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We consider higher-dimensional massive Brans-Dicke theory with Ricci-flat internal space. The
background model is perturbed by a massive gravitating source which is pressureless in the external (our
space) but has an arbitrary equation-of-state parameter Ω in the internal space. We obtain the exact solution
of the system of linearized equations for the perturbations of the metric coefficients and scalar field. For a
massless scalar field, relying on the fine-tuning between the Brans-Dicke parameter ω and Ω, we
demonstrate that (i) the model does not contradict gravitational tests relevant to the parameterized post-
Newtonian parameter γ, and (ii) the scalar field is not ghost in the case of nonzero jΩj ∼Oð1Þ along with
the natural value jωj ∼Oð1Þ. In the general case of a massive scalar field, the metric coefficients acquire the
Yukawa correction terms, where the Yukawa mass scalem is defined by the mass of the scalar field. For the
natural value ω ∼Oð1Þ, the inverse-square-law experiments impose the following restriction on the
lower bound of the mass: m≳ 10−11 GeV. The experimental constraints on γ require that Ω be extremely
close to −1=2.
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I. INTRODUCTION

The idea of higher-dimensional spacetime dates its
history back to the pioneering works by Nordström [1],
Kaluza [2], and Klein [3] arguing that the extra dimensions
are unobservable since they are compact and of small
length scales. This compactification approach is actively
used in modern theoretical physics. In particular, the
Kaluza-Klein (KK) models, based on the existence of
higher dimensions, form a cornerstone of string theory
and M theory [4]. They are also employed in attempts to
resolve challenging problems such as the hierarchy of the
fundamental interactions [5], the nature of dark matter [6],
and the nature of the cosmological constant [7].
Obviously, any viable physical theory should be in

agreement with the existing empirical data. Since the
KK models are essentially the modified gravity models,
they must satisfy the gravitational tests successfully
passed by the usual general relativity (GR) assuming
four-dimensional spacetime—e.g., the deflection of light,

the Shapiro time delay, and the perihelion precession of
Mercury. This aspect was investigated in a series of papers
[8–10], where the weak gravitational fields in KK models
with compact Ricci-flat internal spaces (extra dimensions)
are considered. In these works, the authors consider the
post-Newtonian gravitational field created by pointlike,
nonrelativistic massive sources simulating compact astro-
physical objects (e.g., stars) and assume that these sources
yield zero pressure in the external (noncompact) space.
This is indeed a rather natural assumption, since the
pressure inside the nonrelativistic astrophysical objects is
much less than the corresponding energy density.
Therefore, in GR, while calculating the parametrized
post-Newtonian (PPN) parameters γ and β for orbiting test
masses in the Solar System, it is sufficient to neglect the
Sun’s pressure1 [11,12]. In line with that, the calculated
PPN parameters γ and β are in very good agreement with
the experimental data [11]. In particular, the PPN parameter
γ ¼ 1 is in very good agreement with the precision Shapiro
time-delay experiment: γ ¼ 1þ ð2.1� 2.3Þ × 10−5

[13–15]. Therefore, in KK models, it would also be natural
to assume that the gravitating mass remains pressureless in
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1In general, matter is not assumed to be pressureless in the
PPN formalism; see, e.g., Ref. [11].
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the internal space. However, the calculations for such a
model show that the PPN parameter γ is quite different from
unity: jγ − 1j ∼Oð1Þ [8]. Then, since the equation of state
(EOS) in the internal space is not known, for the sake of
generality, it is assumed that some nonzero parameter Ω of
the EOS applies in the internal space. For this setting of the
problem, it turns out that in the KK models with Ricci-flat
internal spaces, in order for γ to have a value close to 1, the
EOS parameter Ω must be very close to −1=2 [9,10]. To
restore the value γ ¼ 1, as in GR, it is necessary to choose
Ω ¼ −1=2, which corresponds to black strings or branes
[16–19]. However, so far, there is no satisfactory explan-
ation of the possible nature of such a relativistic EOS in the
internal space with the parameter Ω being essentially
nonzero and negative. Then, a natural question arises: Is
the value Ω ¼ −1=2 inevitable for viable models (satisfy-
ing the gravitational tests) with Ricci-flat internal spaces?
To answer this question, in the present paper we modify

the action of the gravitational sector. We switch from the
higher-dimensional version of the Einstein-Hilbert action,
considered in the previous works [8–10], to a scalar-tensor
model, wherein the gravity has an extra scalar degree of
freedom (d.o.f.) Φ coupled to the scalar curvature R
nonminimally. Such models arise naturally in the context
of string theory and play a significant role in present-day
cosmology studies (see Refs. [20,21] and references
therein). We focus on a higher-dimensional generalization
of the well-known Brans-Dicke (BD) theory [22]—
characterized by the BD parameter ω—and construct a
linearized theory for this case. We also consider the
possibility of the Jordan field (scalar field) Φ to have a
nonzero mass. It is well known that in the massless case of
the BD theory in D ¼ 4 dimensions, the BD parameter ω
must obey the condition ω≳ 4 × 104 in order to satisfy the
restriction on the PPN parameter γ [21]. Such an extremely
big value of ω looks not very natural. It is desirable to
generalize the BD theory so that, on the one hand, it
satisfies the gravity tests, and, on the other hand, ω ∼Oð1Þ.
In the present paper, we demonstrate how to achieve this by
means of the extra dimensions.
We show in the massless case that the introduction of d

extra dimensions brings new possible values for the BD
parameter ω, for which the condition γ ¼ 1 can be fulfilled
exactly, as in GR. One possibility is when Ω ¼ 0; i.e., the
gravity source has a dustlike EOS in all spatial dimensions.
In this case, ω ¼ −1 − 1=d, which, as we show, corre-
sponds to a ghost scalar Φ. Yet another possibility is the
introduction of a nonzero EOS parameter Ω in the extra
dimensions. Then, provided that the value of this EOS
parameter is fine-tuned to Ω ¼ −1=2 − 1=½2dðωþ 1Þ�, we
have γ ¼ 1. In this case, it is possible to construct a solution
such that Ω > 0, which is impossible in purely metric
theories, while the Jordan field Φ remains nonghost as
desired. For this model, moreover, the BD parameter can be
of the order of unity: jωj ∼Oð1Þ.

In the general massive scalar field case, the metric
coefficients acquire the correction terms in the form of
the Yukawa potential. The Yukawa mass scale is defined by
the mass of the scalar field. Based on the results of the
inverse-square-law experiments, assuming that the BD
parameter ω satisfies the naturalness condition ω ∼Oð1Þ,
we obtain the lower bound on the Yukawa mass scale,
m≳ 10−11 GeV. The experimental constraints on the PPN
parameter γ require that the EOS parameter Ω be extremely
close to −1=2, similarly to the usual KK models with Ricci-
flat internal spaces [9,10]. We should stress that γ (the
measure of the space curvature produced by unit rest mass)
being equal to unity is not sufficient for the model to satisfy
all gravitational tests in the Solar System; see Ref. [11]. For
example, it is also necessary to demonstrate that the PPN
parameter β (measure of nonlinearity in the superposi-
tion law for gravity) is equal or very close to unity. In the
present paper, we do not calculate β for the model under
consideration.
The paper is structured as follows: In Sec. II, we specify

the generalized BD model and present the background
metric coefficients and scalar field. In Sec. III, we perturb
the background model with a pointlike mass and obtain the
linearized equations for the metric coefficients and scalar
field perturbations. In Sec. IV, we get exact solutions of the
linearized equations and obtain experimental restrictions on
the parameters of the model. The main results are sum-
marized in the concluding Sec. V.

II. GENERAL SETUPANDBACKGROUNDMODEL

We start with the D ≥ 4 dimensional gravitational action
in the form

Sg ¼
1

2κ2D

Z
dDx

ffiffiffiffiffi
jgj

p
½fðΦÞRþ hðΦÞ∇MΦ∇MΦ −UðΦÞ�;

ð1Þ

where g≡ detðgMNÞ; the scalar Φ couples nonminimally to
the scalar curvature R; and f, h,U are some functions ofΦ.
The constant κD is defined as κ2D ≡ 2SD−1G̃D=c4, where
SD−1 is the total solid angle in the ðD − 1Þ-dimensional
space and G̃D is the D-dimensional gravitational constant.
The total action of the gravitating system is then the sum
S ¼ Sg þ Sm, where Sm ¼ Sm½Ψ; gMN � is the action of
gravitating matter fields Ψ.
For this model, the system of dynamical equations,

δS
δgMN ¼ 0 and

δS
δΦ

¼ 0; ð2Þ

takes the following form, correspondingly:
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fGMN þ
�
f″ −

h
2

�
gMNð∇ΦÞ2 þ gMNf0ΔDΦ

þ ðh − f″Þ∇MΦ∇NΦ

− f0∇M∇NΦþ 1

2
gMNU ¼ κ2DTMN; ð3Þ

f0R − h0ð∇ΦÞ2 − 2hΔDΦ −U0 ¼ 0; ð4Þ

where a prime denotes a derivative with respect to Φ,
ð∇ΦÞ2 ≡∇MΦ∇MΦ, ΔD ≡∇M∇M is the D-dimensional
Laplace-Beltrami operator, TMN ≡ −ð2= ffiffiffiffiffijgjp ÞδSm=δgMN

is the energy-momentum tensor (EMT) of the matter
source, and GMN is the Einstein tensor.
By redefinition of variables, we can always set fðΦÞ≡

Φ and hðΦÞ≡ −ωðΦÞ=Φ for some function ωðΦÞ. Then,
we continue with the higher-dimensional generalization of
the massive Brans-Dicke gravity—namely, with the case
ω ¼ const, reducing the system of Eqs. (3) and (4) as
follows:

ΦGMN þ gMN
ω

2Φ
ð∇ΦÞ2 þ gMNΔDΦ −

ω

Φ
∇MΦ∇NΦ

−∇M∇NΦþ 1

2
gMNU ¼ κ2DTMN; ð5Þ

R −
ω

Φ2
ð∇ΦÞ2 þ 2ω

Φ
ΔDΦ −U0 ¼ 0: ð6Þ

Performing the contraction of Eq. (5) with gMN , we obtain

ΦR ¼ −
2

D − 2
κ2DT þ ω

Φ
ð∇ΦÞ2

þ 2ðD − 1Þ
D − 2

ΔDΦþ D
D − 2

U; ð7Þ

allowing us to exclude R from Eq. (6) and then obtain

½ðD − 1Þ þ ωðD − 2Þ�ΔDΦ ¼ κ2DT þD − 2

2
ΦU0 −

D
2
U:

ð8Þ

We assume that the spacetime manifoldMD is a product
manifold MD ¼ M4 ×Md with d≡D − 4, and that the
background metric on this manifold has the following
factorizable form:

ĝMNdXM ⊗ dXN ¼ ĝμνdxμ ⊗ dxν þ ĝmndxm ⊗ dxn;

M;N ¼ 0;…; D; μ; ν ¼ 0; 1; 2; 3;

m; n ¼ 4;…; D: ð9Þ

Here, ĝμν ≡ ημν ¼ diagð−1;þ1;þ1;þ1Þ is the Minkowski
metric over M4, and ĝmn is the metric over a compact
d-dimensional Ricci-flat space Md:

R̂mn½ĝðdÞ� ¼ 0: ð10Þ

Hereafter, the hats denote background values. Ricci-flat
compactifications encompass a wide class of geometries,
including tori and Calabi-Yau manifolds. It is worth
recalling that components of the Riemann tensor of the
Ricci-flat spaces can be nonzero (e.g., in the case of a
nonvanishing Weyl tensor [12]).
We assume that the Jordan field (scalar field) of the

massive BD theory has a potential of the form

UðΦÞ ¼ μ2

2
ðΦ − Φ̂Þ2: ð11Þ

Accordingly, the scalar field Φ has a mass scale μ, and Φ̂
defines the position of a stable vacuum of the potential
UðΦÞ. Hence, Φ̂ is the background value of Φ. Since the
scalar field Φ determines the strength of the gravitational
coupling, its background value Φ̂ cannot be zero. It can be
easily verified that the background metric (9) together with
Φ̂ ¼ const. solves the field equations (5) and (8) in the
absence of matter—i.e., when T̂MN ¼ 0. In order for
gravity to be attractive, it is necessary that Φ̂ > 0.

III. LINEARIZED EQUATIONS

Now, we consider linear perturbations of the background
model. The perturbed metric tensor and scalar field read,
correspondingly,

gMN ≈ ĝMN þ δgMN ≡ ĝMN þ hMN; hKL ≡ ĝKMhML;

ð12Þ

and

Φ ≈ Φ̂þ δΦ ¼ Φ̂ð1þ ϕÞ; ϕ≡ δΦ=Φ̂: ð13Þ

We assume that these linear perturbations correspond
to the perturbation of the EMT of the gravitating system
δTMN . Since there is no background matter, the energy-
momentum tensor coincides with TMN ¼ δTMN .
In order to perform linearization, it is convenient to

rewrite Eq. (5) by eliminating R from it with the help of
Eq. (6):

ΦRMN þ ð1þ ωÞgMNΔDΦ −
1

2
ΦU0gMN −

ω

Φ
∇MΦ∇NΦ

−∇M∇NΦþ 1

2
gMNU ¼ κ2DTMN: ð14Þ

The linearized field equations (14) and (8) take the
following forms, correspondingly:
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δRMN þ ð1þ ωÞĝMNΔ̂Dϕ

−
1

2
Φ̂μ2ĝMNϕ − ∇̂M∇̂Nϕ ¼ κ2D

Φ̂
δTMN; ð15Þ

½ðdþ 3Þ þ ωðdþ 2Þ�Δ̂Dϕ

¼ κ2D
Φ̂

δTMNĝMN þ dþ 2

2
Φ̂μ2ϕ: ð16Þ

Here, δRMN is the linear perturbation of the Ricci tensor,
and it can be written in the form (see Ref. [9])

δRMN ¼ −
1

2
Δ̂LhMN þ 2∇̂ðMQNÞ; ð17Þ

QN ≡ ∇̂KhKN −
1

2
∂NhKK; ð18Þ

where AðMNÞ ≡ ðAMN þ ANMÞ=2 and Δ̂L is the
Lichnerowitz operator:

Δ̂LhMN ≡ ∇̂K∇̂KhMN þ 2R̂PMLNhPL − 2R̂PðMhPNÞ

¼ ∇̂K∇̂KhMN þ 2R̂PMLNhPL: ð19Þ

In the last line, we take into account the Ricci-flatness of
the background model: R̂MN ¼ 0.
In order to eliminate the nonphysical d.o.f. due to the

diffeomorphism invariance, we impose the gauge condition

QN ¼ 1

2
∂Nϕ: ð20Þ

Additionally, without loss of generality, we can set Φ̂ ¼ 1,
which is equivalent to the renormalization of constants2

κ2D=Φ̂ → κ2D, μ
2Φ̂ → μ2. Then, Eq. (15) takes the form

ð1þ ωÞĝMNΔ̂Dϕ −
1

2
Δ̂LhMN −

1

2
μ2ϕĝMN ¼ κ2DδTMN:

ð21Þ

Now, we suppose that the matter source of the perturba-
tions of gMN and Φ is a compact gravitating source,
representing an astrophysical object, e.g., the Sun. Since
the pressure inside the Sun, p0, is negligible as compared to
its energy density, ε, we can assume that the EOS in the
external (observable) space is dustlike: p0 ¼ 0. This is the
usual assumption for calculating the PPN parameters γ
(relevant to the deflection of light and the time delay of
radar echoes) and β (relevant to the perihelion shift) for
orbiting test masses in the Solar System in GR [8,11,12]. In
the present paper, we calculate only the PPN parameter γ.

However, for the sake of generality, we allow that the
source may have a nonzero pressure/tension p1 in the
internal space, characterized by the corresponding EOS
parameter Ω ¼ p1=ε. In particular, it was shown in a recent
work [9] that in the usual purely metric KK models with
Ricci-flat compactification, Ω ¼ −1=2 is the necessary
condition for the theory to reproduce the PPN parameter
γ ¼ 1 as in the case of GR. Therefore, the EMT of the
source is chosen in the following form:

TM
N ¼ δTM

N ¼ −εδM0 δ0N þp1δ
M
l δ

l
N;

ε≡ ρc2 ¼Mc2
δðrÞ
V̂d

; p1 ¼ Ωε; Ω¼ const; ð22Þ

where V̂d ≡
R
ddy

ffiffiffiffiffiffiffiffiffiffi
jĝðdÞj

q
is the comoving volume element

of the (unperturbed) internal space, r ¼ ðx1; x2; x3Þ is the
position vector in the external space, and M is the mass of
the object. Clearly, the corresponding matter source rep-
resents a gravitating mass M, which is pointlike with
respect to the external space and uniformly distributed in
the extra dimensions (internal space).
Taking into account the structure of the EMT of the

perturbation (22), it turns out that the only nonzero
components of the metric perturbations hMN are [9,23]

h00 ≡ −ĝ00χ1 ¼ χ1; hμ̃ ν̃ ≡ ĝμ̃ ν̃χ2 ¼ δμ̃ ν̃χ2;

hmn ≡ ĝmnχ3 ð23Þ

(hereafter, μ̃; ν̃ ¼ 1; 2; 3), with χ1;2;3 being some scalar
functions of the external space coordinates only. Clearly,
since δTMN depends only on the coordinates of the external
space, these functions, together with ϕ, also depend only on
r. Obviously, this results in the absence of the Kaluza-Klein
massive modes.
Now, taking into account that

R̂PMLNhPL ¼ R̂pmlnhpl ¼ χ3R̂pmlnĝpl ¼ χ3R̂mn ¼ 0 ð24Þ

and then

Δ̂LðfĝMNÞ ¼ ∇̂K∇̂KĝMNf ¼ ĝMNΔ̂3f; ð25Þ

where f is an arbitrary function of r, we obtain

Δ̂Lh00 ¼ −ĝ00Δχ1 ¼ Δχ1; Δ̂Lhmn ¼ ĝmnΔχ3;

Δ̂Lhμ̃ ν̃ ¼ ĝμ̃ ν̃Δχ2 ¼ δμ̃ ν̃Δχ2; Δ̂Dϕ ¼ Δϕ: ð26Þ

Here Δ≡ Δ̂3 is the Laplace operator over the flat external
space. Therefore, the components of the linearized field
equations (21) are

− ð1þ ωÞΔϕ −
1

2
Δχ1 þ

1

2
μ2ϕ ¼ κ2Dε; ð27Þ2Obviously, since Φ̂ > 0 by definition, this renormalization

does not alter the signs of κ2D and μ2.
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ð1þ ωÞΔϕ −
1

2
Δχ2 −

1

2
μ2ϕ ¼ 0; ð28Þ

ð1þ ωÞΔϕ −
1

2
Δχ3 −

1

2
μ2ϕ ¼ κ2DΩε: ð29Þ

And, for Eq. (16), we have

½ðdþ 3Þ þ ωðdþ 2Þ�Δϕ −
dþ 2

2
μ2ϕ

¼ −κ2Dεð1 −ΩdÞ: ð30Þ

IV. SOLUTIONS OF THE LINEARIZED
EQUATIONS AND EXPERIMENTAL

CONSTRAINTS

The system of four differential equations (27)–(30) can
be solved by reducing it to the system of linear algebraic
equations by means of the Fourier transform. All of the four
sought solutions can be expressed by one master equation

fðrÞ ¼ κ2DMc2

4πV̂d

1

r

�
A −

�
A −

B
C

�
e−mr

�
; ð31Þ

where

C≡ ðdþ 3Þ þ ωðdþ 2Þ; m2 ≡ dþ 2

2

μ2

C
; ð32Þ

and the constants A and B are defined for each field
separately:

ϕðrÞ∶ A0 ¼ 0; B0 ¼ 1 −Ωd; ð33Þ

χ1ðrÞ∶ A1 ¼
2½1þ dð1þ ΩÞ�

dþ 2
;

B1 ¼ 2½dðωþ 1ÞðΩþ 1Þ þ ωþ 2�; ð34Þ

χ2ðrÞ∶ A2 ¼
2ð1 − ΩdÞ
dþ 2

;

B2 ¼ 2ð1þ ωÞð1 −ΩdÞ; ð35Þ

χ3ðrÞ∶ A3 ¼
2ð1þ 2ΩÞ
dþ 2

;

B3 ¼ 2½1þ ωþ ð3þ 2ωÞΩ�: ð36Þ

Since Eq. (30) is the Helmholtz equation, the scalar field ϕ
is of the Yukawa potential form with the Yukawa character-
istic mass scale m. Obviously, to have a physically
reasonable solution, we should demand m2 > 0, leading
to the condition

C > 0 ⇒ ω > ωcr ¼ −
dþ 3

dþ 2
; ð37Þ

which is exactly the ghost-free condition [24]. Under this
condition, the kinetic term of the scalar field yields the
“correct” positive sign in the Einstein frame.3 The admix-
ture of the Yukawa potential to the metric perturbations χ1,
χ2, and χ3 is due to the admixture of the scalar field terms to
Eqs. (27)–(29). It can be easily verified from Eqs. (31) and
(34)–(36) that the combinations χ1 þ χ2, χ1 þ χ3, and χ2 −
χ3 behave as 1=r without such an admixture, as they satisfy
the Poisson equation. Therefore, these combinations define
a transition to new variables corresponding to pure gravi-
tational d.o.f. decoupled from the Jordan scalar field that, as
known, takes place in the Einstein frame. Here, only the
massive scalar field has the form of the Yukawa potential.
Now, we want to investigate under which conditions the

above solutions do not contradict the data from observa-
tions. It is well known (see, e.g., Ref. [12]) that the metric
correction term h00 ¼ χ1 defines the gravitational potential:
χ1 ¼ −2φ=c2. The inverse-square-law experiments impose
restrictions on the Yukawa corrections to the Newtonian
gravitational potential [26]. On the other hand, the ratio
γ ¼ hμ̃ μ̃=h00 ¼ χ2=χ1 defines the PPN parameter γ. The
gravitational tests, such as the Shapiro time-delay experi-
ment [13], tightly restrict this ratio to the value of unity. We
make use of the results from these experiments to obtain
constraints on the parameters of the model under consid-
eration in this work. To perform it, we consider first the
massless case, which is simply the higher-dimensional
generalization of the original Brans-Dicke gravity.

A. Massless scalar field

In the case of a massless scalar field, i.e., μ ¼ m ¼ 0, the
contributions from the Yukawa correction terms disappear
and Eq. (31) reads

fðrÞ ¼
�
κ2DMc2

4πV̂d

B
C

�
1

r
: ð38Þ

Here, the gravitational potential φ ¼ −χ1c2=2 has the
Newtonian form and should exactly coincide with the

3In this study, since we begin with the BD theory, we consider
the metric in the Jordan frame—the original frame of the BD
theory—as the physical one. In this approach, the scalar field is
directly coupled to the scalar curvature in the action. We can
decouple it by means of the metric conformal transformation to
the Einstein frame. Alternatively, we could start from the very
beginning by considering GR with decoupled scalar field and
scalar curvature. Such a multidimensional KK model with a
massive, static, spherically symmetric scalar field was inves-
tigated in Ref. [25], wherein the metric in the original Einstein
frame is considered as the physical one. Similarly to the present
paper, it is found that the massive scalar field contributes to the
gravitational potential. However, this correction has the form of
the Yukawa potential [similar to Eq. (31)] plus some additional
terms which are absent in the present paper.
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Newtonian expression φN ¼ −GNM=r. To get it, the
higher-dimensional κ2D and the Newtonian GN gravitational
constants are related as

κ2D
V̂d

B1

C
¼ 8πGN

c4
: ð39Þ

Therefore, we cannot make use of the results of the inverse-
square-law experiments to obtain restrictions on the param-
eters of the massless model. Let us then consider the PPN
parameter γ. Since χ2ðrÞ ¼ ðB2=B1Þχ1ðrÞ, for the PPN
parameter γ we obtain

γ ¼ B2

B1

¼ ð1þ ωÞð1 −ΩdÞ
dðωþ 1ÞðΩþ 1Þ þ ωþ 2

: ð40Þ

If we set d ¼ 0 (corresponding to the absence of extra
dimensions), the well-known result for the original BD
theory in four dimensions,

γ ¼ ωþ 1

ωþ 2
; ð41Þ

is restored as a particular case [27]. The precision Shapiro
time-delay experiment [13] restricts the value of γ to the
narrow interval

γ − 1 ¼ ð2.1� 2.3Þ × 10−5; ð42Þ

implying, by means of Eq. (41), that ω must be about
4 × 104 or greater. The values ω ∼Oð1Þ are, therefore,
excluded, which constitutes the problem of naturalness of
the original BD theory. On the other hand, we see from
Eq. (40) that the presence of extra dimensions may extend
the set of allowed values for ω.
First, we consider the case of Ω ¼ 0 (the massive source

yields no pressure/tension in the extra dimensions). Then
the exact equality γ ¼ 1 with Ω ¼ 0 from Eq. (40) leads to
the condition

ω≡ ω0 ¼ −1 −
1

d
< −1: ð43Þ

Therefore, in this case the PPN parameter γ exactly
coincides with the value of GR and, from this point, these
theories are indistinguishable. However, parameter C,

C ¼ ðdþ 3Þ þ ω0ðdþ 2Þ ¼ −
2

d
< 0; ð44Þ

has negative sign, which implies that the scalar field is a
ghost. It is worth noting that here B1 ¼ C, and their ratio
does not change sign in Eq. (39).
To avoid ghosts, we turn now to the case of nonzero

Ω ≠ 0. From Eq. (40), it immediately follows that it is
possible to obtain the exact equality γ ¼ 1 provided that the
fine-tuning condition

Ω ¼ −
1

2
−

1

2dðωþ 1Þ ð45Þ

is satisfied. For this value of Ω, we obtain B1 ¼ B2 ¼ C.
The requirementΩ > 0 leads to a restriction on the allowed
values of ω:

Ω > 0 ⇒ ω0 < ω < −1: ð46Þ

Parameter Ω is positive also if ω < ω0 along with ω > −1.
However, these two inequalities are inconsistent. Since we
have ω0 < ωcr < −1, we can choose ω in such a way that

ωcr < ω < −1 ⇒ Ω >
1

d
: ð47Þ

The condition ωcr < ω provides with us the positivity of
C > 0—that is, the absence of ghosts. Hence, in this case,
we have both the field Φ being nonghost, and a positive
parameterΩ. The latter condition means that the gravitating
source has positive pressure in the internal space rather than
tension.4

The negative values of Ω < 0 result in two types of
inequalities for the BD parameter ω:

ω < −1;ω < ω0 ⇒ ω < ω0 ð48Þ

and

ω > −1;ω > ω0 ⇒ ω > −1: ð49Þ

Obviously, condition (48) leads to a ghost scalar field; see
Eq. (37). Whereas, for ω from Eq. (49), ghosts are absent,
and ω can be positive and of the order of unity: ω ∼Oð1Þ,
provided that Ω < −1=2 (tension in the extra dimensions).

B. Massive scalar field

Let us turn now to the general case of massive scalar
field. To better understand the structure of the metric
coefficients χ1 and χ2, we rewrite them in the following
form:

χi ¼
κ2Dc

2

4πV̂d
Ai

M
r
ð1þ αie−mrÞ; i ¼ 1; 2; ð50Þ

where

αi ≡ −1þ Bi

AiC
ð51Þ

and

4Note that positive values of Ω are totally excluded in the
purely metric models [9,10], where the condition γ ¼ 1 results in
the requirement Ω ¼ −1=2 < 0.
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− α1A1 ¼ α2A2 ¼ −
1

3þ 2ω

þ dð1þ 2ΩÞ
dþ 2

−
2dðωþ 1Þ
ð3þ 2ωÞC ½ð1þ ωÞð1þ 2ΩÞ þΩ�:

ð52Þ

Parameters A1 and A2 can also be expressed as

A1 − 1 ¼ −ðA2 − 1Þ ¼ dð1þ 2ΩÞ
dþ 2

: ð53Þ

The limit m → ∞ ⇒ ϕ → 0, and hence corresponds
to the GR limit of the model; viz., to the KK model in
GR. In this case, the PPN parameter γ ¼ 1 only if Ω ¼
−1=2 in full agreement with previous works [8–10].5 In the
case of a four-dimensional massive BD model—i.e.,
when d → 0—as follows from Eqs. (52) and (53), we
reproduce the results of Ref. [27] [up to evident substitu-
tion κ2Dc

2=ð4πV̂dÞ → 2GN=c2].
Coming back to the general case (i.e., d ≠ 0 and m is

finite), in what follows, we investigate under which con-
ditions the metric coefficients (50) do not contradict the
gravitational tests relevant to the PPN parameter γ—the
deflection of light and the time delay of radar echoes—in
the Solar System. From the inverse-square-law experi-
ments, we can obtain restrictions on the Yukawa correction
term [26]. First, at large distances from the gravitating
mass, the gravitational potential should have the Newtonian
form. Then, keeping in mind that the gravitational potential
φ is defined by the function χ1∶φ ¼ −χ1c2=2, we define
the connection between the higher-dimensional and
Newtonian gravitational constants:

κ2D
V̂d

A1 ¼
8πGN

c4
: ð54Þ

For this relation to be consistent, we must have A1 > 0,
which is equivalent to Ω > −1 − 1=d. Moreover, as we

shall see below, parameter Ω should be very close to the
value −1=2. For such a value of Ω, we find that α1 ¼ 1=C.
Then, if we take the natural value ω ∼Oð1Þ, we get an
estimate α1 ≲ 1 and, consequently, the upper limit on the
Yukawa characteristic length of interaction leading to λ ¼
1=m≲ 10−3 cm [26]. In other words, the Yukawa mass
scale is m≳ 10−11 GeV. This bound is much stronger than
the lower limit 20 × 10−27 GeV obtained in Ref. [27] only
on the basis of the PPN parameter γ without taking into
account the results of the inverse-square-law experiments.
It can be easily seen that for the obtained constraint on

λ—i.e., λ≲ 10−3 cm—the Yukawa correction terms are
negligible for the gravitational tests relevant to the PPN
parameter γ in the Solar System. Indeed, the distance r
should be of the order of or greater than the radius of the
Sun, r⊙ ∼ 7 × 1010 cm. Therefore, r=λ≳ 1013. Hence, we
can drop the Yukawa correction terms in Eq. (50) with very
high accuracy, and for the PPN parameter γ we have

γ ¼ χ2ðrÞ
χ1ðrÞ

≈
A2

A1

¼ 1 −Ωd
1þ dð1þΩÞ : ð55Þ

We note that if Ω ¼ 0, we have γ ¼ 1=ðdþ 1Þ that
certainly contradicts the observations [8–10]. Thus, the
equality γ ¼ 1 is satisfied provided that Ω ¼ −1=2.
Moreover, supporting this, it was shown in Refs. [19,29]
that a gravitating mass which is pressureless in our space
and has the EOS parameter Ω ¼ −1=2 in the internal space
does not spoil the stabilization of the internal space.
The negative pressure (viz., the tension) gives rise to a

number of questions. This point was discussed in Ref. [29],
and afterwards it has been looked for obtaining viable
Kaluza-Klein models without such negative pressure
in a number of papers (see, e.g., Refs. [19,23,30–32]).
However, so far, it is observed that it is very difficult to
avoid the EOS parameter Ω ¼ −1=2. Despite the problems
about explaining the origin of such an equation of state, the
significance of negative pressure (tension) was pointed out
in Ref. [33].

V. CONCLUSION

In the present paper, we have considered the higher-
dimensional generalization of the massive Brans-Dicke
theory with Ricci-flat internal space (extra dimensions).
The background model was perturbed by a massive
gravitating source which is pressureless in the external
(our space) but has an arbitrary EOS parameter Ω in the
internal space. The system of linearized equations for the
perturbations of the metric coefficients and scalar field has
been solved exactly. Then, the observational data have been
considered for obtaining the experimental bounds for the
parameters of the model. To this end, we have used the
results of both the tabletop inverse-square-law experiments
and the experimental limits on the PPN parameter γ.

5For the model under consideration in this paper, there are two
reasons that affect the form of the metric coefficients: (i) the
presence of the Jordan field (the scalar field coupled to the scalar
curvature), and (ii) the presence of extra dimensions. The
variation of the internal space volume (viz., radions) results in
the fifth force [28]. In the present paper, this corresponds to the
nonzero values of the metric coefficient χ3. Therefore, the
absence of contribution from the Jordan field (e.g., in the limit
m → ∞) does not guarantee the equality of the PPN parameter γ
to 1, since this limit results in multidimensional generalization of
GR with its inherent problems—e.g., in the form of massless
moduli/radions [8,28]. These problems can be avoided either due
to sufficiently large masses of moduli, or with the help of a fine-
tuning of parameters of models. It can be seen from Eqs. (36) and
(53) that, in the presence of extra dimensions (d > 0), only if we
set Ω ¼ −1=2 will we get A1 ¼ A2 ¼ 1 and A3 ¼ 0, which,
respectively, lead in the limit m → ∞ to γ ¼ χ2=χ1 ¼ 1 as in the
usual GR and χ3 ¼ 0.
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First, we have investigated the massless scalar field,
which simply generalizes the original four-dimensional
Brans-Dicke theory to higher dimensions. In this case, we
have shown that the pressureless case, Ω ¼ 0, suffers from
the presence of a ghost scalar field. On the other hand, we
have shown that when Ω is allowed to be nonzero, it is
possible to construct models which, first, are in agreement
with the strongest experimental limits on the PPN param-
eter γ, and second, have a natural value jωj ∼Oð1Þ. The
price for this is the fine-tuning condition (45).
Then, we have investigated the general massive scalar

field case. It turned out that the metric coefficients acquire
the correction terms in the form of the Yukawa potential
with a Yukawa mass scale defined by the mass of the scalar
field. Based on the results of the inverse-square-law experi-
ments, and assuming that Brans-Dicke parameter ω sat-
isfies the natural condition ω ∼Oð1Þ, we obtained the
lower bound on the Yukawa mass scale leading to
m≳ 10−11 GeV. This bound is much stronger than the
lower bound 20 × 10−27 GeV obtained in Ref. [27] only on
the basis of the PPN parameter γ without taking into
account the results of the inverse-square-law experiments.
It is worth noting that this bound we obtained is also valid

in the four-dimensional case. The experimental constraints
on the PPN parameter γ requires that the EOS parameter in
the internal space (extra dimensions) Ω be extremely close
to −1=2. It is important to emphasize that predicting the
gravitational potential in the form of the Newtonian
potential and γ ≅ 1 does not suffice to pass the Solar
System gravitational tests. Thus, the next step will be to
investigate if the PPN parameter β could be equal or very
close to unity under the conditions we found in this paper
for satisfying the PPN parameter γ ≅ 1, as suggested by the
experiments.
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