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The quasispherical Szekeres metric is an exact solution to Einstein’s equations describing an
inhomogeneous and anisotropic cosmology. Though its governing equations are well known, there are
subtle, often-overlooked details in how the model’s functions relate to its physical layout, including the
shapes and relative positions of structures. We present an illustrated overview of the quasispherical
Szekeres models and show exactly how the model functions relate to the physical shape and distribution of
matter. In particular, we describe a shell rotation effect that has not previously been fully understood. We
show how this effect relates to other known properties, and lay out some mathematical tools useful for
constructing models and picturing them accurately.
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I. INTRODUCTION

As cosmological observations become ever more pre-
cise, it becomes insufficient to describe structures and their
evolutions by approximate means, such as perturbation
theory (which fails to capture nonlinear structure growth at
late times) and N-body simulations (which do not typically
fully incorporate general relativity). For this reason, interest
is growing in inhomogeneous models based on exact
solutions to Einstein’s equations. Although these models
have restrictions in the shapes of structures allowed, they
are useful because they allow direct, exact calculations
of observables such as lensing convergence, angular
diameter distance, and redshift, free from approximations
or ambiguities.
The most extensively studied inhomogeneous exact

solution is the Lemaître-Tolman (LT) class of models
[1,2].1 This describes a spherically symmetric configura-
tion of pressureless dust matter, with an optional cosmo-
logical constant. It provides a highly idealized simulation
of simple structures such as cosmic voids, allowing us to
calculate their observational effects. Many studies have
examined LT models in various configurations [4–36].
However, the symmetry of the LT metric severely

constrains the types of structures that it can model. The
real universe contains structures that are not so simple,
consisting of complex arrangements of walls and voids.
The asymmetry of these arrangements can qualitatively
alter the evolution and observational effects in ways the LT
models cannot capture. A more advanced metric capable of

better representing such structures is the quasispherical
subclass of the Szekeres metric [37]. This metric is a
generalization to the LT metric, breaking the symmetry and
allowing for much greater variety.
Many studies have examined Szekeres models and

employed them to investigate various cosmological observ-
ables (e.g., [38–50]), and others have explored their general
mathematical and geometric properties (e.g., [51–63]). The
mathematics involved in the models are well-developed
enough to run simulations, generate data, and make
predictions. Describing and visually depicting the actual
shapes of structures in such simulations, though, remains a
challenge.
The purpose of this paper is to clarify and illustrate the

geometry of the Szekeres models, showing the connections
between the model functions and the physical picture the
models represent. Some of this is merely elaborating on
already known features, but we also describe a shell
rotation effect that has not yet been fully understood.
We will show how this fits in with other properties of
the model. We will also provide some mathematical tools
for building and adjusting models, as well as for handling
calculations within these models.
This paper is organized as follows. In Sec. II we lay out

the metric and evolution equations defining the Szekeres
models. We also explain the role of each function and how
they relate to simplermodels.We describe the two coordinate
systemsmost commonly used in Szekeresmodels in Sec. III,
and showhow they relate to one another. InSec. IVwebriefly
go over some of the physical restrictions on the model
functions. In Sec. V we go into greater detail explaining how
the asymmetric shape and physical properties of the metric
relate to the model-defining functions. In Sec. VI we present
special cases which result in partial symmetry, laying out the
mathematical conditions and discussing some of the benefits
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1Some refer to these as Lemaître-Tolman-Bondi (LTB) mod-

els, though Bondi’s contribution came fourteen years after the
initial discovery [3].
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of such models. In Sec. VII we provide some useful
equations, including geodesic equations and coordinate
transformations, as well as outlines of numerical methods
that can be used to visualize themodel’s spatial arrangement.
We show an alternative picture in Sec. VIII, in which the
model is seen as a hypersurface embedded in a higher-
dimensional background manifold. Finally, we make our
closing discussion in Sec. IX.

II. BASIC MODEL DEFINITIONS

The Szekeres metric is a generalization of the LT metric,
introduced in 1975 by P. Szekeres [37]. Like the LT metric,
it contains only a comoving, irrotational, pressureless dust,
and optionally a cosmological constant. Its constant-t
hypersurfaces are conformally flat [53], and it has no
gravitational radiation due to a lack of changing quadru-
poles [54], but unlike LT, the Szekeres metric does have
dipoles in its matter distribution. In general, it has no
symmetry; there are no Killing vectors, except in special
cases [55].
Szekeres models are described by the metric

ds2 ¼ −dt2 þ ðR0 − RE0
EÞ2

ϵ − k
dr2 þ R2

E2
ðdp2 þ dq2Þ: ð1Þ

Primes denote partial derivatives with respect to the radial
coordinate r, and ϵ ¼ þ1, 0, or −1, corresponding to the
quasispherical, quasiplanar, and quasipseudospherical sub-
types respectively. (It is possible for ϵ to change with r,
resulting in multiple geometries joined together in one
model, as described in [60].) The quasispherical subtype
has attracted the most attention, as it is simplest to under-
stand, includes LT as a special case (allowing for direct
comparisons), and is best suited to describing localized
structures. From here on, when we refer to the Szekeres
models, we will mean the quasispherical subtype.
Like LT, the Szekeres spacetime consists of a series of

spherical shells labeled by the coordinate r, and the
functions R ¼ Rðt; rÞ and k ¼ kðrÞ play the same roles
as in LT—that is, R represents the proper areal radii of the
shells, and k is related to the local spatial curvature. The
coordinates on the shell, p and q, relate to the more familiar
θ and ϕ by a stereographic projection, as we will explain in
Sec. III; the shells are still perfectly spherical. The only real
difference comes from the function E ¼ Eðr; p; qÞ, which
describes the departure from LT—unlike LT, the shells are
not concentric, nor is matter distributed evenly across a
given shell. The function Eðr; p; qÞ is defined in terms of
three arbitrary functions of r as

Eðr; p; qÞ ¼ ½p − PðrÞ�2 þ ½q −QðrÞ�2 þ ϵSðrÞ2
2SðrÞ : ð2Þ

(We will hereafter omit the ϵ factor, as we are focusing on
the ϵ ¼ þ1 case.) We will refer to the functions PðrÞ,QðrÞ,

and SðrÞ as the “dipole functions.” Together, they describe
a dipolar asymmetry that can change from shell to shell.
This dipole structure was first demonstrated by de Souza
[56]. The details of this asymmetry are subtle, and will be
discussed in detail in Sec. V. For now, we note that when
S0 ¼ P0 ¼ Q0 ¼ 0 (meaning E0 ¼ 0 as well), the metric
reduces to the LT metric.
Einstein’s equations applied to this metric reduce to two

useful equations. The first describes the evolution of R over
time:

_Rðt; rÞ2 ¼ 2MðrÞ
Rðt; rÞ − kðrÞ þ 1

3
ΛRðt; rÞ2; ð3Þ

where a dot indicates a partial derivative with respect to t.
The function MðrÞ arises as an integration constant, and it
gives the total effective gravitational mass inside the shell.
Λ is the usual cosmological constant. This equation has
exactly the same form as the evolution equation for LT
models, meaning that the asymmetries are arranged in such
a way that they do not affect the evolution of the shells.
(Apostolopoulos shows how this arises mathematically,
through a decoupling of the evolution equations from the
spatial divergence and curl equations [51].)
This equation also closely parallels the first Friedmann

equation. Each shell therefore evolves like a slice of a pres-
sureless Friedmann-Lemaître-Robertson-Walker (FLRW)
universe, albeit a different FLRW universe for each shell.
R evolves in a hyperbolic fashion where k < 0, parabolic
where k ¼ 0, and elliptic where k > 0. The solutions to
Eq. (3) are given in Appendix A.
The second relation from Einstein’s equations gives the

mass density:

4π
G
c4
ρðt;r;p;qÞ¼

M0ðrÞ−3MðrÞE0ðr;p;qÞ
Eðr;p;qÞ

Rðt;rÞ2
h
R0ðt;rÞ−Rðt;rÞE0ðr;p;qÞ

Eðr;p;qÞ
i : ð4Þ

From here on, we will use units in which the gravitational
constant G and speed of light c both equal unity. Note that
the function MðrÞ is different from the three-dimensional
integral of ρ (even though, as we will soon see, E0=E
averages to 0 across any shell), since Eq. (4) omits the
curvature factor from the metric (1). Nevertheless, it is
MðrÞ that guides the gravitational evolution (3). This is
why we callMðrÞ the “effective gravitational mass” instead
of the “total mass.”
Integrating Eq. (3) with respect to t gives us another free

function of r as an integration constant:

t − tBðrÞ ¼
Z

Rðt;rÞ

0

dR̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MðrÞ=R̃ − kðrÞ þ ΛR̃2=3

p : ð5Þ

The function tBðrÞ is called the “bang-time function,”
as it gives the time of the singularity R ¼ 0 for any given
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shell.2 Because the shells evolve independently from each
other, they are mathematically allowed to begin their
evolution at different times. That is, unlike the FLRW
model which has all of space emerge from the big bang
singularity simultaneously, Szekeres models (as well as LT
models) can have different shells emerge at different times
—outer shells can already be expanding while inner shells
remain in the singularity, as shown in Fig. 1.
We would appear to have six free functions of r: M, k,

and tB shared with LT models, plus the three dipole
functions. However, since r is merely a label, it carries
with it a gauge freedom; all of the above equations are
invariant under transformations of the form r̃ ¼ fðrÞ (as
long as f is monotonic). This means that we can impose a
definition of our choosing on one function of r, granting
some welcome convenience. For instance, in some situa-
tions, it is advantageous to define MðrÞ ¼ r3, or even
MðrÞ ¼ r. Alternatively, we could define Rðt0; rÞ ¼ r,
where t0 is the present time, which would make any one
of the three LT free functions determined by knowledge of
the other two by solving Eqs. (3) and (5). Any choice
restricts the range of possible models somewhat—a choice
of MðrÞ ¼ r3 cannot accommodate a model containing a
vacuum over some range of r, and defining Rðt0; rÞ ¼ r
rules out geometries in which R is not monotonic in r, such
as a closed universe or wormhole topology. But wide
ranges of models remain available given any choice, and
every model has gauge choices available. Regardless of our
gauge choice, we end up with five functional degrees of
freedom with which to define a particular model.

III. COORDINATE SYSTEMS

There are two different basic coordinate systems that are
useful for handling the dimensions along the spherical
surfaces: projective coordinates and spherical coordinates.

Each has advantages that make it useful in different
situations.

A. Projective coordinates

These are the most commonly used angular coordinates
for Szekeres models, and the ones we have used in the
previous section. Usually labeled p and q, these coordi-
nates map to the sphere by a simple Riemannian stereo-
graphic projection, as illustrated in Fig. 2. Lines emerge
from a projection point at the “top” the sphere, and intersect
both the sphere and a two-dimensional (2D) projection
plane at one point each. The plane is a distance SðrÞ
“below” the projection point (in arbitrary units), and it is
marked by a Cartesian grid with its origin displaced by
ð−P;−QÞ. Because these are functions of r, the coordinates
can map differently on different shells.
At the projection point, the coordinates diverge. There is

in general nothing physically special about this region, only
a coordinate singularity, but this can cause problems for
numerical calculations. And as we will see in Sec. V, the
location of this point can change from shell to shell; one
shell’s “top” does not necessarily point in the same
direction as another’s.
The convenience of these projective coordinates centers

on the simplicity of the metric, Eq. (1). It is diagonal in this
form, with reasonably simple components. It results in
simple geodesic equations and Riemann and Ricci tensors
(see Appendix B), convenient for calculations. However,
these coordinates are somewhat opaque to intuition. The
shape of the E function (2) on the sphere, for instance, is
not immediately obvious. We can tell that it has a minimum
at ðp; qÞ ¼ ðP;QÞ, and increases away from this point
(assuming S is positive) proportionally to the square of the
distance in the projective plane, but it is less obvious how
this maps to the sphere.
More important than E itself, though, is the combination

E0=E. In projective coordinates, it takes the form

FIG. 1. An illustration of a nonsimultaneous big bang, showing
only one spatial dimension. Lines are surfaces of constant r. The
thick red vertical line is the big bang singularity.

FIG. 2. A 2D diagram showing how the projective coordinates
map to the sphere. The dipole functions describe the negative
offset of the projection plane from the projection point. The units
are arbitrary, as long as the dipole functions and projective
coordinates use the same units.

2It is possible to have collapsing solutions, in which case the
right-hand side (RHS) takes a negative sign and the function is
better called the “crunch-time function,” but this is simply a time
reversal of the same situation.
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E0

E
¼ −2

P0ðp − PÞ þQ0ðq −QÞ − S0S
ðp − PÞ2 þ ðq −QÞ2 þ S2

−
S0

S
: ð6Þ

The solution to E0=E ¼ 0 traces a circle in the projective
plane, centered at

ðpc; qcÞ ¼
�
P − P0 S

S0
; Q −Q0 S

S0

�
; ð7Þ

with radius

L ¼ S
S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P02 þQ02 þ S02

p
: ð8Þ

In the special case S0 ¼ 0, the solution is a line instead of a
circle. In either case, the line or circle demarcates a
boundary between a region in which E0=E is positive
and one in which it is negative. See [59] for further
discussion.
A circle in a stereographic projection maps onto a circle

on the sphere, and vice versa. The E0=E ¼ 0 circle is
special, though—it is a great circle on the sphere. It will be
useful to note some properties of great circles and their
mappings to the projective plane. A great circle in the
projective plane is identified by a relation between the
circle’s center point and its radius:

L2
gc ¼ ðpc − PÞ2 þ ðqc −QÞ2 þ S2; ð9Þ

where ðpc; qcÞ is the center of the circle in the projective
plane. This does not, however, correspond to the center of
the circle on the sphere. On the sphere, there are two center
points. The great circle can be seen as the intersection of the
sphere with a plane through the sphere’s center, and a line
orthogonal to the plane through the sphere’s center inter-
sects the sphere at these two points, with projective
coordinates

ðpo − P; qo −QÞ

¼ −S2 � SLgc

ðpc − PÞ2 þ ðqc −QÞ2 ðpc − P; qc −QÞ: ð10Þ

We will soon see that for the E0=E ¼ 0 great circle, these
orthogonal points are the locations of the extrema of E0=E.
The relative positions of these points in the projective plane
are illustrated in Fig. 3.
It will also be useful to note that for any ðp1; q1Þ, the

antipodal point has coordinates

ðp2; q2Þ ¼ ðP;QÞ − S2ðp1 − P; q1 −QÞ
ðp1 − PÞ2 þ ðq1 −QÞ2 : ð11Þ

B. Spherical coordinates

We can bring the coordinates to a more familiar form
with a simple transformation3:

p − P ¼ S cot

�
θ

2

�
cosϕ; ð12aÞ

(a)

(b)

FIG. 3. (a): How a great circle on the sphere appears in the
projective plane. The large red dot is the center of the projective
circle, whereas the two smaller blue dots are the two centers of
the great circle on the sphere. (b): The same great circle on the
sphere, with the same points marked. The green dot is the
projection point.

3A similar transformation using tan instead of cot is possible as
well. This is equivalent, only with the projection point placed at
θ ¼ π.
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q −Q ¼ S cot

�
θ

2

�
sinϕ: ð12bÞ

The coordinates θ and ϕ describe the same geometry, but in terms of latitude and longitude instead of stereographic
projection, with the pole θ ¼ 0 corresponding to the projection point, where p and q diverge. In these spherical polar
coordinates, the metric is significantly more complicated and no longer diagonal4:

ds2 ¼ −dt2 þ
�ðR0 − RE0

EÞ2
1 − k

þ R2ð1 − cos θÞ2
�
P02 þQ02 þ S02

S2
−

2

1 − cos θ
S0

S
E0

E

��
dr2

þ 2
R2 sin θ
1þ cos θ

�
E0

E
−
S0

S

�
drdθ þ 2

R2sin3θ
1þ cos θ

�
Q0

S
cosϕ −

P0

S
sinϕ

�
drdϕþ R2ðdθ2 þ sin2θdϕ2Þ: ð13Þ

Though this appears far more complicated, in some ways
these coordinates provide greater clarity. For instance, note
that if we set dr ¼ 0, the spatial parts reduce to the metric
of a 2-sphere, making it easier to see that surfaces of
constant r are indeed spherical (with radius R) regardless of
anisotropies induced by E. The E function itself takes a
simpler form in spherical coordinates:

Eðr; θ;ϕÞ ¼ SðrÞ
1 − cos θ

: ð14Þ

While simpler, this form does not offer much immediate
insight. Notice, though, that the metric in spherical coor-
dinates only contains E in the form of E0=E, as does the
density equation (4). This important expression takes an
evocative form in spherical coordinates:

E0

E
¼ −

S0 cos θ þ ðP0 cosϕþQ0 sinϕÞ sin θ
S

: ð15Þ

This makes it clear that P0=S defines an anisotropy in the
direction of ðθ;ϕÞ ¼ ðπ=2; 0Þ, Q0=S in the direction
ðπ=2; π=2Þ, and S0=S in the direction θ ¼ 0—what we
would call the “x,” “y,” and “z” directions in rectangular
coordinates. While these rectangular coordinates are valid
only on a given shell, not globally across the model, it will
nevertheless sometimes be useful to refer to a “local
rectangular frame” (or LRF).5 That is, in the LRF,

x≡ sin θ cosϕ; y≡ sin θ sinϕ; z≡ cos θ: ð16Þ

We can also see from Eq. (15) that E0=E has a dipolar
shape over the sphere (see [63] for a detailed derivation),
ranging from a maximum value of

�
E0

E

�
max

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP0Þ2 þ ðQ02Þ þ ðS0Þ2

p
S

ð17Þ

to the negative of this same value at the antipodal point. The
directions of these angular extrema are given by

θmax ¼ cos−1
�
−

S0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P02 þQ02 þ S02

p �
; ð18aÞ

ϕmax ¼ −signQ0cos−1
�
−

P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P02 þQ02p �

ð18bÞ

(taking S to be positive for all r). This is simply the set
of spherical coordinates for the point ðx; y; zÞmax ¼
ðP0; Q0; S0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P02 þQ02 þ S02

p
in the LRF.

The corresponding projective coordinates are

ðp; qÞmax ¼ ðP;QÞ − ðP0; Q0Þ
S0=Sþ ðE0=EÞmax

; ð19Þ

and pmin and qmin are related in the same way to
ðE0=EÞmin ¼ −ðE0=EÞmax. It is straightforward to see that
these correspond to the great circle orthogonal points defined
in Eq. (10) for the E0=E ¼ 0 great circle, Eqs. (7)–(8).
We see that the geometry of the anisotropy on a single

2-sphere shell is quite simple. It is fully described by a
dipole, symmetric about the two extrema and vanishing on
the great circle midway between them. The magnitude and
orientation of this dipole can change from one shell to the
next, though, so the model as a whole is generally not
symmetric.

IV. PHYSICAL RESTRICTIONS

While the Szekeres model has five functional degrees of
freedom, the domains from which these functions can be
chosen are not unlimited. They must satisfy certain con-
ditions to avoid singularities and other pathological behav-
ior. A few such restrictions are straightforward:

4The partial r derivatives here are still taken with p and q held
constant, not θ and ϕ.

5We will refer to the LRF throughout this paper.
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(i) All of the free functions should be differentiable.
(ii) In order to maintain the Lorentzian signature of the

metric, we must have k ≤ 1. Equality can only occur
where R0 − RE0=E ¼ 0. Ensuring this holds for all t
and all (p; q) requires t0B ¼ P0 ¼ Q0 ¼ S0 ¼ 0 at this
r. Furthermore, requiring finite density also means
M0 ¼ 0, and continuity of k0 implies k0 ¼ 0. This set
is a regular maximum or minimum (i.e., a belly or
neck), which can occur in closed models or worm-
hole topologies. They are further discussed in [59].

(iii) Since shells have positive size, R ≥ 0.
(iv) S ≠ 0, or else E diverges and the projective mapping

fails. Since S must be continuous in consequence of
being differentiable, this means that S cannot change
sign. By convention, we choose S > 0.

(v) There may be 0, 1, or 2 origins, meaning points at
which R vanishes besides the bang or crunch. At the
origin(s), the density and curvature must be finite,
and the evolution must smoothly match the sur-
roundings. Hellaby and Krasiński [59] have shown
that regular origins require:

M ∼ R3; k ∼ R2; ðS; P;QÞ ∼ Rn; ð20Þ

where n ≥ 0.
A few others require a little more explanation.

A. Non-negative mass density

Aside from a recent controversial proposal [64], cosmol-
ogy typically does not involve negative masses, and it is
unclear how negative mass would behave gravitationally if
it did exist. It is therefore common to require that the mass
density is non-negative everywhere. In LT models, this
simply means that M0 and R0 must have the same sign. In
Szekeres models, this condition is still necessary, but no
longer sufficient. The full condition is

M0 − 3M
E0

E
≥ 0; ð21Þ

or ≤ 0 if R0 − RE0=E ≤ 0 as well.
This can be translated into a direct restriction on the

derivatives of the dipole functions. For Eq. (21) to hold
across an entire shell, it suffices to satisfy the equation at
the angular maximum of E0=E, which is given in Eq. (17).
We therefore haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP0Þ2 þ ðQ02Þ þ ðS0Þ2
p

S
≤
���� M0

3M

����: ð22Þ

B. Shell crossing

In LT models, shell crossing may occur when R0 ¼ 0 at
any r and t. Unless this is a regular extremum, multiple
shells are occupying the same space, causing the density to

become infinite (unless M0 ¼ 0 there). This happens when
one shell expands (or contracts) through another shell (and
all shells in between). This would result in a coordinate
degeneracy, with particles with different velocities at the
same spatial location, violating the model’s foundational
assumption of comoving coordinates (as discussed in [17]).
In order to maintain the model’s validity, shell crossings are
to be avoided.
In Szekeres models, shell crossing can occur even if R0

remains positive, if R0 − RE0=E ¼ 0 at any point in the full
four-dimensional spacetime, besides at a regular extremum.
Unlike in LT models, the singularity is not in general a full
sphere, but rather begins as a point where the shells meet on
one side. The surface of intersection grows from this point.
On any given shell r, the shell crossing (if any) traces a
circle parallel to the E0 ¼ 0 great circle.
We typically want to construct our models in such a way

that no shell crossings occur, at least in the region of
interest. The basic requirement is that there are no solutions
to R0 − RE0=E ¼ 0, which meansffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP0Þ2 þ ðQ02Þ þ ðS0Þ2
p

S
≤
R0

R
: ð23Þ

For a more thorough discussion, including conditions on
M, k, and tB which ensure Eq. (23) holds globally, see [59].

V. EFFECTS OF THE DIPOLE FUNCTIONS

We have seen that the three dipole functions are solely
responsible for the anisotropy in the model, each defining
anisotropies in orthogonal directions. Although we have
laid out their effects on the metric and on the density at a
surface level, we have been vague so far about what is
actually going on—what sort of physical anisotropies the
dipole functions create. In this section we will build a more
complete intuitive understanding of their physical effects,
to the point where we can draw physically accurate pictures
of the model.
The primary effects of the dipole functions are threefold:

they shift the shells relative to each other, rotate their axes,
and redistribute matter. We briefly explained these effects
previously in [44], but we shall examine them in greater
depth here.

A. Shell shifting

The first effect is that the dipole functions displace the
shells relative to each other—that is, the shells are non-
concentric, closer together on one side than the other. Due
to the curved geometry, there is some ambiguity in how we
measure the shifting distance, but the most straightforward
measure is based on examining the rr component of the
metric in projective coordinates, Eq. (1). Because the
metric is diagonal in these coordinates, the minimum
proper distance along a line connecting an arbitrary point
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to a nearly adjacent shell can directly be seen in grr.
Without the dipole functions, this distance is simply
R0dr=

ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p
. The dipole functions add only the term

−RE0=E=
ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p
. From the shape of E0=E discussed in

Sec. III, we can see that this gives a dipolar modulation
about ðθmax;ϕmaxÞ, defined in Eq. (18). This corresponds to
a relative displacement of the shells. From this viewpoint,
the shell at rþ δr is shifted relative to the shell at r in the
direction ðθ;ϕÞ ¼ ðπ=2; 0Þ by a distance

δx ¼
RP0=Sffiffiffiffiffiffiffiffiffiffiffi
1 − k

p δr; ð24Þ

in the direction ðπ=2; π=2Þ by

δy ¼
RQ0=Sffiffiffiffiffiffiffiffiffiffiffi
1 − k

p δr; ð25Þ

and in the direction (0,0) by

δz ¼
RS0=Sffiffiffiffiffiffiffiffiffiffiffi
1 − k

p δr; ð26Þ

where the “x,” “y,” and “z” subscripts refer to the axes of
the shell’s LRF. The shells are farther apart in the direction
of the shifting, and closer together in the opposite direction.
This is illustrated in Fig. 4.
When looking at how the shifting affects the transverse

separation of points, the displacement appears to have a
different magnitude, but the same direction. Specifically, it
follows Eqs. (24)–(26) with the 1=

ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p
factor omitted.

We show how this contributes to the metric in spherical
coordinates in Appendix C.
The shifting effect can be considered to be responsible

for the E0=E term in the denominator of the mass density
function, Eq. (4). Where the shells are compressed, the
density increases proportionally, and likewise it decreases
where the shells are stretched apart. The term in the
numerator is a separate effect, indicating that the matter
distribution of each shell is not held fixed as they are shifted
around. This is further discussed in Sec. V C.
The shell shifting effect makes it necessary to be

especially careful of shell crossing singularities. We already
saw in Sec. IV B that Szekeres models run into shell
crossings more easily than LT models. Now, we can more
clearly picture why this is the case. Because the shells are
nonconcentric, smaller shells can intersect larger ones if we
are not careful. The surface of intersection across all shells
can form a nontrivial shape, an example of which is
illustrated in Fig. 5.

B. Shell rotation

The second effect is more subtle. It has been noted by
Hellaby [62] that the orientations of the coordinates appear

to change from shell to shell, as evidenced by the rotation of
the orthonormal tetrad along spatial paths. This property
seems to have been overlooked by many authors. We have
determined exactly how the shells’ coordinates are rotated

FIG. 4. A simple illustration of how the dipole functions
displace shells relative to each other. The geometric centers of
the two shells are marked by “x” s. If the shifting between the two
shells is all in the same direction, i.e., axially symmetric, the total
shifting amount is Δ ¼ R ðRðE0=EÞmaxÞ=

ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p
dr between the

two shells.

FIG. 5. An example of shell crossing in a Szekeres model. The
shell crossing surface is outlined in red. Inside this surface, the
coordinates are degenerate.
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in terms of the dipole functions, which we briefly noted in
[44], and expand upon here.
The dipole functions change the shells’ spherical coor-

dinate frames as follows: the shell rþ δr is rotated relative
to shell r by δr P0=S about the point ðπ=2;−π=2Þ (the −y
axis in the shell’s LRF) and by δrQ0=S about the point
ðπ=2; 0Þ (the x axis). A derivation showing that this
rotation, combined with the shell shifting, results in the
given metric in spherical coordinates, Eq. (13), can be
found in Appendix C.
It may seem as though this is merely a coordinate effect,

only present when using spherical coordinates. However,
even in the projective coordinates, this effect is built into
the behavior of the dipole functions. The directions along
which the dipole functions act (the axes of the LRF) are
rotated by this effect. For this reason, a model with only S
varying with r (P and Q constant) is axially symmetric,
whereas a model with only P or Q varying is not. For
instance, if we set S0 ¼ Q0 ¼ 0, and P0 ≠ 0, anisotropies
will all be oriented along the “x” direction in each shell’s
LRF, but the shell rotation will cause the “x” direction to
change from shell to shell, resulting in the structures being
smeared over a range of angles. Figure 6 illustrates such a
case, showing how both the shifting and rotation affect the
physical layout of the model. Note that with shifting alone,
the geodesic line appears very curved, but it is nearly
straight when the rotation is taken into account.6

The reason this rotation effect is necessary can be
explained in terms of the relation between the projective
and spherical coordinates. Because the metric in projective
coordinates, Eq. (1), is diagonal, we know that the shortest
line connecting a point on a shell to a nearby shell is one
with constant p and q. This is not in general true for the
spherical coordinates, with one important exception. The
point θ ¼ 0 serves as the projection point, and therefore
always corresponds to the point where p and q diverge.
Indeed, since the off-diagonal terms grθ and grϕ both
include a sin θ factor, the spherical metric is diagonal at
this point. At θ ¼ 0, then, the line of constant θ and ϕ must
also correspond to the shortest connecting line between two
shells. Due to the shell shifting, this forces one to be rotated
relative to the other, as illustrated in Fig. 7.
Note that the magnitudes of shifting, Eqs. (24)–(26) have

a factor of Rðt; rÞ, whereas the rotation magnitude does not.
Unlike the shell shifting effect, the shell rotation is not
time-dependent. The relative orientation of shells is main-
tained as they evolve. This missing factor also means that
the shell rotation generally decreases in magnitude with
increasing r, as P0=S and Q0=S are limited by the shell
crossing condition, Eq. (23).

C. Matter distribution

The third effect is not on the metric itself, but rather on
the matter distribution. We saw how the shell shifting effect
is reflected in the denominator of the density function,
Eq. (4), but this cannot explain the term in the numerator.
This term represents a dipolar redistribution of matter on
each shell, along the same direction as the shell shifting.

FIG. 6. Three ways of plotting a cross section of a voidþ wall Szekeres model, to illustrate the effects of the dipole functions on the
coordinates. The only active dipole function is PðrÞ—the other two are constant. Detailed model definitions are given in Appendix D.
The blue line shows the path of an arbitrary null geodesic. Black circles mark shells of constant r in steps of 80 Mpc, and yellow dots
mark the centers of these shells. The green dashed line marks θ ¼ 0 (the LRF’sþz axis at each shell), and the red dotted line marks θmax,
where the density has its angular maximum. (a): plotted in “naïve” coordinates, as though it was an LT model. Notice that the geodesic is
not a straight line. (b): incorporating the shell shifting. The true width of the dense wall structure is more clearly seen, narrower than it
seemed before. The geodesic still does not appear straight. (c): incorporating shell rotation. The wall is distorted, and the geodesic is now
very nearly straight. This is the most physically accurate method of plotting in a two-dimensional image. The same method was used in
the figures in the rest of this paper and [44], and is explained in more detail in Sec. VII B.

6Although the geodesic’s path covers a range of times, and the
density plot shows a constant-time slice, the size of the structure
is small enough that it does not evolve appreciably in the time it
takes the geodesic to traverse it.
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This redistribution is necessary to preserve the spherical
shape and FLRW-like expansion of the shells. Even though
the density in a shell’s interior is not symmetric, it must
always be arranged in a particular way such that the
total gravitational effect on the shell allows it to expand
uniformly, maintaining its spherical shape. This peculiar
arrangement is what makes it possible for the model to be
mathematically tractable.
The total impact on the density across a shell depends on

how that shell’s density in the corresponding LT model,
ρLT, compares to the effective average density in its interior,
ρ̄int. Specifically, if for a given shell

ρLT ≡ M0

4πR2R0 >
3M
4πR3

≡ ρ̄int; ð27Þ

then the overall density will be greatest on the side where
the shells are compressed, and least on the opposite side. If,
instead, the inequality is reversed, the density will be less
where the shells are compressed and greater where they are
stretched apart. The former case commonly occurs when
modeling a void with secondary structures in and around it.
Because a void’s density profile increases from the center,
every shell has a greater density than the interior. Therefore,
Szekeres shifting results in a sharp, thin overdense wall on
one side (narrow because of the shell compression), with a
broader, shallower underdensity on the opposite side. (This
is underdense relative to the rest of the shell, not relative to

the interior.) Conversely, models with a central overdensity
will see a perhaps less realistic arrangement of deep, narrow
voids opposite thicker density bulges (again, relative to the
shell, not the interior).
Suppose we hold the LT model functions unchanged in

form while increasing the magnitudes of the dipole func-
tions. As the shell shifting brings the shells close together
on one side, the density contrast on the compressed side
approaches positive or negative infinity, depending on
whether the shell is overdense or underdense compared
to the interior (or it stays constant, if ρLT ¼ ρ̄int).
Restricting the functions to being below the shell crossing
limit, Eq. (23), imposes a limit on the density on the
stretched side, equal to halfway between ρLT and ρ̄int

7:

ρmin =max ¼
M0

8πR2R0 þ
3M
8πR3

: ð28Þ

Whether this is an upper limit or a lower limit depends on
how the shell’s density compares to the interior. In either
case, though, this means that a shell that is (over/under)
dense anywhere is (over/under)dense everywhere, relative
to the interior.
If the two quantities ρLT and ρ̄int are equal, then the

density on the shell will be uniform regardless of the dipole
functions. This means that if we begin with a homogeneous
background LT model (equivalent to FLRW), we cannot
create inhomogeneities through the dipole functions alone.
This presents a challenge if we wish to describe a complex
arrangement of structures while maintaining homogeneity
on large scales. To produce an overdensity on a section of a
shell, the density across the entire shell must be greater than
the average interior density. This can still be achieved
without a single dominant central void (or overdensity), for
instance by using an oscillating radial density profile, as in
Sussman’s prescription of periodic local homogeneity
(PLH) [65].
In any case, the angular extrema of the density (and other

scalar quantities) always coincide with the angular extrema
of E0=E—the locations of maximum stretching and com-
pression. Extending our view to the full three-dimensional
(3D) space, the radial positions of the extrema are more
difficult to find; ρ0 ¼ 0 is generally a difficult equation to
solve, and some of the solutions are saddle points rather
than maxima or minima (see [65] for further discussion).
Furthermore, as this equation is time-dependent, the
extrema are not generally comoving. Different scalars
can have extrema at different positions, but all scalars
have an extremum at the origin [65].

FIG. 7. A 2-dimensional illustration explaining how the rota-
tion effect arises. Blue lines connect points of constant θ. Double
red lines connect points of constant p. Ticks on the outer shell
mark where θ ¼ 0 and θ ¼ π would be without the rotation effect,
for comparison, and the arrows show the rotation.

7In the case of an underdense shell, an even stronger limit is in
place if we restrict the density to be everywhere non-negative,
from Eq. (22): ρmax ¼ 2ρLT=ð1þ ρLT=ρ̄intÞ.
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D. Secondary effect: Expansion rates and shear

In FLRW models, the expansion rate is characterized by
a single Hubble value, the same in all locations and all
directions.

θFLRW ¼ 3HFLRW ¼ 3
_a
a

ð29Þ

In LT models, the expansion rate is modified not only by
making it a function of the radial coordinate, but also by
splitting it into two different rates: the transverse expansion
H⊥ (expansion in the two directions along the shell’s
surface) and the longitudinal expansion Hk (expansion
between shells, along the line of sight of an observer at the
center).

H⊥;LT ¼
_R
R
; ð30Þ

Hk;LT ¼
_R0

R0 : ð31Þ

In Szekeres models, the transverse expansion rate is
unchanged, because each shell evolves the same as in
the corresponding LT model. The longitudinal (or radial)
expansion, however, is modified due to the shell shifting.

Hk ¼
_R0 − _R E0

E

R0 − R E0
E

: ð32Þ

These two expansion rates are plotted in Fig. 8 for an
example void-and-wall model.
The overall expansion is given by the trace of the

gradient of the matter velocity field, θ ¼ uα;α (where a
semicolon denotes a covariant derivative with respect to the
following coordinate). In comoving coordinates (as we are

using), the matter flow uα simply equals (1,0,0,0). In terms
of Hk and H⊥, the scalar expansion equals

θ ¼ 2H⊥ þHk: ð33Þ

This shows the overall rate of change of the size of a region.
To see how the shape of a region changes, we look at the
symmetric traceless component of the velocity field gra-
dient, the shear, defined as σαβ ¼ hαγuðγ;βÞ − 1

3
θhαβ, where

hαβ ¼ gαβ þ uαuβ. In Szekeres models,

σαβ ¼
1

3
ðHk −H⊥Þdiagð0; 2;−1;−1Þ: ð34Þ

The shear tells how space is stretched differently in
different directions. The antisymmetric part of the velocity
field gradient, the rotation, vanishes in Szekeres models:

ωα
β ¼ hαγu½γ;β� ¼ 0: ð35Þ

This is what is meant by the models being “irrotational.”
Because of this property, the Szekeres metric is incapable
of modeling virialized structures. This is one of its most
important limitations, but it allows the mathematics to
remain tractable.

VI. SYMMETRY CONDITIONS

Most choices for the dipole functions result in models
with no global symmetry at all. Setting all three to
constants, however, reduces the metric to the LT metric,
which possesses full spherical symmetry. There are also
special cases with intermediate levels of symmetry.

A. Axial symmetry

If the Szekeres dipole lies along the same direction at
all r, the overall model will be axially symmetric. Such a
model will have a Killing vector field reflecting its single
continuous rotational symmetry.
In some cases, it is advantageous to construct a model to

be axially symmetric. While this reduces the freedom of the
model, it also reduces the number of variables that must be
considered, both in the model’s definition and in simu-
lations of observations. One can generate a complete
picture of an axial observer’s sky by only varying one
angle in the geodesics. Furthermore, radial geodesics along
an axis of symmetry have the special property of always
staying on the axis, greatly simplifying the geodesic
equation calculations, as we will show in Sec. VII C. In
fact, this is the only case in which a purely radial geodesic
is possible in a Szekeres model [66].8

FIG. 8. Expansion rates and density profile in a one-dimen-
sional slice through the center of a typical void-and-wall model,
similar to that shown in Fig. 6, except axially symmetric. Detailed
model definitions are given in Appendix D.

8Further, Krasinski and Bolejko show that such radial geo-
desics are the only ones in Szekeres models that are “repeatable
light paths”, meaning two geodesics at different times can follow
the same spatial path, resulting in no visible drift [67].
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Because the P and Q functions rotate the frames of the
shells relative to each other, a model with only P0 or onlyQ0
nonvanishing is not axially symmetric. A model with only
S0 nonvanishing, however, is symmetric, with the axis of
symmetry passing through θ ¼ 0 and θ ¼ π on all shells.
This is the simplest kind of axially symmetric model,
having no shell rotation. Unfortunately, the p and q
coordinates diverge on half of the symmetry axis, which
can be inconvenient for calculations.
Models symmetric about other axes are possible, though

not as simple. As shells are rotated relative to each other,
the relative shifting direction must change to compensate,
in order to maintain a straight line. Along a general
symmetry axis, the spherical coordinates do not hold
constant. The projective coordinates, though, do hold
constant on the symmetry axis. This can be inferred from
the diagonality of the metric in projective coordinates,
Eq. (1). From any given point, the shortest distance to a
nearby shell is along the path satisfying dp ¼ dq ¼ 0. If
this point is on the symmetry axis, we can deduce from
symmetry arguments that this minimal distance is along the
axis; if it were in any other direction, the symmetry would
be broken. We will use this property of the projective
coordinates to derive conditions on the dipole functions
which result in axial symmetry, similar to the presentation
in [68]. Georg and Hellaby [57] derive the same equations
via the Killing equations.
The shifting direction on any shell corresponds to one of

the two angular extrema of E0=E, which were given in
Eq. (III B), but can also be found by solving

EE;pr ¼ E;pE;r; EE;qr ¼ E;qE;r: ð36Þ

Commas in subscripts denote partial derivatives with
respect to the following coordinate(s). If these equations
hold for the same (p; q), which we will call ðp0; q0Þ, across
all r, the model is axially symmetric. (Such a model will
also satisfy the equations for a second (p; q), which we will
call ðp1; q1Þ, for the half of the symmetry axis on the
opposite side of the origin.)
Expanded in terms of the three dipole functions, these

equations become

2ðp0 − PÞSS0 − 2ðq0 −QÞðp0 − PÞQ0

¼ ½ðp0 − PÞ2 − ðq0 −QÞ2 − S2�P0; ð37aÞ

2ðq0 −QÞSS0 − 2ðq0 −QÞðp0 − PÞP0

¼ ½ðq0 −QÞ2 − ðp0 − PÞ2 − S2�Q0: ð37bÞ

As mentioned previously, these are immediately solved
by taking P0 ¼ Q0 ¼ 0, with P ¼ p0 andQ ¼ q0. IfQ0 ¼ 0
but P0 ≠ 0, the axial symmetry conditions reduce to

2ðp0 − PÞSS0 ¼ ½ðp0 − PÞ2 − ðq0 −QÞ2 − S2�P0; ð38aÞ

ðq0 −QÞSS0 − ðq0 −QÞðp0 − PÞP0 ¼ 0: ð38bÞ

Oneway to satisfy Eq. (38b) is to take SS0 ¼ ðp0 − PÞP0.
But if we then plug this into Eq. (38a), we get either P0 ¼ 0
(and therefore S0 ¼ 0) or

ðp0 − PÞ2 þ ðq0 −QÞ2 þ S2 ¼ 0: ð39Þ

The former case is simply an LT model, whereas the latter
can only be satisfied for real-valued functions if S ¼ 0. This
would result in rampant division-by-zero singularities in
the metric and density function, so it is not a valid solution.
We therefore go back to Eq. (38b) and instead only consider
the solution Q ¼ q0. We can then easily solve Eq. (38a) by
relating the dipole functions by

S2 ¼ C2ðp0 − PÞ − ðp0 − PÞ2; ð40Þ

where C2 is an arbitrary constant. A similar solution is
possible if P0 ¼ 0 butQ0 ≠ 0, by simply replacing p0 and P
with q0 and Q.
If both P0 and Q0 ≠ 0, the axial symmetry conditions are

satisfied by [68]

q0 −Q ¼ C0ðp0 − PÞ; ð41aÞ

S2 ¼ C1ðp0 − PÞ − ðC2
0 þ 1Þðp0 − PÞ2: ð41bÞ

We can see that the case in Eq. (40) is simply the special
case when C0 ¼ 0.
The symmetry axis passes through the origin, and

ðp0; q0Þ covers only one side of it. The other side is
antipodal to the first on each shell, so its coordinates can be
found by applying Eq. (11). In the case P0 ¼ Q0 ¼ 0, we
mentioned that the projective coordinates diverge on the
other side, but in the other cases, it has the coordinates

p1 ¼ p0 −
C1

C2
0 þ 1

; q1 ¼ q0 −
C0C1

C2
0 þ 1

: ð42Þ

For the special case of P0 ¼ 0, we need only set C0 ¼ 0 and
then swap p and P with q and Q.
The angular coordinates of the symmetry axis are

determined by the constants C0 and C1 according to

C0 ¼ cotϕax; ð43aÞ

C1 ¼
2S

sin θax cosϕax
: ð43bÞ

We see that ϕax holds constant with r, while θax must vary
as SðrÞ varies. We also note that Eq. (43a) has two
solutions, corresponding to the two sides of the symmetry
axis, which also means Eq. (43b) has two corresponding
solutions for θax.

PHYSICAL GEOMETRY OF THE QUASISPHERICAL SZEKERES … PHYS. REV. D 101, 023511 (2020)

023511-11



The angles θax cannot be constant because the shells
rotate as r increases, depending on the direction and
magnitude of the dipolar asymmetry. Specifically,

θ0ax ¼
�
E0

E

�
ax
sin θax: ð44Þ

This means that as r increases, any anisotropy along the
axis rotates the shells’ frames in a way that drives θ ¼ 0
toward the symmetry axis on the side where the shells are
compressed, and θ ¼ π toward the axis on the side where
they are stretched apart, as shown in Fig. 9. With this
illustration, we can see that even though the value of θax
changes with r, it still traces a straight line across the
model; the change in its value is due to the movement of the
θ ¼ 0 reference point.
Despite appearing curved in spherical coordinates,

though, the symmetry axis is indeed a straight line. These
models can be indirectly obtained by starting with a model
with only S0 nonvanishing and performing a Haantjes
transformation, as we will describe in Sec. VII D 6.

B. Bilateral symmetry

A less restrictive form of symmetry is bilateral sym-
metry, in which case the directions of shell shifting and
rotation all lie on the symmetry plane. The simplest way to
achieve this is by setting P0 or Q0 to 0. In this case, the
symmetry plane is ϕ ¼ �π=2 or ϕ ¼ f0; πg, respectively.

Slightly more generally, we can get bilateral symmetry
by satisfying Eq. (41a), without Eq. (41b). This gives a
symmetry plane passing through the poles and the point
ðp0; q0Þ, directed at angle ϕ ¼ arctanC0.
We may wish to place the symmetry plane off of the pole

θ ¼ 0, though. This can be achieved by starting with a
model satisfying Eq. (41a) and applying a Haantjes trans-
formation, which is a rotation transformation we will detail
in Sec. VII D 6. Remarkably, the end result matches the
form of the equation for a great circle, Eq. (9). That is, for
any model, if there is a circle in the (p; q) plane which, for
all r, corresponds to a great circle on the sphere, then
that model exhibits bilateral symmetry. Moreover, this
circle marks the intersection of the symmetry plane with
each shell.
But how does such a simple constraint keep the Szekeres

dipole pointing in the same plane, when the shells are being
rotated in different directions? To develop an intuitive
understanding of how this works, we first recall that the
dipole functions determine the (negative) displacement of
the projection plane and its origin relative to the projection
point, as shown in Fig. 2. Equation (9), then, identifies Lgc
as the distance between point ðpc; qcÞ and the projection
point. If we hold pc, qc, and Lgc constant with r, we can
imagine the two points to be connected by a rigid rod. We
are allowed to move the projection plane around as r
increases, representing the dipole functions changing over
r, but this motion is constrained to an imaginary sphere.
This setup is illustrated in Fig. 10.
When we move the projection plane while moving

outward in r, we create a dipole anisotropy through the
derivatives of the dipole functions. Because the motion of
the plane is constrained, the direction of the dipole is
constrained to the great circle parallel to the plane tangent
to this imaginary sphere at the point ðpc; qcÞ. This point is
now at a different location on the sphere, so it would seem
that the tangent plane has been rotated, but remember the
rotation effect of the dipole functions—the shell rotates in a
way that exactly counteracts the rotation of the tangent
plane. With respect to a single shell, the tangent plane does
not rotate, so all of the extrema lie in the same plane for all
r, as long as Eq. (9) holds. (The shell shifting effect is not a
concern, because the shifts are all within the plane as well.)
This kind of symmetry does not confer most of the

advantages of axial symmetry. It does not allow one to
eliminate an entire coordinate from investigation; at best, it
divides the number of directions that need to be considered
by 2. It does allow for more complex arrangements of
multiple structures than axially symmetric models, but for
more than two structures it is too restrictive to be realistic.
Perhaps the greatest advantage of bilateral symmetry is in
graphical representation. Because paper and screens are
two-dimensional, we can typically only clearly visualize a
two-dimensional slice of the full model. If this slice is the
symmetry plane, all of the structures will be neatly aligned

FIG. 9. An illustration of how θax changes with r due to the
shell rotation effect. The solid green line marks θ ¼ 0 on the top
half and θ ¼ π on the bottom half. The dashed red line shows
where these points would be without the shell rotation effect, for
comparison. The dotted blue line marks θax.
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within the page, making for a clear and faithful represen-
tation of the model. All of the figures in this paper showing
examples of Szekeres models feature bilateral symmetry.

VII. METHODS AND TOOLS

A. Tracking shell shifting and rotation

There are situations in which we need to be able to
understand the geometry of a model, including its shell
shifting and rotation, such as in generating spatially
accurate images, as in Figs. 6 and 12. In axially symmetric
models with P and Q constant, this is a straightforward
matter of numerically calculating the shifts by integrating
Eq. (26). In general, though, care must be taken in
calculating the orientations of each shell, as even the
rotation axes change as the shells rotate. An example of
a procedure for calculating the total displacements and
rotations of each shell follows.
Begin at r ¼ 0, with a 3 × 3 matrix A, set initially to the

identity matrix. AðrÞ represents the orientation of the LRF
of shell r relative to that of the innermost shells. That is,
using the innermost shells’ LRF as a basis, rows 1–3 of
AðrÞ give the components of the x, y, and z unit vectors
respectively of the LRF at shell r. Also create a three-
component vector Δ representing the total shifts, and
initialize it to zero. Then, increment outward in small steps
of δr, up to a maximum rmax, at each step doing the
following:
(1) Calculate a new axis matrix

Aðrþ δrÞ ¼ Ry

�
P0

S
δr

�
Rx

�
−
Q0

S
δr

�
AðrÞ; ð45Þ

where Rx and Ry are rotation matrices about the
LRF’s x and y axes,9 defined as

RxðψÞ ¼

0B@ 1 0 0

0 cosψ − sinψ

0 sinψ cosψ

1CA; ð46Þ

RyðψÞ ¼

0B@ cosψ 0 sinψ

0 1 0

− sinψ 0 cosψ

1CA: ð47Þ

(2) Calculate new shifts according to10

Δðt;rþδrÞ¼Δðt;rÞþ Rðt;rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−kðrÞp ATðrÞ

0B@P0=S

Q0=S

S0=S

1CAðrÞ:

ð48Þ

(3) Append the new shift value and axis matrix to an
array, to keep track of both at each step in r.

When finished, the array will hold all of the information
about the displacement and orientation of shells up to rmax.
Note that the shifts calculated by this procedure are only
valid at a single time slice. To plot at a different time, the

(a) (b) (c)

FIG. 10. A side view of the situation described in the text, regarding the symmetry plane’s compensating response to shell rotation. (a):
The projection plane (solid black line with arrows) for a shell r1 (solid circle) is positioned so that the point pc (red dot) is a distance Lgc
from the projection point (green dot). The red dot can move as r increases, but only in the directions tangent to the dashed circle. The
total dipole direction is parallel to this motion, so it must lie on the great circle parallel to the dashed tangent line, shown edge-on as a
solid blue line. The blue ticks on the projection plane mark where the edges of the great circle map to. (b): At a later shell r2, the point pc
has moved along the Lgc constraint sphere some distance. In the frame of shell r2, it appears that the dipole lies on a different plane than
before (i.e., the blue line is at a different angle). (c): The shell rotation effect rotates the whole picture, as indicated by the curved arrows.
When we account for this, we see that the dipole plane does indeed coincide with that of shell r1.

9The rotations approximately commute because their argu-
ments are small.

10As we will explain in the next subsection, it is sometimes
appropriate to omit the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðrÞp

factor here, depending on how
one chooses to map the curved space onto a flat image.
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shifts must be recalculated. The axis matrixAðrÞ, however,
is invariant with time.

B. Plotting

Once we have the information about the shifts and
rotations of each shell, we must still choose a mapping
from the curved 3D space of the model to an image on flat
2D paper, if we wish to generate a plot like those in
this paper.
First of all, reducing the model to two dimensions is far

simpler if the model has bilateral symmetry, as mentioned
previously. The symmetry plane contains all of the extrema
of the density function, and its intersection with any shell is
a great circle, so the size of the circle drawn on the page
corresponds neatly to the shell’s size.
Next, we must eliminate the curvature. It is of course

impossible to do so without introducing some kind of
distortion. The simplest method is to pretend that kðrÞ ¼ 0.
This must be taken into account when building the shifts in
Eq. (48). We can then use the array of shifts and rotations
from the previous subsection to map the Szekeres coor-
dinates to Cartesian coordinates as0B@X

Y

Z

1CAðt; r; θ;ϕÞ ¼ Rðt; rÞATðrÞ

0B@ sin θ cosϕ

sin θ sinϕ

cos θ

1CAþ Δðt; rÞ:

ð49Þ

(For 2D plots, we only use two of these coordinates.) With
this mapping, each shell is drawn with radius Rðt; rÞ.
Distances along a shell’s surface are conveyed accurately,
but distances between shells are distorted, depending on the
true curvature function.
Another choice of mapping preserves distances along

lines of constant (p; q), but distorts the sizes of shells and
distances along their surfaces. The shells are drawn with a
distorted radius

Rmapðt; rÞ ¼
Z

r

0

R0ðt; r̃Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðr̃Þp dr̃ ð50Þ

We build the shift array with the curvature factor included,
and then map the model to Cartesian coordinates as0B@X

Y

Z

1CA ¼ Rmapðt; rÞATðrÞ

0B@ sin θ cosϕ

sin θ sinϕ

cos θ

1CAþ Δðt; rÞ: ð51Þ

C. Calculating null geodesics

The light beams we observe follow null geodesic paths,
defined by

kα;βkβ ¼ 0; ð52Þ

where kα ¼ dxα=dλ is the tangent vector, and λ is the affine
parameter. The nonvanishing Christoffel symbols for the
Szekeres metric are given in Appendix B.
While the geodesic equations are fairly lengthy when

fully written out, a simplification is possible through the
definitions [69]

F ¼ R2

E2
; ð53Þ

H ¼ ðR0 − RE0
EÞ2

1 − k
: ð54Þ

With these compactified functions, the geodesic equations
become

dkt

dλ
þ 1

2
H;tðkrÞ2 þ

1

2
F;t½ðkpÞ2 þ ðkqÞ2� ¼ 0; ð55aÞ

H
dkr

dλ
þ dH

dλ
kr −

1

2
H;rðkrÞ2 −

1

2
F;r½ðkpÞ2 þ ðkqÞ2� ¼ 0;

ð55bÞ

F
dkp

dλ
−
1

2
H;pðkrÞ2 þ

dF
dλ

kp −
1

2
F;p½ðkpÞ2 þ ðkqÞ2� ¼ 0;

ð55cÞ

F
dkq

dλ
−
1

2
H;qðkrÞ2 þ

dF
dλ

kq −
1

2
F;q½ðkpÞ2 þ ðkqÞ2� ¼ 0:

ð55dÞ

These equations can be numerically integrated to trace the
path of a light beam through the model. A total of eight
variables must be tracked (the position and tangent vector),
using eight first-order differential equations—Eq. (55) and
kα ¼ dxα=dλ. Usually, we are interested in observed light
beams, so we choose a location for the observer and a
direction of observation to set the initial values for the eight
variables, then propagate the equations backward in time to
the source.
The redshift along the beam is readily obtained by

1þ z ¼ ðkαuαÞs
ðkαuαÞo

; ð56Þ

where subscripts s and o denote the source and observer
respectively, and uα is the four-velocity of the source or
observer. We can normalize the null geodesic tangent
vector at the observer so that kto ¼ −1, and if we assume
the source and observer are both comoving, we can set
uαs ¼ uαo ¼ ð1; 0; 0; 0Þ, so we are left with simply
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1þ z ¼ −kts: ð57Þ

In the case of axially symmetric models, there is a special
case of geodesics which propagate along the symmetry
axis, with kp ¼ kq ¼ 0 along their entire length. This
simplifies the equations greatly. The null condition then
gives a direct relation between kt and kr, and thus between
t and r:

dt
dr

¼ kt

kr
¼ �R0 − R E0

Effiffiffiffiffiffiffiffiffiffiffi
1 − k

p ; ð58Þ

where the sign depends on which direction the geodesic is
moving. Applying this to Eq. (55a), along with Eq. (57), we
can deduce an integral formula for redshift:

dð1þ zÞ
dλ

¼
_R0 − _RE0

E

R0 − RE0
E

ð1þ zÞ2; ð59aÞ

1

1þ z
dð1þ zÞ

dts
¼ −

_R0 − _R E0
E

R0 − R E0
E

; ð59bÞ

lnð1þ zÞ ¼ −
Z

ts

to

_R0 − _RE0
E

R0 − RE0
E

dt; ð59cÞ

where all quantities are evaluated on the geodesic, that is,
with r ¼ rðtÞ.
We can then express the geodesic equations directly in

terms of z [42]:

dt
dz

¼ −
1

1þ z

R0 − RE0
E

_R0 − _RE0
E

; ð60aÞ

dr
dz

¼ � 1

1þ z

ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p
_R0 − _RE0

E

: ð60bÞ

D. Coordinate transformations

The labeling of coordinates in a Szekeres model has
considerable flexibility. We have already mentioned the
gauge freedom in the radial coordinate—defining a new
coordinate r̃ ¼ fðrÞ (where f is monotonic) gives a new
description of the same physical model, obeying the same
basic equations.
Likewise, the transverse coordinates can be transformed

while maintaining the form of the metric—not as freely as
the radial coordinate, but in several specific ways.

1. Translation

The simplest transformation is a constant translation,

ðp̃; q̃Þ ¼ ðpþ p0; pþ q0Þ: ð61Þ

To maintain the form of the metric, we also transform the
dipole functions, as

ðP̃; Q̃; S̃Þ ¼ ðPþ p0; Qþ q0; SÞ: ð62Þ
This transformation only moves the origin point for the
projective coordinate labeling; it does not affect the
spherical coordinates.

2. Scaling

It is also possible to perform a linear scaling transformation
while maintaining themodel’s physical form. This is done by
simply multiplying both projective coordinates and all three
dipole functions by the same nonzero constant:

ðp̃; q̃Þ ¼ μðp; qÞ; ð63Þ

ðP̃; Q̃; S̃Þ ¼ μðP;Q; SÞ: ð64Þ

Again, this does not affect the spherical coordinates.

3. Polar rotation

A third simple transformation consists of rotating the p
and q coordinates:

ðp̃; q̃Þ ¼ ðp cosψ þ q sinψ ;−p sinψ þ q cosψÞ; ð65Þ

ðP̃; Q̃; S̃Þ ¼ ðP cosψ þQ sinψ ;−P sinψ þQ cosψ ; SÞ:
ð66Þ

This does affect the spherical coordinates, by
ϕ̃ ¼ ϕþ ψ—a simple rotation about θ ¼ 0 (with θ ¼ π
also fixed). While this axis is not in general the same for
shells of different r, due to the shell rotation effect, the form
of the metric and the physical arrangement of structures are
preserved.

4. Swapping p and q

We can easily see that the metric is invariant under the
substitution

ðp̃; q̃Þ ¼ ðq; pÞ; ð67Þ

ðP̃; Q̃Þ ¼ ðQ;PÞ: ð68Þ

This amounts to a reflection across the ϕ ¼ π=4 plane.
Combined with polar rotations, this can reflect the coor-
dinates across any polar plane.

5. Inversion

As we saw in Sec. III, the projective coordinates diverge
where θ ¼ 0. This can cause problems for numerical
calculations passing near this axis, even though there is
nothing physically special happening there. When this
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occurs, a translation or scaling transformation cannot
remove the infinity, but we can invert the coordinates so
that the divergence occurs somewhere else, without chang-
ing the model’s physical features or their positions relative
to each other. This is done with the transformation

ðp̃; q̃Þ ¼ ðp; qÞ
p2 þ q2

; ð69Þ

ðP̃; Q̃; S̃Þ ¼ ðP;Q; SÞ
P2 þQ2 þ S2

: ð70Þ

Clearly, the point on any given shell where the projective
coordinates previously diverged now has p̃ ¼ q̃ ¼ 0, and
vice versa. Calculations can now proceed unimpeded
through the region that was formerly problematic.
Because the angle θ ¼ 0 corresponds to the divergence

point of the projective coordinates, and this point has
moved (relative to physical structures), we can see that this
transformation does affect the spherical coordinates. The
point θ ¼ 0 corresponds to a new angle satisfying

cot ϕ̃ ¼ P̃

Q̃
; cot

θ̃

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̃2 þ Q̃2

p
S̃

: ð71Þ

The new point at which θ̃ ¼ 0 corresponds to an old angle
in a similar fashion. More generally, the spherical and
projective coordinates over the entire shell have been
reflected across the great circle defined by

p2 þ q2 ¼ P2 þQ2 þ S2; ð72Þ

which crosses the point halfway between θ ¼ 0 and
p ¼ q ¼ 0. In spherical coordinates, this reflection surface
is given by

P sin θ cosϕþQ sin θ sinϕþ S cos θ ¼ 0: ð73Þ

That is, in terms of the LRF, the reflection surface is a plane
through the origin and perpendicular to the vector

ðx; y; zÞref ¼ ðP;Q; SÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2 þ S2

p
. It is then easy

to see that we can adjust the orientation of this reflection
surface by first performing a translation, as described
above; such a translation simultaneously moves the point
p ¼ q ¼ 0 and changes the LRF vector ðx; y; zÞref.
Note, however, that the definition of this reflection

surface is a function of r. It is therefore not a flat plane
across the entire model. Each shell’s coordinates are
reflected in a different direction, but the metric keeps the
same form, and the overall picture still follows the same
rules of shifting and rotation between shells laid out in
Sec. V, just with different dipole functions, Eq. (70). The
examples of inversion shown in Fig. 11 show how
this works.
We can therefore avoid the θ ¼ 0 axis when calculating

geodesics by performing this inversion operation whenever
p and q get large enough to adversely affect precision. We
must take care to also transform the geodesic tangent vector
accordingly:

ð ekp; ekqÞ ¼ ðkp; kqÞ
p2 þ q2

− 2ðp; qÞ pk
p þ qkq

ðp2 þ q2Þ2 : ð74Þ

6. Haantjes transformation

A more general transformation allows us to rotate the
coordinates about an arbitrary direction. This kind of
transformation is called a Haantjes transformation [70].
In a quasispherical Szekeres model, a Haantjes trans-

formation modifies the p and q coordinates as follows
[68,71]:

p̃ ¼ pþD1ðp2 þ q2Þ
τ

; ð75aÞ

q̃ ¼ qþD2ðp2 þ q2Þ
τ

; ð75bÞ

τ ¼ 1þ 2D1pþ 2D2qþ ðD2
1 þD2

2Þðp2 þ q2Þ; ð75cÞ

(a) (b) (c) (d)

FIG. 11. Visualization of a series of coordinate transformations. Colors indicate the p coordinate, from blue at negative infinity to red
at positive infinity (q is 0 in the displayed slice), and the dotted and dashed green lines show where it vanishes and diverges, respectively
(the LRF’s −z and þz directions). The purple line is the reflection surface defined in Eq. (72). (a): the initial state, an axially symmetric
model with PðrÞ ¼ QðrÞ ¼ 0. It then undergoes an inversion transformation, with the result shown in (b). (c) shows the effect of a
translation of the p coordinate, and (d) is after a second inversion. The combined effect is a Haantjes transformation.
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where D1 and D2 are arbitrary constants. In order to
preserve the form of the metric, we must also transform
the dipole functions:

P̃ ¼ PþD1ðP2 þQ2 þ S2Þ
T

; ð76aÞ

Q̃ ¼ QþD2ðP2 þQ2 þ S2Þ
T

; ð76bÞ

S̃ ¼ S
T
; ð76cÞ

T ¼ 1þ 2D1Pþ 2D2Qþ ðD2
1 þD2

2ÞðP2 þQ2 þ S2Þ:
ð76dÞ

This transformation amounts to a rotation about the
points satisfying

p2 þ q2 ¼ P2 þQ2 þ S2; ð77aÞ

D1pþD2q ¼ D1PþD2Q; ð77bÞ

by an angle of

ψ ¼ 2 arccos

� ðP;Q; SÞ · ðPþD1; QþD2; SÞ
kðP;Q; SÞkkðPþD1; QþD2; SÞk

�
; ð78Þ

where kðP;Q; SÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2 þ S2

p
. The rotation axis is

restricted to the great circle halfway between θ ¼ 0 and
p ¼ q ¼ 0, but this great circle can be moved by first
performing a coordinate translation. By exercising this
freedom in combination with the free variables D1 and D2,
the rotation can be of any angle about any axis.
The Haantjes transformation can be seen as a combination

of three simpler transformations: an inversion, followed by a
translation of ðD1; D2Þ, followed by another inversion. The
first inversion reflects the coordinates across the surface
p2 þ q2 ¼ P2 þQ2 þ S2, and the translation reorients this
surface before the second inversion reflects the coordinates
again. This sequence is illustrated in Fig. 11.
Haantjes transformations can be useful in model con-

struction, as they provide a means of moving an axially
symmetric anisotropy to any desired direction. One can
create a model with P ¼ Q ¼ 0, meaning anisotropies only
arise in the z direction as a result of S, and then one can
apply an appropriate Haantjes transformation to reorient the
anisotropy to any direction, with a mixture of all three
dipole functions automatically satisfying the conditions for
axial symmetry, Eq. (36). The ðD1; D2Þ values needed to
transform the axis to the direction (θ;ϕ) (measured at the
lowest r value of the anisotropy, rl) are given by

D1 ¼
1 − cos θ
sin θ

cosϕe−SðrlÞ; ð79aÞ

D2 ¼
1 − cos θ
sin θ

sinϕe−SðrlÞ: ð79bÞ

Due to the shell rotation effect, the (θ;ϕ) values of the
maximum anisotropy will not be constant with r after the
transformation. The D parameters are related to the C
coefficients of the axial symmetry equations (41) by

C0 ¼
D2

D1

; ð80aÞ

C1 ¼
1

D1

: ð80bÞ

The new symmetry axis has coordinates

p0 ¼
D1

D2
1 þD2

2

; ð81aÞ

q0 ¼
D2

D2
1 þD2

2

; ð81bÞ

on one side, and (0,0) on the other.

E. Example construction method:
Randomized series of structures

One of the key strengths of the Szekeres metric is its
ability to simulate multiple structures. When designing
such a model, though, we should be careful of how the shell
rotation effect influences the structures’ shapes. As we have
seen in Fig. 6, overdensities that may appear symmetrical
(i.e., with the ratios of P0=S, Q0=S, and S0=S held constant
over some range of r) are in fact smeared by the shell
rotation, if they are not centered at θ ¼ 0 or π. This can
systematically distort our structures based on their orienta-
tion, which is undesirable if we wish them to have similar
shapes.
We have devised a process for generating a randomized

series of structures that are all the same kind of shape—
individually axially symmetric—regardless of their
orientation. This method involves performing Haantjes
transformations in a piecewise manner over separate
intervals of r. Because we do not apply the transformations
globally, they are no longer simply coordinate transforma-
tions, but physical rearrangements of structures. The
process goes as follows:
(1) First, we divide the model into separate intervals of

r, with boundaries ri, with i ¼ 0.:n, r0 ¼ 0, and
riþ1 > ri. We introduce axially symmetric Szekeres
anisotropies by making S a piecewise function, with
S0=S vanishing at all ri (to ensure continuity when
we are done).

(2) Then, we generate a list of random angles ðθi;ϕiÞ,
which will correspond to the directions of the
maximum density contrast at the lower bound of
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each section. To move the anisotropies to these
randomly chosen angles, we apply the Haantjes
transformation separately to each interval, using
Eq. (76). The D coefficients for each interval are
given by Eq. (79), using ðθi;ϕiÞ for the interval
ri < r < riþ1.

(3) The dipole functions will now be discontinuous at
each ri, creating shell crossing singularities. To
remedy this, we first address the discontinuities in
S using a scaling transformation, Eq. (64). One
interval at a time, starting with i ¼ 1, we scale the
dipole functions by a factor Si−1ðriÞ=SiðriÞ (where
Si is the S function in the interval ri < r < riþ1).

(4) The S function is now continuous, but the P and Q
functions are not. This can be fixed similarly with a
series of shifts, using Eq. (62). Again starting at
i ¼ 1, we shift the p coordinate by Pi−1ðriÞ − PiðriÞ,
and likewise for q, and proceed through the remain-
ing intervals one at a time.

We are left with a single model containing an arrange-
ment of structures, each individually axially symmetric, but
together completely asymmetric in a randomized fashion.
An example is illustrated in Fig. 12. Each structure is
oriented in the direction of ðθi;ϕiÞ at the lower boundary of
the r interval; due to shell rotation within the interval, the
angle will generally be different at the upper boundary,
following Eq. (44). Nevertheless, if the angles were chosen
uniformly over the sphere, there will be no correlation
between the orientations of sequential structures.
This method of model construction results in a coarse-

grained array of large, pancakelike structures. This can be
done with any base LT model, for instance creating a series

of overdense walls inside a giant void, as in [43]. But it fits
particularly well with a model with a radially oscillating
density, following the same series of r intervals. These
kinds of models, called “Onion” models by some [6,45],
are compatible with Sussman’s prescription of periodic
local homogeneity (PLH) [65].

VIII. EMBEDDING IN 4-DIMENSIONAL SPACE

As we mentioned previously, the Szekeres model’s
curved geometry makes it impossible to depict directly
on flat paper without distortion. It is possible, though, to
view a const-t slice as a curved hypersurface embedded
within a 4-dimensional space. With such a description, we
can examine unambiguously how the curvature function
and dipole functions interact to produce the Szekeres
metric. This also gives confirmation that the shell shifting
and rotation effects we have described do indeed fully
account for the form of the metric.
If the curvature function is everywhere non-negative, an

embedding is possible within a flat Euclidean background
manifold. If the curvature function is negative anywhere,
we can use a background manifold with constant negative
curvature. We consider these two cases separately.

A. Non-negative curvature

Let the background space have coordinates ðX; Y; Z;WÞ,
with a line element ds2 ¼ dX2 þ dY2 þ dZ2 þ dW2. The
origin of the Szekeres model hypersurface coincides with
the origin of the ðX; Y; Z;WÞ coordinates, and it extends
initially outward in the X-Y-Z hyperplane, which is aligned
with the LRF’s x, y, and z axes. We can then identify
ðX; Y; Z;WÞ ≈ Rðt0; rÞðsin θ cosϕ; sin θ sinϕ; cos θ; 0Þ for
sufficiently small r. (Because we are only looking at one
spatial slice at a time, we will use t ¼ t0 everywhere.)
In an LT model, a positive curvature function gives the

surface a bowl shape, rising in the W direction as r
increases. Each shell r is a 2-sphere of radius R, contained
in a hyperplane parallel to the X-Y-Z hyperplane. The slope
of the bowl is given by

αwðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðrÞ

1 − kðrÞ

s
: ð82Þ

This is what gives radial distances the extra curvature factor.
Going from r to rþ dr, we must move outward byR0dr, but
also “upward” in the orthogonalW direction by αwR0dr, for a
total distance of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2w

p
R0dr, or R0dr=

ffiffiffiffiffiffiffiffiffiffiffi
1 − k

p
.

Positively curved Szekeres models have the same sort of
bowl geometry, but with a modification due to the dipole
functions. We have seen how the dipole functions shift the
shells relative to each other, so over a span δr, the bowl
extends farther outward on one side than the other. But
because the curvature function in the metric modifies the
entire term R0 − RE0=E, not just R0, the slope of the bowl

FIG. 12. An example of a model constructed through random-
ized piecewise Haantjes transformations. The structure angles
were chosen over the unit circle rather than the unit sphere, so that
the model maintains a symmetry plane on which all of the
maximum density contrasts fall, making for a better picture, but
the construction process is fully capable of creating three-
dimensional arrangements.
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must be the same everywhere around the shell.11 This
means that, from the viewpoint of this embedding, the
dipole functions have an extra geometric effect not pre-
viously discussed: they not only shift and rotate shells, but
also tilt them within the background manifold. Specifically,
in terms of the LRF at shell r (which now has a fourth
direction, “w,” orthogonal to the shell’s hyperplane), the
shell at rþ dr makes an angle P0

S αwdr in the x-w plane,
Q0
S αwdr in the y-w plane, and S0

S αwdr in the z-w plane.
Because of this tilting, the “upward” shifts due to the
bowl’s slope do not go in the background’sW direction, but
rather the LRF’s w direction.12 The resulting shape is
illustrated in Fig. 13.
The approach for determining the orientation of each

shell is similar to the one presented in Sec. VII A, with the
addition of another dimension. We define a 4 × 4 matrix
AðrÞ that relates a shell’s LRF axes to the axes of the
background manifold (with rows 1–4 giving the x, y, z, and
w directions respectively). It is initialized as Aijð0Þ ¼ δij
for simplicity.13 As r increases, it evolves according to

A0ðrÞ ¼

0BBBBBB@
0 0 P0

S
P0
S αw

0 0 Q0
S

Q0
S αw

− P0
S − Q0

S 0 S0
S αw

− P0
S αw − Q0

S αw − S0
S αw 0

1CCCCCCAAðrÞ: ð83Þ

The Szekeres model’s hypersurface, then, is defined by0BBB@
X

Y

Z

W

1CCCAðt0; rÞ ¼ Rðt0; rÞATðrÞ

0BBB@
sin θ cosϕ

sin θ sinϕ

cos θ

0

1CCCAþ Δðt0; rÞ;

ð84Þ
where Δ ¼ Δðt0; rÞ is a 4-component vector denoting the
total displacement of the center of shell r relative to the
origin. It satisfies

Δ0ðt0; rÞ ¼ ATðrÞ

0BBB@
RP0=S

RQ0=S

RS0=S

R0αw

1CCCAðt0; rÞ: ð85Þ

We initialize it asΔiðt0; 0Þ ¼ 0, for simplicity. Note that the
shifts from the dipole functions do not have the curvature
factor included in Eqs. (24)–(26), as that part of the
displacement is accounted for in the fourth component. B. Arbitrary curvature

If kðrÞ < 0 for some r, the quantity αw defined in
Eq. (82) is not real, so an embedding in a 4-dimensional
Euclidean manifold as above is not possible. We
can, however, adapt the above embedding scheme for a

FIG. 13. Three views of a slice of a positively-curved Szekeres
model as an embedding in a 4-dimensional Euclidean manifold.
The blue line shows the path of an arbitrary geodesic. Black
circles mark shells of constant r in steps of 80 Mpc. The green
dashed line marks θ ¼ 0, and the red dotted line marks θmax,
where the density has its angular maximum. Model definitions
are given in appendix D.

11This slope is measured in terms of the LRF, not the
background coordinates.

12This is why we have called the slope αw instead of αW .
13Any initialization is acceptable, as long as it is orthonormal.
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4-dimensional background manifold of constant negative
curvature.
The line element of the background manifold can be

written in terms of a radial coordinate ρ and three angular
coordinates ðα; β; γÞ as

ds2 ¼ 1

1 − kbρ2
dρ2

þ ρ2ðdα2 þ sin2αdβ2 þ sin2αsin2βdγ2Þ; ð86Þ

where kb is the curvature of the background. We will use
χðt; r; θ;ϕÞ to denote the set of background coordinates
ðρ; α; β; γÞ corresponding to a point on the Szekeres
hypersurface.

We consider the region local to a particular shell r0. We
align the background coordinates to this shell, so that

χðt0; r0; θ;ϕÞ ¼
�
R;

π

2
; θ;ϕ

�
: ð87Þ

The only parts of the embedding in the non-negative
curvature case that depended on the curvature were the
shifts and tilts in the local w direction, through αw. We will
assume for now that everything works as before, and we
only need to find the new αw. For this, it is sufficient to
consider a model in which P0 ¼ Q0 ¼ 0, so we only need to
deal with S.
The shell at r0 þ dr has coordinates in the background

manifold

χðt0; r0 þ dr; θ;ϕÞ ¼ χðt0; r0; θ;ϕÞ þ
�
R0 þ R

S0

S
cos θ;−αw

�
R0

R
þ S0

S
cos θ

�
;−

S0

S
sin θ; 0

�
dr: ð88Þ

By taking χðt0; r0 þ dr; θ0 þ dθ;ϕ0 þ dϕÞ − χðt0; r0; θ0;ϕ0Þ and plugging the results into the background metric, Eq. (86),
we can obtain the metric on the Szekeres hypersurface:

ds2 ¼
�ðR0 þ R S0

S cos θÞ2
1 − kbR2

þ R2
S02

S2
sin2θ þ α2w

�
R0 þ R

S0

S
cos θ

�
2
�
dr2 − 2R2

S0

S
sin θdrdθ þ R2dΩ2: ð89Þ

From here, we can compare to the Szekeres metric in spherical coordinates, Eq. (13). Requiring grr to match gives us an
equation we can solve for αw:

1

1−kbR2
þα2w ¼

1

1−k

αw ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1−k
−

1

1−kbR2

s
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k−kbR2

ð1−kÞð1−kbR2Þ

s
ð90Þ

This solution is only real if kbR2 < k. This means that we
require the background curvature to be more negative than
the strongest negative curvature of the Szekeres model.
In addition to the background manifold being non-

Euclidean, note also that αw depends on R, which is a
function of t. Unlike the flat-background case, here the
slope of the embedding surface changes over time.
With this solution for αw, the local metric around the shell

r0 matches the Szekeres metric, as desired. We can envision
extending this embedding for the entire Szekeres model by
moving both inward and outward in incremental steps dr, at
each step reorienting the background coordinates to match
Eq. (87). We then have a global embedding, though it is not
expressed as concisely as in Eq. (84). We can also confirm
that this method works when P0 and Q0 are nonzero, though
the equations get considerably more lengthy.

IX. DISCUSSION

Quasispherical Szekeres models are an anisotropic
generalization to the spherically symmetric Lemaître-

Tolman (LT) models. They have great potential as fully
general-relativistic representations of cosmic structures.
While they are well-understood mathematically, their
structures are somewhat opaque to intuition. It is easy to
misconstrue the physical picture behind the equations.
The dipole functions alter the matter distribution and the

geometry of the models in multiple ways, which we have
thoroughly explained. The shells of constant t and r are not
onlynonconcentric, but alsononaligned.This relative rotation
of the shells has oftenbeenoverlooked, but aswehave shown,
it has deep connections to several other aspects of the model,
such as the relationship between the two most common
coordinate systems (projective and spherical), the conditions
for axial symmetry, and geodesic paths. With this shell
rotationeffect properlyaccounted for,wecangeneratedensity
plots that show the true shape of the model more accurately
than before. We see that geodesics appear nearly straight, as
they should, while structures defined by simple functions are
sometimes skewed in ways not immediately obvious.
The conditions by which Szekeres models are axially

symmetric are well-known, but with a better understanding
of the overall geometry dictated by the model functions, we
can understand the equations more intuitively. Moreover, we
have shown that a less restrictive condition results in bilateral
symmetry, whichwe have also illustrated in terms of the shell
rotation effect. We have also reviewed the coordinate trans-
formations that preserve the form of the metric, and used
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these in combinationwith the symmetry conditions to give an
example of a model construction method that produces a
randomized series of simple structures.
Finally, we have used our understanding of the geometry

to build the spatial Szekeres metric as a 3-dimensional
surface embedded in a 4-dimensional space. Because the
metric on this surface fully matches the Szekeres metric, this
confirms that the effects we have described tell the whole
story. That is, the shell rotation effect is real, and there are no
other hidden geometric effects waiting to be discovered.
We have sought to provide the reader with a firm

understanding of the Szekeres models’ basic properties,
as well as some of the practical tools needed to work with
them. This is not a comprehensive analysis of the properties
of the Szekeres models. Other works have already explored
certain aspects of them in greater detail. There is a great
deal of potential work yet to be done, though, and it is
important to hold a clear picture of what we are working
with as we forge ahead.
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APPENDIX A: SOLUTIONS TO THE EVOLUTION
EQUATIONS

In the case of Λ ¼ 0, the solution to Eq. (3) is explicit in
a parametric form, using a parameter ηðt; rÞ:

Rðt; rÞ ¼

8>><>>:
M
k ð−1þ cosh ηÞ if kðrÞ < 0;

Mη2=2 if kðrÞ ¼ 0;
M
k ð1 − cos ηÞ if kðrÞ > 0;

ðA1Þ

t − tBðrÞ ¼

8>><>>:
M

ð−kÞ3=2 ð−ηþ sinh ηÞ if kðrÞ < 0;

Mη3=6 if kðrÞ ¼ 0;
M
k3=2

ðη − sin ηÞ if kðrÞ > 0:

ðA2Þ

These cases are hyperbolic, parabolic, and elliptic, respec-
tively. In practice, the precision of a numerically calculated
solution suffers near points where kðrÞ crosses 0, so it is
sometimes necessary to use a series expansion to handle
“near-parabolic” regions (see also [18], Appendix B):

Rðt;rÞ¼M
�
η2

2
−
η4

24
kþ η6

720
k2−

η8

40320
k3þ�� �

�
; ðA3Þ

t− tBðrÞ¼M

�
η3

6
−

η5

120
kþ η7

5040
k2−

η9

362880
k3þ���

�
:

ðA4Þ

The precise conditions for this solution to apply depend on
the model details, gauge choices, and code structure. One
example condition is jkðrÞj < ζ0jk0ðrÞjr, where ζ0 is a
small constant.
If Λ ≠ 0, the solution requires an elliptic integral arising

from Eq. (5).

APPENDIX B: CHRISTOFFEL SYMBOLS AND CURVATURE TENSORS

The nonzero Christoffel symbols for the quasispherical Szekeres metric are

Γt
rr ¼

ðR;r − RE;r

E ÞðR;tr − R;t
E;r

E Þ
1 − k

Γp
rr ¼

ðR;r=R − E;r=EÞðE;rpE − E;rE;pÞ
1 − k

Γt
pp ¼ Γt

qq ¼
R;tR
E2

Γq
rr ¼

ðR;r=R − E;r=EÞðE;rqE − E;rE;qÞ
1 − k

Γr
rt ¼ Γr

tr ¼
R;tr − R;t

E;r

E

R;r − RE;r

E

Γp
pp ¼ −Γp

qq ¼ Γq
pq ¼ Γq

qp ¼ −
E;p

E

Γr
rr ¼

R;rr − R;r
E;r

E − RE;rr

E þ RðE;r

E Þ2
R;r − RE;r

E

−
1

2

k;r
1 − k

Γq
qq ¼ −Γp

qq ¼ Γp
pq ¼ Γp

qp ¼ −
E;q

E

Γr
pp ¼ Γr

qq ¼ −
R
E2

1 − k

R;r − RE;r

E

Γp
pt ¼ Γp

tp ¼ Γq
qt ¼ Γq

tq ¼
R;t

R

Γr
rp ¼ Γr

pr ¼
E;rE;p=E2 − E;rp=E

R;r=R − E;r=E
Γp

pr ¼ Γp
rp ¼ Γq

qr ¼ Γq
rq ¼

R;r

R
−
E;r

E

Γr
rq ¼ Γr

qr ¼
E;rE;q=E2 − E;rq=E

R;r=R − E;r=E
ðB1Þ
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The Riemann tensor can be summarized using the compactified functions defined in Eqs. (53) and (54) by [45]

Rtrtr ¼ −
1

2
H;tt þ

H2
;t

4H

Rtptp ¼ Rtqtq ¼ −
1

2
F;tt þ

F2
;t

4F

Rrprp ¼ −
1

2
ðH;pp þ F;rrÞ þ

1

4
H;tF;t þ

1

4H
ðH;rF;r þH2

;pÞ þ
1

4F
ðH;pF;p þ F2

;r −H;qF;qÞ

Rrqrq ¼ −
1

2
ðH;qq þ F;rrÞ þ

1

4
H;tF;t þ

1

4H
ðH;rF;r þH2

;qÞ þ
1

4F
ð−H;pF;p þ F2

;r þH;qF;qÞ

Rpqpq ¼ −
1

2
ðF;pp þ F;qqÞ þ

1

4
F2
;t −

1

4H
F2
;r þ

1

2F
ðF2

;p þ F2
;qÞ: ðB2Þ

The remaining nonzero terms can be found by the Riemann
tensor’s symmetry properties:

Rαβγδ ¼ −Rαβδγ ¼ −Rβαγδ ¼ Rγδαβ: ðB3Þ

The Ricci scalar is simply

R ¼ 8πρþ 4Λ: ðB4Þ

TheWeyl curvature tensor is split into electric and magnetic
parts as [42,59]

Eα
β ¼ Cα

γβδuγuδ

¼ MR0 − RM0=3
R3ðR0 − RE0=EÞ diagð0; 2;−1;−1Þ; ðB5Þ

Hαβ ¼
1

2
ϵαγμνCμν

βδuγuδ ¼ 0: ðB6Þ

The Kretschmann scalar, which is useful for identifying
real singularities, is [63]

K¼RαβγδRαβγδ

¼ð8πÞ2
�
4

3
ρ̄2int−

8

3
ρ̄intρþ3ρ2

�
þ4

3
Λð2Λþ8πρÞ; ðB7Þ

where ρ̄int is the “average” density inside shell r, defined in
Eq. (27). This tells us that the spacetime singularities
coincide with divergent densities, i.e., shell crossings and
the bang/crunch.
The 3-spaces of constant time have nonzero Riemann

tensor components [61]

3Rr
prp ¼ 3Rr

qrq ¼
k0=2 − k E0

E

RðR0 − RE0
EÞ

; ðB8Þ

3Rp
qpq ¼

k
R2

; ðB9Þ

and a Ricci scalar [41]

3R ¼ 2
k
R2

�
k0=k − 2E0=E
R0=R − E0=E

þ 1

�
: ðB10Þ

Note that the model is perfectly spatially flat if k ¼ 0, even
if there is significant inhomogeneity.

APPENDIX C: DEMONSTRATION
OF SHELL ROTATION IN METRIC

We are interested in the geometry on a constant-t
hypersurface. We begin with the LT metric in spherical
coordinates:

ds2 ¼ −dt2 þ ðR0Þ2
1 − k

dr2 þ R2ðdθ2 þ sin2θdϕ2Þ: ðC1Þ

The shell shifting effect (Sec. VA) modifies the separation
between shells in the radial direction (orthogonal to the
shell surface) by replacing R0 with R0 − RE0=E. Because
this change is in the radial direction, the actual distance is
affected by the curvature, and we have built this into our
definition of the shifting. The shift also adds a transverse
separation between points on different shells, though, even
when the angular coordinates are held constant. Because
this component of the distance is along the shell’s surface,
the curvature function does not play a role.
Accounting only for the shifting effect, the points

ðr; θ;ϕÞ and ðrþ dr; θ þ dθ;ϕþ dϕÞ have a total separa-
tion in the θ direction of

RdθþR

�
P0

S
cosθcosϕþQ0

S
cosθsinϕ−

S0

S
sinθ

�
dr; ðC2Þ

and in the ϕ direction of

R sin θdϕþ R

�
−
P0

S
sinϕþQ0

S
cosϕ

�
dr: ðC3Þ
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A simple diagram of this decomposition is shown in Fig. 14.
The total square separation is simply the sum of the squares of the components in these orthogonal directions (because

space is approximately Euclidean on sufficiently small scales). This would give

ds2 ¼ −dt2 þ
�ðR0 − RE0

EÞ2
1 − k

þ R2

�
P0

S
cos θ cosϕþQ0

S
cos θ sinϕ −

S0

S
sin θ

�
2

þ R2

�
−
P0

S
sinϕþQ0

S
cosϕ

�
2
�
dr2

þ 2R2

�
P0

S
cos θ cosϕþQ0

S
cos θ sinϕ −

S0

S
sin θ

�
drdθ þ 2R2 sin θ

�
−
P0

S
sinϕþQ0

S
cosϕ

�
drdϕ

þ R2ðdθ2 þ sin2θdϕ2Þ: ðC4Þ
But this does not match the metric as given in Eq. (13). Shell shifting alone is not enough.
The rotation described in Sec. V B adds a further transverse separation between the two points. This amounts to an

additional

R

�
−
P0

S
cosϕ −

Q0

S
sinϕ

�
dr; R

�
P0

S
cos θ sinϕ −

Q0

S
cos θ cosϕ

�
dr: ðC5Þ

in the θ and ϕ directions, respectively. Incorporating both effects, the rr part of the metric becomes

grr ¼
ðR0 − RE0

EÞ2
1 − k

þ R2

�
P0

S
ðcos θ − 1Þ cosϕþQ0

S
ðcos θ − 1Þ sinϕ −

S0

S
sin θ

�
2

þ R2ð1 − cos θÞ2
�
P0

S
sinϕ −

Q0

S
cosϕ

�
2

¼ ðR0 − RE0
EÞ2

1 − k
þ R2ð1 − cos θÞ2

�
P02 þQ02 þ S02

S2

�
þ 2R2ð1 − cos θÞ

�
P0S0 sin θ cosϕþQ0S0 sin θ sinϕþ S02 cos θ

S2

�
:

ðC6Þ

With some simplification, we can confirm that this
matches the corresponding term in Eq. (13). Similarly,
we can find grθ from Eqs. (C2) and (C5):

grθ¼R2ðcosθ−1Þ
�
P0

S
cosϕþQ0

S
sinϕ

�
−R2

S0

S
sinθ

¼R2
1−cosθ
sinθ

E0

E
þR2

�
cosθ−cos2θ

sinθ
−sinθ

�
S0

S
: ðC7Þ

Again, this matches Eq. (13). Finally, the rϕ term:

grϕ ¼ R2 sin θð1 − cos θÞ
�
Q0

S
cosϕ −

P0

S
sinϕ

�
: ðC8Þ

Thus, we see that the shell shifting and rotation effects
fully encapsulate the differences between the LT and
Szekeres metrics.

APPENDIX D: EXAMPLE MODEL DEFINITION

Here we detail the function definitions used in the model
shown in Figs. 6 and 8.
We begin with a background FLRW model with

H0 ¼ 70 km s−1 Mpc−1, ΩΛ;0 ¼ 0.7, and Ωm;0 ¼ 0.3. The
current age of the universe t0 is determined by integrating the
first Friedmann equation up to a scale factor of 1:

FIG. 14. The separation between nearby points on different
shells without accounting for shell rotation. The dotted arc shows
where the outer shell would be without shifting; the red arrow
shows how the individual points on the outer shell have moved.
We have used dθ ¼ 0 for illustrative purposes, so the red and blue
dots in each set have the same θ, measured from the top. The blue
lines coming from the blue dots show the radial and transverse (θ)
directions, and the blue arrows and dashed lines show the
components of the total separation in each direction. Two sets
of points are shown to demonstrate the cos θ factor of the P0=S
term in Eq. (C2) (in the limit δr → 0).
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t0 ¼
Z

1

0

da

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0a−1 þ ΩΛ;0a2

q ; ðD1Þ

which comes out to approximately 13.47 Gyr.
We then define an LT model that matches onto this

background at large r. We use a radial coordinate scaled so
that Rðt0; rÞ ¼ r in units of Mpc, and set tBðrÞ ¼ 0. The
density profile at t0 is the universal void density profile
found by Hamaus et al. [73]:

ρðrÞ ¼ ρ̄

�
1þ δc

1 − ðr=rsÞα
1þ ðr=rvÞβ

�
; ðD2Þ

where ρ̄ is the background FLRW density, δc is the central
density contrast, rv characterizes the size of the void, rs gives
a scale radius at which the density equals the background,
and α and β determine the inner and outer slopes of thevoid’s
wall, respectively. We have used δc ¼ −0.85, rv ¼ 200,
rs ¼ 182, α ¼ 2.18, and β ¼ 9.482. The density function is
plotted in Fig. 15(a). From the density, we obtain MðrÞ by
integrating:

MðrÞ ¼ 4π

Z
r

0

ρðrÞr2dr: ðD3Þ

The curvature function kðrÞ is then fixed by solvingEq. (5) at
t ¼ t0. Because the other functions are already defined, at
any given r there is a unique value of kðrÞ which satisfies
Eq. (5), which can be found numerically. We do this for a
series of r values, in increments of 1, and interpolate to obtain
a smooth function, plotted in Fig. 15(b).
We then introduce anisotropy through the dipole func-

tions. We define ðE0=EÞm as a piecewise function such that
rðE0=EÞm starts at 0, ramps up smoothly starting at r ¼ 80,
plateaus, and then ramps back down to 0 at r ¼ 400.

�
E0

E

�
m
¼ CP

ð1þ rÞ0.99

8>>>>>>>><>>>>>>>>:

0 r ≤ 80;

ð1 − ðr−120Þ2
1600

Þ2 80 < r ≤ 120;

1 120 < r ≤ 360;

ð1 − ðr−360Þ2
1600

Þ2 360 < r ≤ 400;

0 r > 400:

ðD4Þ
This is plotted inFig. 15(c). The ð1þ rÞ−0.99 factorwas taken
from the model used in [43], and CP is an overall strength
factor,where a value of 1would push the shells very close to a
shell crossing. In this case, we used CP ¼ 0.5.
For Fig. 6, we use only PðrÞ, keepingQðrÞ at 0 and SðrÞ

at 1. This means that ðE0=EÞm ¼ P0ðrÞ. To obtain PðrÞ, we
simply integrate. For Fig. 8, we instead only use SðrÞ,
keeping PðrÞ at 0, meaning ðE0=EÞm ¼ S0=S. To obtain
SðrÞ, we use ðln SÞ0 ¼ S0=S, integrate, and take the
exponent.

The geodesic shown in Fig. 6 was generated backward
from t0 with the initial values

r0 ¼ 400; p0 ¼Pð400Þþ cot
5π

12
; q0 ¼ 0; ðD5aÞ

kμ ¼
�
−1;

cos 7π
8ffiffiffiffiffiffi

grr
p ;−

sin 7π
8ffiffiffiffiffiffiffigpp

p ; 0

	
: ðD5bÞ

The model used in the embedding illustration, Fig. 13, is
similar, but with some changes to the parameters. The
background FLRW model has a strong positive curvature,
with Ωm;0 ¼ 2, and the void central density contrast is only
δc ¼ −0.3, so that the curvature is positive even in the void.
Also, ΩΛ;0 ¼ 0 and H0 ¼ 300 km s−1 Mpc−1. The dipole
functions are axially symmetric, following Eq. (D4) with
CP ¼ 0.7.

(a)

(b)

(c)

FIG. 15. The density (a), curvature (b), and ðE0=EÞmax (c) func-
tions of the example models used in Figs. 6 and 8.
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