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We investigate the radial density distribution of the dynamical dark energy inside the white dwarfs
(WDs) and its possible impact on their intrinsic structure. The minimally coupled dark energy with the
barotropic equation of state, which has three free parameters (density, equation of state, and effective sound
speed), is used. We analyze how such dark energy affects the mass-radius relation for the WDs because of
its contribution to the joint gravitational potential of the system. For this we use the Chandrasekhar model
of the WDs, where model parameters are the parameter of the chemical composition and the relativistic
parameter. To evaluate the dark energy distribution inside a WD we solve the conservation equation in the
spherical static metric. The obtained distribution is used to find the parameters of dark energy for which the
deviation from the Chandrasekhar model mass-radius relation become non-negligible. We conclude also
that the absence of observational evidence for the existence of WDs with untypical intrinsic structure
(mass-radius relation) gives us lower limits for the value of an effective sound speed of dark energy
c2s ≳ 10−4 (in units of speed of light).
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I. INTRODUCTION

The nature of dark energy, a substance which causes the
observable accelerated expansion of Universe, has become
a highly studied subject in cosmology in the last two
decades. A significant part of models that explain it are
(usually, scalar) field models of the dark energy [1–8].
Unlike the cosmological constant, scalar field dark energy
is assumed to be dynamical and perturbable, changing its
density across time and space, and having, as a result,
restrained impact on the evolution of the large scale
structures [9]. Such dark energy can be modeled as the
perfect or imperfect fluid, which is effectively described by
hydrodynamical parameters: the density ρde, the equation
of state parameter wde, and the effective speed of sound cs.
The most conservative models assume that only the density
of the dark energy varies with cosmological time, while
models with more degrees of freedom assume that all three
parameters are dynamical. Depending on its properties,
dark energy is referred to as the quintessence (wde > −1),
the phantom (wde < −1), or the quintom, in which wde
changes its sign during the evolution. Current observable
data does not give strong preference to any of these types of
dark energy [8–11].
It was first noticed by Babichev and co-authors [12] that

scalar field dark energy can influence the compact objects
through accretion. They analyzed how the infall of the

phantom dark energy “screens” a black hole’s (BH) gravi-
tational field, eventually leading even to its disappearing.
The idea, that hidden components of the Universe can

influence the compact objects, like BHs or white dwarfs
(WDs), through gravity has developed further. In the last
decade, a number of works appeared, in which alternative
theories of gravity, also capable of explaining the accel-
erated expansion of the Universe, were tested on deviation
from the general relativity at small scales through impact on
the observable features of compact objects. For example,
the Vainshtein mechanism [13,14], which restores the
equivalence of Einstein’s general relativity and some
alternative gravity theories at small (Solar System) scales,
can be broken inside matter for some cases, such as beyond
Horndeski models [15–17]. With the purpose of probing
this scenario, different kinds of compact astrophysical
objects were chosen. For instance, in work [18] the red
and brown dwarfs were used as probes for the modified
gravity theories through impact on the mass-radius relation,
the Chandrasekhar mass limit, and the mass-radius relation
for the WDs were used in works [19,20] in order to obtain
independent constraints on the Vainshtein breaking param-
eter. A similar work [17] was devoted to the study of
relativistic objects, such asWDs and neutron stars, in which
it was shown the importance of post-Newtonian corrections
in the equilibrium equation for WDs while calculating
macroscopic characteristics in the frame of the theory of
modified gravity. In work [21] the authors attempted
to explain the existence of sub- and super-Chandrasekhar*sviatoslav.smerechynskyi@lnu.edu.ua
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WDs as possible progenitors of peculiar supernova of Ia
type with the help of modified gravity theory. BHs and
relativistic stars in scalar-tensor theories of gravity are
studied in [22,23]. In both works, authors find constraints
from observing compact objects on theories. WDs are used
for similar purpose in papers [24,25]: the corrections to
equations that describe them are evaluated and constraints
on the possible modifications of gravity are given.
The goal of this paper is to investigate the radial density

distribution of the dynamical dark energy inside the WDs
and estimate its possible impact on their intrinsic structure.
It will give the possibility to estimate the lower limit for the
value of the effective sound speed cs of the dark compo-
nent. We do it by considering the static solution of dark
energy distribution in a spherically symmetrical metric. We
take into account in the equation of the Chandrasekhar
model, that the dark energy changes the joint gravitational
potential of the system “white dwarf þ dark energy,”
hence, changing the mass-radius relation for WDs, depend-
ing on its parameters, in particular, on the effective speed
of sound.
Though the local behavior of dark energy clustering is an

object of study in a lot of works lately (see [26,27,28], for
example), and there are even examples of “mixed star”
(dark energyþ baryon matter) solutions [29,30], our work,
as of our knowledge, is the first attempt to constrain dark
energy parameters through observable WD properties.
The paper is organized as follows. In Sec. II we briefly

recall the Chandrasekhar model of WDs and its main
results. Section III contains the equation of state for the
dark energy and the calculation of its radial distribution
inside WDs. In Sec. IV we discuss the possibility of setting
the constraint on the effective speed of sound of the dark
energy using the WDs and in Sec. V we present our
conclusions.

II. CHANDRASEKHAR MODEL OF
WHITE DWARFS

A typical WD is a spherical object with mass of one half
that of the Sun and a radius of the order of Earth’s. In
such extreme dense objects hydrostatic equilibrium is

maintained by the pressure of relativistic degenerated
electron gas [31–33]. The high density of matter causes
the equation of state of the electron gas to be almost
independent on temperature, which is why the mechanical
and thermal structure of WDs can be treated separately.
Such a zero-temperature approximation is especially appli-
cable to massive WDs where finite temperature effects are
negligible [34]. In approximation of complete degener-
ation, the equation of state of noninteracting relativistic
electron gas can be written in the parametric form as
follows:

PeðrÞ ¼
πm4

ec5

3h3
fðxðrÞÞ;

fðxÞ ¼ 8

Z
x

0

y4dyffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p ¼ xð2x2 − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

þ 3 ln ðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ;

ρðrÞ ¼ μemu
8πðmecÞ3

3h3
x3ðrÞ: ð1Þ

Here me is the electron rest mass, mu stands for atomic
mass unit, and the dimensionless chemical composition
parameter μe determines the number of nucleons per free
electron for an averaged nucleus in a star (we assumed here
μe ¼ 2). The dimensionless Fermi momentum of electrons
x ¼ pF=mec, called the relativistic parameter, plays the
role of the parameter in the above mentioned equation
of state.
Assuming the hydrostatic equilibrium of a nonrotating

gaseous sphere, Chandrasekhar obtained the model of the
WDs with two parameters [33]: the relativistic parameter in
a stellar center x0 and the chemical composition parameter
μe (which is close to 2 for all elements except hydrogen).
Within this model two important outcomes became
famous: the peculiar mass-radius relation—the radius of
WDs decreases with increasing mass, which is contrary to
normal stars (left panel of Fig. 1); and the existence of the
maximum mass of the WD ∼ 1.5 M⊙, known as the
Chandrasekhar mass limit. This is the formal limit for
WDs with the central density approaching infinity (right
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FIG. 1. Characteristics of white dwarfs in Chandrasekhar model: the mass-radius relation (left panel), the Chandrasekhar limit (right).
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panel of Fig. 1). The latter one played the crucial role in the
discovery of the accelerating expansion of the Universe
through observations of the distant supernovae of Ia type.
These kinds of superluminous events are believed to be
explosions of WDs exceeding the Chandrasekhar limit due
to the accretion of matter from another component of the
binary system.

III. DARK ENERGY IN WHITE DWARFS

A. Dark energy model

In this work we analyze the scalar field model of dark
energy with the barotropic equation of state

pde ¼ wðρdeÞρdec2; ð2Þ

where pde and ρde are the pressure and density of dark
energy, respectively. We consider a model for which the
relation between the equation of state parameter w and the
effective speed of sound c2s (in the units of speed of light c)
is as follows:

w ¼ c2s − ðc2s − w∞Þ
ρ∞
ρde

: ð3Þ

Here ρ∞ is the background density of dark energy (at
r → ∞), for which we adopted the value 10−26 kg=m3 [35].
Also, we considered two types of dark energy, quintessence
with w∞ ¼ −0.8 and phantom with w∞ ¼ −1.2.
We chose hydrodynamical (phenomenological) repre-

sentation of the scalar field dark energy as usual, for
convenience. Scalar field dark energy can be represented as
a perfect or imperfect fluid with the barotropic equation of
state ([36,37]). Indeed, given the Lagrangian of the field
LðX;UÞ with kinetic term X and potential U, the con-
nection with phenomenological quantities is as follows:

ρde ¼ 2XL;X−L; pde ¼L;

wde ¼
pde

c2ρde
¼ L
2XL;X

; c2s ¼
δpde

c2δρde
¼ L;X

2XL;XX−L;X
:

One can obtain the linear equation of state for the stationary
Minkowski or Schwarzschild world and the scalar field
dark energy with conditions c2s ¼ const > 0 and wde < 0
[35]. The properties of such dark energy in the vicinities of
compact objects were also studied in [12,35,37]. In the case
of static space-time the equation of state parameter (3) cor-
responds to a static scalar field with a constant potential U
and a density-dependent kinetic term X [38].

B. Dark energy distribution inside a white dwarf

In order to analyze the behavior of dark energy inside a
compact astrophysical object, we consider the simplest
model of WDs without rotation and the neglected effects of
the magnetic field, finite temperature, and Coulomb

interactions on the mechanical structure. Consequently,
we expect a spherically symmetric distribution of dark
energy inside a star. Also, in this work we do not aim to
describe the dynamical evolution of dark energy in the
gravitational field of a compact object, but instead focus on
the static configuration of the system, which consists of two
components: the matter of WDs and dark energy.
The space-time metric for the spherically symmetric case

can be written in the form

ds2 ¼ eνðrÞc2dτ2 − eλðrÞdr2 − r2ðdθ2 þ sin2θdφ2Þ: ð4Þ

In our case, the components of the metric do not depend
on time and can be obtained from Einstein equations with
boundary condition λðr ¼ 0Þ ¼ 0

e−λðrÞ ¼ 1 −
8πG
c2r

Z
r

0

½ρmðr0Þ þ ρdeðr0Þ�r02dr0;

νðrÞ þ λðrÞ ¼ −
8πG
c2

Z
R

r

�
ρmðr0Þ þ ρdeðr0Þ

þ pmðr0Þ þ pdeðr0Þ
c2

�
eλðr0Þr0dr0: ð5Þ

Here ρm, pm are the local density and pressure of stellar
matter and ρde, pde denote the corresponding character-
istics of dark energy.
In the casewhen the equilibrium of the gravitational force

and pressure gradient is fulfilled, the following equations
hold for both components of the considered system:

dpm

dr
þ 1

2
ðρmc2 þ pmÞ

dν
dr

¼ 0;

dpde

dr
þ 1

2
ðρdec2 þ pdeÞ

dν
dr

¼ 0: ð6Þ

If the density of dark energy is essentially lower than the
matter density and metric function ν is defined by distribu-
tion of matter mainly, then the last equation gives the radial
distribution of dark energy inside a star [35]

ρdeðrÞ¼ ρ∞

�
c2s −w∞

1þc2s
þ1þw∞

1þc2s
½eνðrÞ�−

1þc2s
2c2s

�
: ð7Þ

In order to solve the system of equations, (5) and (6), in
the general case, we have to know the value for ρdeð0Þ or
the value of νð0Þ in the stellar center. For this we applied the
iterative procedure: in the zero approximation we assumed
no influence of dark energy on WDs and, having the results
of the Chandrasekhar model [given in Eq. (1)], we
calculated the second equation in (5) at the point r ¼ 0.
Following this, we use found potential νð0Þ to evaluate the
density of the dark energy at the center with formula (7). At
the next step, this value was used to solve the system, (5)
and (6), where both baryon matter and dark energy are
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taken into account when calculating the potential, and
recalculate a new value of ρdeð0Þ. Such a procedure was
repeated until the convergence was reached or the iteration
limit exceeded. The algorithm stops when relative change
of the potential at consecutive iterations is less than 10−5.
Usually it takes less then 10 iterations to reach the
convergence.
The system ceases to converge when the effective sound

speed c2s approaches to zero, meaning that dark energy with
very small c2s does not allow static solutions. The specific
value of c2s when convergence is lost depends on the
relativistic parameter in the center of the star x0 and this
value of c2s increases with the growth of x0. Technically
divergence is manifested through very rapid growth of
density and thus, the mass of dark energy in the system up
to infinity (or negative infinity in the case of phantom dark
energy).
Figure 2 illustrates the calculated relative deviation of the

density of dark energy from the background for different
values of the effective speed of sound cs and fixed central
density of the matter (or relativistic parameter x0). It can be
seen that with decreasing value of cs the amount of dark
energy inside WDs increases for quintessential dark energy
(decreases for phantom one) by orders and becomes
concentrated towards the stellar center.
One can see similar behavior of dark energy when we

fixed the value of cs but varied the central density (or x0) of
a star (see Fig. 3). Relative change of ρde is very sensitive to

the relativistic parameter in the stellar center x0 and is even
more abrupt with the growing central density of the stellar
matter.
The radial dependence of the WD mass, as well as the

mass of dark energy inside a star, are shown in Fig. 4. It
shows that the presence of quintessential dark energy
reduces the mass of WDs in comparison to the result of
the Chandrasekhar model, whereas the phantom dark
energy causes its increase. Also, the stellar radius changes
pettily, it grows in the case of quintessential dark energy
and shrinks in the case of the phantom one.
The obtained negative values of density and mass for

phantom dark energy needs some comments. The possibil-
ity of negative density for this model was already men-
tioned in [35] (see also [39] for cosmological consequences
of phantom models). It was shown in [40,41], that the
presence of such dark energy can cause UV quantum
instability of vacuum through producing a pair of phantom
particles and one nonphantom, having conserved energy.
The brief discussion of the problem of the existence of the
physical essence with a negative density or mass of
particles from the general relativity point of view can be
found in the recent paper [42]. Though we consider here
classical behavior of the dark energy and the field behind it,
this means that one should be careful when trying to obtain
real observable constraints from the solutions for phantom
dark energy, remembering there are also quantum limits of
such models. In our case, constraints for quintessence and
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phantom models are almost the same, as divergence occurs
almost for the same values of x0 and c2s .

IV. CONSTRAINT ON cs BY THE WD’S
MASS-RADIUS RELATION

A. Influence on the mass-radius relation

We calculated the WD masses and radii for various
values of a relativistic parameter in the stellar center x0 and
effective speed of sound cs. Because we are interested in
masses of WDs that can be obtained from observations, our
results shown in Fig. 5 are represented in the form of the
object’s mass as a function of x0.

As we can see from the figure, the dark energy inside
WDs does not reveal itself unless some critical value of x0
(dependent on cs) is reached. In the vicinity of this value,
the dark energy accumulated inside a star causes abrupt
deviations from the results of the Chandrasekhar model
(depicted with dotted line). The lower is the value of the
effective speed of sound, the smaller is the critical value of
x0 at which the dark energy begins to make
a significant contribution into the hydrostatic equilibrium
of the WD by lowering its mass in the case of quintessential
dark energy and increasing it in the case of the phantom
one. The reason of such behavior is the following. The
higher x0 corresponds to the higher density ρm of matter in
the center of WDs and hence, the deeper potential well of
the system. The deeper potential well causes the growth of
ρde. In the case of quintessential dark energy, given
equation of state of dark energy makes its behavior similar
to that of the matter, which means that for satisfying the
hydrostatic equilibrium the lower mass of matter is neces-
sary. Indeed, when ρde ≫ ρ̄de then w → c2s , pde → c2sρdec2

and dark energy contributes into the metric functions, as it
follows from Eqs. (3) and (5). This breaks the hydrostatic
equilibrium and causes the gravitational collapse of the
system. In the case of phantom dark energy, ρde changes its
sign and becomes negative. As a consequence, for satisfy-
ing the hydrostatic equilibrium, the larger mass of matter is
necessary. In both cases the process is rapid, as sort of
positive feedback loops are created, changing the properties
of dark energy inside and in the nearest vicinities of
the WD.
In the left panel of Fig. 5 the dependences Mðx0Þ are

presented for WDs in the models without dark energy
(short-dashed line) and with quintessential dark energy
with different values of c2s (main part) and with phantom
and quintessential dark energy in the insert which is a
zoom-in of the central part of the figure. One can see that
deviations for both quintessential and phantom dark energy
take place approximately at the same values of x0.
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The corresponding masses of dark energy of the quintes-
sential type (in log-scale) as a function of the relativistic
parameter in the stellar center x0 are shown in the right
panel of Fig. 5. The amount of dark energy inside a dwarf
steeply increases with x0 and strongly depends on the
effective speed of sound cs. Our solutions yield infinite
values of densities when cs ¼ 0. This is a consequence of
considering the equation of state of the dark energy given in
Eqs. (2) and (3) and, correspondingly, solution (7), where cs
is in the denominator of the exponent. One can conclude that
dark energy with cs ¼ 0 is excluded from possible models.

B. Constraints

As we saw in Fig. 5, there are some critical values of x0
depending on cs at which the dark energy changes theM −
x0 relation for the WD. These values are given in Table I for
both considered types of dark energy.
In the papers [43,44], the authors employed the

Chandrasekhar model of WDs to solve the inverse problem
for a large sample (∼3000) of spectroscopically confirmed
WDs of type DA from SDSS DR4 [45]. Using known
values of masses and radii, the relativistic parameter in the
stellar center in the frame of the Chandrasekhar model x0 ≲
2.5 (left panel of Fig. 6) for the vast majority of WDs from
the sample was found. However, there exist the outliers for
which x0 can be sufficiently high—up to xmax

0 ≈ 8.5

(indicated by arrows in figure). This value can be treated
as the maximal value of x0 for real WDs.
Also, WDs in binary systems can be used to estimate

the maximal value of x0. As can be seen in the right panel of
Fig. 6, both tails of the distribution by mass (or by x0) are
more populated than for field (single) dwarfs. The reason is
a mass transfer between the components of binary systems.
As was mentioned above, it is believed that progenitors of
Ia type supernovae events are WDs in close binaries with
masses near the Chandrasekhar limit. Formally, in the
frame of the Chandrasekhar model, they occur at x0 → ∞.
However, it was shown first in [47] that mass accretion onto
WDs can cause the instability before reaching the
Chandrasekhar limit due to the effects of the general theory
of relativity and/or neutronization. The critical values of the
central density in the case of carbon WDs were found to be
of the same order for both effects (2.65 × 1013 and
3.90 × 1013 kg=m3, respectively) [48]. The recent values
for the general theory of relativity effects are very similar
(see, e.g., [49]). The corresponding values of the relativistic
parameter xmax

0 are 23.8 and 27.1, meaning x0 cannot
exceed it as the supernovae explosion occurs.
Thus, supposing that there exist field WDs with such

high masses that correspond up to xmax
0 ≈ 10 and/or that Ia

type supernovae events are explosions of WDs in the
binaries with relativistic parameter in their centers
xmax
0 ≈ 25, we can conclude that the dark energy inside
this objects did not reveal itself. Having limits on x0, one
can constrain c2s . For each value of the former one there is a
corresponding value of c2s for which the solution for the
hydrostatical equilibrium equation ceases to exist, i.e., dark
energy with lower values of c2s would destroy the WD.
Within this assumption we have found the lower limit for
the value of effective speed of sound when the deviation
from the Chandrasekhar model becomes non-negligible:
for field (single) WDs c2s ≳ 4 × 10−5 and for WDs in binary
systems c2s ≳ 10−4. It is interesting to point out that these
constraints are close to the ones obtained in work [50],
where we have used the current precision of the measuring

TABLE I. The critical values of the relativistic parameter in the
stellar center x0 for different values of the effective speed of
sound for the dark energy of both considered types.

c2s xq0 xph0
10−4 27.4 25.9
5 × 10−5 13.7 12.7
4 × 10−5 11.0 10.2
3 × 10−5 8.3 7.6
2 × 10−5 5.6 5.2
10−5 3.0 2.8
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gravitating mass in the Solar System to constrain the value
of the speed of sound of the dark energy.

V. CONCLUSIONS

In this work we have considered a dark energy with the
barotropic equation of state in the static gravitational field
of WDs. We have obtained the distribution of dark energy
in a WD using the Chandrasekhar model and calculated its
impact on an object’s characteristics in a self-consistent
way. An investigation of the “mass-radius” relation for
WDs with dark energy inside has shown that deviation of
the WD mass from the one in the model without dark
energy appears to be tiny, unless some critical value of the
relativistic parameter x0 is reached, though deviation of the
density of dark energy in the center of the star from
the background dark energy density can be noticeable. The
deviation of the mass of WDs in comparison to the
Chandrasekhar model is negative for the quintessential
type of dark energy and positive for the phantom one. The
critical value of x0 decreases with the decreasing value of
the dark energy effective speed of sound cs.

Using this, we have compared the critical values of the
relativistic parameter when the concentration of dark
energy is too high to maintain the equilibrium of WDs
with a maximum value of x0 obtained in the Chandrasekhar
model for the observed (single) WDs xmax

0 ≲ 10 and with
the value at which another effect affects the stellar structure
such as neutronization or the effects of general theory of
relativity for massive WDs in binary systems, xmax

0 ≲ 25.
Supposing that the dark energy has no or has negligible
influence on the WD structure, which allows WDs with
such relativistic parameters to exist, we can conclude that
the minimal value of the squared effective speed of sound is
c2s ≈ 4 × 10−5 in the case of field WDs and c2s ≈ 10−4 for
dwarfs near the Chandrasekhar limit in the binary systems.
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