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The Debye mass sets a scale for the screening of static charges and the scattering of fast charges within a
gauge plasma. Inspired by its potential cosmological applications, we determine a QCD Debye mass at
two-loop order in a broad temperature range (1 GeV–10 TeV), demonstrating how quark mass thresholds
get smoothly crossed. Along the way, integration-by-parts identities pertinent to massive loops at finite
temperature are illuminated.
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I. INTRODUCTION

If two test charges are put a distance r apart within a
plasma, they influence each other with a force which is
weaker than the Coulomb force in vacuum, as a result of the
screening caused by the light plasma particles. The poten-
tial then takes a Yukawa form, −αe−mEr=r, where the
parametermE may be called an electric or a Debye mass. In
a relativistic plasma, it is of order mE ∼ gT, where T is the
temperature and g is a gauge coupling.
In the present paper, we focus on strong interactions,

such that g is the coupling of the SU(3) gauge force.
Standard applications of the QCD Debye mass can be
found in the physics of heavy ion collision experiments.
However, the temperatures reached there (T ≪ 1 GeV) are
so low that it is questionable whether perturbative tools are
viable. Here, we rather take T ≳ 1 GeV and consider the
possible role of the QCD Debye mass in cosmology.
Given that strong interactions are in thermal equilibrium

in a broad temperature range, QCD does not normally play
a prominent role in cosmology. However, exceptions can
be envisaged.1 For instance, it has become popular to
consider scenarios in which dark matter is but the lightest
among the particles of a larger dark sector. Then, it is
conceivable that the dark sector may also contain particles
charged under QCD (cf. e.g,. Ref. [1] for a review of one
such framework). At high temperatures, the pair annihila-
tion of the QCD-charged particles would be modified by

Debye screening [2]. Charged particles also experience a
thermal mass shift, known as the Salpeter correction in
plasma physics, ΔMT ∼ −αmE=2, which can have a,
relatively speaking, large effect if narrow degeneracies
are present in the dark sector.
Another possible application concerns the decay of

heavy particles, for instance, right-handed neutrinos in
leptogenesis. In this case, it is important to know how fast
the decay products (some of which could be hadronic,
produced through the Higgs channel) equilibrate kinetically
[3]. This requires large-angle scattering, again sensitive to
Debye screening [4]. Another relevant rate, namely, that of
decoherence of the decay products, originates from a
difference of small-angle scatterings mediated by color-
magnetic and color-electric fields, whereby it is nonvanish-
ing at OðαTÞ thanks to mE ≠ 0 (cf. e.g., Ref. [5]).
A third application of Debye masses is that they play a

role in dimensionally reduced descriptions of the electro-
weak phase transition [6]. In particular, the QCD Debye
mass could make a noticeable appearance if some colored
scalar field is light enough to participate in the transition
dynamics (cf. e.g., Refs. [7,8]).
This paper is organized as follows. The definition of a

Debye mass is subtle beyond leading order, so we start by
specifying the concept adopted in Sec. II. The main steps
and methods of the computation are described in Sec. III,
and results are presented in Sec. IV. We conclude in Sec. V,
relegating the evaluation of massive one-loop and two-loop
sum integrals to the Appendix.

II. FORMULATION OF THE PROBLEM

As mentioned at the beginning of the Introduction, the
leading-order definition of a Debye mass can be related to
the Yukawa screening of a static potential or, equivalently,
to the thermal mass that color-electric fields obtain. In
SUðNcÞ gauge theory with Nf massless fermions, the
classic result reads [9]
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1None of the contexts listed here is “urgent,” as they are related
to yet-to-be-discovered beyond the Standard Model physics;
nevertheless, we hope that, put together, they can motivate a
well-defined QCD computation.
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m2
E ¼ g2T2

�
Nc

3
þ Nf

6

�
þOðg3T2Þ: ð2:1Þ

When we go beyond leading order, the definition of a
Debye mass is no longer unique. One possibility is to
define it as the inverse of a spatial correlation length
related to some gauge-invariant operator [10]. This way, the
Debye mass becomes nonperturbative at next-to-leading
order [11]. However, correlation lengths depend strongly
on the quantum numbers of the operator chosen. There are
also other nonperturbative possibilities, related, e.g., to
modeling the behavior of the static potential at intermediate
distances [12].
A different strategy is to define the Debye mass as a

“matching coefficient” of a low-energy description, specifi-
cally of a dimensionally reduced effective theory [13,14].
There are a number of advantages with this strategy. One is
that the definition is then “universal,” with the same value
appearing as an ingredient in the computation of many
different correlation lengths [15], or even of dynamical rates
[5]. Another is that as a matching coefficient m2

E is only
sensitive to the hard scales that have been integrated out, and
therefore perturbative by construction. In fact, the result is
known analytically up to three-loop order in pure Yang-Mills
theory [16,17] and shows remarkable convergence down to
low temperatures. Fermionic effects are for this definition
currently known up to two-loop order in the massless limit
[18] and up to one-loop level in the massive case [9]. The
purpose of the current study is to extend the two-loop result
for m2

E to include massive fermions.2

To be explicit, the action of the dimensionally reduced
effective theory, often called “electrostatic QCD” (EQCD),
reads

SEQCD ≡
Z
X

�
1

4
Fa
ijF

a
ij þ

1

2
Dab

i Ab
0D

ac
i Ac

0 þ
m2

E

2
Aa
0A

a
0 þ…

�
;

ð2:2Þ
where we are employing Euclidean conventions,

R
X ≡

1
T

R
ddx, d ¼ 3 − 2ϵ, Fa

ij ≡ ∂iAa
j − ∂jAa

i þ gEfabcAb
i A

c
j ,

Dab
i ≡ δab∂i − gEfabcAc

i , and Aa
0 is an adjoint scalar field.

To determine m2
E, it is convenient to use the back-

ground field gauge [24] as a probe. We compute the
temporal two-point function with a purely spatial external
momentum,

Π00ðpÞ≡ ΠEðp2Þ ¼
X∞
n¼1

g2nB ΠEnðp2Þ; p≡ jpj: ð2:3Þ

Here, g2B is the bare coupling, which is subsequently
expressed in terms of the renormalized coupling g2. The
computation within full QCD (or the Standard Model) is
matched onto a computation within the effective theory,
the latter also reexpanded as a perturbative series in g2.
However, employing dimensional regularization and
Taylor expanding in external momentum, the latter com-
putation gives a vanishing result, given that no scales
appear in the propagators. Therefore, the matching coef-
ficient is directly given by a Taylor-expanded full theory
computation, after accounting for different field normal-
izations (or wave function corrections) within the full and
effective theories,

m2
E ¼ g2BΠE1ð0Þ þ g4B½ΠE2ð0Þ − ΠE1ð0ÞΠ0

E1ð0Þ� þOðg6BÞ:
ð2:4Þ

III. MAIN STEPS OF THE COMPUTATION

The Feynman diagrams required for determining the
two-loop fermionic contributions to m2

E are shown in Fig. 1
(we do not show gluonic diagrams, as our results for them
agree with Ref. [18]). Apart from vertices involving the
strong gauge coupling g2, we have for illustration also
included effects from the top Yukawa coupling h2t , even if
in practice these are small.3

The computation is carried out by employing the gauge
propagator

ð3:1Þ

FIG. 1. Fermionic two-loop contributions to the gluon two-point function. Wiggly lines denote gluons, solid lines denote quarks, and
dashed lines denote Higgs bosons.

2We note in passing that another analogous matching coef-
ficient is the gauge coupling of the dimensionally reduced theory,
denoted by g2E, but its determination is technically more chal-
lenging. For pure Yang-Mills theory, results are available up to
three-loop level, but only in somewhat incomplete numerical
form [19–21]. Massless fermions have been included up to two-
loop level [22], and mass effects have been included up to one-
loop level [23].

3For the latter set, only the scalar coupling to the physical
Higgs mode has been kept. The couplings to the Goldstone
modes lead to gauge-dependent contributions which can only be
included if the SULð2Þ × UYð1Þ gauge bosons are incorporated as
well; however, those effects are numerically very small.
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where and is a
bosonic Matsubara sum integral. We keep ξ as a general
gauge parameter (in the background field gauge, it also
appears in the cubic and quartic gauge vertices [24]),
verifying that it cancels exactly at the end.
After carrying out the Wick contractions, the result can

be expressed in terms of the “master” sum integrals

Zr
j;i ≡

XZ
fPg

pr
n

ðP2 þm2
i Þj

; Ẑr
j;0 ≡

XZ
P

pr
n

ðP2Þj ; ð3:2Þ

Zrs
jkl;i ≡

XZ
fP;Qg

pr
nqsn

ðP2 þm2
i ÞjðQ2 þm2

i Þk½ðP −QÞ2�l ;

ð3:3Þ

where P≡ ðpn;pÞ and pn is a Matsubara frequency. The
sum integral signifies that pn is fermionic, i.e., pn ≡
πTð2nþ 1Þ with n ∈ Z. After renaming variables, the set
of two-loop masters can then be chosen to consist of Z20

jkl;i,
Z11
jkl;i, and Zjkl;i ≡ Z00

jkl;i. In rare cases, we add a massmh on
the bosonic line and indicate this with the index h. The
mass index i is omitted in intermediate results if this can be
done without the danger of confusion.
As far as one-loop results are concerned, we need

[cf. Eq. (2.4)]

ΠE1ð0Þ¼ ðd−1Þ2NcẐ1;0−2
XNf

i¼1

½ðd−1ÞZ1;iþ2m2
i Z2;i�;

ð3:4Þ

∂m2
i
ΠE1ð0Þ ¼ 2

XNf

i¼1

½ðd − 3ÞZ2;i þ 4m2
i Z3;i�; ð3:5Þ

Π0
E1ð0Þ ¼ −

�
d2 − 5dþ 28

6
− ξðd − 3Þ

�
NcẐ2;0

þ 1

3

XNf

i¼1

½ðd − 1ÞZ2;i þ 4m2
i Z3;i�: ð3:6Þ

Equation (3.5) is relevant because ΠE1 is originally expre-
ssed as a function of bare quark masses, which are expanded

asm2
Bi¼m2

i ½1þ 3h2i−12g
2CF

2ð4πÞ2ϵ þOðg4Þ�, where CF ≡ ðN2
c − 1Þ=

ð2NcÞ. In practice, Yukawa couplings hi other than ht are
omitted. Similarly, the bare gauge coupling is renormalized

as g2B ¼ g2½1þ g2

ð4πÞ2ϵ ð− 11Nc
3

þ 2
3

PNf
i¼1Þ þOðg4Þ�.

The two-loop diagrams yield products of the one-loop
masters of Eq. (3.2) as well as genuine two-loop masters
defined according to Eq. (3.3). All numerators can be
eliminated from one-loop masters by making use of
Zrþ2
jþ1;i ¼ −m2

i Z
r
jþ1;i þ ð1 − d

2jÞZr
j;i. This produces

ΠE2ð0Þ ¼ −N2
cðd − 1Þ2ðd − 3Þð1 − ξÞẐ1;0Ẑ2;0

þ Nc

XNf

i¼1

f2ðd − 1Þðd − 3Þð1 − ξÞZ1;iẐ2;0 þ 4m2
i ½Z112 − ξðd − 3ÞZ2;iẐ2;0�

þ 8m2
i ½Z11

221 þ 2ðZ11
212 − Z20

212Þ þ 4ðZ11
113 − Z20

113Þ�g

þ CF

XNf

i¼1

f2ðd − 1Þ½Ẑ1;0 − Z1;i�½ðd − 3ÞZ2;i þ 4m2
i Z3;i� þ 8m2

i ½Z211 − 2Z11
221 − 4Z20

311�g

−
h2tB
g2B

f½Z1;t − Ẑ1;h�½ðd − 3ÞZ2;t þ 4m2
t Z3;t� þ ð4m2

t −m2
hÞ½Z211;th − 2Z11

221;th − 4Z20
311;th�g: ð3:7Þ

The set of masters can now be reduced by making use of integration-by-parts (IBP) identities [25], generalized to finite
temperature [26]. First, inspecting

0 ¼
XZ

fP;Qg

Xd
i¼1

∂
∂pi

pi � qi
ðP2 þm2ÞjðQ2 þm2Þk½ðP −QÞ2�l ð3:8Þ

and taking linear combinations leads to relations which permit us to eliminate all quadratic powers of pn,

Z20
ðjþ1Þkl ¼

1

2j
fð2jþ k − dÞZjkl − 2m2½jZðjþ1Þkl þ kZjðkþ1Þl� þ k½Zðj−1Þðkþ1Þl − Zjðkþ1Þðl−1Þ − 2Z11

jðkþ1Þl�g; ð3:9Þ

Z20
jkðlþ1Þ ¼

1

2l
fðl − kÞZjkl þ 2km2Zjðkþ1Þl

þ k½Zjðkþ1Þðl−1Þ − Zðj−1Þðkþ1Þl þ 2Z11
jðkþ1Þl� þ l½Zðj−1Þkðlþ1Þ − Zjðk−1Þðlþ1Þ þ 2Z11

jkðlþ1Þ�g: ð3:10Þ

A QCD DEBYE MASS IN A BROAD TEMPERATURE RANGE PHYS. REV. D 101, 023532 (2020)

023532-3



Second, if we choose indices leading to two independent representations of some Z20
jkl, we can establish relations between

Z11
jkl. Considering Z20

212 this way, we obtain from Eqs. (3.9) and (3.10) the identity

2ðZ11
221 þ 2Z11

212Þ ¼ Z2;ið2Ẑ2;0 − Z2;iÞ − 2m2ðZ221 þ 2Z212Þ − ðd − 2ÞZ112: ð3:11Þ

By using Eq. (3.9) in order to eliminate Z20
311 and Eq. (3.10) to eliminate Z20

113 and Z
20
212 and inserting subsequently Eq. (3.11),

we can remove all numerators from the sum integrals of Eq. (3.7), leading to

ΠE2ð0Þ ⊃ Nc

XNf

i¼1

f2ðd − 1Þðd − 3Þð1 − ξÞZ1;iẐ2;0 þ 4m2
i ½2 − ξðd − 3Þ�Z2;iẐ2;0

þ 4m2
i ½ðd − 5ÞZ112 − 2m2

i Z221 − ðZ2;iÞ2�g

þ CF

XNf

i¼1

f2ðd − 1Þ½Ẑ1;0 − Z1;i�½ðd − 3ÞZ2;i þ 4m2
i Z3;i�

þ 8m2
i ½ðd − 5ÞZ211 þ 2m2

i ðZ221 þ 2Z311Þ þ ðZ2;1Þ2�g: ð3:12Þ

Remarkably, IBP relations also exist between masters without any numerators. In this way, we can eliminate Z221, Z211,
and Z311 in favor of Z111, Z112, and Z212. The latter set is convenient, as it turns out that Z111 appears with zero coefficient in
d dimensions, and Z212 can be obtained from Z112 through a mass derivative. Thereby, only one irreducible master, Z112,
remains to be determined in detail (cf. Appendix A 2).4

The relations needed, originally found via our FORM [27] implementation of Laporta-type reduction [28], read

Z211 ¼ −
ðd − 3ÞZ111

4m2
þ ðZ2;iÞ2
2ðd − 2Þ ; ð3:13Þ

Z221 þ 2Z311 ¼
ðd − 3Þðd − 5ÞZ111

8m4
þ Z2;i½8m2Z3;i − ðd − 3ÞZ2;i�

4ðd − 2Þm2
; ð3:14Þ

Z221 ¼
ðd − 2Þðd − 5ÞZ112

4m2
þ ðd − 4ÞZ212 þ

Z2;ið2Ẑ2;0 − Z2;iÞ
4m2

: ð3:15Þ

Defining ΔP ≡ P2 þm2 and δP ≡ P2, Eqs. (3.13) and (3.15) can be verified by setting s ¼ 1 and s ¼ 2, respectively, in the
relation

0 ¼
XZ

fP;Qg

Xd
i¼1

∂
∂pi

� ðd − 2sÞpi

ΔPΔQδ
s
P−Q

þ 2pnðpnqi − qnpiÞ
ΔPΔ2

Qδ
s
P−Q

−
pi

ΔPΔ2
Qδ

s−1
P−Q

þ pi − qi
Δ2

Qδ
s
P−Q

�

þ
XZ

fP;Qg

Xd
i¼1

∂
∂qi

� ðd − 2sÞpi

ΔPΔQδ
s
P−Q

−
2pnðpnqi − qnpiÞ

Δ2
PΔQδ

s
P−Q

−
ðs − 1Þpi

Δ2
PΔQδ

s−1
P−Q

�
; ð3:16Þ

whereas Eq. (3.14) can be established by taking a mass derivative of Eq. (3.13).

4Taken on its own, the master Z112 is IR divergent. However, the matching coefficient m2
E as a whole is IR safe by construction. For a

proper cancellation of IR divergences, all masters need to be consistently evaluated with dimensional regularization, which regularizes
both their IR and UV divergences.
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Inserting Eqs. (3.13)–(3.15), the CF part gets factorized, and Eq. (3.12) reduces to

ΠE2ð0Þ ⊃ Nc

XNf

i¼1

f2ðd − 1Þðd − 3ÞZ1;iẐ2;0 þ 2m2
i Z2;ið2Ẑ2;0 − Z2;iÞ

− 2ξðd − 3ÞẐ2;0½ðd − 1ÞZ1;i þ 2m2
i Z2;i� − 2ðd − 4Þm2

i ½ðd − 5ÞZ112 þ 4m2
i Z212�g

þ CF

XNf

i¼1

½ðd − 3ÞZ2;i þ 4m2
i Z3;i�

�
2ðd − 1Þ½Ẑ1;0 − Z1;i� þ

8m2
i Z2;i

d − 2

�
: ð3:17Þ

Adding to Eq. (3.17) the contributions from Eqs. (3.4) and (3.6) according to Eq. (2.4) and reinstalling the N2
c and h2t

parts of Eq. (3.7), we write the result in terms of MS-renormalized couplings as

m2
E ¼ g2

�
NcΦð1Þ þ

XNf

i¼1

Φð2Þ
i

�

þ g4
�
N2

cΦð3Þ þ
XNf

i¼1

ðNcΦ
ð4Þ
i þ CFΦ

ð5Þ
i Þ þ

XNf

i;j¼1

Φð2Þ
i Φð6Þ

j

�
þ g2h2tΦð7Þ þOðg6Þ: ð3:18Þ

The various functions employed in Eq. (3.18) read

Φð1Þ ¼ ðd − 1Þ2NcẐ1;0; ð3:19Þ

Φð2Þ
i ¼ −2½ðd − 1ÞZ1;i þ 2m2

i Z2;i�; ð3:20Þ

Φð3Þ ¼ ðd − 1Þ2Ẑ1;0

�ðd2 − 11dþ 46ÞẐ2;0

6
−

11

ð4πÞ23ϵ
�
; ð3:21Þ
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FIG. 2. Left: the coefficients Φ̃ð2Þ ≡PNf
i¼1 Φ

ð2Þ
i =T2, Φ̃ð4;5Þ ≡PNf

i¼1ð4πÞ2Φð4;5Þ
i =T2, Φ̃ð6Þ ≡PNf

j¼1ð4πÞ2Φð6Þ
j , and Φ̃ð7Þ ≡ ð4πÞ2Φð7Þ=T2

that parametrize Eq. (3.18), evaluated with μ̄ ¼ 2πT. Right: the QCD Debye mass as a function of the temperature. The gray band
originates from varying the renormalization scale in the range μ̄ ¼ ð0.5…2.0Þ × 2πT and gives an indication of the magnitude of higher-
order corrections. The “hard scale” with which mE can be compared is approximately 2πT. The plateaulike feature centered around
T ∼ 70 GeV originates from crossing the top mass threshold.
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Φð4Þ
i ¼ ½ðd − 1ÞZ1;i þ 2m2

i Z2;i�
�

22

ð4πÞ23ϵ −
ðd2 − 5dþ 28ÞẐ2;0

3

�

þ ðd − 1Þ2Ẑ1;0

�
2

ð4πÞ23ϵ −
ðd − 1ÞZ2;i þ 4m2

i Z3;i

3

�

þ 2ðd − 1Þðd − 3ÞZ1;iẐ2;0 þ 2m2
i Z2;ið2Ẑ2;0 − Z2;iÞ − 2m2

i ðd − 4Þ½ðd − 5ÞZ112 þ 4m2
i Z212�; ð3:22Þ

Φð5Þ
i ¼ − ½ðd − 3ÞZ2;i þ 4m2

i Z3;i�
��

12

ð4πÞ2ϵ −
8Z2;i

d − 2

�
m2

i þ 2ðd − 1ÞðZ1;i − Ẑ1;0Þ
�
; ð3:23Þ

Φð6Þ
j ¼ −

1

3

�
ðd − 1ÞZ2;j þ 4m2

jZ3;j −
2

ð4πÞ2ϵ
�
; ð3:24Þ

Φð7Þ ≈
mh≪mt − ½ðd − 3ÞZ2;t þ 4m2

t Z3;t�
��

4Z2;t

d − 2
−

3

ð4πÞ2ϵ
�
m2

t þ Z1;t − Ẑ1;0

�
: ð3:25Þ

These are gauge independent, i.e., no ξ appears, and also
finite after the insertion of the masters from the Appendix;
i.e., no 1=ϵ2 or 1=ϵ appears. For Φð7Þ, we have approxi-
mated the result by considering the limit mh ≪ mt, as this
leads to the same basis as for the pure QCD contributions.
This overestimates the magnitude of Φð7Þ, but given that its
effect is small even then (cf. Fig. 2), the approximation can
be considered conservative.

IV. RESULTS

Our final results for the coefficients in Eq. (3.18) are
obtained by inserting the master sum-integrals from
Appendix A into Eqs. (3.19)–(3.25) and by then expanding
the expressions up to Oðϵ0Þ. Denoting R

p≡
R d3p

ð2πÞ3, ωpi
≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
i

p
and nFðωÞ≡ 1=½expðω=TÞ þ 1�, we find

Φð1Þ ¼d¼3−2ϵ T2

3
; ð4:1Þ

Φð2Þ
i ¼d¼3−2ϵ

2

Z
p

nFðωpi
Þ

ωpi

�
2þm2

i

p2

�
; ð4:2Þ

Φð3Þ ¼d¼3−2ϵ 22T2

9ð4πÞ2
�
ln

�
μ̄eγE

4πT

�
þ 5

22

�
; ð4:3Þ

Φð4Þ
i ¼d¼3−2ϵ T2

9

�Z
p

nFðωpi
Þ

p2ωpi

−
2

ð4πÞ2 ln
�
μ̄2

m2
i

��

þ 44

3ð4πÞ2
�
ln

�
μ̄eγE

4πT

�
þ 1

2

� Z
p

nFðωpi
Þ

ωpi

�
2þm2

i

p2

�
−

8

ð4πÞ2
Z
p

nFðωpi
Þ

ωpi

þm2
i T

2

18

�Z
p

nFðωpi
Þ

p2ω3
pi

þ 1

T

Z
p

nFðωpi
Þ½1 − nFðωpi

Þ�
p2ω2

pi

�
−
m2

i

2

�Z
p

nFðωpi
Þ

p2ωpi

�
2

þ
Z
p;q

m2
i

8ωpi
ωqi

�
1

p2
þ 1

q2

��½nFðωpi
Þ þ nFðωqiÞ�2

ðωpi
þ ωqiÞ2

−
½nFðωpi

Þ − nFðωqiÞ�2
ðωpi

− ωqiÞ2
�
; ð4:4Þ

Φð5Þ
i ¼d¼3−2ϵ −

m2
i

2

�Z
p

nFðωpi
Þ

p2ω3
pi

þ 1

T

Z
p

nFðωpi
Þ½1 − nFðωpi

Þ�
p2ω2

pi

�

×

�
T2

3
þ 12m2

i

ð4πÞ2
�
ln

�
μ̄2

m2
i

�
þ 4

3

�
þ 4

Z
q

nFðωqiÞ
ωqi

�
1 −

m2
i

q2

��
; ð4:5Þ
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Φð6Þ
j ¼d¼3−2ϵ 1

3

�Z
q

nFðωqjÞ
q2ωqj

−
2

ð4πÞ2 ln
�
μ̄2

m2
j

�
þm2

j

2

�Z
q

nFðωqjÞ
q2ω3

qj

þ 1

T

Z
q

nFðωqjÞ½1 − nFðωqjÞ�
q2ω2

qj

��
; ð4:6Þ

Φð7Þ ≈
mh≪mt −

m2
t

2

�Z
p

nFðωpt
Þ

p2ω3
pt

þ 1

T

Z
p

nFðωpt
Þ½1 − nFðωpt

Þ�
p2ω2

pt

�

×

�
T2

12
−

3m2
t

ð4πÞ2
�
ln

�
μ̄2

m2
t

�
þ 7

3

�
þ
Z
q

nFðωqtÞ
ωqt

�
1þ 2m2

t

q2

��
; ð4:7Þ

where mi refer to MS masses evaluated at the renormaliza-
tion scale μ̄. In the limit mi ≪ T, the coefficients go over
into

Φð2Þ
i ≈

mi≪T T2

6
; ð4:8Þ

Φð4Þ
i ≈

mi≪T 7T2

9ð4πÞ2
�
ln

�
μ̄eγE

4πT

�
−
8 ln 2
7

þ 9

14

�
; ð4:9Þ

Φð5Þ
i ≈

mi≪T
−

T2

ð4πÞ2 ; ð4:10Þ

Φð6Þ
j ≈

mj≪T
−

4

3ð4πÞ2
�
ln

�
μ̄eγE

πT

�
−
1

2

�
; ð4:11Þ

Φð7Þ ≈
mt;h≪T

−
T2

4ð4πÞ2 ; ð4:12Þ

reproducing in the first four cases the expressions obtained
in Ref. [18]. For mi ≫ πT, all terms containing nF are
exponentially suppressed.
For a numerical evaluation, we set αsðmZÞ ≃ 0.118 [29]

and evolve g2ðμ̄Þ in both directions with five-loop running
[30–33], changing Nf when a threshold is crossed at
μ̄ ≃mi and including effects from the top Yukawa up to
three-loop order [34,35]. Quark masses are likewise
evolved at five-loop level [36,37], including effects from
the top Yukawa as indicated below Eq. (3.6).5 To account
for temperature-dependent tadpole corrections proportional
toT2, the Higgs expectation value and mi are further scaled
as vT≃v0Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðT=160GeVÞ2

p
, where v0 ≃ 246 GeV

and the crossover temperature has been adopted from

Ref. [38] rather than from a perturbative computation.
As the top quark Yukawa coupling plays a minor role, we
have resorted to two-loop running for h2t , with the initial
condition h2t ðmZÞ ≃ 0.95 and running taking place only for
μ̄ > mZ. The initial value of the running top mass (before
applying thermal rescaling) is estimated as mtðmZÞ≃
htðmZÞv0=

ffiffiffi
2

p
≃ 169.5 GeV, whereas those of the quartic

Higgs and electroweak couplings, which affect the
running of h2t , are λðmZÞ ≃ 0.145 and g21ðmZÞ ≃ 0.128,
g22ðmZÞ ≃ 0.425, respectively. The renormalization scale
is set to μ̄ ¼ ð0.5…2.0Þ × 2πT, with the variation provid-
ing an error band. The results are plotted in Fig. 2.

V. CONCLUSIONS

The goal of this technical contribution, motivated by the
potential cosmological applications mentioned in Sec. I,
has been to estimate a QCD Debye mass, defined as a
matching coefficient of the dimensionally reduced effective
theory, at temperatures between 1 GeVand 10 TeV. For this
purpose, we have carried out a two-loop computation,
reducing the result to a small number of exponentially
convergent one- and two-dimensional integrals, which are
readily evaluated numerically.
The most nontrivial parts of our work established the IBP

relations in Eqs. (3.13)–(3.15) and resolved the two-loop
master sum integral Z112 in Appendix A 2. With these
ingredients, we obtain integral representations for the
various functions parametrizing our result, cf. Eq. (3.18),
which are shown in Eqs. (4.2)–(4.7) and evaluated numeri-
cally in Fig. 2 (left). Putting everything together and
inserting the values of running Standard Model couplings,
we find that quark mass thresholds are crossed smoothly
enough not to be discernible by the bare eye, apart from that
related to the top quark, cf. Fig. 2 (right).
The steps of the computation have been described on a

detailed level, in order to permit the inclusion of further
massive particles if present, such as of scalar fields.
Hopefully, these results or techniques can find use, e.g.,
in dark matter computations involving strongly interac-
ting coannihilation partners or in precision studies of
the electroweak phase transition in extensions of the
Standard Model.

5Running quark masses become ambiguous at μ̄≳mZ, given
that corrections to the Higgs vacuum expectation value from
weak interactions are partly gauge dependent. That said, the
SULð2Þ × UYð1Þ gauge effects are numerically very small com-
pared with QCD corrections, as already alluded to in footnote 3,
so we do not enter into a more detailed discussion of this topic
here.
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APPENDIX A: MASTER SUM INTEGRALS

We list here the expressions for the master sum integrals
appearing in Eqs. (3.19)–(3.25).

1. One-loop structures

We start by reiterating the expressions for a number of one-
loop master sum integrals, defined according to Eq. (3.2).
General techniques for evaluating massless sum integrals
were developed in Refs. [39,40]. In the bosonic case,

Ẑ1;0 ¼
T2

12

�
1þ 2ϵ

�
ln

�
μ̄eγE

4πT

�
þ lnð2πÞ − ðln ζ2Þ0

�

þOðϵ2Þ
�
; ðA1Þ

where ζn ¼ ζðnÞ is the Riemann zeta function, ðln ζnÞ0≡
ζ0ðnÞ=ζðnÞ, and μ̄2 ≡ 4πμ2e−γE . In the literature, a different
form is often shown, obtained by employing the identity
lnð2πÞ − ðln ζ2Þ0 ¼ 1 − γE þ ðln ζ−1Þ0. A quadratic propaga-
tor similarly yields

Ẑ2;0 ¼
1

ð4πÞ2
�
1

ϵ
þ 2 ln

�
μ̄eγE

4πT

�

þ 2ϵ

�
ln2

�
μ̄eγE

4πT

�
þ π2

8
− γ2E − 2γ1

�
þOðϵ2Þ

�
;

ðA2Þ

where γ1 is a Stieltjes constant. More generally, Ẑj;0 ¼
μ̄3−d exp½ð3−dÞγE=2�Γðj−d=2Þζð2j−dÞ

8π5=2ð2πTÞ2j−1−dΓðjÞ .

In the fermionic case, when the mass is nonzero, no
analytic expressions are available. Even if convergent sum
representations in terms of modified Bessel functions can
be found, in practice, it is simpler to handle integral
representations, such as

Z1;i ¼ −
m2

i

ð4πÞ2ϵ −
m2

i

ð4πÞ2
�
ln

�
μ̄2

m2
i

�
þ 1

�
−
Z
p

nFðωpi
Þ

ωpi

− ϵ

�
m2

i

ð4πÞ2
�
1

2
ln2

�
μ̄2

m2
i

�
þ ln

�
μ̄2

m2
i

�
þ 1þ π2

12

�
þ
Z
p

nFðωpi
Þ

ωpi

�
ln

�
μ̄2

4p2

�
þ 2

��
þOðϵ2Þ; ðA3Þ

where
R
p≡

R d3p
ð2πÞ3 and ωpi

≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
. Taking a mass derivative and carrying out a partial integration gives

Z2;i ¼
1

ð4πÞ2ϵþ
1

ð4πÞ2 ln
�
μ̄2

m2
i

�
−
Z
p

nFðωpi
Þ

2p2ωpi

þ ϵ

�
1

ð4πÞ2
�
1

2
ln2

�
μ̄2

m2
i

�
þ π2

12

�
−
Z
p

nFðωpi
Þ

2p2ωpi

ln
�

μ̄2

4p2

��
þOðϵ2Þ: ðA4Þ

One more mass derivative yields (this time no partial integration is possible; β≡ 1=T)

Z3;i ¼
1

ð4πÞ22m2
i
−
Z
p

nFðωpi
Þ þ βωpi

nFðωpi
Þ½1 − nFðωpi

Þ�
8p2ω3

pi

þ ϵ

�
lnðμ̄2=m2

i Þ
ð4πÞ22m2

i
−
Z
p

nFðωpi
Þ þ βωpi

nFðωpi
Þ½1 − nFðωpi

Þ�
p2ω3

pi

ln
�

μ̄2

4p2

��
þOðϵ2Þ: ðA5Þ

2. Two-loop master Z112

Even if in the massless limit IBP identities allow one to
reduce Z112 as

lim
m→0

Z112 ¼ lim
mi→0

Z2;iðZ2;i − 2Ẑ2;0Þ
ðd − 2Þðd − 5Þ ; ðA6Þ

no such factorization has been found for m ≠ 0. The result
for a fully massive Z111 is given in Ref. [41], and one
might think that Z112 could be obtained as a mass
derivative thereof; however, this does not work trivially
as setting the third mass to zero after the derivative leads
to IR divergences (linear and logarithmic). A careful
consideration is thus needed for working out the reduction
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of Z112 into a convergent two-dimensional integral
representation.
For a first step, let us carry out the Matsubara sums. The

quadratic propagator carries a fictitious mass parameter,

denoted by M2, as an intermediate regulator. The sum
integral splits into a vacuum part, one-cut parts, and two-cut
parts, with “cut” meaning that some line is put on shell and
weighted by a thermal distribution:

Z112 ¼ ZðvacÞ
112 þ ZðBÞ

112 þ ZðFÞ
112 þ ZðFBÞ

112 þ ZðFFÞ
112 ; ðA7Þ

ZðvacÞ
112 ¼

Z
P;Q

1

ðP2 þm2ÞðQ2 þm2ÞðP −QÞ4 ; ðA8Þ

ZðBÞ
112 ¼ − lim

M→0

d
dM2

Z
p

nBðΩpÞ
Ωp

�Z
Q

1

ðQ2 þm2Þ½ðP −QÞ2 þm2�
�
P2¼−M2

; ðA9Þ

ZðFÞ
112 ¼ −2 lim

M→0

Z
p

nFðωpÞ
ωp

�Z
Q

1

ðQ2 þM2Þ2½ðP −QÞ2 þm2�
�
P2¼−m2

; ðA10Þ

ZðFBÞ
112 ¼ 2 lim

M→0

d
dM2

Z
p;q

nFðωpÞnBðΩqÞ
ωpΩq

�
1

ðP −QÞ2 þm2

�
P2¼−m2;Q2¼−M2

; ðA11Þ

ZðFFÞ
112 ¼ lim

M→0

Z
p;q

nFðωpÞnFðωqÞ
ωpωq

�
1

½ðP −QÞ2 þM2�2
�
P2¼−m2;Q2¼−m2

: ðA12Þ

Here, Ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, ωp ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
,
R
P ≡μ3−d

R
ddþ1P
ð2πÞdþ1, and

R
p ≡μ3−d

R ddp
ð2πÞd. The cuts are

½…�P2¼−m2 ≡ 1

2

X
pn¼�iωp

½…�; ½…�P2¼−m2;Q2¼−M2 ≡ 1

4

X
pn¼�iωp

X
qn¼�iΩq

½…�: ðA13Þ

The parameterM is set to zero for the final spatial integrals, which are treated with strict dimensional regularization (this is
necessary, given that the IBP identities used for reducing the result to this basis made use of the same recipe).
Two of the structures in Eq. (A7) are simple to handle, namely, the vacuum part and the one-cut part with a single Bose

distribution:

ZðvacÞ
112 ¼d¼3−2ϵ 1

ð4πÞ4
�
−

1

2ϵ2
þ 1

ϵ

�
1

2
− ln

�
μ̄2

m2

��
− ln2

�
μ̄2

m2

�
þ ln

�
μ̄2

m2

�
−
3

2
−
π2

12

�
; ðA14Þ

ZðBÞ
112 ¼d¼3−2ϵ −

Ẑ1;0

6m2ð4πÞ2 þ
Ẑ2;0

ð4πÞ2
�
1

ϵ
þ ln

�
μ̄2

m2

�
þ ϵ

�
1

2
ln2

�
μ̄2

m2

�
þ π2

12

��
: ðA15Þ

The remaining parts are more subtle, as they are IR divergent, in a way which is not trivially handled by dimensional
regularization.
Let us start by considering ZðFFÞ

112 , which contains a linear IR divergence but no logarithmic one. As this integral is UV
finite, we may set d ¼ 3 and carry out the angular integral, which yields

ZðFFÞ
112 ≃d¼3 1

4m2

Z
p;q

nFðωpÞnFðωqÞ
ωpωq

ω2
p þ ω2

q

ðω2
p − ω2

qÞ2
: ðA16Þ

Clearly, this is ill defined around p ¼ q. To find a useful representation, we make use of symmetries of the integrand,
reorganizing the Fermi distributions as

ZðFFÞ
112 ¼d¼3 1

16m2

Z
p;q

1

ωpωq

�½nFðωpÞ þ nFðωqÞ�2
ðωp þ ωqÞ2

−
½nFðωpÞ − nFðωqÞ�2

ðωp − ωqÞ2
�
þ δZðFFÞ

112 ; ðA17Þ

δZðFFÞ
112 ¼d¼3

Z
p

n2FðωpÞ
2m2

Z
q

1

ðq2 − p2Þ2 : ðA18Þ
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Considering the vacuumlike integral in Eq. (A18) as an
analytic function of −p2 and taking the real part yields
Re

R
q

1
ðq2−p2Þ2 ¼ Re 1

8πð−p2Þ1=2 ¼ 0. Alternatively, if we keep

the regulator M finite, δZðFFÞ
112 contains a linear divergence6

proportional to 1=M but no logarithmic or finite part of
OðM0Þ. To summarize, in strict dimensional regularization,

we can set δZðFFÞ
112 → 0.

The remaining parts, ZðFÞ
112 and ZðFBÞ

112 , contain both
linear and logarithmic divergences. The logarithmic diver-
gences cancel in the sum. We find it practical to determine
the sum by keeping M finite and taking M → 0 at the end,
omitting again linear divergences proportional to 1=M,
which are absent in strict dimensional regularization.
A rather tedious analysis then yields

ZðFÞ
112 þ ZðFBÞ

112 ¼d¼3 2

m2ð4πÞ2
Z
p

nFðωpÞ
ωp

�
ln

�
meγE

4πT

�
þ 1þ ωp

2p
ln

�
ωp þ p

ωp − p

��
: ðA19Þ

Given the nontriviality of the steps, it is good to check that Eq. (A6) is correctly reproduced form=T → 0. The individual
parts contain coefficients ∝1=m2, so we need to expand to Oðm2Þ. The integral appearing in Eq. (A19) can be expanded asZ

p

nFðωpÞ
ωp

�
ln

�
meγE

4πT

�
þ 1þ ωp

2p
ln

�
ωp þ p

ωp − p

��
¼ T2

24
½2þ ðln ζ2Þ0 − ln π�

þ 2m2

ð4πÞ2
�
ln2

�
meγE

4πT

�
þ ð1þ 2 ln 2Þ ln

�
meγE

4πT

�
þ 3 ln 2 −

1

2

�
þOðm4Þ; ðA20Þ

whereas the contribution from Eq. (A17) can be numerically verified to behave as
Z
p;q

1

ωpωq

�½nFðωpÞ þ nFðωqÞ�2
ðωp þ ωqÞ2

−
½nFðωpÞ − nFðωqÞ�2

ðωp − ωqÞ2
�

¼ −
4T2

3ð4πÞ2
�
11

6
þ ðln ζ2Þ0 − ln π

�

−
32m2

ð4πÞ4
�
ln2

�
meγE

πT

�
þ ln

�
meγE

πT

�
þ 4 ln 2 −

5

2

�
þOðm4Þ: ðA21Þ

Summing together and adding the other parts, we reproduce the result from Eq. (A6),

lim
m→0

Z112 ¼d¼3−2ϵ 1

ð4πÞ4
�

1

2ϵ2
þ 1

ϵ

�
1

2
þ 2 ln

�
μ̄eγE

4πT

��
þ 4ln2

�
μ̄eγE

4πT

�
þ 2 ln

�
μ̄eγE

4πT

�
− 8ln22þ π2

4
þ 3

2
− 2γ2E − 4γ1

�
: ðA22Þ

3. Two-loop master Z212

In the massless limit, IBP identities allow one to reduce Z212 as

lim
m→0

Z212 ¼ lim
mi→0

2Z3;iðZ2;i − Ẑ2;0Þ
ðd − 2Þðd − 7Þ : ðA23Þ

For a finite mass, we can instead write

Z212 ¼ −
1

2

dZ112

dm2
: ðA24Þ

Converting a number of mass derivatives into derivatives with respect to momentum, and carrying out partial integrations,
Eqs. (A14), (A15), (A17), and (A19) then imply that

Z212 ¼d¼3−2ϵ −
1

2m2ð4πÞ4
�
1

ϵ
þ 2 ln

�
μ̄2

m2

�
− 1

�
−

Ẑ1;0

12m4ð4πÞ2 þ
Ẑ2;0

2m2ð4πÞ2
�
1þ ϵ ln

�
μ̄2

m2

��

þ 1

m4ð4πÞ2
Z
p

nFðωpÞ
ωp

��
1þ m2

2p2

�
ln

�
meγE

4πT

�
þ ω2

p

p2
þ ωp

2p
ln

�
ωp þ p

ωp − p

��

þ 1

64m4

Z
p;q

1

ωpωq

�
ω2
p

p2
þ ω2

q

q2

��½nFðωpÞ þ nFðωqÞ�2
ðωp þ ωqÞ2

−
½nFðωpÞ − nFðωqÞ�2

ðωp − ωqÞ2
�
: ðA25Þ

6The sum of all 1=M divergences in Z112 equals the Matsubara zero-mode contribution T
R
p

1
ðp2þM2Þ2 Z2;i.
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An interesting cross-check of Eq. (A25) can be obtained by considering the massless limit. As there are coefficients
proportional to 1=m4, we need to expand the integrals up to Oðm4Þ,

Z
p

nFðωpÞ
ωp

��
1þ m2

2p2

�
ln

�
meγE

4πT

�
þ ω2

p

p2
þ ωp

2p
ln

�
ωp þ p

ωp − p

��

¼ T2

24
½2þ ðln ζ2Þ0 − ln π� − 2m2

ð4πÞ2
�
ln

�
meγE

4πT

�
þ ln 2þ 1

2

�
þ 14ζ3m4

ð4πÞ4T2

�
ln

�
meγE

4πT

�
þ 9

4

�
þOðm6Þ; ðA26Þ

1

64

Z
p;q

1

ωpωq

�
ω2
p

p2
þ ω2

q

q2

��½nFðωpÞ þ nFðωqÞ�2
ðωp þ ωqÞ2

−
½nFðωpÞ − nFðωqÞ�2

ðωp − ωqÞ2
�

¼ −
T2

24ð4πÞ2
�
11

6
þ ðln ζ2Þ0 − ln π

�
þ m2

ð4πÞ4
�
ln

�
meγE

πT

�
þ 1

2

�
−
14ζ3m4

ð4πÞ6T2

�
ln

�
meγE

πT

�
þ 9

4

�
þOðm6Þ; ðA27Þ

the last of which was verified numerically. Summing together and adding the other terms, we recover the result from
Eq. (A23),

lim
m→0

Z212 ¼d¼3−2ϵ −
28ζ3 ln 2
ð4πÞ6T2

: ðA28Þ
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