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The superradiant scattering of Alfvén waves (Alfvénic superradiance) in a forcefree magnetosphere is
discussed to reveal the relationship between the Blandford-Znajek (BZ) process and superradiance. For
simplicity, we consider a four-dimensional rotating black string spacetime of which each z ¼ const slice is
a Bañados-Teitelboim-Zanelli solution as an analogy of the equatorial plane of the Kerr spacetime. Then, it
is confirmed that the condition for Alfvénic superradiance coincides with that for the BZ process, and the
wave amplification can be very large due to a resonant scattering for some parameter sets of the wave
frequency and the angular velocity of the magnetic field line. Moreover, by analysis of the Poynting flux,
we first show that the BZ process can be interpreted as the long wavelength limit of Alfvénic superradiance.
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I. INTRODUCTION

As rotational energy extraction processes from black
holes, the Penrose process, superradiance, and the
Blandford-Znajek (BZ) process are widely discussed. The
Penrose process is energy exchange between particles by
splitting or collisions inside the ergoregion [1,2]. By
transitioning one particle to a negative energy orbit, the
other particle can acquire energy larger than that of the
initial incident particle. Superradiance is a similar mecha-
nism for waves [3–8]. The waves incident toward the black
hole are scattered, and they can be propagated to a distant
region with amplification if the following condition is
satisfied: 0 < ω=m < ΩH, whereΩH is the angular velocity
of the black hole, m is the azimuthal quantum number for a
wave mode, and ω is the frequency of the incident wave.
The BZ process [9] is an energy extraction mechanism

via electromagnetic fields from a rotating black hole. It is
thought that the electromagnetic fields in the vicinity of
black holes are so strong that they are dominant and the
inertia of plasma can be ignored (forcefree approximation).
Therefore, the BZ process is often discussed for the
forcefree magnetosphere. The mechanism works as fol-
lows. The magnetic torque acts on magnetic field lines due
to the spacetime dragging effect, and the rotational energy
of spacetime is transported outward in the form of the

Poynting flux. This energy extraction is possible under the
condition 0 < ΩF < ΩH, where ΩF is the angular velocity
of the magnetic field lines. The BZ process has been
studied for several situations in analytical way [10–13] and
by numerical calculations [14–20] for black hole magneto-
spheres. Toma and Takahara [10] revealed that the ergo-
region is crucial for generating the outward Poynting flux,
and Kinoshita and Igata [13] discussed that the light surface
of the background magnetic field has to be inside the
ergoregion for the BZ process. Moreover, there are several
works regarding the relationship between the Penrose
process or superradiance and the BZ process [7,21].
However, the relationship has not been clarified so far.
The BZ process is driven by background electromagnetic

fields, but in a forcefree magnetosphere, propagation of fast
magnetosonic waves and Alfvén waves also occur. Thus,
these waves can contribute to the energy extraction process,
for example, via superradiance. Indeed, superradiance for
fast magnetosonic waves which is longitudinal mode has
been discussed in papers by Uchida [22,23] and van
Putten [24]. The condition for it is the same as the ordinary
superradiance for scalar, vector, and tensor waves.
Furthermore, it was argued that superradiance for Alfvén
waves (Alfvénic superradiance) does not occur through the
discussion based on the eikonal approximation. However, it
is still possible to amplify Alfvén waves in the treatment
without eikonal approximation. Indeed, in the numerical
calculations [14,16], the outward propagation of Alfvén
waves generated in the ergoregion is important for energy
extraction. Since an Alfvén wave is a transverse wave mode
propagating along magnetic field lines due to the magnetic
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tension, we can discuss energy extraction along magnetic
field lines if Alfvénic superradiance is possible. To see this,
we analyze the wave equation for Alfvén waves. Moreover,
by decomposition of the Poynting flux into the contribution
of the background electromagnetic field and the perturba-
tion, it will be shown that the BZ process is explained as the
long wavelength limit of Alfvénic superradiance.
In order to obtain a magnetosphere solution around a

black hole, it is necessary to solve the general relativistic
Grad-Shafranov equation [9]. For the Kerr spacetime, this
equation cannot be solved globally in an analytical way.
Therefore, in this paper, we consider a simpler geometry
with cylindrical symmetry which can be a good model to
discuss the essence of phenomena in the Kerr spacetime.
This paper is organized as follows. In Sec. II, we derive a

stationary and axisymmetric magnetosphere solution in the
cylindrical spacetime, and the BZ process in this spacetime
is discussed. Then, we give a perturbation to the magneto-
sphere to obtain the wave equations in Sec. III. Section IV is
devoted to the derivation of the condition for Alfvénic
superradiance and the evaluation of how much the Alfvén
waves can be amplified. Section V discusses the relation-
ship between the BZ process and Alfvénic superradiance
before concluding the paper in Sec. VI.

II. BACKGROUND MAGNETOSPHERE
SOLUTION

A. Black cylinder spacetime

We consider the forcefree electromagnetic fields in a
four-dimensional black string spacetime (black cylinder)
[12] with a scale factor fðzÞ as a benchmark to discuss the
BZ process. The metric gλν is given as

ds2¼−α2dt2þα−2dr2þ r2ðdφ−ΩdtÞ2þfðzÞ2dz2; ð1Þ
where α and Ω are functions of the radial coordinate given
as α2 ≔ ðr2 − r2þÞðr2 − r2−Þ=ðr2l2Þ, Ω ≔ rþr−=ðr2lÞ, and
l denotes the AdS curvature scale related to the negative
cosmological constant as Λ3 ¼ −l−2. This spacetime has
two horizons as the Kerr spacetime and their radii r� are
given by αðr�Þ ¼ 0. Each constant-z slice of the spacetime
is a Bañados-Teitelboim-Zanelli black hole [25], and hence,
the horizon geometry is cylindrical. The mass and angular
momentum of the black cylinder can be written with r� as
M ¼ ðr2þ þ r2−Þ=l2; J ¼ 2rþr−=l. These parameters sat-
isfy J ≤ Ml, and hence the spin parameter defined as a ≔
J=ðlMÞ should be less than unity for the spacetimes to
have horizons. Using the parameter a, the angular velocity
at the horizon ΩH ≔ ΩðrþÞ is

ΩH ¼ 1

l

�
a

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
�
: ð2Þ

The reason why we added the “extra” dimension to the
three-dimensional black hole solution is that we need to

consider a four-dimensional spacetime to discuss the
ordinary electromagnetic fields for astrophysics. More-
over, the Grad-Shafranov equation can be solved by
choosing the functional form of the scale factor fðzÞ
properly. Since, in this model, fðzÞ is an arbitrary function
of z, we choose it as fðzÞ ¼ cos ðμzÞ for μ2 > 0 and fðzÞ ¼
cosh ðjμjzÞ for μ2 < 0 with a constant μ.

B. Forcefree magnetosphere in the black cylinder
spacetime

We consider a stationary and axisymmetric forcefree
magnetosphere in this spacetime. Within the forcefree
approximation mentioned in Sec. I, the Maxwell equation
yields the following set of equations: Fλν∇βFνβ ¼ 0;
∇½λFνβ� ¼ 0. The field strength Fλν satisfying these equa-
tions can be represented by two scalars, called Euler
potentials [26,27], as

Fμν ¼ ∂μϕ1∂νϕ2 − ∂νϕ1∂μϕ2; ð3Þ

and the Maxwell equation reduces to the equations for ϕ1

and ϕ2:

∂λϕi∂ν½
ffiffiffiffiffiffi
−g

p ðgλαgνβ − gναgλβÞ∂αϕ1∂βϕ2� ¼ 0; i¼ 1;2;

ð4Þ

where λ; ν;α; β ¼ t; r;φ; z. For the stationary and axisym-
metric solution, we can consider the following ansatz for
Euler potentials [28]: ϕ1 ¼ ΨðzÞ, ϕ2 ¼ hðrÞ þ φ −ΩFt,
where the angular velocity of the magnetic field lines ΩF is
a constant. From Eq. (4), we obtain

ϕ1 ¼ −ψ z

Z
dzfðzÞ; ϕ2 ¼

I
2πψ z

Z
dr
rα2

þ φ −ΩFt;

ð5Þ

where constants ψ z and I are the magnetic monopole line
density located on the z axis and the electric current,
respectively. The function ϕ1 corresponds to the stream
function of the magnetosphere and ϕ1 ¼ const gives the so-
called magnetic surface. For the present model, a magnetic
surface is a constant-z plane, whereas ϕ2 ¼ const defines
the configuration of the magnetic field lines on each
magnetic surface [13,22,23,26–28].
To clarify the situation we are considering, we compute

the components of the electromagnetic fields measured by
a fiducial observer of which four-velocity is given as
uν ¼ ð−α; 0; 0; 0Þ. The electric and magnetic fields are
defined as Eν ¼ Fνβuβ and Bν ¼ −�Fνβuβ, respectively.
The dual tensor is defined as �Fνβ ¼ −ϵνβλρ=ð2 ffiffiffiffiffiffi−gp ÞFλρ

with the completely antisymmetric tensor. Substituting the
solution (5) into these definitions, we get the following
nonzero components of the electromagnetic fields:
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Ez¼ψ zfðzÞ
α

ðΩF−ΩÞ; Br¼ α

r
ψ zfðzÞ; Bφ ¼−

fðzÞI
2πr2α

:

ð6Þ

The axial current I generates the toroidal magnetic field Bφ

(Ampère’s law), and the rotating (moving) radial magnetic
field Br (sourced by a magnetic monopole density distrib-
uted on the z-axis) generates the electric field Ez (Faraday’s
law). The configuration and the magnetic field lines for the
present system are shown in Fig. 1 and Fig. 2, respectively.

C. The BZ process for the present model

The BZ process works for this model as discussed by
Jacobson and Rodriguez [12] who considered fðzÞ ¼ 1
case. In the present model, Ez and Bφ generate the radial
Poynting flux Er. Although the detailed computation of the
Poynting flux including the wave effect (perturbation) will
be discussed in Sec. V, let us now show only the flux by the
background magnetosphere here:

Er ¼ IΩFψ z; ð7Þ

where we evaluated the flux flowing through a short section
of the cylinder with radius r and the unit z-length in the
vicinity of the magnetic surface at z ¼ 0. The sign of
the current I determines that of Er. Since the regularity of
the electromagnetic field at the horizon requires the
following relation called the Znajek condition:

I ¼ 2πrþψ zðΩH −ΩFÞ; ð8Þ

the Poynting flux becomes outward when the inequality

0 < ΩF < ΩH; ð9Þ

is satisfied. Namely, the rotational energy of the black hole
is extracted if the black hole horizon rotates faster than the
magnetic field line.

III. WAVE PROPAGATION

A. Wave equations and wave modes

Let us discuss the propagation of waves in the back-
ground magnetosphere. First of all, we define the pertur-
bation to the Euler potential ϕi → ϕi þ δϕiðt; r;φ; zÞ as
δϕi ≔ ζλi∂λϕi. The displacement vectors ζλi are assumed to
be functions of t; r;φ. Hereafter, we focus on the wave
propagations on the magnetic surface given by z ¼ 0,
where the scale factor fðzÞ is unity, its first derivative
becomes zero, and the second derivative is −μ2. Taking the
first-order terms of Eq. (4), we obtain the following
equations for δϕ1 and δϕ2:

∂νϕ2∂λð
ffiffiffiffiffiffi
−g

p ∂ ½λδϕ1∂ν�ϕ2Þ ¼ 0; ð10Þ

∂jð
ffiffiffiffiffiffi
−g

p ∂jδϕ2Þ ¼ 0; ð11Þ

where j ¼ t; r;φ and the square bracket represents the
anticommutator. The perturbation δϕ2 obeys the Klein-
Gordon equation, and the dispersion relation is the same as
that of a massless particle. This is one of the features of the
fast magnetosonic wave [22,23]. Although the fast mag-
netosonic wave propagates on a magnetic surface due to the
assumption of the perturbation, in general, its propagation
is not restricted on a magnetic surface [29], whereas the
perturbation δϕ1 corresponds to the Alfvén wave, which

FIG. 1. The configuration of the electromagnetic fields in the
black cylinder spacetime. The grey cylinder represents the
horizon. Note that for I > 0 case, the current flows in the −z
direction.

FIG. 2. The snapshot (t ¼ const) of the magnetic field lines
(ϕ2 ¼ const) on a magnetic surface (z ¼ const). The white circle
is the black hole horizon and the outer circle represents the AdS
boundary. For the present parameters, the radius of the light
surface is rLS ≃ 1.1rþ. For the radial coordinate, we mapped the
range rþ < r < ∞ to the finite one arctan ðrþ=lÞ < r̃ < π=2
through the transformation r̃ ¼ arctan ðr=lÞ.
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always propagates along a magnetic field line on a
magnetic surface, as we will see later. It can be shown
that the Poynting flux of the BZ process flows on the
magnetic surface [13], and our aim is to investigate the
relationship between the BZ process and the propagation of
the Alfvén waves. Therefore, we focus only on the Alfvén
wave mode.

B. Propagation of Alfvén waves

Considering the similarity between the propagation of
Alfvén waves and the Poynting flux via the BZ process, we
discuss the propagation of Alfvén waves on the magnetic
surface z ¼ 0. We first rewrite Eq. (10) in terms of a
parameter along a magnetic field line σ and the time
coordinate for a corotating observer of the magnetic field
line τ. The coordinates ðτ; σ; ρÞ are introduced through the
following transformation:

t¼ τ; r¼ σ; φ¼ ρ−
I

2πψ z

Z
dσ
σα2

þΩFτ; ð12Þ

where ρ is ϕ2 itself, and each ρ ¼ const gives a magnetic
field line. Therefore, ρ is a coordinate perpendicular
to the magnetic field lines. The differential operators with
respect to the new coordinates are ∂τ ¼ ∂t þ ΩF∂φ and
∂σ ¼ ∂r − I=ð2πψ zrα2Þ∂φ. In these coordinates, the
second equation of (10) yields

− C1ðδϕ1Þττ − α2σ

�
Γ
σ

�
∂σ −

IσðΩ −ΩFÞ
2πψ zΓα2

∂τ

�
δϕ1

�
σ

þ IσðΩ −ΩFÞ
2πψ z

ðδϕ1Þτσ þ σ2α2C2ðδϕ1Þzz ¼ 0; ð13Þ

where ðδϕ1Þzz ¼ −μ2δϕ1 due to the definition of the
perturbation and the background field configuration. The
functions C1 and C2 are defined as C1 ≔ 1þ
I2=ð4π2α2ψ2

zÞ and C2 ≔ I2=ð4π2σ2α2ψ2
zÞ − ðΩ −ΩFÞ2=

α2 þ 1=σ2, respectively. The function Γ is the norm of
the corotating vector of the field line χνF ¼ð∂tÞνþΩFð∂φÞν:

Γ ¼ gλνχλFχ
ν
F ¼ −α2 þ r2ðΩ −ΩFÞ2: ð14Þ

The zero point of Γ gives the location of the light surface,
which is the causal boundary for Alfvén waves [27], and we
denote its location by r ¼ rLS. For black hole magneto-
spheres, in general, there exist inner and outer light
surfaces. The inner one is caused by the gravitational
redshift, whereas the outer one stems from the fact that the
velocity of rigidly rotating magnetic field lines exceed the
speed of light. For the present model, there is only one light
surface in the vicinity of the black cylinder’s horizon due to
the asymptotic feature of the spacetime, and the norm is
negative everywhere outside the light surface [30]. Note
that Eq. (13) does not have a derivative term with respect

to ρ. This means the perturbation δϕ1 propagates only on a
two-dimensional sheet spanned by τ and σ, called a field
sheet [13,22,23,26–28], which represents the time evolu-
tion of a magnetic field line. Therefore, we can identify δϕ1

as an Alfvén wave. Of course, δϕ1 has ρ dependence
through the function AðρÞ as δϕ1 ∝ AðρÞ. However, this
factor is a constant for wave propagation along a magnetic
field line.
To eliminate the cross term of τ and σ, we choose another

set of coordinates (T; X) on the field sheet, defined as

τ ¼ −
I

2πψ z

Z
dXX

Ω −ΩF

α2Γ
þ T; σ ¼ X: ð15Þ

∂T ¼ ∂τ and ∂X ¼ ∂σ − IσðΩ −ΩFÞ=ð2πα2Γψ zÞ∂τ. We
can separate the variables as δϕ1 ¼ RðXÞAðρÞe−iωT∂zϕ1

on z ¼ 0 plane, then Eq. (13) yields

−ΓX∂X

�
Γ
X
∂XR

�
þ VR ¼ 0; ð16Þ

where

V ≔
ω2

α2

�
C1Γ −

I2X2ðΩ − ΩFÞ2
ð4π2α2ψ2

zÞ
�
− μ2ΓC2X2: ð17Þ

In the present treatment, we assume 0 < ΩFl < 1 for
which the region X < XLS becomes a super-Alfvén region
as in the case of the ordinary context of a black hole
magnetosphere [31]. Since Γ can be factorized as Γ ¼
−ðγ=l2ÞðX2 − X2

LSÞ with γ ≔ ð1 − l2Ω2
FÞ, we introduce

the dimensionless “tortoise” coordinate x as

d
dx

≔ ðX − XLSÞ
d
dX

; ð−∞ < x < þ∞Þ: ð18Þ

In this coordinate, the position of the light surface is
x ¼ −∞. Then, introducing a new wave function defined
by the relation R ¼ K−1=2R̃, K ≔ 1þ XLS=ðXLS þ lexÞ,
Eq. (16) can be written in the form of the Schrödinger
equation:

−R̃xx þ VeffR̃ ¼ 0; Veff ≔
Kxx

2K
−

K2
x

4K2
þ Vl4

γ2X2K2
;

ð19Þ

where X ¼ XLS þ lex. The asymptotic form of the effec-
tive potential is

Veff ∼

8<
:

μ2l2 for x → þ∞

− ω2l4r2þ
4γ2α4

ðΩH −ΩFÞ2ðΩ −ΩFÞ2 for x → −∞:

ð20Þ
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We show the behavior of the effective potential for several
values of μ2 in Fig. 3. For μ2 < 0, in the short wavelength
limit (ω2l2 ≫ 1, jμ2jl2 ≫ 1), there is no reflection of
waves because the top of the potential barrier goes below
zero, whereas for μ2 ≥ 0, the waves are confined in a finite
region x < 0 due to the potential barrier in the x > 0 region.
We focus only on the μ2 < 0 case to discuss Alfvénic

superradiance because in the case of μ2 ≥ 0, there is no
outward propagation to a distant region from the black
cylinder.

IV. ALFVÉNIC SUPERRADIANCE

Since the light surface is the causal boundary for Alfvén
waves, we can write the asymptotic solutions with the
proper definition of ingoing mode in the vicinity of
X ¼ XLS as follows:

R̃ ∼

8<
:

Aine−i
ffiffiffiffiffiffi
−μ2

p
lx þ Aoutei

ffiffiffiffiffiffi
−μ2

p
lx for x → þ∞

exp
h
−i ωl

2rþ
2γ jΩH −ΩFj

R
dx ΩF−Ω

α2

i
for x → −∞;

ð21Þ

where Ain and Aout are the coefficients of the ingoing mode
and the outgoing mode, respectively [32]. Note that the
absolute value symbol and positivity of ΩH and ΩF are
necessary to define the ingoing mode properly for both the
0 < ΩF < ΩH and 0 < ΩH < ΩF cases. The conservation
of the Wronskian at the light surface and the infinity gives
the following reflection rate:

����Aout

Ain

����2 ¼ 1 −
ωlrþjΩH −ΩFj
2γα2LS

ffiffiffiffiffiffiffiffi
−μ2

p ΩF − ΩLS

jAinj2
; ð22Þ

where αLS ≔ αðrLSÞ and ΩLS ≔ ΩðrLSÞ. If the following
inequality is satisfied,

0 < ΩF < ΩLS; ð23Þ

then the reflection rate jAout=Ainj2 exceeds unity, namely,
the Alfvén wave is amplified when scattered by the
potential (Alfvénic superradiance). Note that condition
(23) is different from the superradiant condition for
ordinary waves (e.g., scalar waves) 0 < ω=m < ΩH. In
the case of Alfvén waves, the condition (23) depends on the
angular velocity of the magnetic field linesΩF instead of on
ω=m. This reflects the fact that an Alfvén wave propagates
along a magnetic field line and the separation of variable φ
is not necessary. Furthermore, the upper boundary of the
condition (23) is the angular velocity of the spacetime at the
light surface instead of that of the horizon because the light
surface is a one-way boundary for Alfvén waves. Although
condition (23) does not have the wave frequency, the
reflection rate jAout=Ainj2 itself depends on ω, as we show
in Figs. 4 and 5.

FIG. 4. The reflection rate of the Alfvén waves for several ΩF.

FIG. 3. Veff with a ¼ 0.9, ΩFl ¼ 0.5, ωl ¼ 0.1 for
μ2l2 ¼ 0.03, μ2l2 ¼ 0, and μ2l2 ¼ −0.03. The light surface
is located at x ¼ −∞ in this coordinate. Alfvén waves can
propagate to the distant region only for μ2 < 0.

FIG. 5. 3D Plot of the reflection rate on the ω − ΩF plane.
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As shown in Figs. 4 and 5, indeed, the reflection rates
exceed unity if the Alfvénic superradiant condition is
satisfied. The value of the upper bound of the condition
(23) is ΩLS ≃ 0.63 for a ¼ 0.9. Moreover, we observed
that the reflection rate becomes very large or very small
for some parameter sets ðω;ΩFÞ. These features corre-
spond to resonant scattering and perfect absorption of
Alfvén waves. They occur when the values of the effective
potential at the light surface and far region coincide with
each other. From the asymptotic values of the effective
potential (20), the resonant frequency ωres is obtained
as ωres ¼ ðrþ=lÞ

ffiffiffiffiffiffiffiffi
−μ2

p
ð1 − l2ΩHΩFÞ.

V. ALFVÉNIC SUPERRADIANCE
AND THE BZ PROCESS

How does Alfvénic superradiance relate to the BZ
process? Interestingly, it turns out that condition (23)
is exactly the same as the condition for the BZ process
0 < ΩF < ΩH as follows: Considering the fact thatΩLS is a
function of ΩF:

ΩLSðΩFÞ ¼
1 − l2Ω2

F

2lð1 − lΩFaÞ
a; ð24Þ

we solve the inequality (23) for ΩF. Then, we obtain

0 < ΩF < l−1ða=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
ÞÞ ¼ ΩH; ð25Þ

where the equality comes from Eq. (2).
We investigate the Poynting flux, including the effect of

Alfvén waves. To do that, we introduce the conserved
energy flux vector with the timelike Killing vector ð∂tÞν as
Pλ ¼ −Tλ

νð∂tÞν, where the energy momentum tensor is
Tλν ¼ FλαFν

α − ð1=4ÞFαβFαβgλν. Integrate Pλ for the azi-
muthal angle φ and define Eλ ≔ 2πrPλ, then the energy
flux per unit time over a section of a cylinder with a unit
z-length and a constant radius r ≃ rLS is

Er ¼ IΩFψ z

�
1|{z}
BZ

−
μ2

2
jAj2jRj2

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{zero mode

þOðω2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
perturbation

�
: ð26Þ

Note that all the terms have the common factor
IΩF ∝ ΩFðΩH −ΩFÞ. This factor for the BZ term comes
from the Znajek condition, whereas the Poynting flux of the
perturbation is proportional to ðΩLS − ΩFÞ, which comes
from the condition for Alfvénic superradiance. However, it
can be shown that ðΩLS −ΩFÞ ∝ ðΩH −ΩFÞ, therefore we
can factorize Eq. (26) withΩFðΩH − ΩFÞ. The perturbation
term depending on ω2 enhances the flux of the BZ process
when Alfvénic superradiance occurs. Furthermore, the zero

mode of the perturbation enhances the flux for the μ2 < 0
case in which Alfvén waves can propagate to a distant
region. Actually, the contribution of the zero mode term can
be incorporated into the BZ term as a small deformation of
the background field: ψ2

z → ψ2
zð1 − ðμ2=2ÞjAj2jRj2Þ. If we

redefine the modified one as a new background field [33],
Eq. (26) with the limit ω → 0 is nothing but the energy flux
of the BZ process for the deformed magnetic fields.
Therefore, the BZ process is explained as the zero mode
limit of Alfvénic superradiance. In this sense, Alfvénic
superradiance is a more general energy extraction process
that includes the BZ process. Furthermore, the resonant
scattering implies that Alfvénic superradiance can be
dominant in the energy extraction process, although our
perturbative approach will break down. Therefore, it is
necessary to confirm this with numerical simulation.
Before closing this section, let us remark on the Kerr

black hole case, in which there are some different points
from the present model. First, there exists outer light
surface besides the inner one that is also causal boundary
for Alfvén waves. Hence, we need to consider purely
outgoing boundary conditions for Alfvén waves there. By
considering the case that the Alfvén waves occur at an inner
point of the outer light surface, where the effective potential
is flat enough in the tortoise coordinate, it is possible to use
the same technique discussed in the present paper. Second,
the stream function ϕ1ðr; θÞ depends on the radial and polar
coordinates. It makes the problem more difficult because in
order to consider the force balance between magnetic
surfaces, we need to solve the general relativistic Grad-
Shafranov equation [9]. Although there are above
differences, we have already confirmed that the condition
for Alfvénic superradiance coincides with that for the BZ
process even for the Kerr case. Wewill discuss the details in
the next paper.
Moreover, when magnetic field lines connect to an

accretion disk and or jet around the black hole, we may
see interesting phenomenon: Alfvén waves can be confined
in the finite region between the black hole and the disk or
jet, then Alfvénic superradiance may occur repeatedly like
black hole bomb [34].

VI. CONCLUDING REMARKS

We investigated energy extraction mechanisms from a
rotating black cylinder spacetime with a forcefree mag-
netosphere to reveal the relationship between the BZ
process and Alfvénic superradiance. Through the evalu-
ation of the superradiant condition and the Poynting flux,
we showed that the BZ process is, in fact, the zero mode
limit of Alfvénic superradiance. The result of the present
paper implies that the wave phenomenon is important for
discussing the engine of high-energy astrophysical compact
objects such as gamma ray bursts and active galactic nuclei.
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