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We investigate the impact of the gravity portal on the properties of white dwarfs, such the as equation of
state and the cooling time. We find that the interaction between dark matter spin-zero bosons and electrons
in the mean-field approximation softens the equation of state, and the objects cool down more slowly
compared to the usual case.
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I. INTRODUCTION

Current cosmological and astrophysical observational
data indicates that ordinary, luminous matter comprises
only a tiny percentage of the total energy budget of the
Universe [1]. Einstein’s general relativity (GR) [2] can be
made compatible with modern data only if another form
of matter—which has neither strong nor electromagnetic
interactions, and manifests itself via gravity—is postulated
to exist. This new form of matter, now called dark matter
(DM), is nonrelativistic in nature, roughly 5 times more
abundant than baryonic matter [1], and it should be
searched for in extensions of the Standard Model (SM)
of particle physics. Its nature and origin still remains a
mystery, and it comprises one of the biggest challenges of
modern theoretical cosmology and particle physics. For
reviews see, e.g., Refs. [3–7] and references therein, and for
a list of good DM candidates see Ref. [8].
Since the spin of the particle that plays the role of DM in

the Universe is still unknown, the simplest way to extend
the SM to include a good DM candidate is to introduce a
scalar field, i.e., a spin-zero boson. The treatment of scalar
fields is simpler as they do not carry spinor or Lorentz
indices, and they arise in many different setups in modern
particle physics, such as (i) the Higgs sector needed to
break electroweak symmetry and give masses to particles
[9,10], (ii) pseudo-Goldstone bosons (pNGBs) associated
with the explicit breaking of additional global symmetries
[11], (iii) moduli from superstring theory compactifications
[12–16], and (iv) supermultiplets in supersymmetric the-
ories [17] and supergravity [18] which contain several
scalar fields.
There is one more reason why one may consider the

possibility of DM consisting of a scalar field. The ΛCDM
model, based on cold DM and a positive cosmological

constant, has become the concordance cosmological model.
Dark matter in the standard parametrization is assumed to be
made of weakly interacting massive particles, a conjecture
which works very well on large (cosmological) scales
(≥Mpc), but unfortunately on smaller (galactic) scales a
few problems arise, such as the missing satellites problem,
the core-cusp problem, and the too-big-to-fail problem [19].
These problems may be tackled in the context of self-
interacting dark matter [20,21], as any cuspy feature will be
smoothed out by the dark matter collisions. In addition, if
dark matter consists of ultralight scalar particles with a mass
m ≤ eV and a small repulsive quartic self-interaction, a
Bose-Einstein condensate may be formed with a long-range
correlation. This scenario has been proposed as a possible
solution to the aforementioned problems on galactic scales
[22–24]. For a review see, e.g., Ref. [25].
Since the presence of DM is inferred only via gravita-

tional interactions, it seems more than natural to couple the
Lagrangian of particle physics to GR. Then, one possibility
that should not be ignored is a nonminimal coupling of the
scalar field to gravity. Higgs inflation is a notable example
of this type of scenario [26,27]. After all, as is well known,
even if this term is absent at tree level it will be generated
via quantum loop corrections [28]. Even if the scalar field
that plays the role of DM does not have any direct
interactions with the SM fields in the Jordan frame, its
nonminimal coupling to gravity will induce nonvanishing
interaction vertices in the Einstein frame after a conformal
transformation is performed; see the discussion in the next
section. The predictions and consequences of the gravity
portal for the lifetime of the DM particle for different values
of its mass and nonminimal coupling have been inves-
tigated in Refs. [29,30].
In the present work we propose to investigate for the

first time the impact of the gravity portal on properties of
white dwarfs (WDs), such as the equation of state (EoS)
and cooling time. Being compact enough, WDs serve
as ideal stellar laboratories for new gravitational effects.
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Their advantage over other compact objects, e.g., neutron
stars, is that their equation of state is relatively well under-
stood. The Fermi pressure of the degenerate electron gas
prevents the collapse of the star due to its own gravity, and
thus hydrostatic equilibrium is achieved. For these reasons
the choice of WDs as cosmic laboratories for gravity is quite
popular in the literature; see, e.g., Refs. [31,32].
The plan of our work is as follows. In the two

subsections of the next section we briefly review the
gravity portal scenario, and summarize the standard EoS
of an ideal Fermi gas and the time dependence of the
luminosity of WDs. In Sec. III we discuss the impact of the
gravity portal on the EoS and the cooling time of WDs, and
finally we conclude our work in the last section.

II. FORMALISM

A. The gravity portal scenario

First let us briefly review the gravity portal following
Refs. [29,30]. We extend the Lagrangian of the SM to
include dark matter by adding a scalar field ϕ, LT ¼
LSM þ LDM, where LSM is the usual Lagrangian of the
SM [33,34], while the scalar field is described by the
Lagrangian

LDM ¼ 1

2
∂μϕ∂μϕ − VðϕÞ; ð1Þ

where the scalar potential includes a mass term and
possible self-interactions. For instance, for repulsive dark
matter it may have the form [35,36]

VðϕÞ ¼ 1

2
m2

ϕϕ
2 þ 1

24
λϕ4 þ � � � ; ð2Þ

where mϕ is the mass of the DM particle, and λ ¼
ðmϕ=FÞ2 > 0, with F being a high mass scale, is the
self-interaction coupling constant; for pNGBs it has the
form [37]

VðϕÞ ¼ Λ4½1� cosðϕ=FÞ�; ð3Þ

which upon expansion around the minimum leads to an
attractive force [38].
In Refs. [39,40] it was shown that a spin-zero particle

can form a Bose-Einstein condensate, solving the core/cusp
problem on galactic scales. However, this requires a
repulsive force, and this is why in the following we shall
focus on potentials of the first kind, i.e., Eq. (2). Moreover,
if it is assumed that the scattering length is of the order
of 1 fm, the mass of the DM particle is computed to
be 10 meV.
Then, we couple the particle physics Lagrangian to

gravity. In the physical (Jordan) frame the model is
described by the action

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2κ2
Rþ LT − ξRfðϕÞ

�
; ð4Þ

where R is the Ricci scalar, g is the determinant of the
metric tensor gμν, κ2 ¼ 8πG, and we allow for a non-
minimal coupling to gravity. We remind the reader that this
type of coupling is not optional; rather, it is inevitable, since
it will be generated via quantum loop corrections even if it
is absent in the classical action. The functional form of the
factor fðϕÞ depends on the specific model considered.
Performing a conformal transformation

g̃μν ¼ Ω2gμν; ð5Þ

where Ω2 ¼ 1þ 2ξκ2fðϕÞ, the action in the Einstein frame
takes the form [29,30]

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−

1

2κ
R̃þ Lϕ;SM þ � � �

�
; ð6Þ

where the dots denote terms that are not of interest here,
while the interaction Lagrangian between the SM particles
and the dark matter particle ϕ is found to be [29,30]

Lϕ;SM ¼ −2ξκ2
∂f
∂ϕ

����
ϕ¼0

ϕ

�
3

2
Tf þ � � �

�
; ð7Þ

where for the time being we are interested only in the
coupling between the spin-zero boson and the SM fermions.
We see that even if in the Jordan frame there are no

direct couplings between ϕ and the SM particles, in
the Einstein frame there are interaction terms induced
due to the nonminimal coupling ξ. For heavy DM particles,
mϕ ≥ 1 GeV, in the gravity portal studied in Refs. [29,30]
two specific models were considered, namely, the scalar
singlet DM [41,42], where

Ω2ðϕÞ ¼ 1þ 2κ2ξMϕ; ð8Þ

and the inert doublet model [43,44], where

Ω2ðh; ηÞ ¼ 1þ 2κ2ξðvþ hÞη; ð9Þ

where h is the SMHiggs boson, v is its vacuum expectation
value, and η is the CP-even Higgs boson coming from the
second doublet. Therefore, the DM particle may decay into
SM particle pairs (if kinematically allowed), ϕ → X1X2,
and the precise expressions for the partial decay widths
depend on the conformal factor Ω2 [or on the function
fðϕÞ, if you wish]. The lifetime τ of the DM particle is
given by

τ−1 ¼ ΓT ¼
X
i

Γi; ð10Þ
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where the index i runs over all possible decay channels, and
ΓT is the total decay width of the scalar field ϕ. Since the
DM particle must be quasistable (cosmologically stable),
the lifetime of ϕ should be larger than the age of the
Universe, t0 ≃ 4 × 1017 sec. In reality, however, the life-
time of the DM is further constrained by telescopes that
have been designed to detect its decay products, such as
neutrinos (IceCube [45]) or γ rays (Fermi-LAT [46]). In
Ref. [30], for the models studied there and for masses
mϕ ≥ 1 GeV, the authors imposed the conservative limit
τ ≥ 1024 sec. In the framework considered here, and if the
scalar field ϕ is very light (mϕ ∼meV or lower), as
suggested by the cusp/core problem, the only kinematically
open channel is the one to photons. However, the scalar
field is coupled to massive vector bosons only (see the
Feynman rules in the Appendix of Ref. [30]), and therefore
in the scenario adopted here ϕ cannot decay into a pair of
photons at tree level. The decay process will necessarily
take place at the one-loop level via charged particles
circulating in the loop (this is the case of, for instance,
the QCD axion [47–50]), and therefore the lifetime of the
scalar field is expected to exceed the age of the Universe.
At this point a remark is in order. In the simplified scalar

field framework we consider here, ϕ does not need to be
identified with the DM particle. As a matter of fact, it would
be more interesting if we suggested a possible way to
constrain the more general case of any new scalar field
with certain couplings to electrons. Therefore, to keep the
discussion as general as possible, in the rest of our work the
scalar field does not necessarily serve as the DM particle.
We shall only make a couple of minimal assumptions,
namely, (i) that ϕ is a new scalar field beyond the SM of
particle physics with a self-interaction potential of the
Higgs-like form (2), and (ii) that it is real and very light,
mϕ ∼meV or lower.

B. EoS and cooling time of WDs:
Standard treatment

1. EoS of an ideal Fermi gas

White dwarf stars are old compact objects that mark the
final evolutionary stage of the vast majority of stars [51,52].
Indeed, more than 95% (perhaps up to 98%) of all stars will
die as white dwarfs [53]. They were discovered in 1914
when Russell noticed that the star now known as 40 Eridani
B was located well below the main sequence on the
Hertzsprung-Russell diagram. About 80% of WDs have
a hydrogen atmosphere (DA type), while 20% have a
helium atmosphere (DB type) [54]. Low-mass white dwarfs
are expected to harbour He cores, while average-mass
white dwarfs most likely contain carbon/oxygen cores [51].
In the zeroth-order approximation, ignoring the Coulomb

interactions of electrons, the essential features of the EoS of
WDs are captured by the Chandrasekhar model [55]. In the
standard case without a spin-zero boson, electrons with mass

m inside a WD form an ideal Fermi gas, the energy density
and pressure of which are given by the well-known
expressions [55–57]

ϵst ¼
2

ð2πÞ3
Z

kF

0

d3k⃗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; ð11Þ

pst ¼
1

3

2

ð2πÞ3
Z

kF

0

d3k⃗
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p ; ð12Þ

where the Fermi wave number kF is related to the fermion
number density n as follows:

n ¼ k3F
3π2

: ð13Þ

The integrals above can be computed exactly, and therefore
one can obtain analytical expressions for the pressure and
energy density of an ideal Fermi gas as follows:

ϵst ¼
m4

8π2

�
ðxF þ 2x3FÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2F

q
− sinh−1ðxFÞ

�
; ð14Þ

pst ¼
m4

24π2

�
ð−3xF þ 2x3FÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2F

q
þ 3 sinh−1ðxFÞ

�
;

ð15Þ

where we have defined xF ¼ kF=m. In addition, we define
the scalar baryon density as

ns ¼
∂ϵstðmÞ
∂m ¼ 2

ð2πÞ3
Z

kF

0

d3k⃗
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p ð16Þ

for later use, and it is given by

ns ¼
m3

2π2

�
xF

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2F

q
− ln

�
xF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2F

q ��
: ð17Þ

In the nonrelativistic limit, xF ≪ 1, the expression for the
pressure takes the approximate form [58]

pst ∼
m4x5F
15π2

; ð18Þ

while the density is given by [58]

n ¼ x3Fm
3

3π2
¼ ρ

muμe
; ð19Þ

where mu ¼ 1 amu ¼ 1.66 × 10−24 g is the unified atomic
mass unit [59], and μe ¼ A=Z, with A being the atomic
number of the element of the core, is the molecular weight
per electron. There is no explicit dependence on Z, and
μe ¼ 2 irrespective of the core composition [32]. Therefore,
one obtains an EoS of the form
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pst ¼
ð3π2Þ5=3

15π2mðμemuÞ5=3
ρ5=3 ¼ Kst ρ

5=3; ð20Þ

where the constant Kst ¼ 3.1 × 1012 in cgs units.

2. Time dependence of WD luminosity

Since there are no thermonuclear reactions for WDs,
these objects cool down via radiation, and their emitted
energy is due to stored thermal energy. As the pressure
drops to zero close to the surface, there must be a non-
degenerate atmosphere, which provides a very thin insu-
lating layer (of the order of 10−3 times the radius of the star)
that regulates the rate of heat loss from the object [60].
The cooling time of WDs in the standard case can be
found, e.g., in Refs. [60,61]. Combining the equations that
describe hydrostatic equilibrium and the EoS with the
well-known laws [60]

p ¼ RρT
μ

; ð21Þ

L ¼ −MCν
dT
dt

; ð22Þ

where t is time, L is the luminosity of the WD, T is
the constant temperature of its isothermal core, M is the
mass of the star, μ is the mean molecular weight, R ¼
kB=mu ¼ 8.315 × 107 ergK−1 g−1 is the ideal gas con-
stant) with kB being the Boltzmann constant) [59,60],
and Cν ¼ ð3RÞ=ð2μÞ, one finally obtains the time depend-
ence of the WD luminosity,

L
L0

¼
�
1þ t

τst

�
−7=5

; ð23Þ

where L0 is the initial luminosity, while the characteristic
cooling time τst is computed to be

τst ¼
3R
5μ

�
51κ0μR4

64πG4σμ5eK3
st

�
2=7

�
L0

M

�
−5=7

; ð24Þ

where M is the mass of the WD star, G is Newton’s
constant, κ0 ¼ 2 × 1020 m5 kg−2 K7=2 is the opacity [60],
σ ¼ 5.67 × 10−8 Wm−2K−4 is the Stefan-Boltzmann con-
stant [59], and μ ¼ 1.35 for realistic compositions [60].
In Eq. (23) the term t=τst is dimensionless. Accordingly,
the first and second terms of Eq. (24) have units m10=7 s−8=7

and m−10=7 s15=7 if the luminosity and mass of the star are
expresses in kg and W (in SI units), respectively.

III. IMPACT OF THE GRAVITY PORTAL ON WDs

Here we shall study the impact of the DM particle on
the EoS of WDs and its cooling time. The treatment is
similar to the relativistic mean field theory of neutron stars

[62–64], where nucleons interact by exchanging mesons,
the value of which are taken to be constants. Here we study
WDs instead of neutron stars, nucleons are replaced by
electrons, and finally mesons are replaced by the DM
particle ϕ.
In the gravity portal, and in the Einstein frame, there is a

Yukawa coupling between the DM boson ϕ and the
electrons, which are Dirac fermions ψ . The system is
described by the Lagrangian density

Le−DM ¼ ψ̄ðiγμ∂μ −mþ gϕÞψ þ 1

2
ð∂μϕ∂μϕ −m2

ϕϕ
2Þ;
ð25Þ

where a possible self-interaction coupling constant λ has been
ignored, since it will have a negligible effect on the numerical
results. The Yukawa coupling constant g depends on the
two free parameters of the model, namely, the nonminimal
coupling ξ and the mass of the scalar fieldmϕ. However, it is
more convenient to trade ξ for g and take in the following
ðmϕ; gÞ to be the two free parameters of the model.
In the mean-field approximation [62–64] it is assumed

that ϕ is a constant, ϕ0, and therefore the system looks like
an ideal Fermi gas where electrons acquire an effective
mass

m� ¼ m − gϕ0: ð26Þ
Since the kinetic term of the DM particle vanishes, the total
pressure and energy density of the system is given by

p ¼ pstðm�Þ −
m2

ϕϕ
2
0

2
; ð27Þ

ϵ ¼ ϵstðm�Þ þ
m2

ϕϕ
2
0

2
; ð28Þ

where pstðm�Þ and ϵstðm�Þ are the standard expressions for
the pressure and energy density, respectively, of an ideal
Fermi gas evaluated at the effective mass m�. Finally, the
constant value of the DM boson is given by

ϕ0 ¼
gnsðm�Þ

m2
ϕ

; ð29Þ

where the scalar density ns is evaluated at the electron
effective mass m�. The expression for ϕ0 can be obtained
from the thermodynamic argument that a closed, isolated
system will minimize its energy with respect to the field or
the effective mass.
The effective mass of the electrons is determined by

solving the equation

m� ¼ m −
g2nsðm�Þ

m2
ϕ

; ð30Þ

and the new EoS is obtained.
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In Fig. 1 we show the modification of the EoS in the
gravity portal. The points are generated from the numerical
solution, while the continuous curves are the fitting curves
that correspond to polytropic EoSs p ¼ Kρð1þ1=nÞ with
appropriate K, n. In particular, the black curve corresponds
to the standard polytropic EoS with index n ¼ 1.5,

pst ¼ Kstρ
5=3; ð31Þ

the brown curve (obtained assuming g ¼ 4.4 × 10−9 and
mϕ ¼ 4.4 × 10−13 GeV) corresponds to a new EoS with
index n ¼ 1.82,

p1 ¼ K1ρ
1.55; ð32Þ

with K1 ¼ 5.75 × 1012 in cgs units, and the magenta
curve (obtained assuming g ¼ 4.1 × 10−9 and mϕ ¼
4.6 × 10−13 GeV) corresponds to a modified EoS with
index n ¼ 1.67,

p2 ¼ K2ρ
1.6; ð33Þ

with K2 ¼ 4.19 × 1012 in cgs units.
Going through the same steps for the generic polytropic

EoS p ¼ Kρð1þ1=nÞ, one obtains the following expression
for the luminosity:

L
L0

¼
�
1þ t

τa

�
1=a

; ð34Þ

where a is found to be

a ¼ −
ð17=2Þ − 3 − 2n
2ðð17=4Þ − n − 1Þ ; ð35Þ

while the new characteristic cooling time τa is computed
to be

τa ¼
�
1þ a
−a

�
3R
2μ

�
κa

�
R
μe

�
2ðnþ1Þ�1þa

�
L0

M

�
a
; ð36Þ

where κa ¼ ð51κ0μÞ=ð64πG4σRK2nÞ. It is easy to verify
that when n ¼ 3=2 ¼ 1.5, we recover the expressions of the
previous subsection, which are valid in the usual case for
ξ ¼ 0 ¼ g. In Fig. 2 we show the time dependence of the
WD luminosity for the standard case and for the modified
EoS for M ¼ 0.5 M⊙ and L0 ¼ L⊙.
Figure 3 shows the path of WD stars that are going

through a cooling process in a simplified Hertzsprung-
Russell diagram (luminosity decreasing with time).
The two dashed black curves correspond to the standard
cooling process [as computed using Eq. (23)] of two
WDs with masses 0.3 M⊙ and 0.6 M⊙. Both stars have
an initial luminosity L0 ¼ L⊙ as computed using Eq. (23).

0 2 4 6 8
0

1

2

3

4

p

FIG. 1. Modification of the EoS due to the electron-DM
interaction in the gravity portal for g ¼ 4.4 × 10−9 and mϕ ¼
4.4 × 10−13 GeV (brown curve), and g ¼ 4.1 × 10−9 and mϕ ¼
4.6 × 10−13 GeV (magenta curve). The standard EoS (black
curve) is also shown for comparison.

FIG. 2. Cooling of white dwarfs in the gravity portal (solid
curves) in comparison with their cooling in the standard case
(dashed curve) for M ¼ 0.5 M⊙ and L0 ¼ L⊙.

FIG. 3. Luminosity of WDs (in units of solar luminosity) versus
effective temperature (in Kelvin) (i) for the standard case (in
black) and (ii) for the two models in the gravity portal scenario
(colors are as in Figs. 1 and 2).
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The colored curves correspond to the same stars, but for the
models discussed in Figs. 1 and 2.
It would be interesting to use the predictions of the

model and the results obtained here to put constraints on the
free parameters of the model using current observational
data related to white dwarf stars. We hope to be able to
address this issue, and perform a thorough analysis along
these lines in a future work.

IV. CONCLUSIONS

In summary, in this work we have studied the impact of
the gravity portal scenario on the cooling time of white
dwarfs. Our results show that the electron–scalar DM

interaction leads to a softer equation of state, which in
turn implies a slower cooling time in comparison with the
standard case.
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