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We develop a parameter-free velocity-dependent one-scale model for the evolution of the characteristic
length L and root-mean-square velocity σv of standard domain wall networks in homogeneous and
isotropic cosmologies. We compare the frictionless scaling solutions predicted by our model, in the context
of cosmological models having a power law evolution of the scale factor a as a function of the cosmic
time t (a ∝ tλ, 0 < λ < 1), with the corresponding results obtained using field theory numerical
simulations. We show that they agree well (within a few %) for root-mean-square velocities σv smaller
than 0.2c (λ ≥ 0.9), where c is the speed of light in vacuum, but significant discrepancies occur for larger
values of σv (smaller values of λ). We identify problems with the determination of L and σv from numerical
field theory simulations which might potentially be responsible for these discrepancies.
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I. INTRODUCTION

The formation of cosmic defect networks in the early
universe as a result of symmetry breaking phase transitions
is a generic prediction of cosmoparticle physics [1]. These
networks may in general survive until late cosmological
times, leaving behind distinct observational signatures
[2,3]. Most of the recent work on cosmic defects has
focused on cosmic strings, in particular due to the reali-
zation that they may provide a window into string theory
[4–7]. However, other types of defects may also play a
crucial role in cosmology. Among these, domain walls have
attracted less attention, essentially due to the tight obser-
vational bounds which require domain walls to be either
extremely light or to have decayed long before the present
epoch (see [8–16] for a discussion of the evolution and
cosmological consequences of unstable domain walls).
Although, contrary to earlier expectations [17,18], the
possibility of a major domain wall contribution to the
current acceleration of the universe has been ruled out both
on theoretical and observational grounds [19], there is still
room for significant astrophysical and cosmological sig-
natures of light domain walls [20,21].
In order to obtain accurate predictions of the observational

consequences of cosmic defects it is necessary to accurately
determine their cosmological evolution, which is usually
done resorting to numerical simulations or semi-analytical
models. The velocity-dependent one-scale (VOS) model

provides a statistical description of the large-scale cosmo-
logical evolution of defect networks in terms of two macro-
scopic dynamical variables, the characteristic length of the
networkL, and its root-mean-square velocity σv. Thismodel,
originally proposed with the aim of describing the cosmo-
logical evolution of cosmic strings [22,23], has been cali-
brated using numerical simulations and later extended to
account for the dynamics of domain walls [24]. More
recently, this framework was further extended to describe
the macroscopic evolution of relativistic and nonrelativistic
featureless p-branes in N þ 1-dimensional homogeneous
and isotropic spacetimes (with N > p) in a unified manner
[25–29]. This unified paradigm has shown to be extremely
useful not only in cosmology but also in a variety of other
contexts, including condensed matter [25] and biology [30].
The original VOS model has two phenomenological

parameters, usually referred to as energy loss and momen-
tum parameters. In [31] the authors verified that the VOS
model is unable to accurately reproduce the cosmological
evolution of L and σv in generic cosmological regimes if
these two parameters are assumed to be constant. This
motivated the generalization of the VOS model to include
four new (constant) additional parameters. The generalized
VOS model has been claimed to significantly improve the
fit to numerical simulations of domain wall network
evolution [31] at the cost of triplicating the number of
phenomenological parameters of the original model.
In the present paper we shall follow an orthogonal

approach and develop a new VOS model for the cosmologi-
cal dynamics of standard domain walls free from adjustable*pedro.avelino@astro.up.pt

PHYSICAL REVIEW D 101, 023514 (2020)

2470-0010=2020=101(2)=023514(7) 023514-1 © 2020 American Physical Society

https://orcid.org/0000-0002-1440-6963
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.023514&domain=pdf&date_stamp=2020-01-15
https://doi.org/10.1103/PhysRevD.101.023514
https://doi.org/10.1103/PhysRevD.101.023514
https://doi.org/10.1103/PhysRevD.101.023514
https://doi.org/10.1103/PhysRevD.101.023514


parameters. The outline of this paper is as follows. In Sec. II
the evolution of thin featureless spherical and cylindrical
domain walls in homogeneous and isotropic universes is
described. In Sec. III we introduce our nonparametric VOS
model, briefly discussing the main differences with respect
to the original VOS model. In Sec. IV we compute, as a
function of λ, the associated frictionless scaling solutions
for L and σv. A comparison of the predictions of our new
VOS model with the results of numerical simulations is also
made in Sec. IV, including a discussion of the discrepancies
and their origin. Finally we conclude in Sec. V.
We shall use fundamental units with c ¼ 1, where c is

the value of the speed of light in vacuum.

II. EVOLUTION OF SPHERICAL AND
CYLINDRICAL DOMAIN WALLS

Consider a flat 3þ 1-dimensional homogeneous and
isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW)
universe with line element

ds2 ¼ a2½η�ðdη2 − dx · dxÞ; ð1Þ

where a is the scale factor, η ¼ R
dt=a is the conformal

time, t is the physical time and x are comoving spatial
coordinates. In this paper we shall consider cosmological
models that have a power law evolution of the scale factor
with the physical time: a ∝ tλ with 0 < λ < 1, so that
a ∝ ηλ=ð1−λÞ.
The world history of an infinitely thin featureless domain

wall in a flat expanding FRLW universe can be represented
by a three-dimensional world sheet obeying the usual
Goto-Nambu action. In the case of a spherical or cylindrical
domain wall the corresponding equations of motion are
given by

_q ¼ −v; _vþ γ−2ð3Hv − s=qÞ ¼ 0; ð2Þ

where a dot denotes a derivative with respect to the
conformal time η, H ¼ _a=a > 0, q is the comoving radius
of the wall, v represents its velocity, γ ≡ ð1 − v2Þ−1=2,
and s ¼ 1 or s ¼ 2 depending, respectively, on whether the
domain wall is cylindrical or spherical.
Here, we shall only consider the evolution of domain

walls in the comoving radius interval �0; qi� (qi represents
their initial comoving radius), so that q is always greater or
equal to zero. Equation (2) implies that the intrinsic radius
R≡ aγ1=sq of the domain wall evolves as [32]

_R ¼ HR

�
1 −

3

s
v2
�
: ð3Þ

Hence, the expansion of the universe is responsible for an
increase or decrease of the energy (spherical case) or the
energy per unit length (cylindrical case) of the domain wall

(E ¼ 2πsσw0Rs) depending on whether v2 is smaller or
greater than s=3, respectively (σw0 is the proper domain
wall energy per unit area).
Here, we are particularly interested in the evolution of

cylindrical and spherical domain walls starting from rest at
the conformal time ηi with an initial comoving domain wall
radius much larger than the comoving horizon at that initial
time (qi ≫ ηi)—the initial value of the scale factor shall be
normalized to unity (ai ¼ 1). Assuming that the domain
walls decay upon reaching q ¼ 0, at an arbitrary time η ≫ ηi
only domain walls with an initial comoving radius larger
than a threshold qi�½η� survive.
Given a power law expansion with Hη ¼ λ=ð1 − λÞ, the

equations of motion of cylindrical and spherical domain
walls shown in Eq. (2) are invariant under the trans-
formation q → αq, η → αη, where α > 0 is a constant,

FIG. 1. The value of τ� ≡ η=qi� as a function of λ obtained
considering the collapse of cylindrical (upper black line) and
spherical (lower magenta line) domain walls. Notice the
extremely fast increase of τ� with λ in the λ → 1 limit.

FIG. 2. The value of γ as a function of q̃≡ q=qi obtained
considering the evolution of cylindrical (black) and spherical
(magenta) domain walls in the context cosmological models with
λ ¼ 0.1, 0.5 and 0.9 (solid, dashed and dot-dashed lines,
respectively). Notice that, for a fixed value of q̃, the values of
γ increase substantially as λ approaches zero and are significantly
larger for spherical than for cylindrical domain walls.
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leaving the velocity v unchanged. In that case v½η; qi� ¼
v½η=qi; 1�≡ v½τ� and γ½η; qi� ¼ γ½η=qi; 1�≡ γ½τ�, where τ ¼
η=qi. On the other hand, q½η;qi�=qi¼ q½η=qi;1�≡ q̃½τ�,
with q̃½0� ¼ 1, q̃½τ�� ¼ 0 and τ� ¼ const. The dependence
of the value of τ� ≡ η=qi� on λ is shown in Fig. 1
considering the collapse of cylindrical (upper black line)
and spherical (lower magenta line) domain walls. Notice
that the value of τ� increases extremely fast with λ for
values of λ close to unity (τ� → ∞ for λ → 1−). Figure 2
shows the value of γ as a function of q̃ for cylindrical
(black) and spherical (magenta) domain walls, considering
cosmological models with λ ¼ 0.1, 0.5 and 0.9 (solid,
dashed and dot-dashed lines, respectively). Notice that the
values of γ obtained for a fixed q̃ increase substantially as λ
approaches zero and are significantly larger for spherical
than for cylindrical domain walls.

III. PARAMETER-FREE VOS MODEL

Standard domain wall networks are composed of closed
spatial domains bounded by domain walls without junc-
tions. The corresponding spatial pattern may be simply
described as a hierarchy of smaller domains inside arbi-
trarily large domains, with the average macroscopic domain
wall energy density (over cosmological scales) being
inversely proportional to the characteristic length scale L
of the network. On the other hand, field theory simulations
of domain wall networks evolution have shown that
intersections between domain walls occur much less
frequently than in the case of cosmic strings. Essentially,
domain wall evolution may be described as the successive
collapse of increasingly larger domains (the conformal
timescale of domain wall collapse, for a fixed λ, being
roughly proportional to the initial comoving size of the
domain walls). Also, thin domain walls are not expected to
produce significant amounts of scalar radiation, except in
the final stages of collapse [33].
These simple facts led us to consider a simplified

domain wall model where the universe is permeated by
a network of either spherical or parallel cylindrical
domain walls with a given distribution of radii. Every
cosmologically relevant domain wall is assumed to have
started at rest at some early conformal time ηi with an
initial comoving radius qi much larger than the comoving
horizon at that time (ηi). This condition guarantees that in
our model the evolution of every domain wall is that given
by Eq. (2) until the final collapse—domain walls never
intersect and the gravitational interaction between the
walls is assumed to be negligible, thus ensuring that they
maintain the initial symmetry throughout the whole
evolution. We assume that the walls decay when they
reach q ¼ 0, which implies that at any given conformal
time η ≫ ηi all domain walls with an initial comoving
radius smaller than a given threshold qi�½η� ≫ ηi would no
longer be part of the network. We shall further assume that
the probability distribution for the initial radius of the

domain walls is given by P½qi� ∝ q−2−si , so that the initial
energy density of domain walls with qi larger than qi� ≫ ηi
satisfies

ρwi½qi > qi�� ∝
Z

∞

qi�
P½qi�qsi dqi ∝ q−1i� : ð4Þ

For the sake of definiteness, we shall write the probability
density function of the initial comoving radii as

P ≡ P½qi� ¼ ð1þ sÞη1þs
i q−2−si Θ½qi − ηi�; ð5Þ

whereΘ is the Heaviside step function, thus ensuring that it
is properly normalized (

R∞
0 PðqiÞdqi ¼ 1)—any other

properly normalized probability density function consis-
tent with Eq. (4) would produce the same results.
As shown in Sec. II, the wall energy (spherical domain

wall) or energy per unit length (cylindrical domain wall) at
the conformal time η is given by

E ¼ 2πsσw0Rs ¼ 2πsσw0asqsγ

¼ 2πsσw0asηsτ−sq̃sγ: ð6Þ

Hence, in our model the average macroscopic energy
density of the domain wall network at the conformal time
η is equal to

ρw ¼
Z

∞

qi�
nEPdqi ¼ a−1−s

Z
∞

qi�
niEPdqi

¼ σw0βðaηÞ−1
Z

τ�

0

q̃sγdτ; ð7Þ

where β ¼ 2πsð1þ sÞniη1þs
i , ni is the initial domain wall

number density defined as the number of walls per unit
volume (spherical case) or per unit area (cylindrical case),
and n ¼ nia−1−s would be the domain wall number density
at the time η in the absence of decay. The characteristic
length of the network defined by L≡ σw0=ρw then satisfies

ζ ≡ L
aη

¼
�
β

Z
τ�

0

q̃sγdτ

�
−1
: ð8Þ

The mean-squared velocity of the domain walls may be
computed as

σ2v ¼
R
v2ρdVR
ρdV

¼
R
v2γdSR
γdS

¼
R
∞
qi�

v2EPdqiR∞
qi�

EPdqi

¼
R τ�
0 v2q̃sγdτR τ�
0 q̃sγdτ

; ð9Þ

where ρ is the (microscopic) domain wall energy density at
eachpoint,V is the physical volume, andS is the domainwall
area. The second equality is obtained by writing dV ¼ dSdl
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and performing the integration
R
ρdl ¼ σw ¼ σw0γ in the

direction perpendicular to the domain wall (note that ρ ¼
ρ0γ

2 and δ ¼ δ0=γ, where the subscript “0” represents the
proper rest value and δ denotes the domain wall thickness,
and that v does not vary along the direction perpendicular
to the wall).
In general q̃½qi; η� ¼ q̃½τ; η�, v½qi; η� ¼ v½τ; η�, and

τ� ¼ τ�½η�. However, as mentioned in the previous section,
for a power law expansion, with a ∝ tλ ∝ ηλ=ð1−λÞ, Eqs. (2)
are invariant with respect to the transformation q → αq,
η → αη, where α > 0 is a constant. In this case v½qi; η� ¼
v½1; η=qi� ¼ v½τ�, q̃ ¼ q½qi; η�=qi ¼ q½1; η=qi�=qi ¼ q̃½τ�,
and τ� ¼ η=qi� ¼ const, which implies that both ζ and
σv are also constant—ζ and σv may be determined from
Eqs. (8) and (9), for each choice of the expansion rate
parameter λ, by computing the values of q̃, v and γ, using
Eqs. (2), with initial conditions v ¼ 0 and qi ¼ 1 for
ηi ≪ qi. This is in sharp contrast with the original VOS
whose equations of motion [24],

_σv ¼ −ð1 − σ2vÞð3Hσv − akw=LÞ; ð10Þ

_L ¼ −HLð1þ 3σ2vÞ − acwσv; ð11Þ

have two tunable phenomenological parameters, cw and kw,
usually referred to as energy loss and momentum param-
eters, respectively. Note that, in the context of models with
a power law expansion, these two parameters have been
found to depend significantly on λ [31,34].

IV. RESULTS

In this section we compare the predictions of our
parameter-free VOS model with recent results of field
theory numerical simulations of the cosmological evolution
of standard domain wall networks (without junctions)
[31,34]. Figure 3 displays the value of ζ ≡ L=ðaηÞ pre-
dicted by our parameter-free VOS model as a function of λ
considering cylindrical and spherical domain walls (upper
black and lower magenta dashed lines, respectively—again
note that in the cylindrical case the walls are assumed to be
parallel to each other, thus implying that the networks are
effectively two-dimensional in that case). The green region
between the two lines represents an estimate of the
uncertainty associated to the geometry of the domain walls.
Figure 3 shows that this uncertainty is extremely small for
values of λ close to unity, growing significantly for smaller
values of λ. The values of ζ obtained from field theory
numerical simulations of cosmological evolution of stan-
dard domain walls [31,34] as a function of λ are represented
by the red dots in Fig. 3—the errors quoted by the authors
being comparable to or smaller (in some cases much
smaller) than the size of the red dots. The value of β of
our parameter-free VOS model walls was fixed, in the
cylindrical and spherical domain wall cases, by requiring

the model to reproduce the simulation results for λ ¼
0.9998, with βcylindrical ∼ 0.69 and βspherical ∼ 1.15—note
that β is independent of the cosmological model and,
therefore, it is not a dynamical parameter of our model.
Figure 3 shows that the VOS model and the numerical
results agree well in nonrelativistic regimes or, equivalently,
regimes where σv ≪ 1 (a condition that is verified for λ

FIG. 3. The value of ζ ≡ L=ðaηÞ predicted by our parameter-
free VOS model as a function of λ considering cylindrical and
spherical domain walls (upper black and lower magenta dashed
lines, respectively)—the green region between the two lines
provides an estimate of the model uncertainty. The red dots
represent results obtained using field theory numerical simula-
tions of domain wall network evolution [31,34]. Notice the
exceptional agreement between the model predictions and the
simulation results for λ ≥ 0.9 and the significant discrepancies at
smaller values of λ.

FIG. 4. The value of root-mean square velocity σv predicted by
our parameter-free VOS model as a function of λ considering
cylindrical and spherical domain wall networks (lower black and
upper magenta dashed lines, respectively)—the green region
between the two lines provides an estimate of the model
uncertainty. The red dots represent results obtained using field
theory numerical simulations of domain wall network evolution
[31,34]. Notice the exceptional agreement between the model
predictions and the simulation results for λ ≥ 0.6 and the
significant discrepancies at smaller values of λ.
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close to unity). The discrepancies are smaller than 5% for
λ ≥ 0.9, but for smaller values of λ they become significant.
Figure 4 shows the value of the root-mean square

velocity σv predicted by our parameter-free VOS model
as a function of λ considering cylindrical and spherical
domain wall networks (lower black and upper magenta
dashed lines, respectively). Again the green region between
the two lines represents our estimate of the uncertainty
associated to the geometrical properties of the domain wall
network, by considering the two extreme domain wall
geometrical configurations. In [31,34] the authors quote the
root-mean-square γv obtained from field theory numerical
simulations of domain wall evolution (rather than σv)
for various values of λ in the interval [0.1, 0.9998].
Furthermore, they compute it by calculating the average
over the lattice volume of ðγvÞ2, hence providing an
estimate of

σ̂2γv ¼
R ðγvÞ2dVR

dV
¼

R
v2γdSR
γ−1dS

¼
R
∞
qi�

v2EP½qi�dqiR∞
qi�

γ−2EP½qi�dqi

¼
R
∞
qi�

v2EP½qi�dqiR
∞
qi�

EP½qi�dqi

R
∞
qi�

EP½qi�dqiR∞
qi�

γ−2EP½qi�dqi
¼ σ2vð1þ σ̂2γvÞ: ð12Þ

Here, we use the relation

σv ¼
σ̂γvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̂2γv

q ; ð13Þ

in order to calculate the values of σv from the quoted values
of σ̂v estimated in [31,34] using field theory numerical
simulations of domain wall network evolution. These are

represented by the red dots, whose radius is again typically
of the same order or smaller (in some cases much smaller)
than the quoted error bars. Figure 4 shows that, in non-
relativistic regimes with λ close to unity, the values of σv
predicted by our parameter-free VOS model agree well
with those obtained using field theory numerical simula-
tions (the discrepancies being smaller than 5% for λ ≥ 0.6)
but that for larger values of λ the differences are significant
(except for λ ¼ 0.1—red dot on the very left of Fig. 4—
which is also in agreement with the new VOS model).
There are several possible causes for these differences.

One of them is associated to the fact that, in order to
produce accurate results, field theory numerical simulations
of domain wall evolution need to be able resolve the
domain walls. This is usually done by requiring the proper
domain wall thickness of the domain walls to be signifi-
cantly larger than the grid spacing used in the numerical
simulations. Although, this is fine for nonrelativistic
domain walls, it might not be enough—especially if γ is
significantly larger than unity—due to the Lorentz con-
traction of the domain wall thickness. Figure 5 shows the
fraction fE½γ>2� of the energy of the domain wall network in
the form of domain walls with γ greater than 2 predicted by
our new VOS model, showing that it becomes increasingly
significant as λ approaches zero. This effect, which has not
yet been properly account for in field theory numerical
simulations of domain wall network evolution, may help
explaining the discrepancies between the predictions of our
parameter-free VOS model and the results of field theory
numerical simulations for values of λ significantly smaller
than unity.
In [31] it is argued, based on parametric fitting of a VOS

model with six phenomenological parameters, that the
energy losses due to the creation of spherelike objects are
typically subdominant in comparison to the contribution
of scalar radiation. However, no significant scalar radia-
tion is expected to be associated with perturbations to the
wall surface of wavelengths much larger than the domain
wall thickness [33]. Hence, domain walls are expected to
emit significant amounts of scalar radiation only in the
final stages of collapse. It is, however, possible that the
artificially large domain wall thickness used in field
theory numerical simulations in order to resolve the walls
may lead to artificial contributions to the scalar radiation
component—these simulations, including those of
Refs. [31,34], use the Press-Ryden-Spergel algorithm
[35,36] to fix the comoving thickness of the domain
walls (note that it cannot be made smaller than the linear
size of the smallest cells in the numerical lattice).
Furthermore, as mentioned in the previous sections, the
creation of spherelike objects through wall intersection is
not required in order for the network to lose energy as a
result of domain wall collapse since a standard domain
wall network is, from the very beginning, a collection of
closed domain walls. The fast collapse of each of these

FIG. 5. Fraction fE½γ>2� of the energy of the domain wall
network which is in the form of domain walls with γ larger than 2
as a function of λ. This fraction was computed using our
parameter-free VOS model considering cylindrical and spherical
domain walls (lower black and upper magenta dashed lines,
respectively). Notice that, in both cases, fE½γ>2� deviates signifi-
cantly from unity for values of λ much smaller than unity.
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walls begins roughly when its comoving characteristic
size equals H−1, thus leading to a hierarchical collapse
starting with the smallest domain walls.
Another possible contribution to the differences between

the predictions of our VOS model and those based on field
theory numerical simulations has to do with the fact that, as
λ approaches zero, the fractional contribution of the scalar
radiation to the total energy associated to the scalar field
becomes increasingly larger in field theory simulations.
This might lead to spurious contributions to the estimated
values of L and σv, especially in a relativistic regime.
Finally, the consideration of simple geometries and the
neglect of domain wall intersections in the new VOS model
may also contribute to these discrepancies.

V. CONCLUSIONS

In this paper we have developed a new parameter-free
VOS model for the evolution of the characteristic length
and root-mean-square velocity of domain wall networks in
arbitrary FLRW backgrounds. This model incorporates the
main physical ingredients relevant for the determination of
the evolution of the macroscopic properties of domain wall
networks. We have shown that the predictions of our model
are consistent with the results of field theory numerical
simulations of domain wall evolution in the nonrelativistic
limit. However, away from this limit we have found
significant discrepancies between the predictions of our

new VOS model and the results obtained from numerical
simulations. We have identified possible causes of these
discrepancies, mainly associated to the determination of
the characteristic length and the root-mean-square velocity
of domain wall networks from numerical simulations,
which will need to be tackled in future work. Although
the results of the present paper are not directly applicable to
other defect networks—for example, cosmic strings loops
may intersect frequently and oscillate several times before
decaying—this research might inspire other works in the
same spirit, that could contribute to the further development
of accurate semianalytical models for cosmic defect net-
work evolution with a minimum number of phenomeno-
logical parameters.
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