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The hadron-quark phase transition in the core of heavy neutron star (NS) has been studied. For the
hadronic sector, we have used the lowest-order constraint variational method by employing AV18, AV14,
UV14, and Reid 68 two-body nucleon-nucleon forces supplemented by the phenomenological Urbana-type
three-body force. We have adopted the MIT bag model as well as three-flavor version of the Nambu–Jona-
Lasinio (NJL) model to describe the quark phase. The equation of state (EOS) of a hybrid star (HS) is
presented by combining two EOS of the hadronic sector and quark sector of a star, which are derived from
independent models or theories. The hadron-quark transition is constructed by considering a sharp phase
transition, i.e., Maxwell construction. The structure of the HS is calculated and reported by solving Tolman-
Oppenheimer-Volkoff equations. Finally, the radii and tidal deformability of purely NS and HS for the mass
of 1.4 M⊙ is computed, and new constraints on these quantities are checked. The maximummass of the HS
is found more than 2 M⊙ for both the NJL and MIT bag models. However, the maximum mass of
1.796 M⊙ (1.896 M⊙) was the best result that would be calculated for a stable HS with the pure quark core
within the MIT (NJL) model. All the hybrid EOS fulfill the constraints on radii and tidal deformability
extracted from the binary GW170817 for HSs. A comprehensive analysis on the structure of purely NS and
HS and also compactness, tidal Love number, and tidal deformability for the star with the mass of 1.4 M⊙
has been conducted for various EOS of the hadron sector and several parameter sets of the quark EOS. The
results achieved in this study are in good concurrence with the other calculations reported on this subject.
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I. INTRODUCTION

One of the issues in the context of the compact stars is
the probable appearance of the quark degrees of freedom in
the interior of the heavy neutron stars (NSs) [1–3]. The
question of whether or not quark matter exists in the core of
NSs has newly received interest [4–6], by the discovery of
two massive neutron stars [7–11]. Microscopic calculations
demonstrate that in heavy NSs (M ≈ 2 M⊙) the density of
the core reaches to around 1 fm−3, and at such high
densities, the Fermi energy level of particles increases
enough to produce various exotic particles, and the appear-
ance of the quark phase (in addition to the baryonic phase)
is not unexpected [12]. In fact, in densities above nuclear
saturation density (ρ ≫ ρ0 ¼ 0.16 fm−3), some other
exotic particles may exist in the interior of a NS in addition
to nucleons and leptons, such as hyperons and π and k

condensation. In higher densities, nuclear matter may
experience phase transition to a deconfined quark plasma
of u, d, and s quarks. However, the appearance of hyperons
in beta stable matter would strongly decrease the maximum
mass of the star [13–17]; therefore, in this situation, the
presentation of a nonbaryonic phase like the quark matter
could be a feasible way to stiffen the EOS and reach to a
massive NS. Thus, a heavy NS can be a hybrid star [18]. It
would have been ideal if there had been a unified theory
which could have treated both the hadronic and quark phases
simultaneously in all ranges of temperatures and densities,
but, unfortunately, there is no such reliable theory as of now.
However, at finite temperature and zero baryon density, a
numerical study on lattice formalism in QCD has provided
some reliable results for physics of the deconfinement
transition [19,20]. In this case, lattice calculations predict
that the deconfinement happens via a smooth crossover
transition [21] at a temperature, T ≈180–200 MeV [22,23].
However, studies at finite baryon densities on the lattice are
verydifficult. Someprogress hasbeenmade in recent years in
extending the calculations to finite quark chemical potential;

*s.khanmohamadi@ut.ac.ir
†hmoshfegh@ut.ac.ir
‡Atashbar@ipm.ir

PHYSICAL REVIEW D 101, 023004 (2020)

2470-0010=2020=101(2)=023004(22) 023004-1 © 2020 American Physical Society

https://orcid.org/0000-0002-9657-7116
https://orcid.org/0000-0002-9279-499X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.023004&domain=pdf&date_stamp=2020-01-06
https://doi.org/10.1103/PhysRevD.101.023004
https://doi.org/10.1103/PhysRevD.101.023004
https://doi.org/10.1103/PhysRevD.101.023004
https://doi.org/10.1103/PhysRevD.101.023004


however, they have not yet provided reliable results [24,25].
Therefore, studying the EOS and phase transition of nuclear
matter to the deconfinement quark phase at zero temperature
and high densities, which is the case in NSs, from the first
principles, is a difficult task due to the nonlinear and
nonperturbative nature of the QCD governing on the behav-
ior of such systems.
Therefore, as a starting point, one can use some

phenomenological models for describing the quark matter.
Over the past few decades, many authors have intensively
studied various aspects related to the formation of exotic
degrees of freedom in neuron stars and proposed observa-
tional tests which confirm the existence of such constitu-
ents in the interior of compact stars (see, Ref. [26] and
references therein). The structure and properties of hybrid
stars (HSs) have been studied in several papers with
different hadron and quark models and various types of
phase transitions. In Refs. [12,27–33], a few of them are
reported.
We employ the MIT bag and Nambu–Jona-Lasinio

(NJL) models for describing quark matter in this paper.
The MIT bag model builds confinement and asymptotic
freedom via a phenomenological model and is essentially
an enhanced version of Bogoliubov’s model for quarks that
are considered three massless quarks in a vacuum cavity of
radius R with a finite, spherical, square well potential.
Bogoliubov’s model has a few shortcomings such as the
violation of energy-momentum conservation [34]. TheMIT
bag model solves this problem by the inclusion of phe-
nomenological confining pressure, which is named the bag
constant, B [35]. This prescription provides a mechanism
for natural confinement and also causes the model to
become a Lorentz-covariant model. To describe the quark
phase, an improved version of the MIT bag model, in which
interaction between u, d, and s quarks inside the bag are
taken in a one gluon-exchange approximation, was used
[5,36–38].
Besides, we adopt the three-flavor version of the NJL

model to describe the deconfined quark phase. The NJL
model contains some of the basic symmetries of QCD,
namely, chiral symmetry. The most important feature of the
NJL model is its nontrivial vacuum by breaking the chiral
symmetry dynamically by spontaneous mass generation. In
the NJL model, at the low-energy scale, the gluon acquires
a large effective mass that can be integrated out to a good
approximation, leaving a local contact four-fermion inter-
action between the quarks. Upon this procedure, the
confinement was lost because the local color symmetry
of QCD was reduced to a global symmetry. This drawback
of the NJL model is not an issue when modeling quark
matter at high densities, since the quark matter is decon-
fined at high densities. The NJL model has been very
successful in describing the vacuum properties of low-lying
meosns and predicts at sufficiently high densities or
temperatures a phase transition to a chiral symmetric state

[39–42]. Strictly speaking, the NJL model is usable in
vacuum and at high densities but not in the hadronic phase
in between.
Contrary to the quark matter case, microscopic theories

of the nucleonic EOS have reached a high degree of
sophistication. We employ the lowest-order constraint
variational (LOCV) method for describing the nucleonic
sector. The LOCV method is a well-known many-body
technique that was originally used to study the properties of
cold symmetric nuclear matter [43,44] by using the Ried-
type potential [45,46] as the bare two-body forces (2BF).
Later on, this approach was extended to finite temperature
[47], and also calculations of the EOS of asymmetric
nuclear matter [48], pure neutron matter, and β-stable
matter [49,50] were carried out within this framework
by using more sophisticated potentials. Moreover, relativ-
istic corrections have been considered in calculating
thermodynamic properties of nuclear matter within this
model at both zero and finite temperatures [51,52].
Recently, this technique has been extended by adding
three-body force (TBF) to this formalism [53,54] and
has been used to study the structure of the NS [53] as
well as a protoneutron star [54]. This model is successful in
reproducing the correct saturation point parameters such as
Esymðρ0; L; and KsymÞ by using a revised version of TBF
which is based on an isospin-dependent parametrization of
coefficient in the Urbana-type (UIX) forces. Within the
LOCV formalism employing AV18 supplemented by TBF
in Urbana type [54] and chiral symmetry [55], the maxi-
mum NS mass is obtained above 2 M⊙. Recently, the
LOCV method is reformulated to extract the EOS of Hyper
nuclear matter [56,57].
For the region of phase transition, a detailed study

employing the Wigner-Seitz cell approach [58] suggests
that the mixed phase behaves more in accordance with the
Maxwell construction than the Gibbs construction. It may
happen that a hadron-quark mixed phase is unlikely to be
stable for a reasonable value of surface tension [58–60];
then, the situation is closer to the Maxwell construction
case, in which two pure phases are in direct contact with
each other. Therefore, we restrict ourselves to analyzing the
sharp hadron to quark matter phase transition. Maxwell
construction and Gibbs construction describe the first-order
phase transition. The existence of the “mass twins” in the
mass radius relationship for the compact star also seems to
support the Maxwell construction viewpoint [61]. Some
authors argue that the phase transition could be crossover,
which may lead to interpolation/percolation construction
[62,63]. As we mentioned above, the lattice QCD calcu-
lation shows that the transition line for low baryon densities
is a crossover [64–67] but it is model dependent for high
densities and low temperatures. Thus, it should completely
be treated phenomenologically in this case.
Nowadays, an EOS should not only fulfill the maximum

mass constraints, 2.01þ0.04
−0.04 ≤ MTOV=M⊙ ≲ 2.16þ0.17

−0.15 , but
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should additionally fulfill the new constraint on radii
and tidal deformability of compact stars set by the binary
NS system, GW170817 [68]. The brand new era of
multimessenger astronomy started on August 17, 2017,
with the first direct detection of both gravitational and
electromagnetic radiation from the binary NS merger
GW170817, which was recorded by the Advanced
LIGO and Virgo network of gravitational wave recorders
[69,70]. GW170817 established for the first time the
association of short gamma-ray bursts with NS mergers,
which can help solve the long-standing puzzle of the
origin of these phenomena [71–74]. GW170817 gives
fundamental new insights into the nature of dense matter
by adding the tidal deformability (polarizability) con-
straints on EOS. The tidal deformability, Λ, encodes the
response of NS to the external tidal field produced by its
companion similar to the response of a polar molecular to
an external electrical field. We calculate the tidal deform-
ability and radii of the NSs and HSs that exist in this
paper with the mass of 1.4 M⊙, and new constraints on
these quantities are checked.
The paper is organized as follows. In Sec. II A, we will

address the nucleonic matter and briefly review the deter-
mination of baryonic EOS in beta equilibrium in the LOCV
approach at zero temperature. Section II B is concerned the
quark matter EOS according to the MITand NJL models. In
Sec. III A, by using these models, a hybrid equation of state
is obtained, assuming a Maxwell construction. In Sec. III B,
the structure of the hybrid star is presented. Section III C is
concerned with calculating the tidal deformability, and
Sec. IV is devoted to the summary of the results and
conclusions.

II. EQUATION OF STATE

The neutron star outer and inner crust exist at densities
between 104 ≤ ϵcrust ≤ 1014 gr cm−3 [75]. Matter in the
inner crust consists mostly of nuclei in a Coulomb lattice
that is immersed in a gas of electrons and, above neutron
drip (greater than or equal to 4 � 1011 gr cm−3), free
neutrons. In densities above the saturation density (greater
than or equal to 1014 gr cm−3), the relevant degrees of
freedom are hadrons. At higher densities (several times the
saturation density), baryons begin to overlap and lose their
individuality, and to describe the medium, the quark
degrees of freedom need to be included. In this work,
we use the Harrison-Wheeler equation of state for the
neutron star crust.

A. Confined hadronic phase

Different theoretical approaches can be used to calculate
empirical properties of infinite nuclear matter. In recent
years, experimental observations, together with theoretical
efforts for explaining and analyzing them, have provided
reliable microscopic models for describing nuclear matter.

In this research, we use the LOCV model, which is a
microscopic model based on cluster expansion and is in a
good agreement with empirical properties. In this section,
we briefly review the LOCV method, the details of which
can be found in the references in the Introduction. First, we
restrict our attention to the baryonic matter and the
procedure of adding TBF to the LOCV formalism; then,
we employ this formalism to extract the EOS of the β stable
matter.

1. Asymmetric nuclear matter

For the first step in the LOCV formalism, a trial wave
function of the N-body interacting system at zero temper-
ature is produced as

Ψð1…NÞ ¼ Fð1…NÞΦð1…NÞ; ð1Þ

where Φð1…NÞ is a noninteracting ground-state wave
function of N independent nucleons and Fð1…NÞ is a
N-body correlation operator. The correlation operator is
obtained in the Jastrow approximation, which is the
symmetrized product of two-body correlation function
operators, which is written as

Fð1…NÞ ¼ S
Y
i>j

fðijÞ; ð2Þ

where S is the symmetrizing operator. fðijÞ is read as

fðijÞ ¼
X3
α;p¼1

fpαðijÞOp
αðijÞ; ð3Þ

where α ¼ fJ; L; S; T; Tzg [total (J), orbital (L), spin (S)
angular momentum, and isospin (T) the and third compo-
nent of isospin Tz] and p ¼ 2, 3 is used for coupled
channels with J ¼ L� 1. Otherwise, p is set to unity. The
operators Op

αðijÞ are written as

Op¼1−3
α ¼ 1;

�
2

3
þ 1

6
S12

�
;

�
1

3
−
1

6
S12

�
; ð4Þ

where S12 ¼ 3ðσ1:r̂Þðσ2:r̂Þ − σ1:σ2 is the usual tensor
operator. In general, the nuclear Hamiltonian is read as a
sum of the nonrelativistic single-particle kinetic energy and
potential

H ¼
X
i

p2
i

2mi
þ
X
i<j

VðijÞ þ � � � : ð5Þ

The baryonic energy expectation value EB is considered as
the sum of one body energy, E1 and two-body energy, E2

and written as:
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EB½f� ¼
1

N
hΨjHjΨi
hΨjΨi ¼ E1 þ EMB ≅ E1 þ E2; ð6Þ

in which

E1 ¼
X
i

3ℏ2ðkFi Þ2
10mi

; ð7Þ

where i ¼ n, p, and kFi is the corresponding nucleon
momentum divided by ℏ and E2 is defined as

E2 ¼
1

2N

X
ij

hijjWð12Þjij − jii; ð8Þ

with

Wð12Þ ¼ −
ℏ2

2m
½fð12Þ; ½∇2

12; fð12Þ��
þ fð12ÞVð12ÞfTð12Þ: ð9Þ

Higher-order terms in the cluster expansion series are
neglectable [47]. This expression is now minimized with
respect to the channel correlation functions but sub-
jected to the normalization constraint, which is considered
as [47,76,77]

1

N

X
ij

hijjh2Tzð12Þ − f2ð12Þjij − jii ¼ 0: ð10Þ

The condition of healing the correlation functions to the
Pauli function hTzð12Þ, which for the asymmetric matter
takes the following form, is also imposed [77],

hTzðrÞ ¼
�
1 −

9

2

�
J1ðkFi rÞ
kFi r

Þ2
�−1

2

; Tz ¼ �1

¼ 1; Tz ¼ 0; ð11Þ

with J1ðxÞ being the spherical Bessel function of order 1.
The normalization constraint introduces the Lagrangian
multiplier parameters in the LOCV formalism. The pro-
cedure of minimizing Eq. (9) provides a number of Euler-
Lagrange differential equations for functions fpαðijÞ.
Solving these equations leads to the determination of
correlation functions and then the two-body cluster
energy. In the nuclear matter calculations, the saturation
properties of cold symmetric nuclear matter fail to be
reproduced correctly, if just 2BF is used. This deficiency
can be resolved by inclusion of a TBF in the nuclear
Hamiltonian. To avoid the full three-body problem, the
TBF (semiphenomenological UIX interaction) is included
via an effective two-body potential derived after averaging
out the third particle, which is weighted by the LOCV
two-body correlation functions fpαðijÞ at a given density ρB.
For more details, see Refs. [53,54].

2. Beta-stable matter

As the density of hadronic matter increases beyond the
saturation density, nuclei dissolve to form an interacting
system of nucleons and leptons. If this system survives
longer than the timescale of weak interactions, t ≈ 10−10 s,
it is able to reach equilibrium with respect to the β decay
n ¼ pþ eþ ν−e and its inverse, which is called beta-stable
matter. Therefore, we have to consider the NS as an object
of which the matter contains neutrons, protons, electrons,
and muons. The τ lepton is ignored because of its large rest
mass compared with two other leptons. For such matter, the
β equilibrium conditions (without trapped neutrinos) are

μn ¼ μp þ μe ð12Þ

μe ¼ μμ; ð13Þ

where μi stands for the chemical potential of each particle.
Chemical potentials of leptons at zero temperature can be
expressed as

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpFicÞ2 þ ðmic2Þ2

q
: ð14Þ

The charge neutrality condition in the NS matter requires
the following equality:

ρp ¼ ρμ þ ρe: ð15Þ

Solving the coupled equations (12), (13), and (15) self-
consistently at any given baryon density ðρB ¼ ρn þ ρpÞ,
the energy of β-stable matter, which is written as the sum of
the baryonic part energy EB and leptonic part energy EL,
can be determined, (E ¼ EB þ EL). The energy of the
baryonic part is calculated using Eq. (6). Leptons are
supposed to be noninteracting highly relativistic particles,
so at zero temperature, the energy of leptonic part can be
written as

EL ¼ 2

h3ρB

X
i¼e;μ

Z
PFi

0

d3pi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpic2Þ þ ðmic2Þ2

q
: ð16Þ

The pressure of the NS matter as a function of baryonic
density is calculated by using the following thermodynamic
relation:

P ¼ ρ2B

�∂ðE=NÞ
∂ρB

�
: ð17Þ

B. Deconfined quark phase

Because of the nonperturbative and nonlinear nature of
QCD, that is, governs the strongly interacting particles in
the deconfined quark phase, describing such a system has
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to be done via different models. In this study, we employ
two well-known models, namely, the MIT bag model and
the NJL model, which are briefly reviewed in the following
subsections.

1. MIT bag model

An improved version of the MIT bag model in which
interaction between u, d, and s quarks inside the bag
are taken in a one-gluon-exchange approximation was
employed [5,36–38]. At this stage, the thermodynamic

potential (Ω) includes the quark kinetic energy, as well as
one-gluon-exchange energy in which the fine structure
constant of QCD is entered,

Ω ¼
X
f

Ωf þ B; ð18Þ

where B is the energy density difference between the
perturbative vacuum and true vacuum, i.e., the bag constant
which is the free parameter of the model, and at zero
temperature Ωf takes the form

ΩfðμfÞ ¼
−1
4π2

2
64μf

�
μ2f −

5

2
m2

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

f

q
þ 3

2
m4

f ln

0
B@μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

f

q
mf

1
CA
3
75

þ αc
2π3

2
643

0
B@μf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

f

q
−m2

f ln

0
B@μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

f

q
mf

1
CA
1
CA

2

− 2ðμ2f −m2
fÞ2 − 3m4

f ln

�
mf

μf

�

þ 6 ln
σ

μf

8<
:μfm2

fðμ2f −m2
fÞ

1
2 − μ4f ln

0
B@μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

f

q
mf

1
CA
9=
;
3
75; ð19Þ

in which mf and μf are the current quark mass and
chemical potential, respectively, with f ¼ u, d, s,
and αc denotes the QCD fine structure constant and
σ ¼ mN

3
¼ 313 MeV is the renormalization point, where

mN is the nucleonic mass. The masses of u and d
quarks are neglected, and we take ms ¼ 150, 300 MeV.
Thermodynamic quantities can be derived in the
standard way:

nf ¼
∂Ω
∂μf ð20Þ

P ¼ −Ω ð21Þ

ϵ ¼ Ωþ
X
f

μfnf: ð22Þ

2. NJL model

We adopt the three-flavor version of the NJL model. The
Lagrangian is given by [42]

L ¼ q̄ði=∂ − m̂Þqþ Lsym þ Ldet; ð23Þ

Lsym ¼ G
X8
a¼0

½ðq̄λaqÞ2 þ ðq̄þ iγ5λaqÞ2� ð24Þ

Ldet ¼ −K½detðq̄ð1þ γ5ÞqÞ þ detðq̄ð1 − γ5ÞqÞ�; ð25Þ

in which q ¼ ðu; d; sÞT is a quark field with three flavors
(Nf ¼ 3) and three colors (Nc ¼ 3), and m̂ ¼
diagðmu;md;msÞ is the corresponding quark mass matrix.
Asms ≠ mu ¼ md, the isospin symmetery has been applied
in this paper while SU(3) flavor symmetry explicitely
broken. Lsym is a Uð3ÞL �Uð3ÞR symmetric four-point
interaction, in which λa, a ¼ 1;…; 8 denotes the Gell-
Mann matrices, the generators of SUð3Þ. Ldet concerns the
’t Hooft interaction that is a SUð3ÞL � SUð3ÞR symmetric
2Nf ¼ 6-point interaction, but it breaks the Uð1Þ sym-
metry, which was left unbroken by Lsym.G is the four-point
coupling constant, and K is the six-point coupling constant.
In the Hartree-Fock approximation, the quark self-energy,
which arises from the interaction terms, is local and only
implies a constant shift in the quark mass, which leads to
the gap equation in the NJL model that is the relation
between the constituent quark mass M and the current
quark mass m [42],

Mi ¼ mi − 4Gφi þ 2Kφjφk; ð26Þ

where ði; j; kÞ is equal to any permutation of ðu; d; sÞ
and φi ¼ hq̄iqii is the quark condensate. NJL is a
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nonrenormalizable model, since there are divergent inte-
grals in it, so there are different regularization schemes to
regularize the divergencies, which are part of the NJL
model. In this paper, the regularization has been done by
using a sharp 3-momentum cutoff, Λc. There are five
parameters that should be fixed in the SUð3Þ NJL model:
cutoff Λc; the bare quark mass mu ¼ md, ms; and the
coupling constants G and K. The parameters are fixed by
fitting to the empirical values of five observables, namely,
the pion decay constant fπ , the pion mass mπ , and the mass
of three pseudoscalar mesons k; η a; ή. In Table I [42], we
list three different parameter sets, which correspond to the
fits of Rehberg, Klevansky, and Hufner (RKH) [78], of
Hatsuda and Kunihiro (HK) [39], and of Lutz, Klimt, and
Weise (LKW) [79], together with related quantities in the
quark and meson sectors and their empirical values [80].
The empirical quark masses listed have been rescaled to a
renormalization scale of 1 GeV by multiplying them by
1.35. The values given for the light quarks correspond to
the average ðmu þmdÞ=2. In RKH and HK parameter sets
the parameters were determined by fitting fπ , mπ , mk, and
mή to their empirical values, while the mass of the η meson
is underestimated by 6% in the work of RKH and 11% in
the work of HK. In the LKW parametrization, a vector and
axial-vector interaction term is considered in addition to
Eqs. (25) and (26) which enables the authors of ref [79] to
fit the vector-meson nonet ðρ;ω; K�, and ϕÞ as well, that
cause LKW parameter set has a relatively large cut-off and
small bare quark masses in comparison with RKH and HK
parameter sets. In the pseudoscalar meson sector, all three
parameter sets obtained similar results. In this paper, the
numerical calculations have been done in all three RKH,
HK and LKW parameter sets.
The mean field thermodynamics potential in the pres-

ence of the quark condensates at zero temperature takes the
form [42]

Ωðμf;φfÞ ¼
X

f¼u;d;s

ΩMf
ðμfÞ þ 2Gðφ2

u þ φ2
d þ φ2

sÞ

− 4kφuφdφs þΩ0; ð27Þ
where ΩMf

corresponds to the contribution of a gas of a
quasiparticle with mass Mf, which at zero temperature is
written as

ΩMf
ðμfÞ ¼

−Nc

π2

Z
Λ

pF;f

Ep;fp2dp − μfnf; ð28Þ

in which Ep;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

f

p
, pF;f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2f −M2
f

p
, and nf ¼

ðpF;fÞ3
π2

are the on-shell energy, the Fermi momentum, and
number density of a quark of flavor f with the constituent
mass Mf and 3-momentum p, respectively. The thermo-
dynamically consistent solutions correspond to the sta-
tionary point of Ω, which is found by minimizing it with
respect to the condensates φu, φd, and φs ( δΩδφf

¼ 0). By

applying the chain rule ( δΩδφf
¼ ∂Ω

∂Mf

δMf

δφf

∂Ω
∂φf

¼ 0) and using

Eqs. (26), (27), and (28), one finds φf given by

φf ¼
−Nc

π2

Z
Λ

pF;f

Mf

Ep;f
p2dp: ð29Þ

φf has to be evaluated self-consistently with Eq. (26) and
form a set of three coupled gap equations for the con-
stituent quark masses.Ω0 in Eq. (27) is chosen such that the
thermodynamic potential Ω vanishes at zero μ and T.
Once the solutions of the gap equations for the con-

stituent masses are found, other thermodynamic quantities
can be derived in the standard way:

P ¼ −Ω; ϵ ¼ Ωþ
X
f

μfnf: ð30Þ

The weak decays (d ↔ uþ eþ ν̄e ↔ s) should be taken
into account in the quark matter, so we have to include
electrons (neutrinos have enough time to leave the system).
The electrons are described by a noninteracting gas of
massless fermions as often:

Pe ¼
μ4e

12π2
→ ϵe ¼

μ4e
4π2

: ð31Þ

Therefore, we will have

Ptot ¼ Pþ Pe; ϵtot ¼ ϵþ ϵe: ð32Þ
in the β-stable quark matter. The relations between chemi-
cal potentials of the particles take the form

μd ¼ μs ¼ μ

μ ¼ μu þ μe: ð33Þ
The charge neutrality condition implies (2

3
nu − 1

3
nd−

1
3
ns − ne ¼ 0); thus, the system can be characterized by one

independent variable, that is, the baryon number den-
sity ρB ¼ 1

3
ðnu þ nd þ nsÞ.

TABLE I. Three parameter sets and related quark and meson
properties in the three-flavor NJL model.

RKH [78] HK [39] LKW [79] Empirical [80]

Λc (MeV) 602.3 631.4 750
GΛ2

c 1.835 1.835 1.82
KΛ5

c 12.36 9.29 8.9
mu;d (MeV) 5.5 5.5 3.6 3.5–7.5
ms (MeV) 140.7 135.7 87 110–210
GV=G � � � � � � 1.1

fπ (MeV) 92.4 93.0 93 92.4
mπ (MeV) 135.0 138 139 135.0, 139.6
mK (MeV) 497.7 496 498 493.7, 497.7
mη (MeV) 514.8 487 519 547.3
mη0 (MeV) 957.8 958 963 957.8
mρ;ω (MeV) � � � � � � 765 771.1, 782.6
mK� (MeV) � � � � � � 864 891.7, 896.1
mϕ (MeV) � � � � � � 997 1019.5
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III. RESULTS

Before starting to present the results for HSs, we show
the EOS of pure hadronic and quark matter in Figs. 1(a)
and 1(b). In Fig. 1(a). the pressures of nuclear β-stable
matter vs baryon number densities, ρB, for various

interactions are plotted. As seen in Fig 1. the EOS of
the AV18 supplemented by TBF is stiffer with respect to the
others, so the higher maximum mass is expected in
comparison to the other EOS in the figure. In Fig. 1(b).
the pure quark matter pressure vs baryon number density is

(a) (b)

FIG. 1. (a) [(b)]: Pressure vs baryon number density for nuclear [quark] β-stable matter within the LOCV method for various
interactions [NJL model in parameter set by RKH and the MIT model with ms ¼ 150 MeV and B ¼ 90 MeV fm−3].

(a) (c)

(b) (d)

FIG. 2. (a) [(b)]: Pressure vs baryon chemical potential for the MIT model with ms ¼ 150 MeV and various bag constants and AV18

interaction supplemented without [with] TBF. (c) [(d)]: The corresponding hadron-quark hybrid EOS in Maxwell construction without
[with] TBF.
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plotted for a sample parameter of the MIT bag model with
B ¼ 90 MeV fm−3 and the NJL model with the RKH
parameter set. Our calculation is in line with the original
calculations in Refs. [37,42].

A. Hadron-quark hybrid EOS

To establish that an EOS governs to whole HS, one needs
to investigate the hadron-quark phase transition. As the
quark-hadron mixed phase is unlikely to be stable for
reasonable values of the surface tension [58–60], we restrict
ourselves to analyzing the phase transition on Maxwell
construction that is a sharp phase transition from neutral
hadronic matter to homogeneous neutral quark matter.
Each phase is considered to be in β equilibrium and also
charge neutrality. The requirement of the charge neutrality
effectively reduces each phase to a one-component system
controlled by the baryonic density or equivalently a
baryonic chemical potential. The transition point in the
Maxwell construction is identified by the conditions of
thermal, mechanical and one-component chemical equilib-
rium, which at zero temperature takes the form

P1ðμBÞ ¼ P2ðμBÞ; ð34Þ

in which subscript 1 (2) stands for the hadronic (quark)
phase. Equation (34) means that Maxwell construction
corresponds to constant pressure in the density interval

between two phases. μB is the baryon chemical potential
(μB1 ¼ μp þ μn and μB2 ¼ μu þ μd þ μs). This equation
also means that in this construction the baryon chemical
potential μB is continuous, whereas the electron chemical
potential μe jumps at the interface between the two phases
(in Gibbs construction, the electron chemical potential is
taken as continuous, too [5]). Maxwell construction can be
considered as a limiting scenario in which the surface
tension is large.

1. MIT bag model

We will first discuss the results obtained with the MIT
bag model with a strange rest mass of ms ¼ 150 MeV for
the quark sector. In Fig. 2(a) [2(b)], we plot the pressure as
a function of baryonic chemical potential in the MIT bag
model with various bag constants and the LOCV method
with AV18 interaction supplemented without (with) TBF,
respectively. In Figs. 2(c) [2(d)] the corresponding hybrid
star EOS are displayed in Maxwell construction. For the
bag constant less than 78 MeV fm−3, there is no intersec-
tion between the hadron and quark pressure curves, which
means the nucleonic phase will remain stable with respect
to the formation of quark phase droplets for noted
bag constants. For 78 MeV fm−3 ≤ B ≤ 84 MeV fm−3, the
hadron transition densities are less than nuclear saturation
density, ρ0. Thus, we focus on the phase transition for
B ≥ 90 MeV fm−3, in which the transition densities are

(a) (b) (c)

(d) (e) (f)

FIG. 3. (a), (b), and (c) : Pressure vs. baryon chemical potential for MIT bag model with various bag constants and ms ¼ 150 MeV
combined with AV14 , UV14 and Reid 68 interactions supplemented by TBF respectively. (d), (e), and (f) : The corresponding hadron-
quark hybrid EoS’s in Maxwell construction with AV14 , UV14 and Reid 68 interactions supplemented by TBF.

KHANMOHAMADI, MOSHFEGH, and TEHRANI PHYS. REV. D 101, 023004 (2020)

023004-8



more than 1.5ρ0. As the bag constant increases, the phase
transitions from nuclear to quark matter take place at rather
high baryon densities, and also the transition region
extends. When we consider just 2BF, the EOS becomes
much softer, and the phase transitions take place in much
higher densities. In this case, the phase transition occurs in
about 6ρ0 with B ¼ 90 MeV fm−3.
To examine the effect of nucleon-nucleon (N-N) inter-

actions on the hadron-quark phase transition region, we have
also carried out the calculations with some other bare two-
body N-N interactions supplemented with TBF, namely,
AV14, UV14, and Reid 68, the results of which are displayed
in Fig. 3. In Figs. 3(a), 3(b), and 3(c), we display quark
matter EOS in the MIT bag model with various bag con-
stants and hadronic matter EOS with AV14, UV14, and Reid
68 potential, respectively. In Figs. 3(d), 3(e), and 3(f), the
corresponding hybrid EOS are displayed. The transition
densities in these cases are almost in similar ranges. Again,
the phase transition moves to high baryon densities, and the
transition region extends as the bag constant increases.
The hadron-quark phase transition properties for various

N-N interactions and bag constants are summarized in
Table II, in which it is seen that the range of critical baryon

chemical potential is almost similar in all hadron inter-
actions supplemented by the TBF. We further observe that
they are lower than the situation in which the TBF is not
considered. In the latter, increasing the critical chemical
potential increases the critical baryon density and also
extends the transition region. As seen in Table II, in this
situation, we observe high-energy density discontinuity
in comparison with considering the TBF in any bag
constants. In all hadron interaction supplemented by
TBF with B ¼ 90; 100 MeV fm−3, the energy discontinuity
is around 200 MeV fm−3, while in the cases B ¼ 130; 160;
200 MeV fm−3, the energy density discontinuities takes
larger values. If the energy density discontinuity becomes
too high, then the star becomes unstable as soon as the
quark matter core appears, which itself is due to the fact that
the pressure of the quark matter is unable to cancel out the
additional downward force from the gravitational attraction
that the additional energy in the core applies on the rest of
the star (we will elaborate on this point in Sec. III B 1).

2. NJL model

Now, we present the numerical results for the NJL model
for the quark matter sector. In Figs. 4(a), 4(b), and 4(c), we

TABLE II. Hadron-quark phase transition properties for various N-N interactions and various bag constants with
ms ¼ 150 MeV, where μB is the critical baryon chemical potential, ρB=ρ0 is the ratio of baryon density to the
saturation density, and ϵ is the energy density at starting point (1) and ending point (2) of the phase transition.

Hadron interaction Bag constant (MeV fm−3) μB (MeV) ρð1ÞB =ρ0 ρð2ÞB =ρ0 ϵð1Þ (MeV fm−3) ϵð2Þ (MeV fm−3)

AV18 (2BF) 90 1358.1 6.06 7 1051.5 1253.4
100 1407.94 6.43 7.87 1130.6 1450.5
130 1500.2 7.12 9.62 1284.3 1884.7
160 1561.9 7.5 10.93 1385.4 2231.5
200 1624.6 7.93 12.31 1488.6 2634.0

AV18 (2BFþ 3BF) 90 1006.0 1.5 2.68 229.8 419.4
100 1056.4 2 3.12 309.6 505.8
130 1181.7 2.75 4.5 453.2 781.5
160 1207.7 3.18 5.62 537.4 1033.8
200 1351 3.56 6.87 614.4 1338.7

AV14 90 1001.8 1.43 2.62 224.6 413.5
100 1003.2 2.43 3.18 387.3 516.92
130 1281.0 4.81 5.81 830.0 1042.6
160 1401.3 5.81 7.75 1048.9 1484.6
200 1448.0 6.5 8.43 1216.13 1944.9

UV14 90 1040.7 2.12 2.93 332.2 470.7
100 1084.0 2.31 3.37 375.2 552.7
130 1192.7 2.93 5.83 486.0 807.2
160 1274.3 3.37 5.75 567.3 1053.1
200 1357.2 3.75 7 647.1 1360.1

Reid 68 90 1036.3 2.43 2.93 316.4 463.9
100 1136.5 3.5 3.93 593.1 652.9
130 1337.9 5.06 6.68 877.7 1223.4
160 1426.9 5.75 8.18 1029.6 1587.4
200 1504.9 6.18 9.68 1126.4 1977.5
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display the pressure vs baryon chemical potential of the
hadronic matter EOS with various hadron interactions and
quark matter EOS within the NJL model for RKH, HK, and
LKW parameter sets, respectively, whereas Figs. 4(d),
4(e), and 4(f) are the corresponding hybrid EOS. It is
worth noting that in all above cases the phase transition
occurs. In the RKH parameter set, the transition density
occurs in a little higher chemical potential than the cases in
the HK and LKW parameter sets for all hadronic EOS. By
using only two-body N-N potential, the phase transition
density occurs in considerably large densities compared
with considering the three-body forces in all potentials, for
any three parameter sets. Here, the starting point of the
phase transition occurs in about 7ρ0, but with TBF, it occurs
in slightly more than 3ρ0 with AV18 combined with TBF.
Table III summarizes the hadron-quark phase transition

properties for various N-N interactions and various param-
eter sets of the NJL model. As seen in this table, and in
comparison with Table II, when we use the NJL as the
quark model, the values of critical chemical potentials
increase relative to the MIT bag model with the same
hadron interactions and correspond to large values of the
bag constant. With the increasing the chemical potential,
the critical baryon density rises, and the phase transition
region extends, which enlarges the energy discontinuity for
any parameter sets. Except for the HK parameter set
combined with the AV18 and UV14 supplemented by
TBF for which the energy discontinuity is lower than

around 200 MeV fm−3, in the other hadron interactions
with and without TBF, the energy discontinuities are
around 400–1300 MeV fm−3, and these values are too
large to retain the stability of the star. As we mentioned
earlier, if the energy density discontinuity becomes con-
siderably too high, the star becomes unstable. Since the
pressure of the quark matter is unable to counteract the
additional downward force from the gravitational attraction
(we will refer to this point in Sec. III B 2).

B. Hybrid star structure

The structure of a hybrid star is calculated by numerical
integration of the Tolman-Oppenheimer-Volkoff (TOV)
equations

dPðrÞ
dr

¼ −
GMðrÞϵðrÞ

c2r2

�
1þ PðrÞ

ϵðrÞ
��

1þ 4πr3PðrÞ
MðrÞc2

�

×

�
1 −

2GMðrÞ
rc2

�
−1
; ð35Þ

dMðrÞ
dr

¼ 4πϵðrÞr2
c2

; ð36Þ

in which ϵðrÞ is the total energy density, MðrÞ is the star
mass within radius r, and G denotes the gravitational
constant.

(a) (b) (c)

(d) (e) (f)

FIG. 4. (a), (b), and (c): Pressure vs baryon chemical potential for various hadron interactions combined with NJL in RKH, HK, and
LKW parameter sets, respectively. (d), (e), and (f): The corresponding hadron-quark hybrid EOS in Maxwell construction with NJL in
RKH, HK, and LKW parameter sets.
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TABLE III. Same as Table. II but with the NJL model in various parameter sets for the quark phase.

Hadron interaction NJL μB (MeV) ρð1ÞB =ρ0 ρð2ÞB =ρ0 ϵð1Þ (MeV fm−3) ϵð2Þ (MeV fm−3)

AV18 (2BF) RKH 1678.5 8.25 13.62 1583.9 2947.6
HK 1668.1 8.18 12.75 1561.1 2780.3
LKW 1645.6 8 12.5 1516.5 2703.0

AV18 (2BFþ TBF) RKH 1379.7 3.68 5.43 640.5 1039.76
HK 1302.9 3.31 4.12 570.10 742.4
LKW 1333.6 3.43 5.12 598.10 941.8

AV14 RKH 1578.83 7.06 10.56 1349.5 2355.3
HK 1572.0 7 10.18 1338.6 2255.8
LKW 1540.9 6.8 9.68 1288.6 2080.9

UV14 RKH 1392.8 4.12 5.81 739.1 1112.9
HK 1323.8 3.56 4.37 614.5 789.2
LKW 1345.5 3.68 5.31 635.7 993.8

Reid 68 RKH 1573.5 6.63 10.5 1241.6 2320.2
HK 1567.2 6.62 9.93 1238.9 2223.3
LKW 1540.9 6.25 9.62 1145.3 2080.7

(a) (c)

(b) (d)

FIG. 5. (a) [(b)]: The gravitational HS masses vs radius of the star for the MIT bag model with various bag constants and ms ¼ 150
MeV combined with AV18 interaction supplemented without [with] TBF. (c) [(d)]: The corresponding gravitational HS mass vs central
baryon density of the star without [with] TBF.
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1. MIT bag model

First, the result of a HSs structure concerning the MIT
bag as a quark model is presented. In Figs. 5(a) [5(b)], we
plot the gravitational HS mass vs radius within the MIT bag
model with ms ¼ 150 MeV and various bag constants,
combined with AV18 interaction supplemented without
[with] TBF and in Figs. 5(c) [5(d)], the corresponding
gravitational HS mass vs central baryon density of the star,
ρBC, are displayed. The results of other N-N interactions are
displayed in Fig. 6. In Figs. 6(a), 6(b), and 6(c), we plot the
mass radius relation for HSs within the MIT bag model
with ms ¼ 150 and various bag constants combined with
AV14, UV14, and Reid 68 interactions supplemented by
TBF. In Figs. 6(d), 6(e), and 6(f), the corresponding
gravitational HS mass vs central baryon density of the
star is displayed.
Stable hybrid star with pure quark core is predicted with

B ¼ 90; 100 MeV fm−3 combined with all hadron inter-
actions with or without TBF and also B ¼ 130 MeV fm−3

combined with AV14 interaction supplemented by TBF.
The strange mass is considered ms ¼ 150 Mev in above
cases. As seen in Figs. 5 and 6, in these cases, the mass vs
central baryon density curves are obviously increasing after
the onset of the pure quarks in the core of the star, and also
mass-radius curves are smooth at the maximum point. In
other cases, although the mass vs central baryon density

curves show a slight increasing behavior after the onset of
pure quarks in the core through a small density range, there
is a cusp at the maximum point in mass-radius curve in all
of them. However, maybe it is not clearly visible in some
cases, but since the central baryon density in which the
maximum mass occurs is a little higher than transition
density of a quark to a hadron, the curves continue to
increase through a very small density range. The values of
densities are comparable in Tables II and IV. As seen in
Table II, in the cases of stable hybrid star with pure quark
core, the energy density discontinuity is low, while in other
cases in which the energy density discontinuity extend
more, a stable HS with a pure quark core is not accessible.
In the latter, the large energy discontinuity at the transition
point is reflected as a cusps on the mass radius relation.
These cusps are clearly visible in mass-radius curves of
Figs. 5 and 6. The effects are strong enough to render the
star unstable. The maximum mass of the stable HS with
pure quark core is about 1.5 M⊙ in all hadron interaction
cases. For the HS with B ¼ 200 MeV fm−3, combined with
AV18 interaction supplemented by TBF, however, the
maximum mass reaches 1.962 which is compatible with
the observations, the star becomes unstable as soon as the
quark phase onset in the core of the star.
In Table IV, we summarize the structure properties of pure

neutron and hybrid stars for variousN-N interactions and bag
constants of the MIT bag model with ms ¼ 150 MeV.

(a) (b) (c)

(d) (e) (f)

FIG. 6. (a), (b), and (c): The gravitational HS masses vs the radius of the star within the MIT bag model with various bag constants and
ms ¼ 150 MeV combined with AV14, UV14, and Reid 68 hadron interactions supplemented by TBF, respectively. (d), (e), and (f): The
corresponding gravitational HS mass vs central baryon density of the star with AV14, UV14, and Reid 68 hadron interactions
supplemented by TBF.
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We examine the effect of increasing the strange mass on
the MIT model results, which are displayed in Fig. 7. In
Figs. 7(a), 7(b), and 7(c), we display pressure vs baryon
density in Maxwell construction, mass vs radius, and mass
vs central density of HSs for the bag constant of B ¼
90 MeV fm−3 with ms ¼ 300 MeV combined with several
hadron interactions with or without TBF. As seen in
Fig. 7(a), AV18 and UV14 potentials supplemented by
TBF have almost the same phase transition densities, while
in AV14 and Reid potentials supplemented by TBF, these
values are higher than them. In the case with just consid-
ering 2BF, the phase transitions take place in much higher
densities. As seen in Figs. 7(c) and 7(b), the stable HS is
predicted with AV18 and UV14 potentials supplemented by
TBF with the maximum masses of 1.796 M⊙ and

1.778 M⊙ respectively, since the gravitational mass con-
tinues to increase after the onset of the quark, and also the
maximum point in the mass-radius curve is stiff. The
situation is better with respect to the results gained in
the case with ms ¼ 150 MeV in which the predicted stable
HSs reach the maximum mass of about 1.5 M⊙. The other
HSs are predicted to be unstable because of the appearance
of cusps in mass-radius curves, which render the star
unstable. In Figs. 7(d), 7(e), and 7(f), we examine the
effect of increasing the bag constant on the results. As seen
in Fig. 7(d), as the bag constant increases, the phase
transitions take place at rather high baryon densities,
and also the transition region extends, which corresponds
to the unstable HS since As seen in Fig. 7(e), there are
cusps in mass radius curves which rendered the star
unstable in mentioned cases. Nevertheless, the maximum
masses of 2.05 M⊙ and 2.13 M⊙ are calculated for B ¼
160 MeV fm−3 and B ¼ 200 MeV fm−3 combined with
AV18 potential supplemented by TBF.
The results of phase transition and the HS structure of the

mentioned model are summarized in Tables V and VI. By
looking at Table V, one can realize that the energy density
discontinuity in AV18 and UV14 potentials supplemented
by TBF is very low, around 100 MeV fm−3, while in other
cases, this value is higher, and again we conclude that high-
energy density discontinuity is responsible for the insta-
bility of HSs.
Our results are in line with other works in HSs with

other hadronic EOS such as the microscopic Brueckner-
Hartree-Fock (BHF) many-body theory, relativistic mean
field (RMF) model [5,81,82], APR98 variational chain
summation method, and also Valecka models [83]; all
these EOS are combined with the MIT bag model in
which HSs with bag constants of around B ¼
90 MeV fm−3 and ms ¼ 150 MeV fm−3 are stable with
a pure quark core and the maximum mass is about
1.5 M⊙. It is to be noted that for a large bag constant,
bigger than around B ¼ 140 MeV fm−3, the stability of
the star will be lost.

2. NJL model

In this subsection, we will present the results of the
HS structure within the NJL model. In Figs. 7(a), 7(b),
and 7(c), we plot the HS gravitational mass vs radius of the
star for various hadronic interactions and RKH, HK, and
LKW parameter sets, respectively, and Figs. 7(d), 7(e),
and 7(f) show the corresponding HS mass vs central baryon
density of the star. In all cases, the maximummasses of HSs
are more than 1.693 M⊙. In the RKH parameter set with
AV18 combined with TBF, it reaches 2.01 M⊙. As seen in
Fig. 8(b) in the HSs within the HK parameter set combined
with AV18 and UV14 interactions, the cusps in mass-radius
relations are slightly smoothed out and therefore the
corresponding HSs are stable. As seen in Fig. 8(e) the

TABLE IV. Pure NS and HS structure properties in which Mmax
(M⊙) is the maximum mass of the star in the mass of the sun unit,
ρBCmax is the central density, and Rmax (Km) is the radius of the
star according to the maximum mass of the star, for various
hadron interactions and bag constants with ms ¼ 150 MeV.

Hadron
interaction

Bag constant
(MeV
fm3 )

ρBCmax

(fm−3)
Rmax
(km)

Mmax
(M⊙)

AV18 (2BF) NS 1.62 8.5 1.77
90 1.44 9.16 1.57

100 1.40 9.25 1.61
HS ⇛ 130 1.57 9.19 1.67

160 1.76 9.10 1.70
200 1.98 9.00 1.72

AV18 (2BFþ TBF) NS 0.94 10.95 2.319
90 1.57 9.16 1.50

100 1.63 9.81 1.46
HS ⇛ 130 0.73 12.4 1.53

160 1.27 11.2 1.609
200 1.11 12.19 1.962

AV14 NS 1.53 9.59 1.76
90 1.55 9.75 1.5

100 1.62 9.85 1.46
HS ⇛ 130 1.19 11.27 1.49

160 1.27 11.2 1.61
200 1.54 10.79 1.67

UV14 NS 1.00 10.76 2.24
90 1.49 9.71 1.53

100 1.51 9.73 1.49
HS ⇛ 130 0.75 12.33 1.55

160 0.92 12.21 1.76
200 1.13 12.04 1.918

Reid 68 NS 1.44 9.15 1.91
90 1.55 9.14 1.513

100 1.56 9.17 1.48
HS ⇛ 130 1.14 10.2 1.618

160 1.33 10.09 1.719
200 1.56 9.95 1.72
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mass-central density curves obviously increases after the
onset of quark phase.
In other cases, although the curves increase slightly

through a very small density range by the onset of the pure
quark phase, in mass-radius curves, there exist cusps in
maximum point which cause the instability of the HSs.
However, maybe it is not clearly visible in some cases, but
since the central baryon density in which the maximum
mass occurs is a little higher than the transition density of a
quark to a hadron, the curves continue to increase through a
very small density range. The values of densities are
comparable in Tables III and VII, which will be presented

in following. In Table V, we summarize the structure
properties of pure neutron and hybrid stars for various
hadron interactions and parameter sets of the NJL model.
In all cases, the energy density discontinuity in transition

region is large enough to make a cusp in mass-radius
curves. The only exception is HK parameter set combined
with AV18 and UV14 interactions combined with TBF. It
turns out, however, that in these cases the cusps are so
strong that the stars are rendered unstable. In the HK
parameter set with AV18 and UV14 supplemented by TBF,
the cusps are slightly smoothed out, and the corresponding
HSs are stable. The results in both quark models lead to the

(a) (b) (c)

(d) (e) (f)

FIG. 7. (a)–(c): Pressure vs baryon density, the gravitational HS masses vs radius, and central baryon density of the stars for various
hadronic interactions and the bag constant of B ¼ 90 MeV fm−3 and ms ¼ 300 MeV, respectively. (d)–(f): The same as the previous
panels but for AV18 interaction supplemented with TBF and various bag constants of the MIT bag model with ms ¼ 300 MeV.

TABLE V. Same as Table. II but with ms ¼ 300 Mev.

Hadron interaction Bag constant (MeV fm−3) μB (MeV) ρð1ÞB =ρ0 ρð2ÞB =ρ0 ϵð1Þ (MeV fm−3) ϵð2Þ (MeV fm−3)

AV18 (2BF) 90 1648 8.05 11.16 1519.86 2338.4
AV18 (2BFþ 3BF) 90 1218.9 2.96 3.45 490.4 584.9
AV14 90 1451 6.2 7 1137.0 1331.6
UV14 90 1232.3 3.16 3.62 525.9 617.5
Reid 90 1475 5.82 7.48 1053.7 1431.5

AV18 (2BFþ 3BF) 100 1250.0 3.11 4.43 520.19 787.1
130 1349.3 3.55 5.82 612.7 1102.3
160 1416.7 3.82 6.5 672.5 1369.4
200 1484.9 4.09 8.114 734.09 1689.3
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point that considerably larger energy densities in the quark
core probably are the driving factor for the instability.
Our results are in acceptable concurrence with those of

some works conducted in HSs within the original NJL
model and other hadron models [27,33,42,84–86].
According to the conclusions of forgoing papers, other
hadronic equations of state, namely, BHF many-body
theory and also the RMF model combined with NJL, the
stable HS with a pure quark core is not predictable. This
result seems to be rather insensitive to the choice of the
hadronic EOS and must mainly be attributed to the quark
EOS derived within the NJL model [27,42,84]. In Ref. [27],

the authors conclude that the instability is closely linked to
the lack of confinement in the original NJL model. Besides,
as is pointed out in Ref. [42], these results rely heavily on
the assumption that the NJL model parameters which have
been fitted in vacuum can be applied to dense matter.
However, according to all the findings in HSs, it is also
possible that applying the vacuum fitted parameters to
dense matter is not the correct approach and maybe a
considerable modification of the effective NJL-type quark
interactions in dense matter is needed.
We close this subsection by displaying the energy

density, pressure, and mass profiles of the HSs investigated
in the paper for a sample central density of ρcent ¼
1.03 fm−3 in Fig. 9. For ms ¼ 300 MeV, we display the
profiles only for a bag constant of B ¼ 90 MeV fm−3. As
seen in Figs. 9(a), 9(d), 9(g), 9(j), and (9)m, the energy
density decreases from the center to the surface of the star,
and in phase transition density, there is a sudden decreasing
in the amount of energy density that is characteristic of
Maxwell construction. As is clear in the figures, this energy
discontinuity is obviously large in RKH and LKW param-
eter sets in the NJL model and also high bag constants of
the MIT bag model, which, as we point out before,
probably is the driving factor for the instability of corre-
sponding HSs. Some of the energy density profiles do not
have this discontinuity since the sample central density of

(a) (b) (c)

(d) (e) (f)

FIG. 8. (a), (b) , and (c): The gravitational HS masses vs radius of the star for various hadronic interactions and NJL with the RKH,
HK, and LKW sets of parameters, respectively. (d), (e), and (f): The corresponding gravitational HS masses vs central baryon density of
the star for RKH, HK, and LKW parameter sets.

TABLE VI. Same as Table IV but with ms ¼ 300 MeV.

Hadron interaction
Bag constant

(MeV
fm3 )

ρBCmax

(fm−3)
Rmax
(km)

Mmax
(M⊙)

AV18 (2BF) 90 1.79 8.97 1.73
AV18 (2BFþ TBF) 90 0.92 11.59 1.796
AV14 90 1.27 10.8 1.65
UV14 90 1.57 9.19 1.67
Reid 68 90 0.99 11.43 1.788

AV18 (2BFþ TBF) 100 0.74 12.31 1.75
130 0.94 12.19 1.96
160 1.104 12.07 2.05
200 1.298 11.94 2.13
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ρcent ¼ 1.03 fm−3 for those HSs is lower than the transition
density; therefore, the corresponding star is a purely hadron
star. As seen in Figs. 9(b), 9(e), 9(h), 9(k), and 9(n), the
pressure of star monotonically decreases from the center to
the surface of the star, as we expected from the TOV
equations. As seen in Figs. 9(c), 9(f), 9(i), 9(l), and 9(o), the
mass of the star increases monotonically from zero at the
center to the star mass at the surface of the star, as we
expected from the TOV equations.

C. Tidal deformability

Gravitational waves from the final stage of inspiraling
binary NSs are expected to be one of the most important
sources for gravitational wave detectors. Large finite-size
(tidal) effects are measurable toward the end of inspiral
[87], but the gravitational wave signal is expected to be very
complex during this period. Tidal effects during the early
part of the evolution will form a very small correction, but
during this phase, the signal is very clean [88]. The tidal
fields induce quardupole moments on the NSs. This
response of each star to the external disturbance is
described by the second (tidal) Love number k2, which
is a dimensionless coefficient given by the ratio of the
induced quardrupole moment and the applied tidal field.
The dimensionless tidal Love number k2 depends on the
structure of the NS and therefore on the mass and EOS of
dense matter. The quantity Λ is the induced quadrupole
polarizability (tidal deformability). The dimensionless tidal
deformability Λ is defined as [89]

Λ ¼ 2

3
k2

�
c2R
GM

�
5

¼ 2

3
k2

�
1

C

�
5

; ð37Þ

where R and M are the radius and mass of the NS, G is the
gravitational constant, and c is the speed of light. The
quantity C is the NS compactness, which is defined as
C ¼ GM

c2R. Clearly, Λ is extremely sensitive to the compact-
ness parameter C and also proportional to the tidal Love
number k2, which depends on both C and yR, the latter
being a dimensionless parameter that is sensitive to the
entire EOS [90,91],

k2ðC; yRÞ ¼
8

5
C5ð1 − 2CÞ2½ð2 − yRÞ þ 2CðyR − 1Þ�

× f2Cð6 − 3yR þ 3Cð5yR − 8ÞÞ
þ 4C3½ð13 − 11yRÞ þ Cð3yR − 2Þ
þ 2C2ð1þ yRÞ� þ 3ð1 − 2CÞ2
× ½ð2 − yRÞ þ 2CðyR − 1Þ� logð1 − 2CÞg−1:

ð38Þ
Now, we proceed to describe a few details involved in to

the computation of yR (for more details, see Refs. [90–93]
and references contained therein). As mentioned before, an
external tidal field induces a mass quadrupole in the star.
The external tidal field plus the induced stellar quadrupole
combine to produce a nonspherical component to the gravi-
tational potential that in the limit of axial symmetry is
proportional to the spherical harmonic Y20ðθ;φÞ. In turn, the
coefficient of Y20ðθ;φÞ, commonly referred to as HðrÞ, is a
spherically symmetric function that encodes the dynamical
changes to the gravitational potential and satisfies a linear,
homogeneous, second-order differential equation [90],

d2HðrÞ
dr2

þ
�
1þ FðrÞ

r

�
dHðrÞ
dr

þQðrÞHðrÞ ¼ 0;

lim
r→0

HðrÞ ≃ r2; ð39Þ

where FðrÞ and QðrÞ are functions of the mass, pressure,
and energy density profiles assumed to have been obtained
by solving the TOV equations and are given by the
expressions

FðrÞ ¼ 1 − 4πGr2ðϵðrÞ − PðrÞÞ
ð1 − 2GMðrÞ

r Þ
ð40Þ

QðrÞ¼ 4π

ð1− 2GMðrÞ
r Þ

�
5ϵðrÞþ9PðrÞþ ϵðrÞþPðrÞ

c2sðrÞ
−

6

4πr2

�

−4

�
GðMðrÞþ4πr3PðrÞÞ

r2ð1− 2GMðrÞ
r Þ

�
; ð41Þ

in which c2sðrÞ ¼ dPðrÞ=dϵðrÞ is the speed of sound at
radius r. Once the differential equation is solved, the value of

TABLE VII. Same as Table. IV but with the NJL model with
various parameter sets for the quark model.

Hadron interaction NJL
ρBCmax

(fm−3)
Rmax
(km)

Mmax
(M⊙)

AV18 (2BF) NS 1.62 8.5 1.77
RKH 2.15 8.92 1.74

Hs ⇛ HK 2.05 8.94 1.738
LKW 2.01 8.97 1.73

AV18 (2BFþ TBF) NS 0.94 10.95 2.319
RKH 0.89 12.13 2.009

HS ⇛ HK 0.82 12.03 1.896
LKW 0.83 12.21 1.932

AV14 NS 1.53 9.59 1.76
RKH 1.77 10.49 1.77

Hs ⇛ HK 1.71 10.51 1.71
LKW 1.61 10.60 1.69

UV14 NS 1.00 10.76 2.24
RKH 0.94 11.97 1.97

HS ⇛ HK 0.84 11.92 1.88
LKW 0.87 12.06 1.90

Reid 68 NS 1.44 9.15 1.91
RKH 1.76 9.83 1.82

HS ⇛ HK 1.69 9.84 1.822
LKW 1.61 9.87 1.81
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

FIG. 9. (a)–(c): The energy density, pressure, and mass profiles of HSs with a central density of ρBC ¼ 1.03 fm−3 for AV18 interaction
without TBF and various quark models. The same quantities are shown in (d)–(f) for AV18, (g)–(i) for AV14, (j)–(l) for UV14,
and (m)–(o) for Reid interactions supplemented by TBF.
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yR from the logarithmic derivative of HðrÞ evaluated at
the surface of the star is yR ¼ ðrH0ðrÞ=HðrÞÞr¼R. However,
since all that is needed to compute the second (tidal)
Love number k2 is the logarithmic derivative of HðrÞ, it
is more efficient to solve directly for yR, which, in turn,
satisfies the following nonlinear, first-order differential
equation [92,94]:

r
dyðrÞ
dr

þ y2ðrÞ þ FðrÞyðrÞ þ r2QðrÞ ¼ 0;

with yð0Þ ¼ 2 and yR ¼ yðr ¼ RÞ: ð42Þ

Tidal effects will form a very small correction in which
the accumulated phase shift can be characterized by a
single quantity Λ̃, which is a weighted average of the
induced quadrupole polarizability (tidal deformability) for
the individual stars, Λ1 and Λ2. Since both NSs have the
same EOS, the weighted average Λ̃ðMÞ, as a function of
chirp mass M ¼ m3=5

1 m3=5
2 =ðm1 þm2Þ1=5, is relatively

insensitive to the mass ratio m1=m2 [91]. We therefore
focus on the behavior of the quadrupole polarizability Λ of
the individual stars [92].
Since the tidal deformability hides within a higher-order

coefficient in the post-Newtonian expansion of the gravi-
tational wave form, its extraction becomes a challenging
proposition. As such, GW170817 could only establish
upper limits on the tidal deformability of a 1.4 M⊙ NS,
i.e., Λ1.4 ≤ 800 [93], extracted from the original discovery
paper [89]. More over, the authors in Ref. [68], by

employing a parametrized manner on a very large range
of physically plausible EOS for compact stars and by the
use of the constraints on mass, upper limit of tidal
deformability and the recent suggestion on lower limit
of the tidal deformability, deduced more constraints on tidal
deformability and radii of neutron and hybrid stars. In that
study, for a purely hadronic star with a mass of 1.4 M⊙, the
radius of the NS is considered to be 12.00 < R1.4 ðkmÞ <
13.45 at a 2-σ level; similarly, the smallest weighted
average dimensionless tidal deformability is Λ̃1.4 > 375,
again at a 2-σ level. For HSs, since EOS with a phase
transition allow for very compact stars on the “twin star”
branch, small radii are possible [95]; therefore, the radius
varies in a much broader range, 8.35 < R1.4 ðkmÞ < 13.74
at a 2-σ level, with Λ̃1.4 > 35.5 at a 3-σ level. As we
mentioned earlier, we have computed the tidal deformabi-
lilty for individual stars with the mass of 1.4 M ⊙, Λ1.4

instead of Λ̃1.4 [91,92].
We have calculated yR, the compactness of the stars C,

tidal Love number k2, and dimensionless tidal deform-
ability Λ for purely NSs with the mass of 1.4 M⊙ with
AV18 interaction with and without TBF and also AV14,
UV14, and Reid interaction supplemented by TBF in order
to compare them with the constraints set by the binary NS
system GW170817. We have also done the calculations for
several HSs in this study with the MIT and NJL models
combined with these hadron interactions in LOCV formal-
ism. The results are summarized in Table VIII. As seen in
this table, the radius and dimensionless tidal deformability

TABLE VIII. Central density ρc ( fm−3), radius R (km), compactness C, yR, tidal Love number k2, and dimensionless tidal
deformability Λ for several purely neutron and hybrid stars with the mass of 1.4 M⊙ studied in the paper.

Quark model Hadron interactions ρC (fm−3) R (km) C yR k2 Λ

AV18 (2BF) 0.86 9.497 0.218 0.388 0.0655 88.428
AV18 (2BFþ TBF) 0.42 12.32 0.169 0.356 0.0948 446.892

Pure NS ⇛ AV14 0.7 12.18 0.169 0.355 0.09518 453.142
UV14 0.44 12.28 0.169 0.361 0.09517 461.541

Reid 68 0.7 10.34 0.202 0.377 0.0745 147.186

AV18 (2BF) 0.86 9.54 0.217 0.387 0.0662 91.697
AV18 (2BFþ TBF) 0.97 9.86 0.209 0.384 0.0702 116.232

MIT B ¼ 90ðMeV
fm3 Þ; B ¼ 150þ AV14 0.97 10.66 0.194 0.371 0.0794 192.899

UV14 0.86 10.74 0.192 0.372 0.0803 203.267
Reid 68 0.94 9.83 0.210 0.384 0.0699 114.188

AV18 (2BF) 0.86 9.54 0.217 0.387 0.0662 91.697
AV18 (2BFþ TBF) 1.08 10.02 0.206 0.399 0.0712 127.683

MIT B ¼ 100ðMeV
fm3 Þ; B ¼ 150þ AV14 1.10 10.73 0.192 0.370 0.0802 201.869

UV14 0.93 10.78 0.192 0.409 0.0784 200.849
Reid 68 1.0 9.9 0.209 0.383 0.0705 117.675

AV18 (2BF) 0.86 9.54 0.217 0.387 0.0662 91.697
AV18 (2BFþ TBF) 0.42 12.42 0.168 0.356 0.0951 469.980

MIT B¼130;160;200;ms¼150Þ B¼90;ms¼300), AV14 0.7 12.28 0.168 0.354 0.0961 476.815
NJLðRKH;HK;LKWÞþ UV14 0.44 12.38 0.167 0.360 0.0961 485.665

Reid 68 0.7 10.40 0.201 0.376 0.0752 153.183
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of purely NSs with AV18 interaction without considering
TBF are R1.4 ¼ 9.497 km and Λ1.4 ¼ 88.428 and for NSs
with the Reid interaction are R1.4 ¼ 10.34 km and
Λ1.4 ¼ 147.186, which are not in compatible with the
constraints predicted for those quantities. It is worth noting
that the maximum mass of purely NSs predicted with these
models are 1.77 M⊙ and 1.91 M⊙, which are lower than
the maximum mass constraint. The radius for purely NSs
in AV18, AV14, and UV18 interactions supplemented by
TBF are R1.4 ¼ 12.32 km, R1.4 ¼ 12.18 km, and R1.4 ¼
12.28 km, and tidal deformabilities are Λ1.4 ¼ 446.892,
Λ1.4 ¼ 453.142, and Λ1.4 ¼ 461.541, respectively, which
all are in the ranges set by GW170817. The calculated
maximum masses of the neutron stars with these models
are 2.319 M⊙, 1.76 M⊙, and 2.24 M⊙, respectively.
Therefore, the calculated properties of purely NSs within
the LOCV framework with AV18 and UV14 interactions
supplemented by TBF are completely compatible with the
extracted constraints from the observations. For HSs, as
seen in the second and third rows of Table VIII, with B ¼
90; 100 MeV fm−3 combined with all the interactions,
the star becomes more compact (less radii and more
compactness C), and the dimensionless tidal deformability
becomes much lower than the purely neutron star; however,
again, they are all in the range extracted from GW170817
for the HSs, mentioned earlier. The maximum masses of all
HSs within these models are about 1.5 M⊙ (as seen in
Table IV), which is much lower than the maximum mass
constraints. As it is seen in the forth row of the Table VIII,
HS’s with B ¼ 130; 160; 200 MeV fm−3 and ms ¼ 150

and B ¼ 90 MeV fm−3 with ms ¼ 300 MeV and also
NJL model in any parameter sets combined with all the
interactions, are less compacted with respect to the purely
NS. In these cases, the dimensionless tidal deformability
increases and again are in the ranges extracted from
observations for HSs. In these cases, the central density
in which the star reaches 1.4 M⊙ occurs in the hadron
branch; therefore, it is the same as the central density in the
pure hadron star. However, since the radii of HSs are a little
higher with respect to the purely hadron star, HSs are less
compact; therefore, their tidal deformability increases. In the
cases of AV18, AV14, and UV14 interactions supplemented
by TBF combined with the mentioned models, the radii
are R1.4¼12.42km, R1.4¼12.28km, and R1.4¼12.38km,
and the dimensionless tidal deformabilities are Λ1.4 ¼
469.980,Λ1.4 ¼ 476.815, andΛ1.4 ¼ 485.665, respectively,
which are all in the ranges set by GW170817 even for
purely hadron stars. Only the maximum masses of a HSs
with AV18 (UV14) interaction supplemented by TBF com-
bined with the parameter set by RKH are in the range of the
maximum mass constraint. For these cases, the maximum
mass of the HS for AV18 (UV14) is 2.009 M⊙ (1.97 M⊙).
The same situation happens for a HS with AV18 supple-
mented by TBF combined with the MIT bag model
with B ¼ 200 MeV fm−3 (B ¼ 130; 160; 200 MeV fm−3)

and ms ¼ 150 MeV (ms ¼ 300 MeV). In these cases, the
maximum mass of HS is 1.962 M⊙ (1.96 M⊙; 2.05 M⊙;
2.13 M⊙). The calculated maximum mass in other models
are below the observed value.

IV. CONCLUSION

We have studied the hadron-quark phase transition
at high densities, which may occur in the core of
massive NSs. We have adopted the LOCV formalism
to describe the nuclear matter phase, while the MIT bag
and NJL models have been implied for describing the
quark matter phase. With ms ¼ 150 MeV, the stable
HSs occur in B ¼ 90; 100 MeV fm−3 combined with all
the N-N interactions supplemented by TBF and also in
B ¼ 130 MeV fm−3 combined with AV14 supplemented
by TBF with the maximum mass of about 1.5 M⊙. The
maximum mass of the HSs withB ¼ 200 MeV fm−3

combined with AV18 interaction supplemented by
TBF is compatible with observations. This HS is
unstable because of the large energy density disconti-
nuity in transition region which manifest itself as a cusp
in mass-radius curve.
We examined the effect of N-N forces with other bare

two-body interactions, AV14, UV14, and Reid 68 supple-
mented by TBF. The results are almost the same as the
AV18 potential combined with TBF. We also checked the
influence of the TBF absence in the nuclear matter. We
found that in this situation the phase transition of hadron to
quark matter took place in much larger densities, and stable
HS with B ¼ 90; 100 MeV fm−3 was predicted. We also
examined the effect of increasing the strange mass ms
on the results gained with the MIT model. With B ¼
160 and 200 MeV fm−3 with ms ¼ 300 MeV, although
the maximum masses of the HSs are 2.05 and 2.13 M⊙,
which is compatible with the observations, the HSs
become unstable as soon as the onset of the quark phase
because of the cusp in mass-radius curves. We found
stable HSs with ms ¼ 300 MeV combined with AV18

and UV14 potentials supplemented by TBF with the
maximum masses of 1.796 M⊙ and 1.788 M⊙, respec-
tively. By increasing the bag constant, the HSs were
rendered unstable.
Within the NJL model, a stable HS was calculated in HK

parameter set combined with AV18 (UV14) interaction with
TBF with the maximum mass of 1.896 M⊙ (1.882 M⊙).
However, the stable HS was not predicted with other hybrid
EOS, again with the reason of high-energy density dis-
continuity in the transition region, which manifests itself as
a cusp in mass-radius curves. It means that the pressure of
the quark matter is unable to counteract the additional
downward attraction. The maximum mass of 2.01 M⊙ was
calculated within the RKH parameter set combined with
AV18 interaction supplemented by TBF, however this HS is
unstable. With the NJL model, we examined the influence
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of the absence of TBF, and we found that the phase
transition of hadron to quark matter took place in much
higher densities (about 8ρ0), the energy discontinuity
became higher, and the value of the maximummass became
lower.
All of our results in the MIT model as well as the NJL

model were in good concurrence with other works in hybrid
stars with other hadron EOS.
We also computed the properties of the purely neutron and

hybrid stars with the mass of 1.4 M⊙ to compare them with
the new constraints set by the binary neutron star system,
GW170817. The radii and tidal deformability of purely NSs
with the mass of 1.4 M⊙, within the framework of AV18,
AV14, and UV14 supplemented by TBF, are compatible
with the ranges extracted from the observations. For HSs
within all models existing in this study, the mentioned

quantities are in compatible with the ranges for HSs.
Moreover, the radii and tidal deformabilities of HSs with
B ¼ 130; 160; 200 MeV fm−3withms ¼ 150MeVandB ¼
90 MeV fm−3withms ¼ 300MeVand alsoNJLmodel in all
three parameter sets combined with all interactions except
Reid 68 supplemented byTBF, are in the ranges set by binary
GW170817 for hadron stars.

ACKNOWLEDGMENTS

S. K. and H. R. M. warmly appreciate Micheal Buballa
for his helpful comments on the NJL model and also would
like to thank the Research Council, University of Tehran.
S. A. T. is grateful to School of Particles and Accelerators,
Institute for Research in Fundamental Sciences.

[1] N. K. Glendenning, Phase transitions and crystalline struc-
tures in neutron star cores, Phys. Rep. 342, 393 (2001).

[2] E. Witten, Cosmic separation of phases, Phys. Rev. D 30,
272 (1984).

[3] G.Baym, E.W.Kolb, L. D.McLerran, T. P.Walker, andR. L.
Jaffe, Is Cygnus X-3 strange?, Phys. Lett. 160B, 181 (1985).

[4] M. Hempel, G. Pagliara, and J. Schaffner-Bielich, Con-
ditions for phase equilibrium in Supernovae, proto-neutron
and neutron stars, Phys. Rev. D 80, 125014 (2009).

[5] G. F. Burgio, M. Baldo, P. K. Sahu, and H. J. Schulze, The
Hadron quark phase transition in dense matter and neutron
stars, Phys. Rev. C 66, 025802 (2002).

[6] G. F. Burgio and D. Zappala’, Hybrid star structure with the
field correlator method, Eur. Phys. J. A 52, 60 (2016).

[7] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J.
Hessels, Shapiro delay measurement of a two solar mass
neutron star, Nature (London) 467, 1081 (2010).

[8] J. Antoniadis et al., A massive pulsar in a compact
relativistic binary, Science 340, 1233232 (2013).

[9] R. S. Lynch et al., The green bank Ttelescope 350 MHz
drift-scan survey II: Data analysis and the timing of 10 new
pulsars, including a relativistic binary, Astrophys. J. 763, 81
(2013).

[10] M. H. van Kerkwijk, R. Breton, and S. R. Kulkarni, Evi-
dence for a massive neutron star from a radial-velocity study
of the companion to the black widow pulsar PSR B1957
+20, Astrophys. J. 728, 95 (2011).

[11] E. Fonseca et al., The NANOGrav nine-year data set: Mass
and geometric measurements of binary millisecond pulsars,
Astrophys. J. 832, 167 (2016).

[12] C. Maieron, M. Baldo, G. F. Burgio, and H. J. Schulze,
Hybrid stars with the color dielectric and the MIT bag
models, Phys. Rev. D 70, 043010 (2004).

[13] Z. H. Li and H.-J. Schulze, Neutron star structure with
modern nucleonic three-body forces, Phys. Rev. C 78,
028801 (2008).

[14] H.-J. Schulze, A. Polls, A. Ramos, and I. Vidana, Maximum
mass of neutron stars, Phys. Rev. C 73, 058801 (2006).

[15] J. D. Carroll, D. B. Leinweber, A. G. Williams, and A.W.
Thomas, Phase transition from QMC hyperonic matter to
deconfined quark matter, Phys. Rev. C 79, 045810 (2009).

[16] H. Dapo, B. J. Schaefer, and J. Wambach, On the appear-
ance of hyperons in neutron stars, Phys. Rev. C 81, 035803
(2010).

[17] H.-J. Schulze and T. Rijken, Maximum mass of hyperon
stars with the Nijmegen ES C-08 model, Phys. Rev. C 84,
035801 (2011).

[18] H. Chen, M. Baldo, G. F. Burgio, and H.-J. Schulze, Hybrid
protoneutron stars with the Dyson-Schwinger quark model,
Phys. Rev. D 86, 045006 (2012).

[19] F. Karsch, E. Laermann, and A. Peikert, The pressure in two
flavor, (2þ 1)-flavor and three flavor QCD, Phys. Lett. B
478, 447 (2000).

[20] F. Karsch (RBC and HotQCD Collaborations), Equation of
state and more from lattice regularized QCD, J. Phys. G 35,
104096 (2008).

[21] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo,
The order of the quantum chromodynamics transition
predicted by the Standard Model of particle physics, Nature
(London) 443, 675 (2006).

[22] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo, The QCD
transition temperature: Results with physical masses in the
continuum limit, Phys. Lett. B 643, 46 (2006).

[23] A. Bhattacharyya, I. N. Mishustin, and W. Greiner, Decon-
finement Phase transition in compact stars: Maxwell vs.
Gibbs construction of the mixed phase, J. Phys. G 37,
025201 (2010).

[24] R. V. Gavai and S. Gupta, QCD at finite chemical potential
with six time slices, Phys. Rev. D 78, 114503 (2008).

[25] P. de Forcrand and O. Philipsen, The QCD phase diagram
for three degenerate flavors and small baryon density, Nucl.
Phys. B673, 170 (2003).

KHANMOHAMADI, MOSHFEGH, and TEHRANI PHYS. REV. D 101, 023004 (2020)

023004-20

https://doi.org/10.1016/S0370-1573(00)00080-6
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1103/PhysRevD.30.272
https://doi.org/10.1016/0370-2693(85)91489-3
https://doi.org/10.1103/PhysRevD.80.125014
https://doi.org/10.1103/PhysRevC.66.025802
https://doi.org/10.1140/epja/i2016-16060-y
https://doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.1088/0004-637X/763/2/81
https://doi.org/10.1088/0004-637X/763/2/81
https://doi.org/10.1088/0004-637X/728/2/95
https://doi.org/10.3847/0004-637X/832/2/167
https://doi.org/10.1103/PhysRevD.70.043010
https://doi.org/10.1103/PhysRevC.78.028801
https://doi.org/10.1103/PhysRevC.78.028801
https://doi.org/10.1103/PhysRevC.73.058801
https://doi.org/10.1103/PhysRevC.79.045810
https://doi.org/10.1103/PhysRevC.81.035803
https://doi.org/10.1103/PhysRevC.81.035803
https://doi.org/10.1103/PhysRevC.84.035801
https://doi.org/10.1103/PhysRevC.84.035801
https://doi.org/10.1103/PhysRevD.86.045006
https://doi.org/10.1016/S0370-2693(00)00292-6
https://doi.org/10.1016/S0370-2693(00)00292-6
https://doi.org/10.1088/0954-3899/35/10/104096
https://doi.org/10.1088/0954-3899/35/10/104096
https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
https://doi.org/10.1016/j.physletb.2006.10.021
https://doi.org/10.1088/0954-3899/37/2/025201
https://doi.org/10.1088/0954-3899/37/2/025201
https://doi.org/10.1103/PhysRevD.78.114503
https://doi.org/10.1016/j.nuclphysb.2003.09.005
https://doi.org/10.1016/j.nuclphysb.2003.09.005


[26] G. B. Alaverdyan, Influence of phase-transition scenarios on
the abrupt changes in the characteristics of compact stars, J.
Phys. Conf. Ser. 496, 012001 (2014).

[27] M. Baldo, G. F. Burgio, P. Castorina, S. Plumari, and D.
Zappala, Quark matter in neutron stars within the Nambu–
Jona-Lasinio model and confinement, Phys. Rev. C 75,
035804 (2007).

[28] T. Maruyama, S. Chiba, H. J. Schulze, and T. Tatsumi,
Hadron-quark mixed phase in hyperon stars, Phys. Rev. D
76, 123015 (2007).

[29] C. H. Lenzi, A. S. Schneider, C. Providencia, and R. M.
Marinho, Compact stars with a quark core within NJL
model, Phys. Rev. C 82, 015809 (2010).

[30] D. Logoteta, C. Providencia, and I. Vidana, Formation of
hybrid stars from metastable hadronic stars, Phys. Rev. C
88, 055802 (2013).

[31] M. Baldo, G. F. Burgio, P. Castorina, S. Plumari, and D.
Zappala, Astrophysical constraints on the confining models:
The field correlator method, Phys. Rev. D 78, 063009
(2008).

[32] M. G. Alford, G. F. Burgio, S. Han, G. Taranto, and D.
Zappala, Constraining and applying a generic high-density
equation of state, Phys. Rev. D 92, 083002 (2015).

[33] F. Yang and H. Shen, Influence of the hadronic equation of
state on the hadron-quark phase transition in neutron stars,
Phys. Rev. C 77, 025801 (2008).

[34] P. N. Bogolubov, On a model of quasiindependent quarks,
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