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If the symmetry breaking leading to the origin of the axion dark matter field occurs after the end of
inflation and is never restored, then overdensities in the axion field collapse to form dense objects known
in the literature as axion miniclusters. The estimates of the typical minicluster mass and radius strongly
depend on the details of the cosmology at which the onset of axion oscillations begin. In this work we study
the properties and phenomenology of miniclusters in alternative cosmological histories and find that they
can change by many orders of magnitude. Our findings have direct implications on current and future
experimental searches and, in the case of discovery, could be used to learn something about the universe
expansion prior to big bang nucleosynthesis.
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I. INTRODUCTION

The nature of the cold dark matter (CDM) remains
unknown to date despite the growth of evidence in support
of its existence coming, on top of the original motivations
[1,2], from gravitational lensing [3], the cosmic microwave
background radiation (CMBR) [4,5], also in combination
with Lyman-α andweak lensing [6], the hierarchical structure
formation of the observable universe [7], the formation and
evolution of galaxies [8–10], galactic collisions [11,12], and a
plethora of other observational techniques.
Among the many hypothetical particles that could com-

pose the CDM is the quantum chromodynamics (QCD)
axion [13,14]. The axion is the pseudo-Goldstone boson
arising in the spontaneous breaking of a U(1) symmetry first
introduced by Peccei and Quinn (PQ [15,16]) to address the
strong-CP problem [17–20]. The fact that axions could solve
two distinct problems in physics makes its search particu-
larly appealing. If the axion field exists, it has a very small
mass and faint couplings to ordinary particles. Both happen
to be suppressed by a new energy scale, the axion decay
constant fA, which corresponds approximately to the scale
of PQ symmetry breaking and which is constrained by axion
phenomenology to be fA ≳ 107 GeV. In particular, the scale
f−1A sets the axion coupling to two photons, which opens the

possibility for axion electrodynamics [21–26] and promising
laboratory detection methods [27–32]. In the literature,
mixed dark matter models in which the axion makes up a
fraction of the dark matter while the rest is in the form of
weakly interacting massive particles (WIMPs) have also
been considered [33–35]. See Refs. [36–43] for reviews of
the QCD axion.
The history and the properties of the present axion field

strongly depend on the moment at which the breaking of the
PQ symmetry occurs with respect to inflation [44–56]. If the
PQ symmetry breaking occurs after inflation, a fraction of
the total axions component is expected to organize into
gravitationally bound structures known as axion “miniclus-
ters” [57–61], prompted by the inhomogeneities of the axion
field in this scenario. Axion miniclusters are compact objects
with a density of various orders of magnitude higher than
the present local CDM density. Inside axion miniclusters
another type of exotic structure, an axion star [62–84], could
possibly form. It has been argued that the first miniclusters
that ever come into place have a characteristic size of the
order of ∼10−12 solar masses. This scale is much smaller
than the smallest clump that WIMPs would assemble into
in the standard cosmology, because of their much longer
free-streaming length.1 Therefore, detecting these clumps
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1See Ref. [85] for the effect of a nonstandard cosmology on the
free-streaming length of WIMPs.
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provides a unique discrimination signature among CDM
candidates. As structure formation evolves, axion miniclus-
ters are expected to hierarchically assemble into dark matter
halos of galactic size, forming minicluster halos. This claim
has yet to be addressed numerically, as well as the possibility
that miniclusters might have not survived tidal disruption.
Some studies suggest that miniclusters survive hierarchical
structure formation to date [86–89], claiming that it is
possible to constrain the fraction of dark matter in halos
using microlensing data [90,91] and femtolensing in the
future [92] (see also [93]). Semianalytic results on the mass
function of axion miniclusters are available today [94], with
refined numerical work recently reported [95,96].
Today, the standard axion miniclusters would be gravi-

tationally bound clumps of axions with masses of the order
of the largest asteroids like Vesta or Pallas, and of size
comparable to an astronomical unit. Miniclusters could
suffer tidal disruption by stars, with the value of bound
axions diminishing with respect to its early universe
estimate. It is usually expected that a sizeable fraction of
the galactic DM axions is bound into minicluster structures,
the remaining part forming a relatively homogeneous halo.
Despite the large number of clumps expected, the Earth
would encounter only a few such objects every galactic
year. On the other hand, if the fraction of axions bound into
miniclusters is close to unity, the direct detection of axions
in microwave cavity searches could be severely affected.
A negative search by a cavity experiment could be an
indication that axions are mostly organized into clumped
structures like miniclusters. Since axion detection is sensi-
tive to the local CDM energy density, a clumpy axion
distribution would lead to spikes in the axion detection
spectrum and be relevant for a direct detection technique.
The interest in all of the upcoming axion detectors then lies
in the present phase-space distribution of the axion CDM,
which is not expected to be homogeneous even at the
interstellar scale. A reliable detection must take into account
the possibility of a inhomogeneous CDM distribution either
in space (axion miniclusters and stars) or in momentum
(low-dispersion filaments from tidal stripping). Moreover, if
the axion is discovered by a haloscope experiment like
ADMX, HAYSTAC, or CULTASK, the energy spectrum
will be immediately measured and could be used to do
galactic astronomy [97]. The spectrum and its variation in
time (daily and anual modulations) can be used to identify
substructure in the axion DM distribution like tidal streams
from dwarf-galaxies [98] or even from axion miniclusters
themselves, obtaining their main properties with precision
[97]. With these techniques, astronomical quantities like the
solar peculiar velocity could be measured even better than
with ordinary astronomy. Several variations of the haloscope
concept allow to measure the axion velocity distribution by
enabling directional detection [99–101], increasing the
precision and decreasing the required measurement time.
Understanding the fraction of axions bound in miniclusters

and of the axion phase-space will maximize the outcome of
the various experiments that will start looking for axion
CDM in the near future.
The rough properties of axion miniclusters described

above have been studied only under the assumption that
the universe is radiation-dominated when axions become
nonrelativistic. This is certainly a simple and minimal
assumption but also one that does not need to be
necessarily correct. We know with some certainty that
the universe expansion must be radiation-dominated after
and around neutrino decoupling (temperatures of
T ≲ 5 MeV) not to alter the successful predictions of
radiation-dominated big bang nucleosynthesis (BBN)
[102–106], but we have no direct evidence of the expan-
sion rate of the universe at earlier times (higher temper-
atures). Most importantly, if axions are to be a dominant
contribution to the CDM they become CDM at temper-
atures ∼GeV, precisely when we cannot ascertain the
crucial assumption of radiation domination.
In this paper we want to drop entirely this assumption

and study the properties of axion miniclusters in different
nonstandard cosmologies (NSCs) before BBN. The mass
and the radius of a minicluster depend crucially on the size
of the causal horizon at the time when axions become
nonrelativistic, which in alternative cosmologies might
differ by various orders of magnitude with respect to the
standard scenario. In order to focus the discussion on the
novel aspects, we assume that axions make up the totality
of the cold dark matter observed and that essentially all
axions fall into miniclusters. Our results, summarized in
Table I are quite spectacular In fact, the typical minicluster
mass and radius can change by many orders of magnitude
with respect to the predictions achieved in the standard
cosmology. Most importantly, the time and duration of
encounters with the Earth can be largely enhanced or
suppressed, opening many possibilities for the direct
detection of axion dark matter.
Previous works have already studied how the axion mass

for which the axion explains the totality of the observed
CDM is modified in several NSCs [107–109] but the
changes to the properties of miniclusters are presented
here for the first time. Moreover, regarding the treatment of
NSCs and the axion DM mass, we improve over previous
results by computing the nonstandard cosmologies numeri-
cally including the recent detailed input from lattice QCD
(equation of state and axion mass) [110] and presenting
simple analytical comparisons with the standard radiation
dominated case. Note that, in addition to the cold axion
population, a modified cosmology would alter the yield of
thermally produced axions [111], as well as of any other
light particle such as neutrinos [112,113]; however, since
for the range of masses considered in this work,
mA ≲ 10 meV, the thermal population is a subdominant
component to the total energy density, we do not discuss
this contribution further.
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This paper is organized as follows. Section II is a brief
review of the production of cosmological axions. In Sec. III
we set the stage for the nonstandard cosmological models
of interest and we review their impact on the DM axion
mass. Section IV presents our results on the properties of
axion miniclusters and their phenomenology. Final remarks
and conclusions are drawn in Sec. V.

II. AXION COLD DARK MATTER

In the postinflationary scenario, axion cold dark matter is
produced from the misalignment mechanism and the decay
of topological defects (strings and walls). The axion field
behaves like a massless field, becoming homogenous on
scales of the order of the causal horizon, as long as the
Hubble expansion rate (H ¼ d log a=dt, with a ¼ aðtÞ the
scale factor of a Friedmann-Robertson-Walker universe) is
much larger than the axion mass, H ≫ mA. However,
around the time t1 (or equivalently the temperature T1)
when the condition

3HðT1Þ ≈mAðT1Þ; ð1Þ

is met, the relevant long-wavelength modes begin to
respond to the QCD potential by evolving toward the
minimum of the field configuration A ¼ 0 (where AðxÞ
is the axion field), oscillating around it as a nonrelativistic
(NR) field with equation of state wA → 0, i.e., equivalent to
CDM. Shortly after that time, the energy density distribu-
tion, which corresponds to the axion field oscillating
with different amplitudes at different positions, becomes
essentially frozen. The calculation of the spatially averaged
CDM yield from the misalignment mechanism is reviewed
in Appendix A and it is given by

ρmis
A ¼ 1

2
mAðT0ÞmAðT1Þf2Ahθ2i i

�
a1
a0

�
3

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðT0ÞχðT1Þ

p
hθ2i i

�
a1
a0

�
3

: ð2Þ

In the last expression, we have introduced the temperature-
dependent axion mass mAðTÞ, which is related to the axion
decay constant fA by

m2
AðTÞf2A ¼ χðTÞ; ð3Þ

where χðTÞ is the topological susceptibility of QCD. For
practical purposes it is useful to define the energy scale
ΛA ¼ ðχðT ¼ 0ÞÞ1=4 ≈ 75.5 MeV in terms of the suscep-
tibility at zero temperature [110,114]. In Eq. (2) we
introduced the standard notation, in which we have
normalized the axion field with fA by defining the angle
θ ¼ A=fA ∈ ð−π; πÞ, and we wrote hθ2i i for the average
of the initial misalignment angle squared, including the
contribution from the nonharmonic terms in the axion
potential in Eq. (A2) [40,52,115,116]. Finally, the last
factor in Eq. (2) involving the ratio of the scale factor at t1
and today t0, is the dilution of the axion number density due
to the expansion of the universe from the moment at which
the axions become NR and behave as CDM until present
time. Note that the energy density in Eq. (2) is a quantity
uniquely related to QCD scales: the axion decay constant
enters the computation through the determination of the
temperature T1 at the onset of the field oscillations in
Eq. (1), or equivalently the scale factor a1 ¼ aðT1Þ. The
quantity T1 is sensitive to the energy content of the
universe, therefore any deviation from the standard cos-
mological model affects the axion DM yield and the size of
the horizon (∼1=Hðt1Þ≡ 1=H1) when axions start to
behave as CDM.
DM axions are also produced from the decay of strings

and domain walls, with energy density contributions ρstrA
and ρwallA respectively that scale with the same exponent in
the decay constant fA [38,117,118], at least when the
details of the production and the scaling with the power

TABLE I. The parameters α and β describing the various pre-
BBN cosmologies: Standard radiation-dominated (STD), matter-
dominated low-reheat temperature (MD) cosmology, kination
respectively without or with (KD) the decay of the ϕ field
considered. For each cosmology, we provide the value of the
relevant quantities describing the structure of the axion mini-
cluster and the details of encounter with the Earth, setting
αtot ¼ 10, Φ ¼ 1, and r ¼ 1. We have defined TMeV ¼
TRH=MeV. mCDM is the value of the axion mass for which the
axion is the CDM particle in the specific cosmology considered,
in which the axion field begin the coherent oscillations at
temperature T1. Rc and Mc are respectively the radius and the
mass of the minicluster. The local CDM energy density is
enhanced by the quantity under “Enhancement” by the presence
of the minicluster. The encounter of the Earth with an axion
minicluster would last Δtenc days, with a period between two
encounters given by Tbtw. Nenc is the number of miniclusters
encountered by one galactic revolution.

Scenario STD MD
Kination
(no decay)

Kination
(w/decay)

α 1 3=8 1 3=4
β 1=2 2=3 1=3 1=3

mCDMðμeVÞ 100 10−1T4=3
MeV 104T−1

MeV 104T−1
MeV

T1ðMeVÞ 1500 70T5=12
MeV 1500 600T1=8

MeV

McðM⊙Þ 10−11 10−9T−2=3
MeV 10−21T3

MeV 10−24T4
MeV

RcðAUÞ 0.5 T−2=9
MeV 10−4TMeV 3 × 10−5T4=3

MeV

Enhancement 107 107 107 107

δtcohðsÞ 3 × 107 1010T−8=9
MeV 1011T−1

MeV 1013T−5=3
MeV

ΔtencðdaysÞ 5.5 28T−2=9
MeV 4 × 10−3TMeV 3 × 10−4T4=3

MeV

Nenc 500 102T2=9
MeV 106T−1

MeV 107T−4=3
MeV

Tbtw (yr) 4 × 105 106T−2=9
MeV 300TMeV 20T4=3

MeV
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spectra are neglected. This allows us to parametrize the
contribution from the topological defects to the axion cold
dark matter density as an additional factor multiplying the
misalignment contribution,

ρ̄A ¼ ρwallA þ ρstrA þ ρmis ≡ αtotρ
mis
A : ð4Þ

This parametrization allows for the case in which the axion
CDM yield is even smaller than the misalignment-only
contribution αtot < 1, a scenario supported by recent
simulations [119–121].

III. AXION POPULATION IN MODIFIED
COSMOLOGICAL SCENARIOS

A. Parametrizing a cosmological model

In this paper we consider a nonstandard cosmology
(NSC), a scenario in which the early universe, close to the
relevant temperature T1 ≲Oð1Þ GeV, contains the stan-
dard thermal bath of SM particles and an additional
component labelled ϕ, whose energy density is so large
during the temperatures considered that it affects the
expansion rate of the universe. The evolution of the energy
density of radiation (ρR) and of the extra substance (ρϕ) is
governed by a set of coupled Boltzmann equations,

_ρϕ þ 3ð1þ wϕÞHρϕ ¼ −Γϕρϕ; ð5Þ

_ρR þ 3ð1þ wRÞHρR ¼ Γϕρϕ; ð6Þ

where a dot denotes a derivative with respect to cosmic time
t, the parameter wi ¼ pi=ρi describes the equation of state
of substance i with pressure pi and energy density ρi (with
i ∈ fϕ; Rg), and Γϕ is a possible decay rate. The Friedmann
equation H2 ¼ ð8π=3m2

PlÞðρR þ ρϕÞ gives the evolution of
the scale factor (and thus H) as a function of time. In order
to connect with a late cosmology in agreement with
observations we will consider substances that decay
and/or redshift faster than radiation, so that the description
of the history of the universe transitions from the NSC to
the standard scenario after a certain reheat time (tRH) or
equivalently below a certain temperature, which we indi-
cate as the reheating temperature TRH. We define the reheat
time implicitly by the condition ρϕðtRHÞ ¼ ρRðtRHÞ. The
Hubble rate at time tRH is then

HRH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3

ρϕðtRHÞ þ ρRðtRHÞ
m2

Pl

s
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3

45
g�ðTRHÞ

r
T2
RH

mPl
:

ð7Þ

In the last step we have assumed that the extra energy
injected reaches the thermal equilibrium on a much smaller
timescale than the Hubble expansion rate, so that the

contribution from the radiation to the energy density
is ρR ¼ ðπ2=30Þg�ðTÞT4.
Once the extra substance has decayed, its energy density

ρϕ can be neglected in Eq. (6), which can be integrated to
relate temperature and scale factor by the usual conserva-
tion of comoving entropy,

gSðTÞT3a3 ¼ constant; ð8Þ
where gSðTÞ and g�ðTÞ are the number of effective degrees
of freedom respectively in entropy and energy at temper-
ature T, for which we use the parametrization in Ref. [110].
However, Eq. (8) is not guaranteed to hold “during” the

NSC period if the nonstandard “substance” decays into
SM particles. The decay products will thermalize and
release additional entropy. In such a modified scenario,
the decrease in temperature with the scale factor would be
slower than the standard T ∝ 1=a law in Eq. (8). Therefore,
we write down the relation for entropy conservation in a
NSC as

gSðTÞT3a3α ¼ constant; ð9Þ
where 0 < α ≤ 1 is a quantity that we use to parametrize
the entropy injection and the subsequent decrease in the
temperature decrease with the scale factor. Note that
entropy conservation relates to α ¼ 1, for which Eq. (9)
returns the standard case in Eq. (8), while values of α > 1
would require a substance that efficiently sucks up energy
from the SM bath, not contemplated in this study.
It proves useful to introduce a generic relation between

time and scale factor,

a ∝ tβ; ð10Þ
where we assume the range 0 < β < 1, corresponding to a
cosmology in which the expansion is decelerating.
Formally, β ¼ 2=ð3ð1þ wÞÞ where w is the mean equation
of state of the various fluids that are present at a certain
time. During the NSC phase, the equation of state is well
approximated with that of the substance dominating the
energy density for times t < tRH, so w ≈ wϕ. Equation (10)
does not include the important case w ¼ −1, β → ∞ in
which aðtÞ ∝ expðHtÞ, which we do not treat explicitly.
The Hubble rate during the modified cosmological epoch
immediately follows from Eq. (10) as H ≡ _a=a ¼ β=t.
It is a simple exercise to solve Eqs. (5) and (6) at early

times t≲ 1=Γϕ and for a nonzero Γϕ, assuming that
the radiation produced via the decay of the ϕ field
dominates over any preexisting radiation, see e.g.,
Refs. [112,122–126]. Under these conditions, using
Eq. (10) and the definition ρR ∝ T4 [ignoring g�ðTÞ], we
find an interesting relation between α and β [123],

α ¼ 3

8
ð1þ wϕÞ ¼

1

4β
: ð11Þ
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To find the expression for HðTÞ at early times, we combine
Eqs. (9) and (10) to obtain tαβ ∝ 1=T, so that the expression
for HðTÞ valid for T ≥ TRH reads

HðTÞ ≈HRH

��
gSðTÞ

gSðTRHÞ
�1

3 T
TRH

� 1
αβ

: ð12Þ

B. Examples of modified cosmologies

We consider explicitly three modified scenarios which
are justified in known extensions of the Standard Model.

(i) Early matter decay domination (MD)
In this scenario, we take the early universe energy

density to be dominated by a gas of NR massive
particles (or a coherently oscillating NR field, which
amounts to the same) for which we have wϕ ¼ 0,
β ¼ 2=3. These particles have to decay in order for
the standard cosmology to take place. This scenario
has been used extensively to study low-reheat
temperature (LRT) cosmologies [127–132], and it
is famously problematic in the case of string moduli.
One such tractable scenario embed in string theory is
the large volume scenario [133,134], where a unique
modulus field appears. The decay leads to a non-
conservation of the entropy density α ≠ 1, in par-
ticular the model predicts α ¼ 3=8 [123].
We present the evolution of H and a in this

scenario in Fig. 1 as red lines, obtained by solving
numerically Eqs. (6) and (5) with wϕ ¼ 0. As long as
ρϕ dominates over ρR at some point, the decay rate
Γϕ fixes to a good extent the reheating temperature.
In Fig. 1 we have adjusted Γϕ to obtain TRH ≃
0.5 GeV and we have solved for different
initial matter abundances (thicker lines have larger
ρϕ=ρR ratio). We distinguish three regimes for H:
(1) At early times (high T) the radiation from the
decaying matter field is subdominant with respect
to a preexisting radiation so effectively α ¼ 1 and
H ∝ a−3=2 ∝ T3=2; (2) The radiation from the
decaying field dominates over the preexisting one.
In MD cosmology, the Hubble rate H decreases
much faster with T because T is decreasing slower
in time due to the radiation generated during the
decay (H ∝ a−3=2 ∝ T3=2α ∼ T4); (3) The radiation-
dominated period after the decay H ∝ T−2. If the
initial matter abundance is much larger than the
preexisting radiation, only the second and third
period will be relevant for us. We will mainly focus
on this simple scenario (thick red line), for which
indeed we reproduce α ¼ 3=8, β ¼ 2=3 before
reheating.

(ii) Early kination domination
In the kination cosmology [135–140], the early

universe expansion is driven by the kinetic energy of

a scalar field. The field ϕ is a “fast-rolling” field with
an equation of state wϕ ¼ 1 (pressure pϕ equals the
energy density ρϕ). The energy density of the field ϕ
scales as ρϕ ∼ a−6, so that it redshifts faster than the
radiation energy density ρR ∼ a−4 and becomes
subdominant below TRH. Therefore, during kination
domination we have β ¼ 1=3. The thermal produc-
tion of a WIMP during kination has been discussed
in Refs. [139–150]. Since the kination field ϕ does
not decay but it redshifts away, we have entropy
conservation with α ¼ 1.

The solution of Eqs. (5) and (6) with wϕ ¼ 1

is shown in Fig. 2 as a blue line (H ∝ a−3 ∝ T3).

FIG. 1. Evolution of Hubble rate and scale factor (normalized
to the value at T ¼ 1 MeV) in Early matter domination (MD)
cosmologies (red lines) compared to standard radiation domi-
nation (black). The red lines differ only in the initial matter/
radiation fraction, which increases with increasing line-
thickness. All the models share the same decay rate Γϕ, here
set to obtain TRH ∼ 0.5 GeV.
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The reheating temperature can be adjusted by the
initial value of ρϕ for a given temperature (equiv-
alently ρR). In Fig. 2 we have adjusted the initial
value of ρϕ to obtain TRH ≃ 0.5 GeV.

(iii) Kination decay (KD)
We also consider a decaying ϕ field as in

Ref. [149]. In this case, the reheating temperature
is set by the abundance if the decay rate is very
small and by the decay rate if the abundance is very
large. The second makes the limiting case of interest
here. In Fig. 2 we show cosmological histories for
different initial kination densities with respect to

pre-existing radiation (increasing abundance follows
the line thickness). As in the MD case, when the
thermal bath is dominated by the preexisting radi-
ation, the Hubble rate H follows a softer power
law (H ∝ a−3 ∝ T3) than when the radiation from
the ϕ-decay dominates2 (H ∝ a−3 ∝ T3=α ¼ T4).
Deep inside the KD period (thick green line in
Fig. 2), one finds α ¼ 3=4 and β ¼ 1=3.

C. The dark matter axion mass

For a given NSC, there is one specific value of the axion
mass (or equivalently of the axion decay constant fA)
for which axions account for all of the observed CDM
(ρCDM ∼ 9.72 × 10−48 GeV4 [4]). Such a value of
mAðT → 0Þ, here denoted as mCDM and called the “DM
axion mass,” is in general a function of the parameters that
define the NSC model (TRH; α; β), as well as the αtot factor.
We refer to the value in the standard cosmological scenario
asmstd

CDM. Generally we denote bymA the value of the axion
mass at zero temperature and we note explicitly the
temperature as mAðTÞ when relevant.
In the remainder of the paper we want to assume for

simplicity that axions account for all the CDM so we need
to compute it for the different NSCs of interest. Technically,
we compute these quantities as follows. Given a NSC
model, equating ρ̄A ¼ ρCDM, with ρ̄A as in Eq. (4), imposes
a direct constraint on the value of the temperature T1,
so that using the definition in Eq. (1) we obtain the value
of fA as a function of αtot for which the axion is the
CDM particle. Since this calculations have been presented
elsewhere [127,151,152], here we only outline the key
aspects that differentiate the computation in NSC models.
For simplicity in the exposition we neglect Oð1Þ factors
involving the slowly varying numbers of degrees of free-
dom, g�ðTÞ; g�SðTÞ.
A technical point is that the topological susceptibility

χðTÞ, and likewise the axion mass, depends on temperature.
In the numerics of this paper we use the recent lattice
calculation in the lattice from Ref. [110], but when
considering analytical calculations a truncated power-law
expression is useful [153], as

�
mAðTÞ
mAð0Þ

�
2

¼ χðTÞ
χð0Þ ¼

8<
:

1 for T ≤ TΛ;�
TΛ
T

�
2γ
; for T ≥ TΛ:

ð13Þ

where TΛ ≃ 160 MeV and γ ∼ 4.
In general, the relevant sequence of events in the history

of the axion field in a NSC reads

FIG. 2. Evolution of Hubble rate and scale factor (normalized
to the value at T ¼ 1 MeV) in kination cosmologies (blue line)
and decaying kination (KD) (green lines) compared to standard
radiation domination (black). The decaying kination lines differ
only in the initial kination/radiation fraction, which increases
with increasing line thickness. All the models share the same
decay rate Γϕ, here set to obtain TRH ∼ 0.5 GeV. In the non-
decaying scenario, the initial abundance has been set to obtain the
same TRH.

2The fact that the latter coincides with the MD case is not a
coincidence. For any decaying substance when its radiation
dominates the temperature H ∝ a−1=β ∝ T1=αβ ∼ T4.
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a1 < aRH < aΛ; ð14Þ

i.e., first the axion field begins to oscillate during the NSC
part of the early universe (a1), then the universe converges
to the standard radiation-dominated description (aRH), then
the topological susceptibility saturates with aΛ ¼ aðTΛÞ.
The latter turns out to be true for the ranges of parameters
which are not yet excluded.
The first important thing to note is that the present axion

CDM energy density depends on the NSC parameters only
through T1, or equivalently a1. For a given value a1 of the
scale factor at the onset of oscillations, the present energy
density ρ0ða1Þ is

ρ0ða1Þ ∝
a31
Tγ
1

∝ a3þγα
1 ; ða1 < aRHÞ; ð15Þ

where in the last equality we have used the parametrization
for the scale factor a ¼ aðTÞ in Eq. (9) when the production
of entropy is considered. Note that if the effect of a NSC is
that of decreasing the scale factor a1 at the onset of axion
oscillations, then T1 should also decrease in order to attain
the observed CDM abundance ρCDM using Eq. (15).
We first focus on comparing different NSCs with the

same TRH. Later we will discuss the effects of TRH for a
given cosmology. In Fig. 3 (top panel), we plot a scheme of
the evolution of ρ0ða1Þ as a function of a1 ¼ a in the
standard radiation dominated cosmology (RD), kination
(K), kination decay (KD), and matter decay (MD) scenar-
ios. We also show a horizontal line denoting the observed
value that we are interested to reproduce. The point at
which ρ0ðaÞ intersects ρCDM corresponds to a1 in the
different cosmologies and yields the value ρ̄A in Eq. (4).
By defining the ratio of ρ0ðaRHÞ to ρCDM as Q≡
ρ0ðaRHÞ=ρCDM and using Eq. (15), we find

a1 ¼
aRH
Q

1
3þγα

; ð16Þ

so that the comparison with the case in which entropy is
conserved α ¼ 1, like in the standard cosmology, gives

a1
astd1

¼ Q
1

3þγ−
1

3þγα: ð17Þ

We obtain that the scale factor at which axions become
CDM depends only on α but not on β. The dependence on
TRH is hidden in the definition of Q and will be dealt
with later.
If entropy is conserved in the NSC (α ¼ 1), oscillations

commence at the same value of the scale factor as in
standard radiation dominated history, a1 ¼ astd1 . In this
case, we should also have T1 ¼ Tstd

1 in order to respect the
CDM constraint. In our small collection of NSCs, this is the
case of redshifting kination cosmology.

By contrast, if during the NSC period there has been an
extra injection of entropy, the temperature redshifts slower
than 1=a (α < 1), the topological susceptibility increases
more slowly with a, therefore we have to get an earlier
onset of the axion oscillations to get the same final CDM,
i.e., a1 < astd1 . Note that the value of a1 in Eq. (17)
decreases with decreasing α, therefore we have

aMD
1 < aKD1 < aK1 ¼ astd1 ; ð18Þ

because α ¼ 3=8 during MD, α ¼ 3=4 during KD, and
α ¼ 1 during both kination and the standard cosmology.
Once the value for a1 has been obtained, the temperature

at which axion oscillations commence, T1, is also com-
puted. For this, just consider the ratio of Eq. (15) for the
NSC and standard cosmology giving the same ρCDM,

FIG. 3. Top: Evolution of ρ0ðaÞ in different nonstandard
cosmologies considered in the text for the same “reheating”
temperature TRH ¼ 0.5 GeV. Imposing ρ0 ¼ ρCDM at scale factor
a1 we find a1 ≤ astd1 . Bottom: The Hubble expansion rate, ×a2,
captures the main trend of the DM axion mass, (21).
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T1

Tstd
1

¼
�
a1
astd1

�
3=γ

; ð19Þ

which implies the relation between temperatures

TMD
1 < TKD

1 < TK
1 ¼ Tstd

1 : ð20Þ

Writing Eq. (1) in the form 3H1 ¼ mCDMðTΛ=T1Þγ and
taking ratios of such an expression when evaluated for a
NSC and the standard scenarios gives

mCDM

mstd
CDM

¼ H1

Hstd
1

�
T1

Tstd
1

�
γ

¼ H1

Hstd
1

�
a1
astd1

�
3

; ð21Þ

where in the last step we used Eq. (19). Therefore, the DM
axion mass depends on the particular product H1a31. To
proceed further we note that the Hubble expansion rate as a
function of a during the NSC period is,3

HðaÞ ≃HRH

�
aRH
a

�
1=β

; ða ≲ aRHÞ: ð22Þ

In standard RD cosmology with β ¼ 1=2 we get H1a21 ¼
constant, if we neglect changes due to g�ðTÞ. To compare
NSCs with the standard RD case we show the combination
H1a21 for the different cosmologies considered in the
bottom panel of Fig. 3.
In the case of kination cosmology, for which aK1 ¼ astd1 ,

the value of H1 is larger than Hstd
1 due to the kination field

whose energy dominates the expansion. We conclude from
Eq. (21) that mK

CDM=m
std
CDM ¼ HK

1 =H
std
1 > 1, i.e., the DM

axion mass in the kination cosmology is generally larger
than in standard scenario.
In the case of the KD scenario, aKD1 < astd1 and obviously

HKD
1 > Hstd

1 so the DM axion mass is not immediately
clear. Indeed, a very interesting situation happens. Since
H1 ∝ 1=a31 during kination cosmology, both factors of a1 in
Eq. (21) cancel out and the result becomes independent of
the particular value of a1 and equal to mKD

CDM=m
std
CDM ¼

aRH=astd1 , which turns out to be HK
1 =H

std
1 , similarly to what

we discussed for the case of the kination cosmology
without the decay term.
In the case of matter decay (MD) we have again aMD

1 <
astd1 so again the DM axion mass depends on the balance
between the H1 and a31 factors. In this case, note that we
have HMD

1 ðaMD
1 Þ2 < Hstd

1 ðastd1 Þ2 because matter density
redshifts slower than radiation. Therefore we conclude
that the DM axion mass in the early decaying matter

cosmology is generally smaller than in the standard
cosmology, mMD

CDM=m
std
CDM < 1.

Combining Eqs. (21) and (22), we obtain the dependence
of the DM axion mass on the scale factor,

mCDM

mstd
CDM

≃
aRH
astd1

�
a1
aRH

�
3−1

β

; ð23Þ

which makes very clear that for kination cosmology
(β ¼ 1=3), the DM axion mass only depends on the scale
factor of reheating, it is larger or equal than the standard
value (because aRH=astd1 ≥ 1). Also, since the main depend-
ence on a1 cancels out, the DM mass can only depend
mildly on whether the kination field is decaying or not.
Let us now study the dependence of the value of the DM

axion mass on TRH. First, let us note that using standard
cosmology (for instance) we have

Q ¼
�
Tstd
1

TRH

�
3þγ

; ð24Þ

so that we replace Eq. (16) into Eq. (23) to write

mCDM

mstd
CDM

≃Q
1

3þγ−
3−1=β
3þγα ¼

�
TRH

Tstd
1

�
−1þ3β−1

β
3þγ
3þγα

: ð25Þ

Therefore, for the NSC scenarios here considered, we
obtain

mK
CDM ≃mKD

CDM ≃mstd
CDM

�
Tstd
1

TRH

�
; ð26Þ

mMD
CDM ≃mstd

CDM

�
TRH

Tstd
1

�4þ3γ
8þγ

; ð27Þ

where the last exponent is ∼4=3 for γ ∼ 4. The chosen
NSCs have the virtue of representing scenarios in which
the DM axion mass differs from the standard case in
opposite ways, since mK

CDM and mKD
CDM are generally larger

than mstd
CDM while mMD

CDM is generally smaller than mstd
CDM.

Equation (26) shows that the mass of the axion CDM in
both kination and kination Decay models is approximately
the same. This might seem surprising because of the
different relation relating the scale factor and temperature
in the two cosmologies. However, the smaller value of
T1(or a1) in the KD scenario (with respect to the K
scenario) means that the axion mass at T1 is larger (than
in K), but H1 is also larger by the same factor, so that the
equality 3H1 ¼ mCDMðTΛ=T1Þγ is satisfied by the same
value of mCDM. As explained, this is a bit coincidental
and happens only for kination where 1=β ¼ 3, essentially
because H during kination redshifts with the scale factor a
as CDM density. This coincidence is obtained by modeling
the evolution of a1; T1; H by broken power-laws and will

3In this formula there is a small correction due to our definition
of tRH, Eq. (7), which results in a difference in the two Hubble
rates of the order of ≈10% when a ≪ aRH. This factor does not
affect our qualitative discussion, but appears in Fig. 3. For this
reason we use ≃ instead of the equality in the rest of the section.
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be corrected by small O(1) factors when the continuous
evolution is taken into account, factors of g�; gS are
incorporated and by the fact that HðaÞ differs by O
(10%) between K and KD scenarios due to our definition
of tRH.
We have performed full numerical calculations,

adequately including all the relevant temperature-
dependent functions like g�ðTÞ, g�SðTÞ, the susceptibility
χðTÞ from Ref. [110] and the numerical results for the
cosmological evolution of HðaÞ; TðaÞ, etc., computed in
the previous section. In particular, we have solved numeri-
cally for T1 andmCDM as a function of the temperature TRH
in the different NSCs. Our results are shown in Fig. 4.

The bottom panel of Fig. 4 shows the value of the
temperature T1 required for having the totality of the CDM
in axions. The black thin line represents the value of the
DM axion mass in the standard cosmology. As expected,
results in the standard and in the kination cosmologies
superimpose because entropy is conserved in both scenar-
ios and a1 ∝ 1=T1 is the same. The cosmologies with a
decaying field, KD (green) and MD (red) require smaller
values of T1 (and of a1) to obtain the same CDM
abundance despite the larger entropy production and
subsequent CDM dilution. We have colored in pink the
region where the reheating temperature is smaller than
∼5 MeV and is thus excluded by BBN considerations
[104]. It is an interesting fact that this constraint limits the
lowest value of T1 to be ∼TΛ (in the MD scenario) so that
our previous analytical considerations where we assumed
T1 > TΛ are justified. For illustration, we show results
for two values of the topological defects contributions
αtot ¼ 10 and αtot ¼ 1 in solid and dashed lines, respec-
tively. The difference is a minimal shift in T1, less severe in
the MD case.
The upper panel of Fig. 4 shows the DM axion mass. The

black thin line sets the value in the standard scenario.
Again, we show results for two values of αtot ¼ 10 and
αtot ¼ 1 in solid and dashed lines, respectively. We note as
usual that larger αtot requires a larger mCDM following a
roughly linear dependence. As expected, kination and KD
cosmologies require a similar DM axion mass because of
their particular expansion rate, β ¼ 1=3 that cancels the
dependence on a1. This does not cancel the dependence
with the reheating temperature ∼1=TRH predicted in
Eq. (26). In the kination scenario, the DM mass becomes
so large that it can conflict with the astrophysical bounds at
mA ≳ 30 meV [154–156] (orange region) so we have
interrupted the line at this approximate mass. This range
of values is particularly interesting as axions could explain
several astrophysical anomalies [157] and be detected by
IAXO [158]. However, this statement depends on the
assumed value of αtot. Using αtot ¼ 1, one hits the BBN
constraint in Eq. (A1) before the astrophysical bounds. The
value of mCDM in a kination model can change up to two
orders of magnitude and is only limited indirectly by the
astrophysical bounds or BBN.
The matter decay case is shown in red and is well

described by mCDM ∝ T4=3
RH. The axion CDM mass can be

almost three orders of magnitude smaller than the standard
value before conflicting BBN. In general, the full numerical
result agrees very well with the analytical trends reviewed
there. The only apparent differences are attributable mostly
to the matching of cosmologies around TRH and to the
changes in g�ðTÞ and gSðTÞ to a lesser extent.

1. Effects of preexisting radiation in MD and KD

In principle, it is straightforward to extend our results to
the case in which the preexisting radiation before the decay

FIG. 4. Top panel: The QCD DM axion mass as a function of
the reheat temperature for different cosmological models. Black
line: (standard) radiation-dominated cosmology. Red line: matter
decay (MD) cosmology. Blue line: Kination. Green line: kination
with a decaying field (KD). Bottom panel: the temperature T1

at which the axion field begins coherent oscillations, as a
function of the reheat temperature. Solid and dashed lines assume
αtot ¼ 10 or αtot ¼ 1, respectively.
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of the matter or kination field ϕ dominates the temperature
during the period when axions become CDM. This
amounts to consider a period of α ¼ 1 during the NSC
period. The physical idea is that the preexisting radiation
redshifts as ∝ a−4 so T ∝ 1=a and α ¼ 1. Let us denote by
Tr; ar the temperature and scale factor at which the
radiation resulting from the decay of the ϕ field catches
up with the preexisting amount. A first modification is that
ρ0 ¼ ρ0ðaÞ increases as a3þγ before ar, which is steeper
than the ∝ a3þγα behavior shown in Fig. 3 (top) This makes
the required value of a1 to lie between the value of a1
calculated in a NSC model (here labeled ard1 ) and
astd1 ¼ a1ðα ¼ 1Þ. Letting ar vary within the range
ðard1 ; aRHÞ yields a1 in the range ðard1 ; astd1 Þ. At this stage,
Eq. (19) is still valid, so that the temperature T1 lies in the
interval ðTrd

1 ; T
std
1 Þ, corresponding to the area between a

given NSC line and the STD line in Fig. 4 (bottom). The
derivation of the DM axion mass mCDM is a bit more
involved for a similarly simple and not surprising outcome:
depending on the values of the parameters ar and Tr, the
DM axion mass can take any value between that of a given
NSC line shown in Fig. 4 (top) and the standard casemstd

CDM.
For completeness, the expression equivalent to Eq. (25)
reads

mCDM

mstd
CDM

¼
�
TRH

Tstd
1

�
2−1

β

�
TRH

Tr

�γ
α
1−α
3þγ

3β−1
β

: ð28Þ

IV. AXION MINICLUSTERS

Around the temperature T1 of the onset of oscillations,
the axion field is highly inhomogeneous. In the standard
radiation dominated scenario, the density field becomes
frozen in comoving coordinates around that time [57]. At
the same time, axions are rapidly acquiring a nonzero mass,
faster than the redshift of their momentum with the
expansion of the universe so that they become nonrelativ-
istic and cannot further free-stream. Because of this, the
correlation length of the axion DM density field is of the
order of the causal horizon at T1, i.e., ∼1=H1, and freezes
in comoving coordinates. This picture, sketched by the
seminal studies [58–60] has been recently confirmed in
large scale numerical computations including cosmic
strings [95]. Although the results show a rich structure
of even larger inhomogeneities at subhorizon scales due to
the dynamics of cosmic-strings, domain walls and axiton,
these substructures encapsulate a relatively small amount
of the DM [95] so we will ignore it henceforth. In this
section we derive the properties of the miniclusters in
nonstandard cosmologies. We begin by a brief description
of the standard case.

A. Standard cosmology

1. Density of the minicluster

The density inhomogeneities separate out from the
cosmic expansion as gravitationally bound miniclusters
around matter-radiation equality [58], happening around a
redshift is zeq ¼ a0=aeq − 1 ≃ 3360 and plasma temper-
ature Teq ¼ T0a0=aeq ≃ 0.8 eV, much after our NSC has
converged to a standard cosmology. We parametrize an
overdensity in the axion CDM density as [60]

Φ ¼ ρc − ρ̄A
ρ̄A

; ð29Þ

where ρc is the local density of the minicluster and ρ̄A is the
mean axion energy density. Since the energy density in
axion CDM divided by that of radiation scales as
ρ̄A=ρR ∝ a, an overdense region with Φ > 0 enters into
matter-domination when the scale factor is aleq ¼ aeq=Φ.
The overdensity grows linearly with the scale factor until it
becomes of order unity, when collapses and forms a
gravitationally bound virialized object. Since Φ is typically
of order unity [95], miniclusters collapse typically around
matter radiation equality. Note that values Φ ≫ 1 are also
possible, although these regions tend to be smaller than the
causal horizon at T1 and thus correspond to smaller, much
less massive miniclusters, see below. The energy density of
the minicluster at the moment of collapse is

ρcðTcollapseÞ ¼ ð1þΦÞρaðTcollapseÞ

¼ ð1þΦÞ
�

aeq
acollapse

�
3

ρeqA

¼ ð1þΦÞΦ3ρeqA ; ð30Þ
where ρeqA is the axion energy density at matter-radiation
equality. A detailed calculation that follows from the
dynamics of the spherical collapse and further virialization
of the minicluster obtains an extra factor of 140 [58,60], so
the expression we use in place of Eq. (30) for the energy
density of the minicluster is

ρc ¼ 140ð1þΦÞΦ3ρeqA : ð31Þ
Recall that we will be assuming that axions account
for the entirety of the CDM, so that we can write
ρeqR ¼ ρeqm ¼ ρeqA ð1þΩb=ΩCDMÞ, where Ωb=ΩCDM ∼ 0.19
is the ratio of baryonic matter to CDM. Using
ρeqA ¼ ρCDMð1þ zeqÞ3, this gives

ρc ∼ 6.7 × 106ð1þΦÞΦ3
GeV
cm3

: ð32Þ

The cores of miniclusters have the typical energy density of
either matter or radiation components at matter-radiation
equality.
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2. Mass of the minicluster

The mass of the axion minicluster is given by the dark
matter mass enclosed within the overdense region at about
the onset of oscillations [57,58]. We consider a spherical
region of physical radius R1 at temperature T1. According
to the simulations in Ref. [95], the typical value of R1 is of
the order of ∼1=H1, although the temperature T1 is better
defined slightly differently than in Eq. (1), that is without
the factor of three which is useful to discuss the DM
abundance, as H1 ¼ HðT1Þ ¼ mAðT1Þ. Due to the large
value of the exponent γ describing the temperature-
dependence of the axion mass, this modification amounts
to only a ∼10% differences in the values of T1 and a1. Here,
we parametrize deviations from the canonical size as
R1 ¼ r=H1, with r ¼ Oð1Þ. In terms of the present
CDM density, we have

Mstd
c ¼ 4π

3
ð1þΦÞρ1R3

1 ¼
4π

3
ð1þΦÞρCDM

�
r
H1

�
3
�
a0
a1

�
3

;

ð33Þ

where ρ1 ≡ αtotρ
mis
A ðT1Þ ¼ αtotmAðT0Þnmis

A ðT1Þ, with ρmis
A

defined in Eq. (4) and nmis
A ðT1Þ defined in Eq. (B21) below.

Using the numerical calculations in Ref. [95] to fix
the quantity a0=a1H1 ≃ 1.1 × 1017ð50 μeV=mAÞ0.1712 cm,
we find

Mstd
c ¼ 6.6 × 10−12ð1þΦÞr3

�
50 μeV
mA

�
0.500

M⊙; ð34Þ

where again we are assuming that αtot is chosen so that cold
axions explain all of the CDM observed.

3. Radius of the minicluster

Given the results for the mass and the density of the
minicluster, one estimates the radius of a minicluster as

Rstd
c ¼

�
3Mc

4πρc

�
1=3

¼ r

ð140Þ1=3Φ
aeq
H1a1

; ð35Þ

which for our estimates in Eqs. (32) and (34) gives

Rstd
c ¼ 6.4 × 1012 cm

r
Φ

�
50 μeV
mA

�
0.1668

; ð36Þ

which corresponds to about one astronomical unit.

B. Miniclusters in nonstandard cosmologies

The properties of axion miniclusters like its mass, its
size, and the velocity dispersion, are modified in a number
of ways by the presence of a NSC period. The most
important and obvious way is that the correlation length of
the axion DM field ∼1=H1 when axions become NR and

thus DM can be totally different from the standard
radiation-dominated scenario.
A second potentially relevant effect is a nontrivial

evolution of axion overdensities during the NSC. Indeed,
it is well known that during radiation domination, CDM
perturbations only suffer a negligible logarithmical growth
with the scale factor, but during a period of matter
domination perturbations can grow linearly and produce
already some collapses.
Another potential issue is that the relation H1 ≃mðT1Þ

defining the moment when axions become DM and the
correlation length which gives us the size of the typical
minicluster would suffer O(1) corrections in a NSC.
A similar effect is the expected different values of αtot in
different NSCs, due for instance to the O(1) differences of
the string-network density, see Ref. [159] for an example
in matter domination and the generalization in Ref. [107].
Since the two effects discussed before vary the minicluster
properties by several orders of magnitude, while these latter
ones impact the energy density only by a factor of order
one, we will not discuss this issue further here.

1. Impact of the horizon size at T1

The implications of the change of H1 and a1 in NSCs to
the properties of miniclusters are relatively trivial to study.
First of all, we have already prepared the stage in the
previous section when we studied the DM axion mass.
Indeed, we showed in Eq. (21) how the DM mass in a NSC
is proportional to H1a31 (with an extra a1) and how this
quantity compares in the different NSCs. Moreover, we
have performed the numerical computations and analytical
estimates ofH1; a1 as a function of the NSC parameters and
TRH. Therefore, assuming that the overdensities become
frozen when H1 ¼ mAðT1Þ we can use the same rationale
as in the standard case to compute the density, mass and
radius of the minicluster. We will drop the assumption on
the next subsection but we advance that it is actually quite
reasonable.
The typical minicluster density derived in Eqs. (30), (31),

and (32) does not depend at all on the NSC. These
equations only depend on the assumption that axions
account for all the CDM and parametrize the effects of
an early/late collapse with an overdensity parameter Φ.
The typical minicluster mass computed in Eq. (33) also

depends on the axion CDM assumption but involves the
typical size of an inhomogeneity at T1, given by a radius
R1 ∼H1. We note that the mass and the radius of the
minicluster depend on the quantity 1=ðH1a1Þ. We have
seen that, insisting on the axion CDM hypothesis, the value
of a1 in the NSC is smaller than the standard value unless
no extra entropy is generated (α ¼ 1), see Eq. (18). This
effect points toward more massive miniclusters due to a
larger DM density ρA ∝ ρCDM=a31. However, in our NSCs,
the causal horizon at a1 is also smaller than the standard
results, so that H1 is larger, due to the presence of extra
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energy and the value of a1 computed at earlier times. It is
not straightforward to anticipate which of the two effects is
the prominent one, due to the complexity in the expressions
brought in by assuming that the axion is the CDM particle.
Using the numerical results developed in the previous
section we have computed the values of the typical
minicluster massMc and radius Rc in the NSCs considered,
as shown in Fig. 5.
Notice that Mc ∝ 1=ðH1a1Þ3, so that we use the expres-

sions for H in Eq. (22) and for a1 in Eq. (16) to derive a
simple analytical formula for the mass of a minicluster.
Neglecting the variation in the number of degrees of
freedom as in the previous section, we obtain

Mc ¼ Mstd
c

�
TRH

Tstd
1

�
3ð1−ββ 3þγ

3þαγ−1Þ
: ð37Þ

In the NSCs, the most important contributions in the
exponent turn out to come from the term ð1 − βÞ=β, which
varies from 1=2 to 2 respectively for MD or kination
models, while the factor ð3þ γÞ=ð3þ αγÞ remains reason-
ably close to unity. The origin of this complicated exponent
is nevertheless clear. Recall that H1 ∝ ðaRH=a1Þ1=β during
the NSC epoch and therefore 1=ðH1a1Þ ∝ ða1=aRHÞð1−βÞ=β
besides other less important factors of aRH. Also, using
Eq. (16) we obtain the first part of the exponent since
a1=aRH ¼ ðTRH=Tstd

1 Þð3þγÞ=ð3þγαÞ. Since 1=β > 1 for the
NSCs considered here (and indeed for all additional fluids
with a nontachyonic equation of state wϕ > −1), the effect

of increasingH1 (reducing the coherence length or patch of
the typical minicluster) is stronger than the mere larger
density from projecting ρCDM earlier in time.
The fact that the quantities 1=β − 1 andH1 are the largest

among the cosmologies considered explain why in the
kination cosmologies the minicluster mass and radius can
attain such low values shown in Fig. 5.
The small difference between a redshifting, nondecaying

kination field and a decaying one is due to the slower
decrease of the temperature with scale factor, due to the
entropy production. Indeed, entropy production is the
reason why aKD1 <aK1 (see discussion around (18) and thus

ðH1a1ÞK < ðH1a1ÞKD because H1a1 ∝ 1=a1=β−11 ¼ 1=a21
for both kination types. This effect is captured by the
small difference in the exponent in Eq. (37) between the
two cases, which contains the factor ð3þ γÞ=ð3þ γαÞ
which is ∼7=6 for KD cosmology while it is equal to
one for kination cosmology.
The most relevant parameter in determining the mini-

cluster mass turns out to be the equation of state of the
component dominating the expansion at T1, rather than
whether entropy is conserved or not. Since 1=β − 1 > 0 for
all the NSCs, this seems to suggest that the minicluster
mass increases with the reheating temperature. Indeed, this
happens for

β <
1

2
þ γð1 − αÞ
6þ γð1þ αÞ ; ð38Þ

which is satisfied in the case of kination cosmology
(β ¼ 1=3), but not for the MD cosmology (β ¼ 2=3),
which is an exception to the main trend. In MD, the value
1=β − 1 ¼ 1=2 is so small that the other term ð−1Þ in the
exponent in Eq. (37) dominates and changes the trend: the
minicluster mass decreases with increasing TRH, although
the maximal value of the minicluster mass in MD is only
one order of magnitude larger than the standard results.

2. Structure formation during the NSC period

In this subsection we consider whether some gravita-
tionally driven structure formation could already happen at
very early times, during the NSC period. If the axion is
the CDM particle, the energy density in the axion field at
the onset of oscillations is extremely small compared to the
background radiation, typically by a factor aeq=a1 ∼ 1010,
see also Appendix C. Therefore, the evolution of axion
density perturbations is mostly sourced by perturbations
of the background fields (ϕ and radiation), rather than by
axion perturbations themselves.
Let us first briefly discuss the standard case of radiation

domination together with the nonstandard kination domi-
nation. We will adhere to a simple Newtonian picture valid
for sub-horizon perturbations, as superhorizon perturba-
tions change at most by factors ofOð1Þ. Let us consider the

FIG. 5. The mass (left vertical axis) of a typical axion
minicluster (r ¼ 1, Φ ¼ 1) in units of solar masses as a function
of the reheat temperature for different cosmological models
before nucleosynthesis. We also report the radius of the mini-
cluster in cm (vertical right axis). We have assumed that 100% of
the CDM is in axions and Φ ¼ 1. Each value of the reheating
temperature requires a different axion mass from Fig. 4. Solid and
dashed lines assume αtot ¼ 10 or αtot ¼ 1, respectively.
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Fourier modes of the density fluctuations of the back-
ground density δϕ ¼ ρϕ=ρ̄ϕ − 1 (a comoving wave number
k labeling modes is implicit). Small fluctuations in the
linear regime evolve according to

δ̈ϕ þ 2H _δϕ þ
�
c2sk2

a2
−
4πρ̄ϕ
m2

Pl

�
δϕ ¼ 0: ð39Þ

where the sound-speed is essentially given by the equation
of state (c2s ≈ wϕ). Perturbations with k above the Jeans
momentum kJ=a ¼ ð4πρ̄ϕ=c2sÞ1=2 oscillate with damped
amplitude while those below it can suffer gravitational
amplification leading to collapse. Using the Friedman
equation, the latter term in Eq. (39) can be written as
4πρ̄ϕ=m2

Pl ¼ 3H2=2. In both the cases of radiation- or
kination-dominated scenarios, the Jeans momentum
decreases in time and once a perturbation enters the
horizon, k=a > H, it begins oscillating with an amplitude
∝ 1=

ffiffiffi
a

p
. The situation is completely different in a matter-

dominated background. In the ultracold limit, for which
wϕ → 0, perturbations start growing as δϕ ∝ a as soon as
they enter the horizon. The extent up to which our back-
ground perturbations can source the evolution of axion
perturbations is determined by: (1) their absolute size and
(2) the speed of the universe expansion.
The size of the background perturbations at the

small scales of our interest is relatively unconstrained.
Observations of the CMB anisotropies, Lyman-α forest,
large-scale structure and other cosmological probes mea-
sure the dimensionless power spectrum of curvature per-
turbations Δ2 ∝ jδj2 ∼ 10−9 in the range 1 Gpc−1 ≲ k≲
3 Mpc−1 [160–162]. The absence of spectral distortions of
the CMB Planck distribution can be used to constrain Δ2 ≲
10−5 up to k≲ ð100 pcÞ−1 [163–166]. The effects on the
yields of Deuterium and Helium from BBN can also be
used to extend this bound even further, Δ2 < 0.007 for
ð100 pcÞ−1 ≲ k≲ ð10 pcÞ−1 [167]. The absence of effects
of primordial black holes has also been used to constraint
Δ2 ≲ 0.01–0.1 above that range [168]. Additional, model-
dependent results [169,170] constrain the dimensionless
power spectrum down to Δ2 ≲ 10−7 in the range
1 Mpc−1 ≲ k≲ 0.1 pc−1 if the DM is made of WIMPs
which would form ultracompact minihaloes where annihi-
lations and the subsequent emission of gamma-rays could
have been detected. Needless to say, this latter case does not
affect the scenario under discussion here, since we do not
consider WIMP as the DM candidate in this work.
The growth of axion CDM perturbations at subhorizon

scales sourced by the background perturbations in the
Newtonian limit can be described by [171]

δ̈A þ
�
2H þ _m

m

�
_δA −

3

2
H2δϕ ¼ 0; ð40Þ

in which the term _m=m is required from momentum
conservation in the event of a time-varying mass. Since
the axion mass depends on temperature due to the instanton
effects around the QCD phase transition, see Eq. (13), the
term _m=m ≈ αγH turns out to be extremely important for
correctly describing perturbations in the axion field, since it
is of the same order as the term 2H. In particular, the time-
dependence of the axion mass plays a relatively significant
in the case of the kination cosmology.
If the background cosmology is described by either the

radiation or the kination scenarios, the density fluctuations
given by Eq. (39) are oscillating and decaying, so that their
role in Eq. (40) can be neglected. For this, setting δϕ ≃ 0 in
Eq. (40) gives a constant solution δA ∼ const, plus a time-
dependent solution

δA ∝
�
t1−βð2þαγÞ; βð2þ αγÞ ≠ 1

log t; βð2þ αγÞ ¼ 1:
ð41Þ

In either the radiation-dominated or the kination-dominated
scenarios, the argument of the power law is smaller than
zero so that no growing mode exists. This is a direct
implication of the inclusion of the term _m=m, which is
nonzero until the axion mass stops growing around temper-
ature TΛ, so that its contribution is substantial whenever
TRH ≳ TΛ in kination scenarios. Had we omitted the term
_m=m, which is equivalent to setting γ → 0, we would have
obtained the well-known logarithmic growth of matter
perturbations during radiation domination or the not-so
well known linear growth of CDM perturbations during
kination δCDM ∝ t1=3 ∼ a, which is valid in WIMP CDM
scenarios [150].
Indeed, the authors of Ref. [150] argue that the linear

growth is essentially due to the free-streaming of CDM
particles after the kick received by the gravitational field upon
horizon crossing. The comoving distance free-streamed by
such particles has exactly the same time dependence,

d ¼
Z
ti

vi
dt
a
∼
Z
ti

pi

mai

�
ai
a

�
αγþ1 dt

a
∼ t1−βð2þαγÞ ð42Þ

where we used that momentum redshifts as pi=a, the axion
mass grows asmA ∝ 1=Tγ ∝ aαγ and a ∝ tβ. In summary, as
long as the axion mass continues to increase, axion
CDM perturbations do not grow during radiation-, KD-, or
kination-dominated cosmologies. Once the axion mass
reaches a constant value, we recover the standard loga
growth valid during radiation domination.4

The situation can be entirely different in an early period
of matter domination. In the following, we refer to the

4The fact that axion CDM perturbations do not grow during the
kination stage facilitates the treatment for axion CDM, since the
growth of perturbations in kination cosmology is not understood
beyond the linear regime [150], and gravitational collapse has
never been proven.

AXION MINICLUSTERS IN MODIFIED COSMOLOGICAL … PHYS. REV. D 101, 023008 (2020)

023008-13



nonrelativistic matter dominating the expansion rate of the
universe as dominating decaying matter (DDM). During
such a period, the DDM background perturbations grow
linearly and undergoes gravitational collapse approxi-
mately when becoming nonlinear. Solving Eq. (40) for
the axion perturbations when the growing solution of
Eq. (39) is considered gives

δA ∝ δϕ ∝ t2=3: ð43Þ

Indeed, the situation is beautifully similar to the growth of
baryon perturbations after recombination in standard
ΛCDM cosmology. Before recombination, the baryon fluid
is tightly coupled to the photon fluid. Because of the large
effective sound-speed, all relevant modes are above the
Jeans wave number and baryons cannot clump. However,
(sub-horizon) CDM perturbations grow linearly as soon as
the universe becomes matter-dominated. When the temper-
ature drops enough for most protons to form neutral
Hydrogen, baryons effectively decouple from the CMB,
feeling a sudden drop of pressure, which allows them to fall
rapidly into the already deep potential wells dug by CDM.
Analogously, axion fluctuations cannot efficiently grow at

early times because the axion mass is so small that axions are
relativistic or frozen due to the Hubble friction. Meanwhile,
DDM field perturbations start to grow as soon as they enter
the horizon during matter domination. When axions abruptly
start to behave as CDM, they would immediately fall into the
potential wells of the additional DDM. In the analogy
depicted, axions play the role of baryons and DDM that
of the standard DM after recombination. Sadly, the analogy
stops here: first, the axion density field already possesses
large fluctuations of its own which are typically not
correlated with those of the background field; second,
DDM is decaying, so it stops being relevant for the overall
expansion of the universe at aRH and it would be completely
absent after t ≫ Γ−1

ϕ . Axions dragged into DDM over-
densities would suddenly find themselves left alone, freed
from the gravitational pull of the DDM. If the DDM
perturbations were linear, axions just continue their free-
streaming inwards of the former DDM perturbations, but if
the DDM perturbations had already become nonlinear the
axions would free-stream away from them.
To understand qualitatively the impact on miniclusters,

recall that soon after the onset of oscillations, the spectrum
of axion DM fluctuations at small scales5 can be para-
metrized as [95]

Δ2
aðkÞ ¼

k3

2π2
hjδAðkÞj2i

V

≃

8>><
>>:

0.03ðk=k1Þ3; k≲ k1
∼1; k ∈ ð10–100Þk1
ðk1=kÞζ; k ≫ k1;

ð44Þ

where V is the volume and ζ ∼ 0.5 but probably decreasing
with k. The characteristic comoving wave number k1 is
defined as the wave number entering the horizon at a1,

k1 ¼ H1a1: ð45Þ

Although this spectrum was derived from simulations in a
radiation-dominated background, we take it as rough
representative of the axion CDM initial conditions around
a1 also for NSC cosmologies, since numerical results in a
matter-dominated scenario are not yet available.
The fact that standard axion miniclusters with overden-

sitiesΦ ∼Oð1Þ formwith a typical mass of∼ρA=ðk1=a1Þ3 is
related to the power spectrum decreasing very sharply at
scales k < k1, i.e., physical scales larger than 1=H1 at a1.
Above k > k1, fluctuations are already nonlinear and one
thus expects the formation of ensuing “small” miniclusters
potentially denser, but the largest physical objects are
determined by k ∼ k1, which is a consequence of the low-
k cutoff Δ2

A ∝ k3.
In a MD period, fluctuations in the axion field grow even

larger than the estimates in Sec. IV B 1 if the perturbations
in the DDM are large enough, i.e., δϕ > δAðt1Þ. In
particular, in order to change the typical minicluster size,
they should be able to shift down the typical wave number
at which Δ2

A ∼Oð1Þ. In the following, we will therefore
concentrate in modes with wave numbers smaller than k1,

k < k1; ð46Þ

which are still linear at a1. If the DDM perturbations are
adiabatic perturbations from a vanilla slow-roll inflaton,
we could extrapolate the measured perturbations at CMB
scales Δ2 ∼ 10−9ðk=kCMBÞns−1 with ns ≃ 0.968ð8Þ [4].
These fluctuations are so small that they would not affect
the typical size of axion miniclusters in NSCs.6 Large
adiabatic fluctuations are not entirely unexpected in exotic
models of inflation, where they can be originated from
features in the inflaton potential [172] or inflection points
[173]. They can also originate from particle production
[174], waterfall transitions [175], and other exotic phe-
nomena, see e.g., Refs. [176,177]. In practice, the ampli-
tude at very small scales is observationally constrained

5These are the fluctuations of the axion DM field at small
scales due to the misalignment and string emission contribution.
In the inflationary cosmology, we expect an uncorrelated additive
contribution from the adiabatic temperature fluctuations im-
printed in the plasma by the inflaton fluctuations. The temper-
ature fluctuations get imprinted as fluctuations in the axion DM
density due to the latter’s dependence on T1.

6They could affect substructure and the size of large clusters of
miniclusters, though, but these do not have clear observational
consequences yet studied.
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mostly from the requirement to avoid an overproduction of
primordial black holes.
Assume that DDM has an adiabatic spectrum of ampli-

tude consistent with the PBH limits Δ2
ϕ ∼ 0.01. The DDM

density fluctuation δϕðkÞ entering the horizon at ak ∈
ða1; aRHÞ experiences linear growth so that the power
spectrum at later times is

Δ2
ϕðaÞ ∼ Δ2

ϕðakÞ
�
a
ak

�
2

∼ 0.01

�
a
a1

�
2
�
k
k1

�
4

; ð47Þ

where we used the relation H ¼ H1ða1=aÞ3=2 valid for MD
cosmology which leads to ak=a1 ¼ ðk1=kÞ2. For axion
perturbations that are linear at a1, the largest possible
growth happens for those that enter the horizon earliest,
i.e., k ∼ k1, for whichΔ2

ϕ grows by a factor ðaRH=a1Þ2. This
quantity is determined by our assumption of having the
totality of CDM in axions. In the MD scenario we have

�
aRH
a1

�
2

¼
�
Tstd
1

TRH

�
28=9

∼ 108; ð48Þ

where the numerical factor has been estimated for the
choice TRH ¼ 5 MeV and αtot ∼Oð1Þ.
In the modified MD scenario described, the mass of the

typical miniclusters would be given by the size of the
largest DDM fluctuation that became ∼Oð1Þ, dragging
CDM axions with it. Here, we refer to the associated
momentum k01 for its similar role to k1 in setting the value of
the minicluster mass, without any relation to Eq. (1). The
maximum effect takes place at a ¼ aRH. Solving for k01 in
the expression Δ2

ϕðaRH; k01Þ ¼ 1, (47), we obtain

k01 ∼ k1

�
a1
aRH

�1
2ðΔ2

ϕðakÞÞ−1=4

∼ 3k1

�
TRH

Tstd
1

�
28=36

�
0.01

Δ2
ϕðakÞ

�
1=4

; ð49Þ

which can be up to a factor of ∼30 smaller than k1 for the
largest values of Δ2

ϕðakÞ ∼ 0.01 and Tstd
1 ∼ 2 GeV. Note

that k01 > HRHaRH if Δ2
ϕðakÞ is small enough so that the

black-hole constraint is still respected. In this case, the
typical minicluster has a size R0

1 ∼ ðk01=aRHÞ−1 at aRH, and
thus a mass,

M0
c ¼

4π

3
ð1þΦϕÞρCDM

�
1

k01

�
3

¼ Mc;0

�
k1
k01

�
3

; ð50Þ

where Mc;0 is the minicluster mass in the NSC if DDM
fluctuations are negligible δϕ ∼ 0. Summing up, miniclus-
ters formed during MD and hosted in DDM perturbations
can be a factor up to ∼30 times larger and ∼303 heavier due

to early structure formation during the NSC. However,
this requires large DDM fluctuations (not as large as to
produce too many black-holes). A more conservative
value Δ2

ϕðakÞ ∼ 10−5 yields a more modest enhancement
M0

c ∼ 102Mc;0 and only for the most extreme values of
the reheat temperature. In this scenario, structures have
time to become strongly nonlinear above k01 so these it is
likely that these typical miniclusters have a lot of
substructures.
It is tempting to think that the substructures of the large

M0
c-mass miniclusters are something like the previously

discussedMc-mass objects (Mc given byH1). However, we
think that this would not be the case. The axion CDM
inhomogeneities are so small compared to the background
that they play no dynamical role. The driving perturbations
are those of the DDM, which correspond to slightly (or not
so-slightly) different DDM densities which grow and
collapse into DDM halos that presumably merge hierarchi-
cally from small to large scales. The axion overdensities
that would have later lead toMc miniclusters just follow the
DDM gravitational potential. Since these inhomogeneities
have negligible self-gravity, they would probably be dis-
rupted inside DDM halos after a dynamical timescale∼H−1

once DDM becomes nonlinear.
The comoving scales that can be significantly affected by

the NSC period are bounded from below by the mode that
enters the horizon at the minimum reheating temperature,
TRH ∼ 5 MeV,

k > kminfTRHg ¼ HRHaRHjTRH¼5MeV ∼ ð20 pcÞ−1: ð51Þ

3. Observational parameters

Velocity dispersion.—The clustering of axion CDM has
observational consequences, since detectors would be
triggered by a larger energy density when the Earth passes
through one such substructures. In fact, the local energy
density of CDM is estimated to be ρ⊙ ≈ 0.4 GeV=cm3, see
Ref. [178], while the density obtained for the minicluster is
given in Eq. (31). The density enhancement during the
encounter with a minicluster can then reach

ρc
ρ⊙

≃ 1.7 × 107ð1þΦÞΦ3: ð52Þ

The velocity dispersion of the axions in the minicluster δv2

is directly related to the coherence time of the axion field
tcoh during such encounter. The latter quantity is a key
parameter in an axion search experiment. Both these
quantities can be computed from the gravitational potential
by the virial theorem

δv2 ∼
Mc

m2
PlRc

: ð53Þ
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In the standard cosmological model, once the deviation
from the size of the horizon r ¼ R1H1 ¼ Oð1Þ is intro-
duced, this gives

δv2std ∼ 2 × 10−19r2Φð1þΦÞ
�
50 μeV
mA

�
0.3336

; ð54Þ

δtstdcoh ∼
1

mAδv2
¼ 0.9 × 108 s

1

r2Φð1þΦÞ
�
50 μeV
mA

�
0.666

;

ð55Þ

where in Eq. (55) we have assumed that the axion mass is
equal to mCDM. As we discussed in Sec. IV B 1, the mass
and the radius of a minicluster computed in a NSC are
modified by the same parameter 1=ðH1a1Þ. Thus, the ratio
of the velocity dispersions and the ratio of the coherence
time when computed in the NSC and in the standard
cosmology read

δv2

δv2std
≃
�
Mc

Mstd
c

�
2=3

¼
�
TRH

Tstd
1

�
2ð1−ββ 3þγ

3þαγ−1Þ
; ð56Þ

δtcoh
δtstdcoh

≃
�
TRH

Tstd
1

�
3−1þβ

β
3þγ
3þγα

; ð57Þ

where the computations for δtcoh involves usingmCDM from
Eq. (25). Remarkably, the coherence time in the NSCs we
have considered seems to be always longer than in the
standard scenario. Referring to Eq. (55), the axion mass in
both the kination and KD scenarios is larger than in the
standard case, however this trend is counterbalanced by
the large decrease in the minicluster mass which lowers the
velocity dispersion. On the contrary, in the MD scenario the
increase in the velocity dispersion due to the more massive
miniclusters in this scenario is modest, while the axion
mass would be lower by orders of magnitude with respect
to the standard value. Our numerical calculations for the
velocity dispersion and the coherence time are shown
in Fig. 6.

Encounter rates with the Earth.—Assuming the DM
mass of the Milky Way as MMW ∼ 1012M⊙, the number
of miniclusters in the halo in the standard scenario is,

Nstd
c ¼ MMW

Mstd
c

∼ 1023
�

mA

50 μeV

�
0.50

; ð58Þ

assuming 1=ðr3ð1þΦÞÞ ≃ 1 on average. Since we take
most of the CDM in the form of miniclusters, the local
number density of axion miniclusters is then

nstdc ≃
ρ⊙
Mstd

c
∼ 109

�
mA

50 μeV

�
0.50

pc−3: ð59Þ

During a complete revolution around the galactic halo,
the Solar System transverses a length l ¼ 2πr⊙, where
r⊙ ¼ 8.3 kpc is the distance of the Solar System from the
galactic centre. On this path, the Earth encounters a number
of miniclusters equal to,

Nstd
enc ¼ ð2πr⊙ÞðπðRstd

c Þ2Þnstdc ∼ 600

�
mA

50 μeV

�
0.1668

: ð60Þ

Given a galactic year τ⊙ ¼ 2πr⊙=v⊙ ∼ 230 My, the time
between two encounters can be estimated as,

FIG. 6. Top panel: the velocity dispersion of a minicluster as a
function of the reheat temperature for different cosmological
models before nucleosynthesis. We have assumed that 100% of
the CDM is in axions with αtot ¼ 10. Color coding is the same as
in Fig. 5. Middle panel: typical duration in days of a single
encounter of a minicluster with the Earth. The right vertical axis
gives the mean time interval (in years) between two Earth
encounters with a minicluster with the same settings as in the
Top panel. Bottom panel: coherence time of the axion field in the
minicluster. Note that it is always sensibly larger than the time of
an encounter.
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Tstd
btw ¼ τ⊙

Nstd
enc

∼ 4 × 105 years

�
50 μeV
mA

�
0.1668

: ð61Þ

During the encounter, the energy density in the mini-
cluster is enhanced by the factor given in Eq. (52). Given
the size of the minicluster in the standard scenario in
Eq. (36) and the velocity of the Solar System around the
Galactic centre v⊙ ∼ 230 km=s, which coincides with
typical virial velocities in the DM halo, the typical
encounter has a duration

Δtstdenc ¼
2Rstd

c

v⊙
∼ 6 days

r
Φ

�
mA

50 μeV

�
0.1668

; ð62Þ

where we have assumed that the relative velocity between
the Solar System and the minicluster is of the order of v⊙.
According to Eq. (55), the axion field is coherent during the
whole encounter, since δtcoh ≫ Δtenc. The situation for
standard miniclusters is a bit unfortunate. Although the
enhancement of the signal in an axion search experiment
during an encounter would be extraordinary, the collision
rates are so small that it seems quite hopeless to expect a
minicluster encounter.
Let us now turn our attention to the case of an early NSC.

In the kination and KD cosmologies, the typical minicluster
is generally lighter and smaller than in the standard
cosmology, Mc < Mstd

c and Rc < Rstd
c . According to

Eq. (58), we thus expect a larger number of miniclusters
in the halo, each with a smaller encounter probability with
the Earth. On the contrary, miniclusters formed during a
MD cosmology are slightly more massive and larger than
what obtained in the standard scenario. We estimate the
number of encounters of a minicluster with the Earth Nenc
and the average lapse time between two encounters in a
NSC by using the results in Eqs. (59) and (60) and the
expression in Eq. (61), to obtain

Nenc

Nstd
enc

≃
�
Tbtw

Tstd
btw

�
−1

∝
�
Rc

Rstd
c

�
2 Mstd

c

Mc

¼ Rstd
c

Rc
∝
�
TRH

Tstd
1

�
1−1−β

β
3þγ
3þαγ

; ð63Þ

where in the last expression we used Eq. (37). Chances to
encounter a minicluster halo are then higher for miniclus-
ters forming during a kination NSC, with a smaller lapse
time Tbtw between two subsequent encounters. The draw-
back of the scenario lies in the smaller time for which the
encounter lasts, which in the standard scenario is given by
Eq. (62) and for a NSC gives

Δtenc
Δtstdenc

≃
Rc

Rstd
c

∝
�
TRH

Tstd
1

�1−β
β

3þγ
3þαγ−1

: ð64Þ

In Table I we have summarized the results for the relevant
astrophysical quantities of a typical axion minicluster as
obtained in this section for the NSCs we have considered.
We have computed the quantities presented in this Section
by assuming that all of the axions clump into miniclusters
structures and that axions make up the totality of the CDM
budget. In the following, we have set for convenience
TMeV ¼ TRH= MeV, and we have fixed αtot ¼ 10 to
account for the relative contribution to the axion energy
density from the decay of topological defects. We have also
set for simplicity r ¼ 1, and we have considered mini-
clusters that form with an overdensity Φ ¼ 1. For these
reasons, the results only depend on the reheat temperature
TRH. The mass of the axion for which we have 100% CDM,
here mCDM, differs by various orders of magnitude among
the different cosmologies, as first noted in Ref. [107].
Likewise, the mass and size for a minicluster in either the
standard and MD scenarios can have similar ranges.

Minicluster streams.—Tidal axionic streams [87,179] form
by the encounter and the subsequent disruption of a
minicluster with nearby stars in the disc or by the
gravitational field in the halo, similarly to other types of
clumps that might have formed in the early universe [180].
These structures might be crucial for the direct detection of
axions in that the energy density, while diminished with
respect to what is attained in a minicluster produced in the
standard cosmological picture, can nevertheless be larger
than the average DM density ρ⊙.
In the standard picture, axion miniclusters are too dense

to be disrupted by the gravitational field of the halo, and
the main process for their disruption is by tidal stripping
after an encounter with a star. Defining a critical impact
parameter bc as [181,182]

bc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MsRc

m2
Plvrelvc

s
; ð65Þ

any minicluster whose impact parameter with a nearby star
is b < bc would be disrupted after a single encounter. In
Eq. (65), we have defined the velocity dispersion of the
minicluster vc ¼

ffiffiffiffiffiffiffi
δv2

p
from Eq. (53) and vrel is the velocity

of the minicluster relative to the star of mass Ms. Given a
column density of stars Σ⊥ ¼ dMs=dA for a given area A
in the direction orthogonal to the disc, the total probability
of encounter over the period Δtobs is then

pdisrðΦÞ ¼ 2πRcð4Σ⊥ÞΔtobs
m2

Plvrelvc
¼ 8πΣ⊥Δtobs

mPlvrel

ffiffiffiffiffiffiffi
4π

3ρc

s
; ð66Þ

where the additional factor of four in ð4Σ⊥Þ has been
estimated in Ref. [87] from the averaging over all direc-
tions, and the extra factor of two comes from summing up
all nondisruptive encounters at impact radii b > bc [181].
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For obtaining the result, we have used the relation between
the mass and the radius of a minicluster as in Eq. (32).
Notice that the disruption probability depends on the
density of the minicluster but not on Mc or Rc separately,
so pdisr is the same for any cosmological model used. This
because in larger miniclusters, the escape velocity of bound
axions is also larger by the same factor when the density
of the object is constant. Using the expression in Eq. (32)
for the density of a minicluster and the estimate for the
column density Σ⊥ ≈ ð35� 5ÞM⊙ pc−2 [183] gives pdisr ¼
0.1%ð1þΦÞ−1=2Φ−3=2 per galactic year.
Owing to the disruption of the minicluster, an enhanced

dark matter density ρstreamðΦ; tÞ with respect to the back-
ground value ρ̄A is expected. Axions that have been
stripped away from the bound orbits of the minicluster
stream away, traveling a distance L ¼ vct in a time t
and with a density of the stream that drops linearly with
time as [87]

ρstreamðΦ; tÞ ¼ ρc
Rc

vct
≈ 107

GeV
cm3

ð1þΦÞ1=2Φ3=2 τG
tG

;

ð67Þ

which again is independent on the cosmological model.
We have introduced the characteristic time τG ¼ 35500 yr,
while tG ∼ 12 Gyr is the age of the galactic disc.
The enhancement E of the axion energy density due to
tidal stream then ranges from a minimum EmðΦÞ¼
maxðE;ρstreamðΦ;tÞ=ρ̄AÞ to a maximum value EM¼ρc=ρ̄A.
Following closely Eq. (4.5) in Ref. [87], we obtain the
rate of stream encounters

NðEÞ ¼
Z þ∞

0

dΦ
Z

EM

EmðΦÞ

dE0

ðE0Þ3
pdisrðΦÞfðΦÞ
2Rc=vrel

ρstreamðΦ; tÞ
ρ̄A

:

ð68Þ

Here, we have introduced the mass fraction in miniclusters,
first estimated in Ref. [184], although we note that the
refined calculations of Ref. [95] seem to point to a much
smaller density of ultradense miniclusters.
In Fig. 7, we show the result obtained from computing

the number of encounters NðEÞ in Eq. (68) that yield to an
enhancement in density larger than E, plotted as a function
of E. We have fixed the observation period Δtobs ¼
20 years and we have assumed that strings contribute to
the total axion energy density so that αtot ¼ 10. We show
the results obtained in the standard cosmological history
with a black line, and we have included the contributions
from other NSC with different color codings: MD (red
dashed line), kination (blue dotted line), and KD (green
dot-dashed line). Thicker lines correspond to larger reheat
temperatures in TRH ¼ ð5; 50; 500Þ MeV. The result in the
standard cosmology is smaller than what obtained in
Ref. [87] because of the more massive miniclusters we

used in our model, Mstd
c ∼ 10−11M⊙, consistently with the

analysis in the previous sections. For the same density, the
miniclusters we obtain in our analysis are thus slightly
larger than what used in previous analyses, and it takes
more time to transverse them affecting the denominator in
Ref. (68). This reasoning also explains the trend observed
in Fig. 7 for NSC scenarios, for which a more massive and
larger minicluster is realized in the MD cosmology while
smaller miniclusters are obtained in kination and KD
cosmologies.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have discussed the properties of axion
miniclusters emerging in different cosmological scenarios
before big bang nucleosynthesis (BBN) took place. In
particular, we have considered different scenarios in which
the cosmology before BBN was governed by either (i) a
matter component, (ii) a fast-rolling field ϕ leading to a
kination period, or (iii) a decaying kination field ϕ. Using
assumptions commonly made in the literature, we have
obtained the mass and size of the minicluster, as well as the
enhancement in axion density over the local CDM back-
ground, in different cosmological setups.

FIG. 7. The number of encounters NðEÞ with an axion stream
produced from the tidal stripping of a minicluster, leading to an
enhancement larger than E ¼ ρ=ρ̄A. We have assumed an
observation interval Δtobs ¼ 20 years and a contribution from
topological defects so that αtot ¼ 10. The black solid line
represents the result obtained in the standard cosmological
scenario, while the other NSC scenarios are plotted with
different colors and dashing: MD (red dashed line), kination
(blue dotted line) and KD (green dot-dashed line). Thicker
lines correspond to larger reheat temperatures, corresponding
to TRH ¼ ð5; 50; 500Þ MeV.
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We have sketched the results for the relative quantities
describing miniclusters in more detail in Fig. 5 as a function
of the temperature TRH at which the modified cosmology
transitions to the standard radiation-dominated scenario. In
the figure, we show the mass of the minicluster in the case
whether the early cosmological scenario is standard (black
lines), matter-dominated (red lines), kination without (blue
lines) and with the decay of the ϕ field (green lines). Solid
and dashed lines assume αtot ¼ 10 or αtot ¼ 1, respectively.
In order to produce the figure, we fix the relic abundance to
the present CDM abundance, so that for each value of TRH
the axion mass is given by Eq. (21). We have cut the plots
at the value of TRH for which the axion mass exceeds the
bound from the astrophysical considerations or the mini-
mum reheating temperature. In Fig. 5, the right vertical axis
gives the size of the minicluster, obtained using the fact
that the minicluster density is constant, see Eq. (35). For
TRH ≤ Tstd

1 , the mass and the size are steadily smaller than
the standard value for kination cosmologies, while it is
higher than what obtained in the standard scenario for the
matter-dominated model. In more details, miniclusters in
the MD cosmology can have a mass is up to two orders of
magnitude larger than standard (radius up to ∼5 larger),
while in the kination and KD scenarios the mass can be up
to a factor 109 smaller than standard (with a radius up to 103

times smaller). The miniclusters obtained when considering
the kination or the KD cosmologies are lighter and more
compact, thus making it more frequent for the Earth to
come into the vicinity of these objects. As we obtained in
Fig. 4, when TRH ≥ Tstd

1 the axion field starts to oscillate in
the standard scenario and we recover the standard results.
When we assume that all of the DM is in the form of

axions, the typical minicluster density is set by the DM
density at matter-radiation equality,Mc=R3

c ∼ ρeq, and does
not depend on the early cosmology within our simplified
picture. The minicluster mass and radius however can be
very different from standard cosmology as they are set by
the size of the horizon when the axion field begins to
oscillate and becomes nonrelativistic. The astrophysical
quantities of relevance for detection tend to depend on
different combinations of Mc and Rc and can be very
different from the standard scenario: the velocity dispersion
δv ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mc=Rc

p
, the time between encounters with the Earth

Tbtw ∝ Mc=R2
c and the duration of an encounter Δtenc ∝ Rc

are different in nonstandard cosmologies for different
values of the reheating temperature. In Fig. 6 (Top panel)
we show the typical duration of a minicluster encounter
with the Earth (left vertical axis) and the expected time
interval between two consecutive encounters (right vertical
axis) as a function of TRH, as well as the velocity dispersion
squared (Bottom panel) for the cosmological model stud-
ied. For TRH ≤ Tstd

1 , both modified cosmologies show
detection advantages and disadvantages compared to the
standard result. If the axion starts oscillating in a kination
model, the encounter would only last up to a few minutes

owing to the small size of the minicluster itself; on the other
hand, the frequency of encounter in the kination cosmology
can be enhanced by an Oð103Þ factor with respect to the
standard case, with the encounters possibly being as
frequent as one per a few years. On the contrary, for an
axion field that begins to oscillate in a matter-dominated
scenario, the encounter would last up to ≈50 days,
although one such encounter during a Galactic year would
be much more rare. For an axion minicluster forming in the
standard cosmology, the velocity dispersion is small
enough so that the coherence time of the axion field is
much longer than the duration of a minicluster encounter
with the Earth. In any modified cosmology we study, the
coherence time modifies but not as much as to invalidate
the previous statement.
We discuss the dependence of the solution on αtot

spanning through various orders of magnitude, since at
presence the effective value of this quantity is uncertain. In
Fig. 8 we report the density plot showing the mass of the
axion minicluster, in units of M⊙, depending on both TRH
and αtot. Again, the largest variations in mass are shown for
the kination models, for which the mass of the minicluster
ranges between 10−22 to 10−8 solar masses over the allowed
range. The range over which the mass of the minicluster
varies is much more contained in the standard cosmology,
for which Mc ∼ 10−11M⊙, and in the MD cosmology for
which Mc varies by just two orders of magnitude around
the standard value. The white region marks the area
where the axion mass is excluded by astrophysical con-
siderations. The dot-dashed line marks the region where
TRH < Tstd

1 , where the modified cosmology takes place to
the left of the dot-dashed line, and the region TRH > Tstd

1

where the axion field starts to oscillate in the standard
radiation-dominated cosmology, for which Mc is given
by the value in the standard cosmological scenario.
Overall, the actual value of αtot does not change much
the general picture.
One might question whether an early matter stage, as the

one the universe experiences in theMD cosmology, leads to
a pre-BBN growth of the structures since adiabatic pertur-
bations in the modulus field entering horizon in such a
modified cosmology would grow linearly with the scale
factor. This has been considered for CDM seeds in MD
models in Refs. [185,186], and in kination models in
Refs. [147,150]. Perturbations in the axion dark matter
fluid would be dragged into such primordial perturbations
and possibly lead to an early growth. However, such model
would be depending on the initial power spectrum of the
perturbations in the new field. We have partly addressed
this issue in Sec. IV B 2 where we have shown that
perturbations in the energy density of the axion grow
linearly with time only in a MD cosmology, while in
kination the growth is suppressed. This behavior is peculiar
to axion CDM and differs from the WIMP scenario studied
in Refs. [147,150]. We have been able to estimate the
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largest mass that could grow into a minicluster in the MD
model due to the large fluctuations in the massive scalar
field governing the expansion rate in the NSC δϕ, by
demanding that fluctuations are not so large as to produce
an excessive number of primordial black holes. We have
found that the radius of the axion minicluster could be
enhanced by a factor up to ∼30, corresponding to an
enhancement ∼303 ≈Oð104Þ in mass with respect to the
case in which fluctuations are suppressed δϕ ≃ 0. In this
scenario, miniclusters would then attain a mass Mc ∼
10−6M⊙ which is of the same order of magnitude as the
mass of the first halos that form in WIMP models from
collisional damping and free-streaming that erase density
perturbations within that scale.7 We leave further details on

the important and interesting issue of an early growth of
perturbations to a subsequent work
A further aspect which is worth discussing is the

eventual survival of axion minicluster from tidal stripping.
Here, we have dealt with these computations in Sec. IV B 3
following closely the treatment in Ref. [87] and the paper
therein in which the issue has been addressed for mini-
clusters in the standard cosmology. As for any dark matter
micro-halo [181,182], the disruption probability after one
passage of an axion minicluster through the Galactic disc is
given in Eq. (66), which we have shown to be independent
on the details of the NSC at the lowest order of the
approximation. This result holds because the disruption
probability is approximately pdisr ∝

ffiffiffiffiffiffiffiffiffiffi
1=ρc

p
≈ const. In the

simplest model we have discussed, the probability of
disruption is then independent on the details of the
cosmology and on the details of the physics of the axion.
The result ps ≪ 1, valid in the standard scenario, is then
expected to hold also in modified cosmological histories.

FIG. 8. Density plot showing the mass of an axion minicluster, depending on the values of the reheat temperature and the parameter
αtot, for different cosmological models before nucleosynthesis. Top left: Standard scenario. Top right: Low-reheat temperature scenario.
Bottom left: Kination scenario. Bottom right: Kination scenario with a decaying ϕ field. The dot-dashed line marks the region where the
axion field starts to oscillate in the standard scenario (right side) or in the modified scenario (left side).

7Depending on WIMP-lepton scattering cross-section, the
value of the free-streaming length can also vary by orders of
magnitude. The WIMP free-streaming length in a NSC has been
estimated in Ref. [187].
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We then expect a sizeable fraction of the dark matter axions
to be bound into miniclusters even in modified cosmolo-
gies, since tidal stripping does not seem to provide a
mechanism of disruption of these substructures. In any
case, we have computed the contribution from the tidal
stripping ox axion miniclusters to the local energy density
in the form of axion streams, by extending the results
discussed in Ref. [87] to a NSC scenario. As we show in
Fig. 7, the number of encountersNðAÞwith an axion stream
for a given enhancement A is expected to be sensibly larger
than in the standard scenario for the early kination and KD
cosmologies. In particular, a number of encounters of the
order of N ∼ 102 to 103 are expected even for an enhance-
ment A ∼ 10 of the local axion density.
For these reasons, we believe it is worth readapting the

existing experimental strategies of detecting axion DM to
take into account this broad range of minicluster masses
and radii shown in Fig. 5. In the event of a discovery, the
minicluster size distribution could be a window to the
cosmology in the still unexplored era prior to big-bang-
nucleosynthesis.
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APPENDIX A: AXION PRODUCTION
MECHANISMS

In this section, we review the axion physics and
cosmological production. For an excellent introduction
to the subject we refer to Ref. [189], while thorough
reviews are found in Refs. [37,38,41,42,190–193] and in
the appendix to Ref. [194].
Populations of cosmological axions are produced

through five main mechanisms: thermalization [195], the

decay of a parent particle [196–200], vacuum realignment
[127,151,152], the decay of topological string defects
[201–207], and wall decay [117,205,208–210]. Of these
mechanisms, only the latter three contribute to a sizeable
cold dark matter population. We briefly revise these
production methods.

(i) Thermal axions
Thermal axions are produced in the early universe

mainly through the process π þ π → π þ a [211].
Similarly to neutrinos, thermal axions would con-
tribute the hot dark matter component. For this
reason, an upper bound mA ≲ 1 eV can be placed
from the requirement that thermal axions do not
overclose the universe [212–215].

(ii) Decay of a parent particle
A decaying massive particle or a modulus coupled

to the axion field would lead to an increment of the
hot dark matter or dark radiation components,
through the decay of the modulus into two axions.
An effective model for the massive modulus would
be a low-energy manifestation of a larger theory
involving both supersymmetry and extra dimensions
[216–222] like a string theory axion [53,197,
223–231]. For this reason, dark radiation from a
string model [197,198] is able to constrain string and
M-theory compactification scenarios through the
change in the effective number of relativistic degrees
of freedom Neff [232], with constraints coming from
both the CMB polarization and big bang nucleo-
synthesis. In some models, the parent particle is a
modulus field which, if it dominates the universe,
must decay prior big bang nucleosynthesis (BBN) at
a reheat temperature [102–106]

TRH ≳ 5 MeV; ðA1Þ

in order to avoid the so-called “moduli decay
problem” [233,234]. The limit on TRH results from
general considerations on the successes of BBN, and
it is then a general lower bound below which the
universe has to be dominantly filled with radiation.
Here we do not treat further the possibility that
axions are produced from the decay of parent
particles, since axions as dark radiation do not pile
up to the present CDM budget.

(iii) Vacuum realignment
Vacuum realignment, one of the main mecha-

nisms to produce a cold axion population, occurs
after the breaking of the PQ symmetry that sets
the axion field at the bottom of a “Mexican hat”
potential [127,151,152]. Axions are massless from
the breaking of the PQ symmetry down to temper-
atures of the order of the QCD phase transition,
when instanton effects generate an effective axion
potential [114,235],
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VðθÞ ¼ Λ4
A

cz

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4czsin2ðθ=2Þ

q �
; ðA2Þ

where θ ¼ Na=fA is an angular variable, Λ4
A ¼

ð75.5 MeVÞ4 is the topological susceptibility, and
cz ¼ z=ð1þ zÞ2 ¼ 0.22 with the ratio of the up and
down quark masses z ¼ mu=md ¼ 0.48. The square
of the axion mass at zero temperature is then [13,14]

m2
A ≡ 1

f2A

d2V
dθ2

����
θ¼0

¼ Λ4
A

f2A
: ðA3Þ

We discuss the vacuum realignment mechanism in a
generic cosmological scenario in Sec. B.

(iv) Decay of topological strings
Topological strings are produced because the

angular variable θ takes different values at each
spatial point after the breaking of the PQ symmetry,
through the Kibble mechanism [236]. After produc-
tion, the energy density in strings scales with the
string unit length, and the string continuously emit
low-frequency modes axions which eventually con-
tribute to the present cold dark matter energy
density. The actual emission spectrum is crucial in
determining the present abundance of cold axions,
which is computed in Refs. [201,202] by using an
energy spectrum with a sharp peak at the horizon
scale, and in Refs. [203–205] by using a spectrum
proportional to the inverse of the axion momentum
1=q. Results are often expressed in terms of the ratio
αstr ¼ ρstrA ðt0Þ=ρmis

A ðt0Þ of the present energy density
of cold axions from axionic strings ρstrA ðt0Þ and that
from axions produced via the misalignment mecha-
nism ρmis

A ðt0Þ. Refs. [201,202] report αstr ∼ 200,
while Refs. [203–205] report αstr ∼ 0.1, thus the
estimation of the CDM axion mass differs by order
of magnitudes in the two models. The controversy
between these different models is solved with lattice
QCD numerical simulations [206,207], which show
that the energy spectrum peaks at the horizon scale
and is exponentially suppressed at higher momenta.
This method yields an intermediate value αstr ∼ 10.
However the recent numerical simulations in
Refs. [118,120] find an order of magnitude discrep-
ancy with the results in Refs. [206,207], showing
that a consensus on the detail on the axion string
radiation into a spectrum of axions has not been
reached yet. All of the results discussed are valid
in a radiation-dominated cosmology, however the
value of αstr also depends on the properties of the
cosmological model before BBN [107–109].

(v) Decay of domain walls
When the primordial plasma undergoes the QCD

phase transition, the effective axion potential in
Eq. (A2) takes place, showing N minima separated

by domain walls attached to strings. Similarly to
what discussed for axions from strings, there has
been some controversy regarding the spectrum of
axion radiated from domain walls. Reference [208]
claims that the energy spectrum peaks around the
axion mass, while in Refs. [205] a larger axion
population is obtained by using an emission spec-
trum proportional to the axion wave number. The
evolution of the string-wall network with N ¼ 1 has
been explored in Refs. [117,209], where numerical
simulations have been performed to settle the con-
troversy and a spectrum peaking at a wave number
of the order of the axion mass is obtained. The
contribution of cold axions from wall decay is found
as αwall ¼ ρwallA ðt0Þ=ρmis

A ðt0Þ ¼ ð32� 16Þ [209,210].

APPENDIX B: VACUUM REALIGNMENT
MECHANISM

The axion field originates from the breaking of the PQ
symmetry at a temperature of the order of fA=N. Axions,
which are the quanta of the axion field, are massless from
the moment of production down to the temperature of QCD
transition, when the mass term in Eq. (13) turns in. In this
picture, the equation of motion for the angular variable of
the axion field at any time is

θ̈ þ 3H _θ −
∇̄2

a2
θ þm2

A sin θ ¼ 0; ðB1Þ

where ∇̄ is the Laplacian operator with respect to the
comoving coordinates x̄. We rescale time t and scale factor
a so that these quantities are dimensionless, t → t=t1 and
a → a=a1, and we use the definition in Eq. (13) for the
axion mass at the time at which the coherent field
oscillations begin, m1 ¼ mAðT1Þ ¼ 3H1 ¼ 3β=t1, as a
function of the exponent β that expresses the time depend-
ence of the scale factor a as a ¼ tβ in Eq. (10). Using this
relation, we obtain t1 ¼ 3β=m1, so that Eq. (B1) in these
rescaled quantities reads

θ̈ þ 3
_a
a
_θ − β2

∇2

a2
θ þ 9β2

�
mA

m1

�
2

sin θ ¼ 0: ðB2Þ

In this last expression, we have written the Laplacian
operator in terms of a rescaled co-moving spatial coor-
dinate x ¼ H1a1x̄. Defining χ ¼ 2 − 1=ð2βÞ, and setting

θ ¼ ψ

aχ
; ðB3Þ

Eq. (B2) is rewritten as

ψ 00 þχð1−χÞ ψ
a2

−a4ð1−χÞ∇2ψþ9

�
mA

m1

�
2

a
3
2β sin

�
ψ

aχ

�
¼0;

ðB4Þ
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where a prime indicates a derivation with respect to a. The
expression above is the generalization of the equation of
motion for the axion field in any cosmological model, and
reduces to the usual expression in the radiation-dominated
limit β ¼ 1=2,

ψ 00 −∇2ψ þ 9

�
mA

m1

�
2

a3 sin

�
ψ

a

�
¼ 0: ðB5Þ

Equation (B5) coincides with the results in Ref. [59],
where the conformal time η is used as the independent
variable in place of the scale factor a. We remark that this
choice is possible in the radiation-dominated cosmology
because η ∼ a, whereas in a generic cosmological model
this relation reads η ∼ a1=β−1 and the use of η as the
independent variable leads to a more complicated form of
Eq. (B4). Thus, in a modified cosmology the choice of the
scale factor as the independent variable leads to a simpler
form of the equation of motion. Taking the Fourier trans-
form of the axion field as

ψðxÞ ¼
Z

e−iqxψðqÞ; ðB6Þ

we find

ψ 00 þ χð1 − χÞ ψ
a2

þ a
2
β−4q2ψ þ 9

�
mA

m1

�
2

a
3
2β sin

�
ψ

aχ

�
¼ 0:

ðB7Þ

Equation (B7) expresses the equation of motion for the
axion field in the variable a and it is conveniently written to
be solved numerically.

1. Approximate solutions of the equation of motion

Analytic solutions to Eq. (B7) can be obtained in the
limiting regime θ ≪ 1, where Eq. (B7) reads

ψ 00 þ κ2ðaÞψ ¼ 0; ðB8Þ

with the wave number

κ2ðaÞ ¼ χð1 − χÞ
a2

þ 9

�
mA

m1

a
1−β
β

�
2

þ ðqa1−2β
β Þ2: ðB9Þ

An approximate solution of Eq. (B8), valid in the adiabatic
regime in which higher derivatives are neglected, is given
by setting

ψ ¼ ψ0ðaÞ exp
�
i
Z

a
κða0Þda0

�
; ðB10Þ

where the amplitude ψ0 is given by

jψ0ðaÞj2κðaÞ ¼ const: ðB11Þ

Finally, an approximate solution to Eq. (B8) is [38,59]

ψ ¼ constffiffiffiffiffiffiffiffiffi
κðaÞp exp

�
i
Z

a
κða0Þda0

�
: ðB12Þ

Each of the three terms appearing in Eq. (B9) is the leading
term in a particular regime of the evolution of the axion
field. We analyse these approximate behavior in depths in
the following.

(i) Solution at early times, outside the horizon
At early times t ∼ a1=β ≲ t1 prior to the onset of

axion oscillations, the mass term in Eq. (B8) can be
neglected since mAðaÞ ≪ m1. Defining the physical
wavelength λ ¼ a=q, we distinguish two different
regimes in this approximation, corresponding to the
evolution of the modes outside the horizon (λ≳ t) or
inside the horizon (λ≲ t). In the first case λ≳ t,
Eq. (B8) at early times reduces to

a2ψ ″ þ χð1 − χÞψ ¼ 0; ðB13Þ

with solution (θ ¼ ψ=aχ)

θðq; tÞ ¼ θ1ðqÞ þ θ2ðqÞa
1−3β
β ¼ θ1ðqÞ þ θ2ðqÞt1−3β:

ðB14Þ

One of the two solutions to Eq. (B13) is thus a
constant value θ1ðqÞ, while the second solution
drops to zero for cosmological models with
β > 1=3. Regardless of the cosmological model
considered, the axion field for modes larger than
the horizon is “frozen by causality.” For example,
in a radiation-dominated model with β ¼ 1=2,
Eq. (B14) coincides with the result in Ref. [38],

θ ¼ θ1ðqÞ þ θ2ðqÞt−1=2: ðB15Þ

(ii) Solution at early times, inside the horizon
Equation (B8) for modes that evolve inside the

horizon λ≲ t reduces to

ψ ″ þ ðqa2−1=βÞ2ψ ¼ 0; ðB16Þ

whose solution in a closed form, obtained through
Eq. (B12) and θ ¼ ψ=aχ , reads

θ ¼ const
a

exp

�
iq

Z
a
ða0Þ2β−1β da0

�
: ðB17Þ

The dependence of the amplitude jθj ∼ 1=a in
Eq. (B17) is crucial, since it shows that the axion
number density scales with
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nAðq; tÞ ∼
jθj2
λ

∼ a−3; ðB18Þ

for any cosmological model considered.
(iii) Solution for the zero mode at the onset of oscil-

lations
An approximate solution of Eq. (B8) for the zero-

momentum mode q ¼ 0, valid after the onset of
axion oscillations when t ∼ t1, is obtained by setting

κðaÞ ≈ 3
mAðaÞ
m1

a
1−β
β ; ðB19Þ

so that the adiabatic solution for ψ in Eq. (B12) in
this slowly oscillating regime gives the axion num-
ber density

nmis
A ðaÞ ¼ 1

2
mAðaÞf2A

����ψðaÞaχ

����2 ¼ nmis
A

�
a
a1

�
−3
;

ðB20Þ

where nmis
A is the number density of axions from the

misalignment mechanism at temperature T1,

nmis
A ¼ 1

2
mAðT1Þf2Ahθ2i i: ðB21Þ

Equation (B20) shows that, regardless of the domi-
nating cosmological model, the axion number den-
sity of the zero modes after the onset of axion
oscillations scales with a−3. The energy density at
temperature T1 is obtained as

ρmis
A ðT1Þ ¼ mAnmis

A ¼ Λ4
Ahθ2i i
2

�
T1

TΛ

�
−γ
; ðB22Þ

where we have used Eq. (13) to express m1 in terms
of T1.

APPENDIX C: A NOTE ON PRIMORDIAL
BLACK HOLE FORMATION

Primordial black holes formed through various mecha-
nisms, of which one consists in the growing of large
inhomogeneities around the QCD phase transition.
The question is, should axion inhomogeneities also form
black holes instead of condensing into miniclusters? To
answer this question, we compute the Schwarzschild radius
rs ¼ M=m2

Pl for the primordial plasma and for the axion
energy density at the onset of oscillations.
When overdensities in the primordial plasma grow larger

than one, a condition for the formation of primordial
black holes is met. At time t, the mass enclosed within
a Hubble radius is M ¼ ρ=H3, and the ratio between the
Schwarzschild radius rs and the horizon length 1=H is

rs
1=H

¼ ρ

H2m2
Pl

¼ 1

8π
; ðC1Þ

where in the last equality we have used the Friedmann
equation H2 ¼ ð8π=3m2

PlÞρ. Thus, the Schwarzschild
radius is about one order of magnitude smaller than the
horizon length, so a significant fraction of inhomogeneities
can condense into black holes.
For axion miniclusters of radius R1, the ratio is

rs
R1

¼ H1

r
Mc

m2
Pl

¼ 4π

3

ð1þΦÞr2ρ1
H2

1m
2
Pl

; ðC2Þ

where in the last expression we have used Eq. (33) in terms
of the energy density of axions ρ1 ≡ αtotρ

mis
A ðT1Þ. The ratio

in Eq. (C2) is of the order of 10−8 to 10−13 for all
cosmological models considered and for all physical values
of TRH and αtot. Primordial black holes cannot form from
axion cold dark matter using this mechanism, mainly
because the axion field is a subdominant component of
the total energy density at the QCD phase transition.
Recently, the production of primordial black holes from
topological defects arising in the QCD axion theory has
been considered in Ref. [237]. The constraint on scenarios
in which primordial black holes accrete dark matter has
been considered in Ref. [238].
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