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The late integrated Sachs-Wolfe (ISW) effect correlates the cosmic microwave background (CMB)
temperature anisotropies with foreground cosmic large-scale structures. As the correlation depends
crucially on the growth history in the era of dark energy, it is a key observational probe for constraining the
cosmological model. Here we present a detailed study based on full-sky and deep light cones generated
from very large volume numerical N-body simulations, which allow us to avoid the use of standard replica
techniques, while capturing the entirety of the late ISW effect on the large scales. We postprocess the light
cones using an accurate ray-tracing method and construct full-sky maps of the ISW temperature anisotropy
for three different dark energy models. We quantify in detail the extent to which the ISWeffect can be used
to discriminate between different dark energy scenarios when cross-correlated with the matter distribution
or the CMB lensing potential. We also investigate the onset of nonlinearities, the so-called Rees-Sciama
effect which provides a complementary probe of the dark sector. We find the signal of the lensing-lensing
and ISW-lensing correlation of the three dark energy models to be consistent with measurements from the
Planck satellite. Future surveys of the large-scale structures may provide cross-correlation measurements
that are sufficiently precise to distinguish the signal of these models. Our methodology is very general and
can be applied to any dark energy or modified gravity scenario as long as the metric seen by photons can
still be characterized by a Weyl potential.

DOI: 10.1103/PhysRevD.101.023512

I. INTRODUCTION

In a flat Friedmann-Lemaître-Robertson-Walker (FLRW)
universe, the presence of dark energy (DE) generates a
distinct imprint on the cosmic microwave background
radiation through the late integrated Sachs-Wolfe effect
[1]. This effect originates in the decay of the gravitational
potentials associatedwith large-scale structurewhose growth
rate is altered by the increasingly fast expansion driven by the
DE component. CMB photons traveling through the struc-
tures gain a small energy variation that generates temperature
anisotropies at large angular scales. This is not the case in a
matter dominated universe where the cosmic expansion
exactly compensates the growth rate of structures, rendering
the gravitational potentials constant in time. Because of this,
the detection of the late ISWeffect in a flat universe is a direct
probe of DE. However, this signal needs to be disentangled
from that of other effects contributing to the CMB

temperature anisotropies. For instance, one can use the
cross-correlation with tracers of the distribution of large-
scale structure (LSS) [2].
The advent of CMB satellite experiments mapping the

full sky distribution of temperature anisotropies such as the
Wilkinson Microwave Anisotropy Probe (WMAP, [3]) and
Planck [4] have made possible the realization of cross-
correlation analyses of the CMB temperature anisotropy
maps with the large-scale distribution of structures from
galaxy surveys. These studies have resulted in numerous
detections of the late ISW signal [5,6] and provided
cosmological parameter constraints complementary to
those inferred from other cosmic probes (see e.g., [7]).
The next generation of galaxy surveys such as LSST,1

Euclid2 and SKA3 will map the distribution of cosmic
structures over volumes of the universe much larger than
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those currently probed. These will allow for more precise
measurements of the ISW and to test the properties of DE
[8–11]. These programs will measure the clustering of
galaxies over an unprecedented range of scales, covering
large linear modes to small ones, where the nonlinear
dynamics of the gravitational collapse of matter induces
time-variations of the gravitational potentials. Such non-
linearities produce temperature anisotropies at small scales
through the so called Rees-Sciama (RS) effect [12]. Due to
the complexity of the nonlinear regime of matter clustering,
cosmological model predictions have to rely on N-body
simulations. However, this is challenging for studies
of the ISW-RS effect, which by spanning from large
to small nonlinear scales require large-volume, high-
resolution simulations.
In the past, several works in the literature have inves-

tigated the ISW-RS effect using N-body simulations. These
studies differ not only in the characteristics of the N-body
simulations used, but also in the adopted ray-tracing
methods which are necessary to compute the temperature
anisotropies by means of a numerical integration along
the photon path [13–18]. For instance, [13] used high-
resolution simulations of a relatively small volume which
allowed them to study the RS effect only. In contrast [16]
used a simulation of similar resolution with a volume 64
times larger, which allowed them to investigate both the
ISW signal on the large scales and the RS contribution at
small ones. Both these studies have determined the varia-
tion of the gravitational potential along the photon path
from multiple patched copies of the simulated volumes.
This methodology has the advantage that the variables of
interests are continuous at the replica’s boundaries due to
periodic boundary conditions of the simulations. On the
other hand, such replica induce spurious effects since a
photon propagating along the direction parallel to any of
the principal axes of the simulation box will encounter the
same structure several times. Hence, in order to reduce such
artifacts, the computation must be limited to oblique photon
trajectories crossing the box replica at different points with
a maximum radial depth set by the simulation box length.
This suppresses the contribution of such spurious effects,
but it does not solve the problem entirely. A different
approach consists instead in patching repeated boxes that
have been randomized by applying a random translation
and rotation to the box coordinates. This avoids the
repetition of structures along the photon path, but on the
other hand it introduces artifacts due to the discontinuity at
the replica boundaries. To limit such effects, [18] have used
replica in which boxes contributing to the same redshift
shell have undergone the same random translation and
rotation (see [19]). Hence, each redshift shell around the
observer has a different randomization. This reduces the
effect of discontinuities at the boundaries of replica, while
eliminating any preferred direction in the simulated sky-
maps. Still, this approach does not account for physical

correlations among structures residing in nearby redshift
shells. Moreover, in all these works the integration along
the photon trajectory is carried out interpolating data from
snapshots of the simulation box at given redshift outputs.
However, the number of redshift outputs of a simulation
remains well below the actual time resolution of the
simulations.
Here, we describe a comprehensive methodology which

addresses all these limitations. To illustrate the strength of
this approach we confront the ISW signal from numerical
simulations to the prediction of the linear theory. We also
investigate the imprint of nonlinearities on the CMB-LSS
correlation and its cosmological dependence on the DE
model. To this end we use the full-sky light-cone data from
the dark energy universe simulation—full universe runs
(DEUS-FUR) [20,21] in combination with a sophisticated
ray-tracing technique that solves the photon geodesic equa-
tions along the photon trajectory. Our approach takes
advantage of the fact that the DEUS-FUR simulations cover
the volume of the entire observable universe allowing to
generate full-sky light-cone data without the need of recur-
ring to any replica method. Moreover, the light-cone data
have been generated during the DEUS-FUR runtime which
preserves the full time resolution of the simulations in the
computation of the photon trajectories. Finally, the ray-
tracing method allows us to integrate the geodesic equations
along the perturbed photon path, rather than the usually
adopted Born approximation along the unperturbed path. In
the present article we focus mainly on large scales, never-
theless ourmethodology is very general and can be applied to
smaller scales where nonlinearities enhance the differences
between predictions of different cosmological models.
The paper is organized as follows. In Sec. II we briefly

review the equations underlying the ISW effect. In Sec. III
we will describe the numerical simulation datasets and the
ray-tracing method. In Sec. IV we will present the results,
while in Sec. V we will discuss our conclusions.

II. ISW EFFECT

In order to gain an intuitive understanding of the various
contributions to the energy of photons traversing structures
in an expanding universe, let us consider a linearly
perturbed FLRW metric in longitudinal gauge (given here
in natural units),

ds2 ¼ a2ðτÞ½−ð1þ 2ψÞdτ2 þ ð1 − 2ψÞδijdxidxj�; ð1Þ

where τ is the conformal time, aðτÞ is the scale factor and ψ
is the Newtonian potential (we neglect anisotropic stress,
vector and tensor perturbations). In this coordinate system
the energy of a photon k0 evolves as

dk0

dτ
þ 2Hk0 þ 2

∂ψ
∂xi n

ik0 ¼ 0; ð2Þ
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where H ¼ d ln a=dτ and ni is the unit vector pointing into the direction in which the photon is traveling. A first-order
integral of this equation yields the following perturbative expression for the observed photon redshift:

1þ z ¼ aobs
asrc|{z}

background

�
1þ n · vobs − n · vsrc|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Doppler

þ ψobs − ψ src|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
time dilation

− 2

Zobs

src

∂ψ
∂τ dχ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ISW effect

�
; ð3Þ

where v is the peculiar velocity, dχ is the conformal
distance element (not the line element which is always
null for a photon), the subscript “src” refers to the source
and the subscript “obs” refers to the observer.
The measured energy of a CMB photon is an observable

and hence does not depend on the coordinate system used
to describe it. However, the advantage of using longitudinal
gauge coordinates is that the terms appearing in the above
expression have a clear interpretation. We may notice that
apart from the factor related to the overall expansion of the
background there are two types of contributions that are
local at the source and observer, namely the Doppler shift
due to peculiar motion and the gravitational redshift due to
time dilation. The last term, which is an integral along the
photon path, is precisely what we call the ISW-RS effect.
Its origin is also quite intuitive: a photon will receive a net
blueshift if it travels through a decaying (∂ψ=∂τ > 0)
potential well, since it gains more energy on the infall
than it loses climbing out of the increasingly shallow well.
It is worth remarking that N-body simulations are usually

not realized in the longitudinal gauge.4 Hence, in numerical
simulation analyses the full expression for the observed
redshift should be properly gauge-transformed, which
introduces some new local terms that can be of the same
order as the gravitational redshift (see [23]). However, the
integrated contribution we are interested in here is readily
gauge invariant, i.e., up to second-order corrections the
integral can be taken directly in the coordinates of the
Newtonian simulation.

III. METHODOLOGY

We use numerical data from the DEUS-FUR project
taking advantage of the available full-sky and deep light
cones (with no replica) for several observers and for three
cosmological models.

A. Cosmological models

The cosmological models of the DEUS-FUR simulations
consist of a flat ΛCDM model, a quintessence model with
Ratra-Peebles potential (RPCDM, [24]) and a phantom
dark energy model with constant equation of state w < −1

(wCDM, [25]). The cosmological model parameters have
been calibrated to fit the CMB anisotropy power spectra
from the WMAP-7 yr data [26] and the luminosity distance
measurements from supernova Ia standard candles [27].
These models are known as realistic models [28]. In
particular, the values of cosmic matter density Ωm and
the normalization of the root-mean-square fluctuations σ8
of the nonstandard dark energy models have been chosen
within the 68% confidence region along the degeneracy
line of the Ωm − w and σ8 − w planes respectively, such as
to be statistically indistinguishable from the ΛCDM best-fit
model at 1σ (see Fig. 1 in [29]). A summary of the
cosmological model parameter values and the simulation
characteristics is reported in Table I.
The RPCDM and wCDM models are characterized by a

background expansion and the linear growth of density
fluctuations which bracket those of the ΛCDM. We can see
this in Fig. 1, where we plot the redshift evolution of the
Hubble function (left panel), the deceleration parameter
(center panel) and the linear growth rate (right panel) for the
ΛCDM, RPCDM and wCDM models, respectively. First,
we can see that the accelerated expansion starts earlier in
RPCDM than ΛCDM (i.e., zaccRPCDM > zaccΛCDM), while it
starts later in wCDM. Also notice that during the preceding
phase, the cosmic expansion in RPCDM is less decelerated
than in ΛCDM (i.e., qRPCDM < qΛCDM), while is more
decelerated in wCDM. As we may notice from the
evolution of the linear growth rate, this implies that
structures will grow more efficiently in wCDM compared
to the ΛCDM case (i.e., fwCDM > fΛCDM) and less effi-
ciently in RPCDM during the decelerated phase. These
differences are also present during the subsequent accel-
erated phase of expansion, although exhibiting a different
slope at low redshift due to the different rate of cosmic
acceleration specific to each model.
Given the fact that the variation of the gravitational

potentials is proportional to the redshift variation of the
growth rate of matter density fluctuations, the trends shown
in Fig. 1 entirely characterize the cosmological dependence
of ISW signal. While this will be discussed in detail in
Sec. IV, for the time being it is informative to present an
estimate of the ISW signal for the DEUS-FUR cosmologies
assuming the linear theory. In particular, a simple expres-
sion of the ISW power spectrum can be obtained through
the Limber approximation:

4At leading order the correct gauge for interpreting Newtonian
simulations is presented in [22].
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CTT
l ¼

Z
obs

src
dχ

q1ðχÞq2ðχÞ
χ2

Pδδ

�
l
χ
; χ

�
; ð4Þ

where Pδδ is the linear power spectrum and the weight
functions qiðχÞ are given by

q1ðχÞ ¼ q2ðχÞ ¼
3H2

0Ωmχ
2H

l2
ðf − 1Þ; ð5Þ

with f being the linear growth rate. Equation (4) provides
an explicit relation between the linear growth rate and the
ISW power spectrum.
Using Eq. (4), we plot in Fig. 2 the increment of the

linear ISW power spectrum per unit of comoving distance.
We can see that this quantity varies in a cosmological

model dependent way over very large distances and reaches
a maximum around 2 Gpc=h to about 4 Gpc=h. This
implies that the light cones built using N-body numerical
simulations and which are used to estimate the ISW effect
must be deep enough to include the full time variation of
the integrand ∂ψ=∂τ. In particular, light cones must allow
to integrate the time variation of the gravitational potential
up to comoving distances of more than 7 to 8 Gpc=h. As
we will explain in the following subsections, the light cones
generated from the DEUS-FUR simulations have optimal
characteristics to perform such an integration.

FIG. 1. Hubble function H, deceleration parameter q and linear growth rate f as a function of redshift z for the ΛCDM (blue solid
lines), RPCDM (magenta solid lines) and wCDM (green solid lines) models, respectively. As reference for the latter two we plot as
horizontal black lines the constant values of the Einstein–de Sitter model with Ωm ¼ 1 (qEdS ¼ 0.5, fEdS ¼ 1).

TABLE I. Cosmological parameter values of the DEUS-FUR
simulated cosmologies. For all models the scalar spectral index is
set to ns ¼ 0.963 and the Hubble parameter h ¼ 0.72. For
information we also report the values of a linear equation of
state parametrization wðaÞ ¼ w0 þ wað1 − aÞ for the different
models (though in the RPCDM case we have used the exact
equation of state obtained by numerically solving the Klein-
Gordon equation). In the bottom table we list the values of the
initial redshift of the simulations zini, the particle massmp and the
comoving spatial resolutionΔx. For all three simulations the box-
length is Lbox ¼ 21000 Mpc=h and the number of N-body
particles is 81923.

Parameters RPCDM ΛCDM wCDM

Ωm 0.23 0.2573 0.275
Ωbh2 0.02273 0.02258 0.02258
σ8 0.66 0.8 0.852
w0 −0.87 −1 −1.2
wa 0.08 0 0
zini 94 106 107
mp [M⊙=h] 1.08 × 1012 1.20 × 1012 1.29 × 1012

Δx [kpc=h] 40 40 40

FIG. 2. Contributions to the late ISWangular power spectrum at
l ¼ 100 per unit of comoving distance. The computation
assumes linear evolution as well as Limber approximation.
The blue line shows the ΛCDM model contributions while red
and green lines show the RPCDM and wCDM contributions.
These contributions are directly related to the differences of linear
growth rates with respect to EdS cosmology as shown Fig. 1.
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In what follows, except otherwise stated, we will not rely
on the Limber approximation for analytical calculations but
rather on the full Bessel integrals as computed by the
Boltzmann code CLASS [30].

B. Simulations

DEUS-FUR comprises three N-body simulations of a
ð21 Gpc=hÞ3 volume with 81923 particles of a flat ΛCDM
model and two DE scenarios with different expansion
histories (see Table I). The simulations have been run using
the application AMADEUS—a multipurpose application
for dark energy universe simulation expressively developed
for the realization of the DEUS-FUR project [20,21]. This
includes the code generating Gaussian initial conditions for
which we use an optimized version of MPGRAFIC [31],
the N-body solver for which we use a specifically modified
version of the RAMSES code [32] such as to run on a very
large number of cores (≈80000) and a parallel friends-of-
friends halo finder pFoF as described in [33]. RAMSES

solves the Vlasov-Poisson equations using an adaptive
mesh refinement (AMR) particle-mesh method with the
Poisson equation solved with a multigrid technique [34].
We refer the reader to [20] and [21] for a detailed
description of the algorithms and optimization schemes
adopted in the realization of the DEUS-FUR project.
At coarse level the grid of the DEUS-FUR simulations

contains 81923 cells, these are allowed to be refined
six times reaching a formal spatial resolution of Δx ¼
40 kpc=h, while the particle mass resolutions is mp ≈
1012 M⊙=h for the different models. Although these are the
first simulations covering the volume of the full observable
Universe at such a resolution, this is still relatively low
compared to that of other ISW studies in the literature,
which have used smaller volumes [16,18]. Hence, our study
will focus more on the large scales, where the DEUS-FUR
simulations provide cosmic-variance limited errors [35].
We now discuss the characteristics of the light-cone data
and the ray-tracing technique.

C. DEUS-FUR light cones

DEUS-FUR light cones were built on-the-fly using an
onion-shell approach [36,37]. At each coarse time step the
shell at the appropriate conformal distance from the
observer is recorded (thus moving successively closer
and closer to the observer as the simulation advances in
time). The time steps multiplied by the speed of light are
larger than the resolution of the spatial mesh, consequently
each shell has a certain thickness of many coarse cells. The
total number of shells is of order∼400–450 depending on the
cosmology. For each of the three cosmologies, five full-sky
light cones (fraction of the sky fsky ¼ 1) were stored up to
maximum redshift zmax ¼ 30. Each of the light cones
corresponds to a specific space-time location of the observer
given by the positionvector (x1obs=Lbox, x2obs=Lbox, x3obs=Lbox,

zobs) where xiobs are the observer Cartesian coordinates in the
simulation box going from 0 to Lbox, Lbox is the box length
and zobs is the redshift of the observer. The locations were
chosen as (0.5, 0.5, 0.5, 0.), (0.5, 0.1, 0.1, 0.), (0.1, 0.5, 0.9, 0.),
(0.5, 0.5, 0.5, 0.5), and (0.5, 0.5, 0.5, 1.2) so as tomaximize the
distance between the observers at z ¼ 0. In this articlewewill
focus on the two first light cones which do not overlap up to a
redshift z ∼ 5.6. For each light cone, two kinds of data are
stored: particles and AMR cells. Particle light cones contain
particle properties (position, velocity and redshift) while
gravity light cones contain mesh properties (position, gravi-
tational field, potential, density, AMR cell’s child index). We
use the particle light cones to compute maps of the comoving
dark matter density on the unperturbed light cone. In contrast,
given that our line element Eq. (1) is fully specified by the
potential, we perform the ray tracing using the gravity light
cones, which allow us to compute ISW-RS maps as well as
weak-lensing maps.

D. Ray tracing and map making

In order to compute the ISW temperature anisotropies
from the DEUS-FUR light-cone data we use the ray-tracing
algorithm part of the fast parallel C++ AMR library
Magrathea developed in [38]. For each ray a past-null
direction is chosen at the observer, and the geodesic
equations, consisting of a coupled set of ordinary differ-
ential equations, are numerically integrated backwards in
time. Following the true photon path, the gravitational
potential and its gradient are obtained from the adaptive
mesh by multilinear (cloud-in-cell) interpolation. The set of
differential equations is then solved by a Runge-Kutta
fourth-order method with adaptive time steps (four time
steps per AMR cell). Our methodology is very general as
long as the time derivative of the potential can be measured
from the gravity light cone. In particular, we do not need to
specify any relation between the matter density field and
the gravitational potential, which means that a wide range
of dark energy and modified gravity models can be studied
without changing the analysis pipeline. We consider this
approach to be an improvement over previous ones also
because the light cones cover the full sky without replica,
and the geodesic integration is done at the resolution of the
AMR simulation.
DEUS-FUR was not designed to specifically investigate

the ISW-RS effect, and because of this the time derivative
of the potential was not stored. Nevertheless, it can be
recovered at large scales (i.e., larger than the shell size)
from the gravitational field (the spatial gradient of the
potential computed at a given time) and a total derivative
(computed along the light cone). More specifically, we can
rewrite the partial time derivative ∂ψ=∂τ as

∂ψ
∂τ ¼ dψ

dτ
−
∂ψ
∂xi n

i; ð6Þ
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from which we have that

−2
Zobs

src

∂ψ
∂τ dχ ¼ −2ψobs þ 2ψ src þ 2

Zobs

src

∂ψ
∂xi n

idχ; ð7Þ

where we have computed the spatial gradient of the
potential on the mesh assuming a five-point stencil finite
difference approximation.
We have generated full-sky maps of the ISW temperature

anisotropies of resolution Nside by numerically integrating
the geodesic equation for all the 12 × N2

side light rays
received from the directions of the HEALPix pixels [39].
Here, we specifically set Nside ¼ 512. In addition to the
ISW signal we also compute the lensing deflection angle,
which allows us to reconstruct the CMB lensing potential

that we will discuss in Sec. IV C. To this purpose we first
generate a map of the deflection vector, then we extract the
lensing potential as the generator of its curlfree part. A
small curl part is also present due to higher-order lensing,
but we do not study this here.
In Fig. 3 we show full-sky maps of the ISW temperature

anisotropies (left panels) and the lensing potential (right
panels) generated from the light cones of the three DEUS-
FUR cosmological models. In the next section we use the
HEALPix package [39] to evaluate angular correlation
functions of the full-sky maps.

IV. RESULTS

A. ISW-temperature power spectrum

In Fig. 4 we plot the angular power spectrum obtained
from the estimator

FIG. 3. Full-sky maps of the ISW temperature anisotropy (left panels) and lensing potential (right panels) extracted from the DEUS
FUR for (from top to bottom) RPCDM, ΛCDM, and wCDM models for one observer included in the simulation box. As usual, the
temperature dipole is not shown since its observation is difficult due to the large kinematic dipole. For a better comparison we therefore
also subtract the lensing dipole even though it is taken into account in our analysis.
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CTT
l ¼ 1

2lþ 1

X
m

jaTTlmj2; ð8Þ

where aTTlm are the coefficients of the spherical harmonic
decomposition of the full-sky maps of the temperature
anisotropies as computed using the HEALPix package. For
each cosmology, we compute the late ISW-RS signal for
four different starting redshifts z�, integrating the photon
trajectories between z� and z ¼ 0. The error bars show
statistical errors after combining the estimators from the
light cones of two independent observers and binning
the data logarithmically in l. From the dependence of
the signal on z�, we can see that the differences among the
various model predictions correlate with the differences in
the redshift evolution of the linear growth rate shown in
Fig. 1. More specifically, we can see that in the wCDM case

(upper right panel) the bulk of the signal is generated at low
redshift. As an example, between z� ¼ 1 and 3 the ISW
signal at l ∼ 10 only increases by 16%, while in the same
redshift interval the signal increases by 20% in the ΛCDM
case and 40% for RPCDM. This is consistent with
the fact that at these redshifts the linear growth rate of
the wCDM model remains closer to the Einstein–de Sitter
value (f ∼ 1), than ΛCDM and RPCDM, respectively.
Moreover, as shown in Fig. 1, the linear growth rate of
wCDM (RPCDM) is systematically higher (lower) than the
ΛCDM case, thus causing a smaller (larger) ISW signal
relative to theΛCDM prediction as shown in the lower right
panel of Fig. 4.
Overall, we find a good agreement with the linear theory

for multipoles l≲ 50 where the linear ISW effect is
expected to dominate over the nonlinear RS effect.

FIG. 4. Angular power spectra of the ISW signal for three different cosmologies, using logarithmic l-band powers. In order to show
where the signal is mostly generated, the temperature anisotropy is calculated by integrating along the line of sight from the observer (at
z ¼ 0) to various finite distances z�. For the two evolving DE models (wCDM and RPCDM) the lower right panel shows the relative
difference with respect to ΛCDM. In all panels, dashed lines indicate the predictions from linear theory as computed by CLASS.
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Instead over the range 60≲ l ≲ 100 we notice a change of
the slope of the power spectrum and a departure from the
linear theory that is cosmological model dependent. This
departure marks the onset of the nonlinear RS effect. It is
worth remarking that while the amplitude of the ISW power
spectrum is mostly determined by the linear growth rate
through the (1 − f)-factor in Eq. (4), the scale of deviation
from the linear theory primarily depends on the amplitude
of the matter density power spectrum (i.e., σ8Dþ, where
Dþ is the linear growth factor). We can see that at
multipoles l ∼ 100 the trends flatten to a plateau.
However, at these multipoles our estimation of the temper-
ature fluctuations is dominated by noise that results from the
limitations of the numerical computation. In fact, our
integration method evaluates the signal from discretized
data. In particular, as explained earlier, ∂ψ=∂τ is not directly
computed during the simulation run, but estimated from the

total derivative and the spatial gradient of the potential over
the mesh. The signal is therefore effectively recovered by
summing the jumps of the gradient between the time steps of
the simulation, or in other words by sampling from a
relatively small number of locations.This procedure prevents
an exact evaluation of the temperature fluctuations on scales
smaller than the sampling rate. Consequently, at the multi-
poles corresponding to these scales the correlation of the
numerical noise with itself (whose spectral properties are
consistent with a Poisson process) provides the dominant
contribution to the power spectrum, leaving the signal of the
RS effect embedded in noise.

B. ISW-matter density correlation

As already mentioned, the ISW signal in the CMB
temperature anisotropy autopower spectrum cannot be

FIG. 5. Angular cross power spectra of the ISW signal with the matter density contrast for three different redshift bins, using
logarithmic l-band powers. For the two evolving DE models (wCDM and RPCDM) the lower right panel shows the relative difference
with respect to ΛCDM. Dashed lines indicate the predictions from linear theory as computed by CLASS.
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disentangled from the contribution of other processes
which generate temperature fluctuations at the last scatter-
ing surface. Instead, it can be detected by cross-correlating
CMB temperature maps with the late-time distribution of
cosmic structures. Temperature anisotropies generated at
early time are largely uncorrelated with the spatial distri-
bution of matter density perturbations at late time. In
contrast, ISW anisotropies are sourced by the time varying
gravitational potentials associated to late-time matter den-
sity perturbations which are traced by cosmic structures.
Here, we compute the cross-correlation between the ISW

signal and the matter distribution by constructing full-sky
maps of the average density contrast in a given distance
interval of the observer’s light cone, namely:

δðnÞ ¼
R
WðχÞδðnχÞdχR

WðχÞdχ ; ð9Þ

whereWðχÞ is a tophat selection function that specifies the
distance interval. Despite the fact that we use the informa-
tion recorded along the past light cone, it should be noted
that the density contrast we are evaluating is not a directly
observable quantity. First, we use the distribution of dark
matter particles to define δ, while observations of large-
scale structure have to rely on biased tracers such as
galaxies. Second, for simplicity we do not take into account
relativistic projection effects such as e.g., weak lensing that
would perturb the observed number density of tracers in a
given solid angle element.While it may seem that this could
be rectified by making use of our ray tracing algorithm, we
remind the reader that the particle positions are not provided

in the appropriate gauge5 for this task. This gauge issue is not
very important on small scales, but it could contaminate the
large angular scales we are mostly interested in [40]. The
quantity δðnÞ should therefore be understood merely as
an ideal theoretical probe that is easy to compute and that can
be used as a proxy for assessing the ISW-matter cross-
correlation in different dark energy models.
Fig. 5 shows the ISW-matter cross-correlation power

spectrum of the three DEUS-FUR models for three redshift
bins covering the range 0 ≤ z < 0.5, 0.5 ≤ z < 1, and 1 ≤
z < 8 respectively. We use a power spectrum estimator
similar to that described in the previous section and again
applied to the full-sky maps of two independent observers
in each case. We also show the theoretical model predic-
tions obtained from linear theory (dashed lines). As
expected, for all three cosmologies the cross-correlation
signal is larger at lower redshift, and the relative contri-
bution of the different redshift bins follows the trends
already discussed in the previous section. Higher multi-
poles are systematically more correlated at higher redshift
which is simply a geometric effect. The lower-right panel of
Fig. 5 shows the relative difference of the cross-spectra with
respect to the ΛCDM case.
Overall, we can see that at relative low multipoles

(l < 100) or equivalently at large angular scales, the
linear theory reproduces reasonably well the numerical

FIG. 6. The left panel shows the angular cross-power spectra between CMB temperature and matter density contrast (integrated
between z ¼ 0 and z ¼ 9) at small scales or large multipoles (l > 80) where nonlinear effects become important. The right panel shows
the relative difference of the cross-power spectra to the ΛCDM linear prediction. The different lines correspond to the DEUS-FUR
numerical simulation (solid lines), linear prediction (dashed lines) and HALOFIT prediction (dotted lines).

5As our ray tracer uses longitudinal gauge it requires the
number count per coordinate volume in that gauge. This quantity
is different in different gauges and only relates to a gauge-
invariant number count per redshift space volume after the
relativistic projection effects have been included.
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cross-spectra from the DEUS-FUR simulations. The agree-
ment is stronger for the higher redshift bins, while we may
notice a departure from the linear theory in the lowest redshift
bin at l ≈ 100. The exact angular scale of such departure
depends on the underlying cosmologicalmodel andmarks the
onset of nonlinearities contributing to the RS effect.
To highlight this point in Fig. 6 we plot the cross spectra

(left panel) and their relative differences with respect to the
linear ΛCDM prediction (right panel) at high multipoles
(l > 100), where we have integrated the signal between
z ¼ 0 and z ¼ 9 to have a larger signal-to-noise. Notice that
as we explore smaller scales, we approach the spatial
resolution of the simulations. This manifests in a drop of
the cross-power spectra at large multipoles and in the
presence of noise. However, these spurious numerical
effects are mostly independent of the underlying cosmol-
ogy and cancels out when plotting relative differences. This
allows us to recover the signature of nonlinearities at small

scales which is expected to depend on the cosmological
model [28]. We can clearly see this in the right panel of
Fig. 6, where the differences of the wCDM and RPCDM
cross-spectra with respect to the linear ΛCDM prediction
increase at larger multipoles and correlate with their σ8Dþ
value. We also plot an analytical prediction of the nonlinear
regime following [41]. At these small scales, the Limber
approximation is applicable and we use Eq. (4) with

q2ðχÞ ¼
1

Δχ
ð10Þ

inside the top-hat region of width Δχ and q2ðχÞ ¼ 0
outside. Pδδ in Eq. (4) becomes the nonlinear power
spectrum and f becomes the (scale-dependent) nonlinear
growth rate fðk; χÞ ¼ 1

2
d lnP=d ln a. As shown in [28], the

imprint of nonlinearities on the matter power spectrum
depends on the specificities of the underlying dark energy

FIG. 7. Angular power spectra of the lensing potential (top panels) and its cross power spectra with the ISW signal (bottom panels),
using logarithmic l-band powers. Dashed lines are linear predictions computed by CLASS.
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model. However, these are not captured by the standard
HALOFIT prescription [42]. Instead, we use the prescription
from [43], which accounts for dark energy models with a
constant equation of state w. This covers the ΛCDM and
wCDM cases, while for the RPCDM model, we approxi-
mate its time varying equation of state with its mean value
across the cosmic history, corresponding to w ¼ −0.83.
Notice though that the imprints of dark energy on nonlinear
scales play an important role (at several percent level) only
beyond modes k≳ 1 h Mpc−1. As we focus on large scales
corresponding to k < 1 h Mpc−1, in this regime the pre-
scription by [43] provides accurate enough predictions of
the matter power spectra. Moreover, given the level of
fluctuations exhibited by the numerical spectra at these
scales, nonlinear model predictions accurate at the percent
level are not needed in our analysis. In the left panel of
Fig. 6 we plot the nonlinear predictions of the ISW-density
cross-spectra for the ΛCDM, wCDM and RPCDM models
against the numerical simulation results. As we can see the
cosmological dependence of analytical predictions and
simulations are similar. In the right panel of Fig. 6 we plot
the relative differences with respect to the ΛCDM case.
We can see that the onset of the RS effect depends on the
model of dark energy, thus confirming previous claims in
the literature that such a scale can be used as a probe of
dark energy [41,44]. More accurate prescriptions for the
computation of the nonlinear matter power spectrum of
dynamical dark energy models are required if we had
extended the analysis deep in the nonlinear regime. In
such a case prescriptions such as those developed in
[45,46] are needed. However, this is beyond the scope of
this paper.

C. ISW-lensing potential correlation

Thegravitational potentials of large-scale structuremodify
the temperature anisotropy pattern through weak gravita-
tional lensing. The lensing potential for the CMB can be
constrained from CMB observations directly [47], without
the need for external large-scale structure information. Since
lensing and ISW effect both originate from the same matter
perturbations they are expected to be highly correlated at
redshifts where the potentials are decaying.
We construct the lensing potential by taking the curlfree

part of the total deflection angle that we compute by
integrating the photon geodesic equations for the full sky.
In Fig. 7 we plot the angular power spectra of the lensing
potentials (top panels) and the cross-correlations with the
ISW signal (bottom panels) for our three cosmologies.
The right panels show the relative difference with respect
to ΛCDM.
Again, for low multipoles (l < 100) we find an excellent

agreement with the predictions from the linear theory
(dashed lines) both for the lensing potential autocorrelation
function and for the lensing-ISW cross-correlation. This
validates again our methodology. An analytical calculation
of the lensing-ISW cross-power spectrum following [41]
with Limber approximation (i.e., using the lensing weight
for q2) indicates that the scale for nonlinearity is beyond
l ¼ 500 and therefore at scales below the resolution of our
data. This is because the CMB-lensing kernel peaks at high
redshift pushing the scale of nonlinearities toward larger l.
The cosmological dependence reaches 30% (between

RPCDM and wCDM at l ¼ 100) for the autocorrelation of
the lensing potential. It appears more pronounced for the
cross-correlation between the ISW signal with the lensing

FIG. 8. Comparison of DEUS-FUR cross-spectra XðlÞ for κ-κ (left) and T-κ (right) to the Planck measurement (solid black line) from
[6] (we follow the convention of that paper). The three models agree with the data. In the future, reducing systematics and the use of
multiple probes will allow to disentangle the three “realistic” cosmologies studied in this paper.
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potential where it reaches 50% and the order of the spectra
is reversed. Moreover while wCDM and ΛCDM are
indistinguishable from a lensing perspective, they are more
than 1-σ away for the ISW-lensing cross-correlation (where
σ2 is the cosmic variance). This illustrates the comple-
mentarity of the lensing and ISW probes.
Finally, in Fig. 8 we confront our CMB lensing and ISW

spectra to measurements from the Planck collaboration [4].
Given the observational systematics, the measurement errors
are not down to cosmic variance. The three models are
therefore compatible with the current measurements. It will
however be possible in the future to lower the systematics,
combine several probes (ISW-density, ISW-lensing) at sev-
eral redshift, and explore the RS effects. Altogether this
should allow the discrimination between various cosmologi-
cal models compatible with CMB and supernovae data.

V. CONCLUSIONS

We have presented a study of the ISW-RS effect using
data from the dark energy universe simulation—full uni-
verse runs of three different dark energy models. As these
simulations encompass the full observable volume of the
simulated cosmologies, we have been able to perform a
thorough analysis of the ISW signal using full-sky light-
cone data with a photon propagation across the cosmic
nonlinear matter distribution up to very high redshifts and
for two observers located at two different space-time
positions. The usual spurious effects inherent to replica
methods are thus completely avoided. Moreover, we used a
sophisticated ray-tracing technique that solves the photon
geodesic equation along the photon trajectory without
recourse to the Born approximation. Our methodology is
very general and applicable to both large and small scales.
The cosmological models of the DEUS-FUR simulations

are a flat ΛCDM model, a quintessence model with Ratra-
Peebles potential (RPCDM) and a phantom dark energy
model with constant equation of state w ¼ −1.2 (wCDM).
We extracted the angular correlation functions from full-
sky maps for such realistic cosmological models. The
autocorrelation functions of the ISW signal are very weakly
dependent on cosmology for small multipoles (l ≪ 50)
and in very good agreement with the linear prediction. For
multipoles between l ¼ 50 and l ¼ 100, we can see the
onset of the RS effect. At larger multipoles the numerical
noise dominates the signal. This is caused by the way our
integration method extracts the signal from the discretized
data for the time derivative of the gravitational potential
which was not specifically stored in our simulations.
Therefore we can only observe the beginning of the
transition to the RS effect as the nonlinear signal is then
drowned in the numerical noise.
The ISW-RS signal in the CMB anisotropy power

spectrum is not directly observable due to the contribution
of early-time processes which generate temperature anisot-
ropies over the same range of angular scales. Nevertheless,

it can be detected through cross-correlation of CMB
temperature anisotropy maps with the distribution of
large-scale structures. This is because the late-time varying
gravitational potentials which sources the ISW-RS effect
are traced by cosmic structures. Here, we have performed
an analysis of the ISW-matter correlation from the DEUS-
FUR light-cone data. We find that the differences among
the cross-spectra of the DEUS-FUR models to be enhanced
at l≳ 100. In particular, we clearly find a deviation from
the linear prediction as nonlinear effects become dominant
at small scales. Such effects are expected to be cosmo-
logical model dependent and do account for the observed
differences between the ISW-correlation spectra of the
DEUS-FUR models. In fact, the linear growth rate of
matter density perturbations is larger in wCDM than in the
ΛCDM case and even more compared to RPCDM.
Consequently the cosmic structure formation is more
efficient in wCDM than in ΛCDM and RPCDM, respec-
tively. This results in an attenuation of the ISW-matter
correlation signal in the wCDM model with respect to the
ΛCDM and RPCDM cases, mainly due to a lower ISW
amplitude, and a decrease on the scale of deviation from the
linear regime of matter clustering.
We have also investigated the correlation of the ISW

effect with the lensing potential from the matter distribu-
tion. Again, at low multipoles we find the results to be well
reproduced by the linear theory. We find the cross-corre-
lation to be particularly sensitive to the underlying cos-
mological model with the amplitude of the signal varying
more than the cosmic variance error among the DEUS-FUR
models. The comparison of our results to ISW and lensing
data from Planck shows that these measurements cannot
yet disentangle between the three dark energy models
studied here. However, in the light of the observational
data that will be accessible with future survey programs, the
ISW-lensing correlation in combination with the detections
of the nonlinear features of the ISW-LSS correlation are
likely to provide a powerful cosmological proxy and a
probe of the nature of dark energy.
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