the free function
LðT; X; Y;ϕÞ and its derivatives as a Taylor series
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L¼ l0þ lϕψþ1

2
lϕϕψ2þ lTTþ lXXþ lYY;

LT ¼ lT þ lTϕψþ1

2
lTϕϕψ2þ lTXXþ lTYYþ lTTT;

LX ¼ lXþ lXϕψþ1

2
lXϕϕψ2þ lTXTþ lXYYþ lXXX;

LY ¼ lY þ lYϕψþ1

2
lYϕϕψ2þ lTYTþ lXYXþ lYYY;

Lϕ ¼ lϕþ lϕϕψþ lTϕTþ lYϕYþ lXϕXþ1

2
lϕϕϕψ2; ð18Þ

where the Taylor coefficients l0; lϕ;… are calculated at
the cosmological background which implies T ¼ X ¼
Y ¼ 0 and ϕ ¼ Φ and are assumed to be of velocity
order Oð0Þ.
Finally, for the matter side of the field equations, we

must also expand the energy-momentum tensor (12) into
velocity orders. For this purpose, we use the standard
assignment of velocity orders also to the rest mass density,
specific internal energy and pressure of the perfect fluid;
based on their orders of magnitude in the solar system one
assigns velocity ordersOð2Þ to ρ andΠ andOð4Þ to p [32].
The energy-momentum tensor (12) can then be expanded in
the form

Θ00 ¼ ρð1þ Πþ v2 − 2τ
2

00Þ þOð6Þ; ð19aÞ

Θ0j ¼ −ρvj þOð5Þ; ð19bÞ

Θij ¼ ρvivj þ pδij þOð6Þ: ð19cÞ

These are all formulas which will be necessary for the
post-Newtonian expansion of the field equations. We will
proceed with this expansion and their solution in the
following section.

IV. SOLVING THE FIELD EQUATIONS

This section is devoted to finding the perturbative
solution of the field equations (10) and (11) in the standard
post-Newtonian gauge, by making use of the general
formalism discussed in the preceding section. Our deriva-
tion proceeds order by order in the post-Newtonian
expansion. The zeroth velocity order, which corresponds
to the background solution of the vacuum field equations, is
discussed in Sec. IVA. We then solve the field equations at
the second order in Sec. IV B, at the third order in Sec. IV C
and at the fourth order in Sec. IV D.

A. Zeroth velocity order

We start our derivation with the observation that at
the zeroth velocity order the energy-momentum tensor
vanishes, Θ

0

μν ¼ 0, so that we are left with solving the

vacuum field equations. Inserting our assumed background

values θ
0
A
μ ¼ ΔA

μ for the tetrad and ϕ
0

¼ Φ into the
respective field equations (10) and (11), we find that their
zeroth order is given by

E
0

00 ¼ −l0; E
0

ij ¼ l0δij; E
0 ¼ 4l0lY − 4lTlϕ: ð20Þ

It thus follows that the perturbation ansatz is consistent
with the vacuum field equations only if the parameter
functions satisfy l0 ¼ 0. Furthermore we choose lϕ ¼ 0 to
satisfy the zeroth order scalar field equation. In the
following we will restrict ourselves to theories satisfying
these conditions. These conditions are, in fact, less restric-
tive than they might seem at first sight. The condition l ¼ 0
can be interpreted as the vanishing of the cosmological
constant, or at least that its effect is negligible in the solar
system. Further, lϕ ¼ 0 means that the background value
of the scalar field should mark an extremal value of its
potential; this case can be found as an attractor in scalar-
torsion cosmology, and should therefore be a valid
assumption in the late universe [40].

B. Second velocity order

By summing up the field equations in the following way

4lTEϕ − lYgμνEμν ¼ 0; ð21Þ

we can decouple the second velocity order of the scalar
field from the tetrad

ð3l2Y − 4lTlXÞ△ψ
2 ¼ 2κ2lYρ: ð22Þ

Note that we restrict ourselves to lϕϕ ¼ 0 in order to have a
massless scalar field. Equation (22) can be solved in terms
of the Newtonian potential U defined by

△U ¼ −4πρ; ð23Þ

where △ ¼ ηab∂a∂b is the flat space Laplace operator. The
solution is then given by

ψ
2 ¼ 4lY

4lTlX − 3l2Y

κ2

8π
U: ð24Þ

For convenience we will now use the trace reversed version
of the field equations (10)

Ēμν ¼ Eμν −
1

2
gμνgαβEαβ: ð25Þ

This will be beneficial in particular for solving the fourth
order tetrad field equations. The relevant components are
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Ē00 ¼ 2lT△τ
2

00 − κ2ρ −
1

2
lY△ψ

2

Ēij ¼ 2lT△τ
2

ðijÞ − κ2ρδij þ
1

2
lYδij△ψ

2 þ lYψ
2

;ij

− 2lTτ
2

00;ij þ 2lTτ
2

kk;ij − 2lTτ
2

kði;kjÞ − 2lTτ
2

ðik;kjÞ: ð26Þ

By substituting the solution for the second order scalar field

ψ
2

[Eq. (24)] in Eq. (26) we can solve for the tetrad
components in terms of the Newtonian potential defined
in Eq. (23)

τ
2

00 ¼
4ðl2Y − lTlXÞ

lTð4lTlX − 3l2YÞ
κ2

8π
U

τ
2

ij ¼
2ðl2Y − 2lTlXÞ
lTð4lTlX − 3l2YÞ

κ2

8π
Uδij: ð27Þ

C. Third velocity order

In the third velocity order the only nonvanishing com-
ponents of the field equations are Ēi0 and Ē0i. To solve
these equations we introduce the vector potentials Vi and
Wi defined by

△Vi ¼ −4πρvi; △Wi ¼ −4πρvi þ 2U;0i: ð28Þ

It is also convenient to use the combination

Ēi0 þ Ē0i ¼ △τ
3

ði0Þ þ 4κ2ρvi þ 2lYψ
2

;0i

− lTτ
2

ðkiÞ;0k þ 4lTτ
2

kk;0i − lTτ
3

ð0kÞ;ki; ð29Þ

which can be solved by introducing a free parameter a0

τ
3

i0 ¼ τ
3

0i ¼
κ2

8π

�
a0Vi þ

�
2

lT
− a0

�
Wi

�
: ð30Þ

The constant parameter a0 will be determined by demand-
ing the standard PPN gauge for the solution of the fourth

order tetrad τ
4

00.

D. Fourth velocity order

The remaining fourth order of the (00)-component of the
tetrad can be found by summing up the field equations in
the following way

ð3l2Y − 4lTlXÞĒ00 þ
1

2
lYð4lTEϕ − lYgμνEμνÞ ¼ 0: ð31Þ

To solve this equation we make an ansatz for the tetrad

τ
4

00 ¼
κ2

8π

�
a1Φ1 þ

κ2

8π
a2Φ2 þ a3Φ3 þ a4Φ4 þ

κ2

8π
a4U2

�
;

ð32Þ

where the Φi are the typical PPN potentials defined by

△Φ1 ¼ −4πρv2; △Φ2 ¼ −4πρU;

△Φ3 ¼ −4πρΠ; △Φ4 ¼ −4πp: ð33Þ

Inserting τ
4

00 and all lower order tetrad components into
Eq. (31) leads to a system of algebraic equations for a0 to
a5 with the solution

a0 ¼
7lTlX − 5l2Y

lTð4lTlX − 3l2YÞ
; ð34aÞ

a1 ¼ −
2

lT
; ð34bÞ

a2 ¼
4ð32l3Tl3X þ 8l2TlTϕl

2
Xl

2
Y − 68l2TlTϕl

2
Y − 16lTlTϕlXl2Y − 2l2TlXϕl

3
Y þ 45lTlXl4Y þ 6lTϕl5Y − 9l6Y þ 4l2TlXl

2
YlYϕÞ

l2Tð4lTlX − 3l2YÞ
; ð34cÞ

a3 ¼
4ðl2Y − lTlXÞ

lTð4lTlX − 3l2YÞ
; ð34dÞ

a4 ¼
6ðl2Y − 2lTlXÞ
lTð4lTlX − 3l2YÞ

; ð34eÞ

a5 ¼ −
2ð16l3Tl3X − 8l2TlTϕl

2
Xl

2
Y − 40l2TlTϕl

2
Y þ 16lTlTϕlXl2Y þ 2l2TlXϕl

3
Y þ 33lTlXl4Y − 6lTϕl5Y − 9l6Y − 4l2TlXl

2
YlYϕÞ

l2Tð4lTlX − 3l2YÞ
: ð34fÞ
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V. PPN METRIC AND PARAMETERS

With the tetrad components calculated in the previous
section, we have now solved the field equations to the
necessary order so that we can construct the post-
Newtonian metric, which we show in Sec. VA. From this
we read off the PPN parameters in Sec. V B.

A. PPN metric

We can now substitute the determined tetrad components
[Eqs. (27), (30), and (32) with (34a)]. By defining the gravi-

tational constant asG ¼ κ2

2π
l2Y−lT lX

lTð4lT lX−3l2YÞ
and thensettingG ¼ 1,

we derive the metric components in the standard PPN form

g
2

00 ¼ 2U; ð35aÞ

g
2

ij ¼
2lTlX − l2Y
lTlX − l2Y

Uδij; ð35bÞ

g
3

i0 ¼
5l2Y − 7lTlX
2ðlTlX − l2YÞ

Vi −
1

2
Wi; ð35cÞ

g
4

00 ¼
�
½32l3Tl3X − 3l5Yð2lTϕ þ 7lYÞ þ lTlXl3Yð16lTϕ þ 73lYÞ − 8l2TlYlTϕl

2
X − 2l2Tl

3
Yð42l2X − lXϕlY þ 2lXlYϕÞ�U2

þ
�
−16l3Tl3XlTlXl3Y

�
8lTϕ −

45

2
lY

�
− 3lTϕl5Y þ 9

2
l6Y þ l2TlYð−4lTϕl2X þ 34lYl2X þ l2YlXϕ − 2lXlYlYϕÞ

�
Φ2

þ ð3l2Y − 4lTlXÞΦ1 þ 2Φ3 þ 3ðl2Y − 2lTlXÞΦ4

�
1

ð4lTlX − 3l2YÞðl2Y − lTlXÞ2
: ð35dÞ

Our definition of the gravitational constantG can be compared with the effective gravitational constantGeff in Eq. (31) in
Ref. [41] for a massless scalar field (mΨ ¼ 0), if we choose lY ¼ 1, lX ¼ ω=2Ψ0 and lT ¼ −Ψ0, which are the values one
would obtain by rewriting the action given in Eq. (2) in the same Ref. [41] in the teleparallel language.

B. PPN parameters

The PPN parameters can now be read off by comparing the metric components with the standard PPN metric
[32–34], thus ξ ¼ α1 ¼ α2 ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ 0 and

γ − 1 ¼ l2Y
2lTlX − 2l2Y

; ð36Þ

β − 1 ¼ lY ½lTlXl2Yð16lTϕ − 7lYÞ þ 3l4YðlY − 2lTϕÞ − 8l2Tl
2
XlTϕ þ 2l2TlYð2l2X þ lYlXϕ − 2lXlYϕÞ�

8ð4lTlX − 3l2YÞðl2Y − lTlXÞ2
: ð37Þ

Since all of the parameters except β and γ vanish the theory
is fully conservative. This means that the total energy-
momentum is conserved and preferred frame or preferred
location effects cannot appear in this theory. We also find a
class of theories which is indistinguishable from general
relativity by their PPN parameters, which take the values
γ ¼ β ¼ 1; this is satisfied for all theories with lY ¼ 0.
To understand this result, it is useful to consult the field

equations (10). These show that for lY ¼ 0 the scalar field
becomes minimally coupled to gravity, up to the order
which determines the post-Newtonian limit we calculated
here. As a consequence, we see that the scalar field
vanishes at the second velocity order, see Eq. (24), as it

is not sourced by the matter energy-momentum. This
means that although the scalar field is present in the theory
and, following our assumption of a massless field, has a
long range without any exponential (Yukawa-type) sup-
pression, it does not mediate any gravitational interaction,
and therefore does not lead to any modification of the PPN
parameters. However, expanding the field equations (10)
into higher perturbation orders, which are not relevant for
the PPN limit, but may become relevant, e.g., for gravi-
tational radiation, one may expect higher order correction
terms to appear, which depend on a higher order Taylor
expansion of the Lagrangian function L. If such terms are
present, they may be testable by gravitational experiments.
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However, the calculation of such higher order corrections
exceeds the scope of this article, and we leave it for
future work.

VI. EXAMPLE THEORIES

With the general result (36) at hand, we may now apply
our findings to more specific theories within the general
class we discussed in this article. In this section we discuss
two such examples. A class of theories which is constructed
similarly to scalar-curvature theories [22] is discussed in
Sec. VI A. Another class of theories without derivative
couplings [31] is discussed in Sec. VI B.

A. Scalar-torsion analogue of
scalar-curvature gravity

As the first example class of theories we consider an
analogue of scalar-curvature gravity theories [22]. The
Lagrangian takes the form

LðT;X;Y;ϕÞ ¼ −AðϕÞT þ 2BðϕÞXþ 2CðϕÞY − 2κ2VðϕÞ;
ð38Þ

and depends on four free functions A, B, C, V of the scalar
field. In order to satisfy the background conditions
l0 ¼ lϕ ¼ 0 we restrict ourselves to theories satisfying
V ¼ V 0 ¼ 0, where we used the abbreviations V ¼ VðΦÞ,
V 0 ¼ V 0ðΦÞ for the Taylor coefficients. Further, to avoid any
mass terms and satisfy the conditions lϕϕ ¼ lϕϕϕ ¼ 0, we
choose V 00 ¼ V 000 ¼ 0. The remaining relevant Taylor coef-
ficients of the Lagrangian are given by

lT ¼ −A; lX ¼ 2B; lY ¼ 2C;

lTϕ ¼ −A0; lXϕ ¼ 2B0; lYϕ ¼ 2C0: ð39Þ

Inserting these values into the expression (36) for the PPN
parameters then yields their values

γ ¼ 1 −
C2

ABþ 2C2
; β ¼ 1 −

Cf6C4ðCþ A0Þ þ ABC2ð7Cþ 8A0Þ þ A2½2B2ðCþ A0Þ þ B0C2 − 2BCC0�g
4ðABþ 2C2Þ2ð2ABþ 3C2Þ : ð40Þ

It follows that in the case C ¼ 0 they reduce to the general
relativity values β ¼ γ ¼ 1. We also find that the result
agrees with the massless case of a previous calculation of
the PPN parameters for this particular class of theories [38].

B. Scalar-torsion theory without derivative couplings

The second class of example theories we consider is
based on an action which does not contain the derivative
coupling term Y [31]. In this case the Lagrangian is
given by

LðT; X; Y;ϕÞ ¼ FðT;ϕÞ − 2ZðϕÞX; ð41Þ

with free functions F and Z. Due to the absence of the
derivative coupling, one immediately finds the Taylor
coefficient lY ¼ 0. A comparison with the result (36) for
the PPN parameters therefore suggests that β ¼ γ ¼ 1, so
that these theories have PPN parameters identical to that of
general relativity, provided that the denominators in (36)
are nonvanishing. However, it is natural to consider theories
with lT ¼ FTð0;ΦÞ ≠ 0 and lX ¼ −2ZðΦÞ ≠ 0, so that in
the weak field limit both the tetrad and the scalar field have
nondegenerate kinetic terms and strong coupling issues are
avoided. Theories satisfying these conditions indeed have
PPN parameters β ¼ γ ¼ 1.

VII. CONCLUSION

We have derived the post-Newtonian limit and PPN
parameters for a general class of scalar-torsion theories of

gravity with a massless scalar field. We represented the free
function as a Taylor series around the cosmological value of
the scalar field. We restrict the analysis to a massless scalar
field in order to avoid Yukawa-type potentials. To guar-
antee an asymptotically flat Minkowski background we had
to set the zeroth order coefficient to zero. Solving the field
equations order by order, we derived the metric of a perfect
fluid up to the first post-Newtonian order and determined
the PPN parameters. All parameters other than the usual
Eddington-Robertson-Schiff parameters γ and β are equal
to zero. Therefore this class of theory predicts neither
preferred frame or location effects nor the Nordvedt
effect. Furthermore the total energy-momentum is globally
conserved. These classes of theories are called fully
conservative. We also pointed out, that if the scalar field
is minimally coupled (i.e., there is no derivative coupling,
lY ¼ 0), it does not contribute to the gravitational inter-
action at the post-Newtonian level, and so these theories are
indistinguishable from general relativity at the level of the
PPN parameters. As examples we calculated the parameters
γ and β for the scalar-torsion analogue of scalar-curvature
gravity and a scalar-torsion theory without derivative
coupling in Sec. VI.
This work could be extended by the calculation of the

parameters γ and β for theories with a massive scalar field,
along the lines of previous works on a more specific class
of scalar-torsion theories [38] or scalar-curvature theories
[42–44]. The parameters and the gravitational constant
will then depend on the spatial coordinates [27]. One may
also consider scalar-torsion theories with more general
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couplings between the scalar field and the teleparallel
geometry, such as the recently proposed teleparallel exten-
sion to Horndeski gravity [45] or theories obtained from
disformal transformations [46], thus extending previous
results on the curvature formulation of Horndeski gravity
[47]. Furthermore it is interesting to analyze theories
coupled to more than one massive or massless scalar field.
For example the multiscalar extension of the previously
analyzed theory [21], following a similar treatment as in
multiscalar-curvature theory [48]. In a similar fashion, also
theories featuring nonmetricity instead of torsion coupled
to scalar fields [49,50] may be considered.
Another interesting possibility is the calculation of the

second or even higher post-Newtonian order for this
general class of theories. This could lead to a study of
the emitted gravitational waves of compact objects, espe-
cially inspiralling compact binaries [51]. In particular it
may be the case that theories satisfying lY ¼ 0 are

distinguishable from general relativity in a higher post-
Newtonian order, if the scalar field contributes to the
gravitational interaction via higher order coupling terms.
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