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We reconsider and extend the cosmological predictions that can be made under the assumption that the
total action of the Universe is finite. When initial and final singularities in curvature invariants are avoided,
it leads to singularities in the gravitational action of the Universe. The following properties are required of a
universe with finite action: Compact spatial sections (i.e., a closed universe) giving a finite total lifetime for
the Universe. Compactification of flat and open universes is excluded. The Universe can contain perfect
fluids with −1 < p=ρ < 2 on approach to singularities. The Universe cannot display a bounce or indefinite
cyclic behavior to the past or the future. Here, we establish new consequences of imposing finite action: the
Universe cannot be dominated by massless scalar fields or the kinetic energy of self-interacting scalar fields
or a p ¼ ρ perfect fluid on approach to the initial or final singularity. The ekpyrotic scenario with an
effective fluid obeying p=ρ > 2 in a closed, flat or open universe is excluded. Any bouncing loop quantum
gravity model with indefinite past or future evolution is ruled out. The Einstein static and steady-state
universes are ruled out along with past or future eternal inflating universes anisotropies of Kasner or
Mixmaster type cannot dominate the dynamics on approach to singularities. This excludes density
inhomogeneity spectra versus mass, of the form δρ=ρ ∝ M−q, with q > 2=3. Higher-order Lagrangian
theories of gravity are significantly constrained. Quadratic Lagrangians are excluded with fluids satisfying
p=ρ > −1=3. Lagrangians with Lg ¼ R1þδ have infinite actions on approach to a singularity when
2δð1 − 3γÞ þ 2 − 3γ < 0, where p ¼ ðγ − 1Þρ for the fluid. As shown by Barrow and Tipler, the Gauss-
Bonnet quadratic combination causes a cosmological action singularity even though it does not contribute
terms to the field equations. Scalar-tensor theories like Brans-Dicke dominated by the scalar field on
approach to singularities have action singularities. Dark energy cannot be a simple cosmological constant,
as it would create an action singularity to the future: the Universe cannot be asymptotically de Sitter as
t → ∞. The dark energy must be an evolving energy density in a closed universe that produces collapse to a
future singularity and cannot be dominated by the kinetic energy of the scalar field.
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I. INTRODUCTION

Earlier, Barrow and Tipler (BT) [1] explored the cosmo-
logical consequences of requiring the gravitational and
matter actions of the Universe to be finite. One feature of
focusing attention upon the action is that there have been
many attempts to avoid the appearance of physical infinities
(singularities) in cosmological models by means, for exam-
ple, of dynamical bounces at finite scale factor values or past
and future asymptotes that are nonsingular. Yet, typically,
these attempts to avoid singularities give rise to infinities in
the action. In this paper we briefly summarize our original
finite action conjecture of Ref. [1] and update its conse-
quences and predictions in the light of subsequent develop-
ments in observational and theoretical cosmology. There has
also been a recent rediscovery of this focus on the action,with
a specific emphasis on quadratic gravity and a computation
of the action between an initial time and the present rather
than for the entire spacetime, by Lehners and Stelle [2].

In what follows we define the finite action proposal in
Sec. II, followed by a series of applications to constrain the
fluid content of the Universe, the requirement of no massless
scalar fields in the Universe, the ruling out of anisotropy
domination at singularities and constraints on the statistics of
inhomogeneities, the exclusion of sudden finite-time singu-
larities, and the conclusion that the dark energy cannot be
contributed by a simple cosmological constant: it must be a
variable energy source in a closed universe that ultimately
recollapses to a future singularity. In Sec. III we consider the
implications of finite action formodified gravity theories that
generalize the Einstein-Hilbert Lagrangian to higher order in
the curvature, the Gauss-Bonnet combination, and scalar
tensor theories. Our conclusions are listed in Sec. IV.

II. THE FINITE ACTION PROPOSAL

As discussed in BT [1], there are a variety of motivations
for the fundamental importance of the action, S. Planck
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appears to have been the first 20th century physicist to
argue for the primacy of the action as the basis for physical
theories [3]. In modern physics, the action is always the
starting point because it is invariant under gauge trans-
formations of Yang-Mills and supersymmetric fields and its
importance in the path-integral method of quantization
[4,5]. We know that the finiteness of the action places
important constraints on some theories in Minkowski and
Euclidean spaces. For example, on solutions to the Yang-
Mills-Higgs equations and the classical solutions with finite
action lead to a semiclassical approximation to the
Euclidean path integral that can be analytically continued
back to Minkowski space to get the physical path integral.
In Einstein’s gravitational theory the general action of

Einstein-Hilbert-York consists of three pieces (with units
such that 8πG ¼ c ¼ 1): the gravitational, Sg, matter, Sm,
and boundary action terms, respectively. Therefore, we
have for the universal action

S ¼ 1

2

Z
M
ðRþ 2ΛÞ ffiffiffiffiffiffi

−g
p

d4xþ
Z
M
Lm

ffiffiffiffiffiffi
−g

p
d4x

þ
Z
∂M

ðtrKÞð
ffiffiffiffiffiffiffi
�h

p
Þd3x; ð1Þ

where R is the four-dimensional Ricci scalar, Λ is the
cosmological constant, and Lm is the matter Lagrangian.
The boundary of M is ∂M where ∂M has induced metric
hμν and extrinsic curvature Kab. The plus (minus) sign is
chosen in ð�hÞ1=2 if the boundary is spacelike (timelike),
respectively. Unless we state otherwise, we drop the
boundary term since we want the integrations to be
performed over the whole spacetime, so there will be no
boundary.
The universal action will be finite if each term in Eq. (1)

is finite. Finite action requires the Universe to have
compact space sections (i.e., be closed) or else the integrals
over 3-space in Eq. (1) will diverge to infinity, so for
example the steady-state universe has infinite action.
Whereas a finite spatial volume if necessary for finite
action is not sufficient. The Einstein static universe is
closed but has infinite action when the time integration is
carried out over the time-independent quantities R

ffiffiffiffiffiffi−gp
and

Λ ffiffiffiffiffiffi−gp
in Eq. (1). An oscillating closed universe that is

either nonsingular to the past or the future (or both) also has
infinite action, as does a closed universe that undergoes a
single bounce at finite radius. These examples illustrate
how the avoidance of a curvature singularity generally
leads to a singularity in the action.
The imposition of compact topologies on flat or open

universes, for example, the flat and open Friedmann
universes or the Bianchi-type universes, [6–8], does not
produce models with finite action because although the
space integral is finite in Eq. (1), these models will expand
for ever and create a divergence in the time integration to
the future. For an explicit example of the compact, T3, the

Bianchi type I model displaying the expected indefinite
future expansion which approaches isotropy in the presence
of a perfect fluid, see [9].

A. Fluid cosmologies

For homogeneous and isotropic closed universes, we
need to consider the behavior of the matter action con-
tribution in Eq. (1). For perfect fluid models with equation
of state p ¼ ðγ − 1Þρ in a Friedmann universe with scale
factor aðtÞ ¼ t2=3γ near the initial singularity (the final
singularity behavior near tf is just a linear time translation
of this, via t → tf − t), where t is the comoving proper
time, we have

Z
R

ffiffiffiffiffiffi
−g

p
d4x ∝ ðγ − 4=3Þtð2−γÞ=γ; γ ≠ 0; 2; ð2Þ

Z
Lm

ffiffiffiffiffiffi
−g

p
d4x∝

1

2

Z
ð3p−ρÞ ffiffiffiffiffiffi

−g
p

d4x∝ tð2−γÞ=γ; γ≠ 0;2:

ð3Þ

Importantly, we note that for γ ¼ 2 the tð2−γÞ=γ factor is
replaced by lnðtÞ which diverges as t → 0. The γ ¼ 0 case
is de Sitter or anti–de Sitter spacetime and the action also
diverges because the range of t integration is infinite, as in
nonclosed universes. When γ > 2 the action also diverges
as t → 0 and so finite universal action also excludes the so-
called ekpyrotic models [10] which behave like γ > 2
perfect fluid cosmologies as t → 0 discussed in Ref. [11].
Also excluded are oscillating cosmologies [12], and loop
quantum gravity cosmologies that experience a bounce and
past eternal inflationary scenarios like those in Ref. [13],
whose past geodesic incompleteness was well known from
the properties of the steady-state universe [14,15].

B. Scalar-field cosmologies

If we have a scalar field, ϕ, with self-interaction
potential VðϕÞ ≥ 0, in a closed Friedmann universe, then
we see that if the kinetic part of the scalar field action
Lm ∝ ðdϕdtÞ2 dominates on approach to a singularity (or
V ¼ 0), then we will have aðtÞ ∝ t1=3 and ϕ ∝ lnðtÞ and the
action diverges as

R
t−2 × tdt ∝ lnðtÞ as t → 0 just like in

the γ ¼ 2 fluid model. In the borderline case where the
kinetic and potential energy densities are proportional,
_ϕ2 ∝ V ∝ exp½−λϕ�, we have the asymptotic solution
(which is the k ¼ 0 exact solution) [16],

ϕ ∝
2

λ
lnðtÞ; aðtÞ ∝ t2=λ

2

: ð4Þ

Hence the matter action term is proportional to
R
_ϕ2a3dt ∝R

t−2þ6=λ2dt ∝ t6=λ
2−1 and this diverges as t → 0 only when

λ2 > 6. Scalar-field cosmologies that create a bounce as
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t → 0, as discussed Refs [17–20] for V ∝ ϕ2, are also ruled
out by the finite action principle because they produce a
t → ∞ divergence in S.

C. Anisotropic and inhomogeneous cosmologies

If we extend our consideration to homogeneous and
anisotropic universes, then similar results hold. The
Bianchi IX models and their axisymmetric Taub counter-
parts with fluids and S3 spatial topology have

ffiffiffiffiffiffi−gp ∝a3∝ t
for the geometric-mean scale factor and ρ ∝ a−3γ ∝ t−γ , on
approach to singularities; therefore,

Sm ∝ ðγ − 4=3Þ
Z

ρtdt ∝ t2−γ; γ ≠ 2; ð5Þ

Sm ∝ lnðtÞ; γ ¼ 2: ð6Þ

However, if the cosmology is dominated by anisotropy on
approach to either singularity, then the gravitational action
diverges because, with a Kasner-like vacuum-dominated
asymptote, aðtÞ ∝ t1=3, and

Sg ∝
Z

R
ffiffiffiffiffiffi
−g

p
d4x ∝

Z
t−2tdt ∝ lnðtÞ; ð7Þ

which diverges on approach to the singularity, the
anisotropy mimicking the behavior of a γ ¼ 2 anisotropy
fluid, [21,22]. This is the case for the most general Bianchi
type IX universes: Sg diverges as t → 0 for all γ < 2 fluids
and Sm and Sg diverge when γ ¼ 2. The γ > 2 cases reduce
to the isotropic universe situation studied above and also all
have divergent actions.
The other permitted compact topology for a closed

universe which permits a maximal hypersurface (i.e., an
expansion maximum) [15,23,24] is S2 × S1, which char-
acterizes the Kantowski-Sachs universes [25,26]. The
asymptotes are again Kasner-like and the same results
hold for fluid and scalar field sources as for the S3

topologies. Inhomogeneity does not alter these results and
the S3 Tolman-Bondi models [27] and the S3 or S2 × S1

Szekeres dust models [27,28] all have finite action, whereas
the closed p ¼ ρ inhomogeneous closed universes with
massless scalar field found by Belinskii [27,29] have infinite
actions like other γ ¼ 2 fluid cosmologies (although these
solitonic solutions are slightly peculiar because the scalar
field depends only on time).
In all anisotropic and inhomogeneous cosmologies

containing black body radiation, magnetic and electric
fields, and Yang-Mills fields, we find that the matter action,
Sm, is finite. The latter two types of source require
anisotropy to be present. These are acceptable finite action
matter sources in the Universe, as we would expect.
If inhomogeneities are added, then a density inhomo-

geneity spectrum of the power-law form δρ=ρ ∝ M−q with
mass scale M produces divergent metric fluctuations

δg=g ∝ M2=3−q of a non-Friedmann type on small scales,
as M → 0 for q > 2=3. This would lead to large anisot-
ropies and divergent action and so is excluded. On large
scales we cannot be so conclusive because we require a
closed universe and the inhomogeneity spectrum does not
extend to infinite mass values. The initial singularity for
q ≤ 2=3 is quasi-isotropic with no divergence of the action
because of dominant anisotropies.

D. Sudden singularities

Finite-time singularities of the sudden sort were first
introduced into relativistic cosmology in Ref. [30] in order
to sharpen the conditions needed to ensure the recollapse
of closed universes with S3 or S2 × S1 topologies, and
then defined and explored in detail by the author in
Refs. [31–36]. Other finite-time singularities where the
Hubble parameter evolves as HðtÞ ¼ h1ðtÞ þ h2ðtÞðt − tsÞλ
were subsequently defined and investigated; see
Refs. [37,38] for a classification. The finite-time singular-
ities occurring are λ < −1 for “big rip,” −1 < λ < 0 for
sudden (also known as type III), 0 < λ < 1 for “type II,”
and λ > 1 for “type IV.”
Sudden singularities create no geodesic incompleteness:

they are soft singularities [39–42] and have been shown to
be part of the general nine-function solution of the Einstein
equations in the absence of an equation of state [42]. So, in
an ever-expanding universe, we might integrate the action
to future infinity to obtain a singularity. However, suppose
we assume that the past singularity displayed no action
singularity because it was like a perfect fluid Friedmann
model and the evolution did not proceed beyond the finite-
time singularity at ts. Then, in the simplest example, at a
sudden singularity the quantities aðtÞ, HðtÞ and ρðtÞ are
finite as t → ts, but there are infinities in the pressure, p,
and the acceleration, ä, [31]. On approach to the sudden
singularity as t → ts we have

aðtÞ ¼
�
t
ts

�
q
ðas − 1Þ þ 1 −

�
1 −

t
ts

�
n
→ as

þ qð1 − asÞ
�
1 −

t
ts

�
; ð8Þ

with 1 < n < 2, where at early times we can have a
standard Friedmann fluid evolution with

aðtÞ ≈
�
t
ts

�
q
; ð9Þ

as t → 0, with q ¼ 1=2 for radiation domination. Both aðtsÞ
and _aðts) are finite but äðtsÞ → −∞ when 1 < n < 2, as
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ä → qðq − 1ÞBtq−2 − nðn − 1Þ
t2sð1 − t

ts
Þ2−n → −∞: ð10Þ

Thus assuming finiteness of the space integration in
Eq. (1) and the behavior as t → 0, we have on approach to
the sudden singularity,

Sg ∝
Zts
0

ä
a

ffiffiffiffiffiffi
−g

p
dt ∝ −

Zts
0

nðn − 1Þa2s
t2sð1 − t

ts
Þ2−n dt: ð11Þ

Hence, we have

Sg ∝
na2s
ts

�
1 −

t
ts

�
n−1

; ð12Þ

and this converges to a finite value as t → ts in the sudden
singularity regime with 1 < n < 2. The action is infinite for
finite-time singularities in the n < 1 domain.

E. Dark energy and Λ
If we return to the scalar field models with exponential

potential in a closed Friedmann universe together with a
perfect fluid with equation of state parameter 2=3 < γ < 2,
then when λ2 > 2 all solutions start and end with a
curvature singularity and have finite action. When λ2<2
solutions can either recollapse to a singularity or expand
forever, approaching the exact power-law inflationary
solutions given above, [43]. In order to have a description
of dark energy that is consistent with the finite action
requirement, we see that we cannot have an explicit Λ term
because this leads to indefinite future expansion towards
de Sitter spacetime [44–47] and a divergence of the time
integral for the action in Eq. (1). Therefore, for finite action,
we require the dark energy to be an evolving scalar field,
either explicitly in general relativity as in the action (1),
or via an effective scalar in a modified theory of gravity.
This allows the closed cosmology eventually to cease to be
dominated by the scalar field and collapse to a future
singularity, yielding finite total action. An unusual example
of this sort is the late scenario with the Albrecht-Skordis
potential [48] that was investigated by Barrow et al. [49].
A potential of the form

VðϕÞ ¼ e−μϕPðϕÞ; ð13Þ

where PðϕÞ is a polynomial in the scalar field ϕ with
several minima [for example PðϕÞ ¼ Aþ ðϕ − BÞn in the
simplest case], with μ being constant, allows the scalar field
to get caught in a succession of local minima as it rolls
down the steep exponential “cliff.” If the field comes to rest
in a local minimum then _ϕ ¼ 0 there, and the expansion
dynamics inflate [48]. The effect of the crenellations

created by the polynomial PðϕÞ is a sequence of accel-
erating expansion episodes that can end in nonaccelerating
expansion or collapse to a future curvature singularity.
However, the ϕ field can overshoot or tunnel through the
barrier at a minimum leading to different versions of this
inflation [49]. In a closed universe it is possible for this
sequence of inflations to end in collapse to a future
singularity and the Universe then has finite total action.
A variety of other scenarios are possible for closed
universes to accelerate transiently before recollapsing to
a future curvature singularity. We require the dark energy to
display this evolutionary behavior culminating in a future
curvature singularity and the Universe to be closed.

III. MODIFIED GRAVITY

When higher-order terms, for example, of quadratic and
higher orders in the scalar curvature, [50], or higher-order
matter terms [51] on the right-hand side of the field
equations, are added to the Einstein-Hilbert action we
expect it to be easier to create an action singularity at an
initial or final singularity of a closed universe. The finite
action principle is at its most powerful when confronting
action singularities in higher-order Lagrangian theories.
One class of examples derives from the choice of gravi-
tational Lagrangian [50],

Lg ¼ fðRÞ; ð14Þ

whose variation along with the matter action gives the field
equations that generalize Einstein’s,

fRRab −
1

2
fgab þ f;cdR ðgabgcd − gacgbdÞ ¼ Tab; ð15Þ

where fR ¼ df=dR.

A. Power-law Lagrangians: f ðRÞ=R1 + δ

Barrow and Clifton have examined the case of power-
law Lagrangians that reduce to general relativity as the
constant δ → 0 in some detail [52,53]. It is possible to find
exact isotropic and anisotropic solutions [54,55] of the field
equations in vacuum and with perfect fluids. For equation
of state p ¼ ðγ − 1Þρ, the zero-curvature Friedmann metric
has the exact solution for the scale factor

aðtÞ ¼ t2ð1þδÞ=3γ; γ ≠ 0; ð16Þ

where the constraint on δ and the value of the scalar
curvature are given by

ð1 − 2δÞ½2 − 3δγ − 2δ2ð1þ 3γÞ� ¼ 1

4
ð1 − δÞγ2ρc; ð17Þ

R ¼ 3δð1þ δÞt−2; ð18Þ
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where ρc is the Friedmann critical density.1 This zero-
curvature solution is the behavior of the closed models as
they approach their initial and final singularities [52,53]. As
in general relativity (δ ¼ 0), there are simple deductions
from the finite action principle. The Universe must have
compact space sections and have finite total lifetime, from
initial to final singularity. Integrating out the space part of
the action in (1), we have for the γ ≠ 0 behavior on
approach to a singularity (the γ ¼ 0 solution has infinite
action and is excluded here),

Sg ∝
Z

R1þδ ffiffiffiffiffiffi
−g

p
dt

∝
Z

t−2ð1þδÞt2ð1þδÞ=3γdt ∝ t½2δð1−3γÞþ2−3γ�=3γ; ð19Þ

which diverges as t → 0 if γ > 0 and

2δð1 − 3γÞ þ 2 − 3γ < 0: ð20Þ
Hence, in the radiation case (γ ¼ 4=3) we exclude δ >
−1=3 and for dust (γ ¼ 1) we exclude δ > −1=4.
In the anisotropic case of the generalized Kasner vacuum

solution in this theory found in Refs. [54,55],
ffiffiffiffiffiffi−gp ∝ t1þ2δ,

and so

Sg ∝
Z

R1þδ ffiffiffiffiffiffi
−g

p
dt ∝

Z
t−2ð1þδÞtð1þ2δÞdt

∝
Z

t−1dt ∝ lnðtÞ; ð21Þ

and there is a logarithmic singularity in the action as t → 0
just as in general relativity.
Another two exact Friedmann exact solutions of this

theory for zero-curvature Friedmann universes are

aðtÞ ¼ t
δð1þ2δÞ
1−δ ; ð22Þ

aðtÞ ¼ t1=2; ð23Þ

independent of the matter content γ. Note that the second
solution does not require radiation to be present, as was first
found in Refs. [56,57] and exists in vacuum, as do the radi-
ation solutions with nonzero curvature aðtÞ ∝ ðt − kt2Þ1=2.

B. Quadratic gravity

If we choose a Lagrangian of quadratic form,

Lg ¼ Rþ AR2; A constant; ð24Þ
then if the dynamics on approach to a singularity are close
to Friedmann in the case of a closed universe containing

perfect fluid, then the contribution of the R2 Lagrangian
term to the universal action is

S ∝
Z

R2 ffiffiffiffiffiffi
−g

p
dt ∝

Z
t−4t2=γdt ∝ t2=γ−3: ð25Þ

This diverges on approach to the initial or final singularity
for γ > 2=3, which includes the physically interesting cases
of dust, radiation, and stiff fluid and the divergence in the
latter case is stronger that in the general relativity case, as
expected from the R2 term. Likewise any Rn addition to the
Einstein-Hilbert Lagrangian creates a stronger divergence
in the action on approach to a singularity.

C. Gauss-Bonnet Lagrangian

Consider the general quadratic Lagrangian without the
Λ term,

Lg ¼ Rþ αR2 þ βRabRab þ μRabcdRabcd; ð26Þ
where Rab is the Ricci tensor and Rabcd is the Riemann
tensor, and α, β and μ are arbitrary constants. If there is an
isotropic and homogeneous cosmological model with scale
factor a ¼ tn on approach to an initial singularity at t ¼ 0,
then the total gravitational action is [1]

Sg ¼
2nð1 − 2nÞt3n−1

3n − 1
þ 4n2t3ðn−1Þ

n − 1

× f3αþ β þ μþ nðn − 1Þð12αþ 3β þ 2μÞg: ð27Þ
We recognize the first term on the right-hand side as the

general relativity contribution from the variation of R,
which diverges as t → 0 for n ≤ 1=2, as shown above.
When α∶β∶μ ¼ 1∶1∶ − 4 the quadratic terms in (27) create
a complete divergence that leads to no contributions to the
field equations in four spacetime dimensions, so the field
equations are the same as for general relativity. However,
the quadratic terms still contribute to the gravitational
action and can create a divergence as Lquad ∝ n3t3ðn−1Þ.
Therefore, there is an action singularity as t → 0 when
n ≤ 1, and hence for all perfect fluid models with γ ≥ 2=3
(since n ¼ 2=3γ for perfect fluid Friedmann solutions). The
special Gauss-Bonnet combination α∶β∶μ ¼ 1∶1∶ − 4 is
therefore excluded in Friedmann models even though it
does not affect the field equations. We expect anisotropic
models to be excluded also. The finite action principle only
allows (27) to be finite on approach to a singularity for the
special (radiationlike) case,

n ¼ 1=2; β ¼ −2μ=5: ð28Þ

The higher-order terms in the Lovelock Lagrangian [58] in
more than four spacetime dimensions could also be
examined for action singularities. We expect them to be
singular in an analogous way since they include higher
powers of the curvature invariants.

1When γ ¼ 0, the solution becomes the exact de Sitter metric
with a − expðntÞ with the constraint

3ð1 − 2δÞn2 ¼ ð1 − δÞρc:
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D. Brans-Dicke

Brans-Dicke (BD) cosmological models of Friedmann
type fall into two classes depending on the boundary
condition imposed on the BD scalar field [59]. As dis-
cussed in detail in Ref. [1], the “Machian” models which
are matter dominated near the initial and final singularity in
closed universes have finite action except when γ ¼ 2. By
contrast, in the general case when the cosmologies are
dominated by the BD scalar field on approach to the
singularities, there are infinite actions. This is confirmed by
analysis of the general vacuum solutions which are
approached at the singularity by the scalar field
(vacuum)-dominated solutions: all have infinite action
and behave as if they are γ ¼ 2 general relativistic cosmo-
logies, displaying a logarithmic singularity Sg ∝ lnðtÞ as
t → 0. Horndeski Lagrangians [60] can also have their
cosmological conclusions tested again the finite action
requirements and again will be challenged by the presence
of higher-order curvature and scalar-field terms and pos-
sibly singularities at finite times for particular choices of
coupling that are linked to the well-posedness of the initial
value problem [61,62].

IV. CONCLUSIONS

We have reconsidered and extended the cosmological
predictions that can be made under the assumption that the
total action of the Universe is finite. This is an interesting
cosmological constraint because attempts to avoid cosmo-
logical singularities in curvature invariants appear to lead
generally to singularities in the gravitational action.
Specifically, we have shown that the simple ansatz that
the total action of the Universe be finite has a large number
of powerful consequences. We require the following
properties to be possessed by a universe with finite action:
(a) There must be compact spatial sections (i.e., a closed

universe), but compact spatial sections in flat and open
universes created by topological identifications lead to
infinite actions and are excluded.

(b) There must be initial and final singularities (i.e., a
finite total lifetime for the Universe).

(c) The Universe cannot be dominated by massless scalar
fields or the kinetic energy of self-interacting scalar
fields or a p ¼ ρ perfect fluid on approach to an initial
or final singularity.

(d) The Universe can contain perfect fluids with −1 <
p=ρ < 2 on approach to initial and final singularities.

(e) The Universe cannot display a bounce or indefinite
cyclic behavior to the past or the future.

(f) An ekpyrotic scenario with an effective fluid obeying
p=ρ > 2 in a closed, flat or open universe is ruled out.

(g) Any loop quantum gravity model experiencing a
bounce and indefinite past or future evolution is ruled
out.

(h) The Einstein static and steady-state universes are ruled
out along with past eternal inflating universes and
future ever-expanding eternally inflating universes.

(i) Anisotropies (notably those of Kasner or Mixmaster
type) cannot dominate the dynamics of the Universe
on approach to initial and final singularities. Inhomo-
geneities cannot dominate if they induce dominant
anisotropies of Kasner or Mixmaster type. For exam-
ple, this excludes density inhomogeneity spectra
versus mass scale with δρ=ρ ∝ M−q, for q > 2=3.

(j) Higher-order Lagrangian theories of gravity are sig-
nificantly constrained because the action diverges
faster than in general relativity when powers of R
exceeding unity dominate on approach to a singularity.
For example, quadratic Lagrangians are excluded with
fluids satisfying p=ρ > −1=3. Gravitational Lagran-
gians with Lg ¼ R1þδ and p ¼ ðγ − 1Þρ fluids have
infinite actions on approach to a singularity when
2δð1 − 3γÞ þ 2 − 3γ < 0. We also find that the Gauss-
Bonnet quadratic Lagrangian combination causes an
action singularity even though it does not contribute
terms to the field equations.

(k) Dark energy cannot be provided by a simple cosmo-
logical constant, which would create an action singu-
larity to the future. The Universe cannot be
asymptotically de Sitter as t → ∞. The dark energy
therefore needs to be an evolving energy density (or
effective energy density) in a closed universe that
produces collapse to a future singularity after a de
Sitter-like accelerated expansion phase of finite dura-
tion. An Albrecht-Skordis potential for a scalar field in
a closed universe that recollapses to the future is an
admissible example with finite action [48,49]. There
are many others.

(l) Scalar-tensor theories like Brans-Dicke and its gen-
eralizations cannot have cosmological solutions that
are dominated by the scalar field on approach to
singularities. They must track the special matter-
dominated (Machian) solutions [59,63–65] and must
have p < ρ.

In conclusion, we have shown that the requirement that
the total gravitational and matter actions of the Universe be
finite produces a number of powerful predictions about the
geometrical and topological structure of the Universe, its
early expansion dynamics, the equation of state of its
material content, the presence of scalar fields, the nature of
the dark energy, and the allowed form of modifications to
general relativity. We have confirmed the constraints found
in [1] with some more recent applications added in points
(a), (b), and (e). We have established new consequences of
finite action in points (c), (d), and (f)–(k), and indicated
further theoretical developments in modified gravity that
will reveal new conclusions in the context of Lovelock and
Horndeski actions.
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