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We show that standard puzzles of hot big bang cosmology that motivated the introduction of
cosmological inflation, such as the smoothness and horizon problem, the flatness problem, and the relic
problem are also solved by holographic models for very early universe based on perturbative three
dimensional QFT. In the holographic setup, cosmic evolution is mapped to inverse renormalization group
(RG) flow of the dual QFT, and the resolution of the puzzles relies on properties of the RG flow.
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I. INTRODUCTIONS

The theory of inflation was initially introduced [1–3] as
an answer to three problems of hot big bang cosmology:
(i) the horizon problem (why is the universe so homog-
enous despite the fact that separated regions were causally
disconnected?), (ii) the flatness problem (why is the
Universe as flat as we see it today), and (iii) the relic
problem (why we do not see any relics from the very early
Universe?). Inflation beautifully resolves these (and other)
problems by postulating a period of accelerating expansion
in the very early Universe.
What is perhaps the biggest success of this theory is its

ability to generate primordial perturbations, which form the
seeds for structure formation in the late Universe, and
which are in excellent agreement with observations of the
cosmic microwave background (CMB) by satellites and
other missions. Despite these successes, however, the
underlying theory still remains unsatisfactory: it requires
fine tuning, there are trans-Planckian issues and questions
about initial condition, see for example [4]. The theory of
inflation is an effective field theory and we are still lacking
a proper understanding of its ultraviolet (UV) completion.
This as well as the resolution of the initial singularity
require the embedding of inflation in a consistent quantum
theory of gravity. Achieving such embedding in string
theory is an ongoing effort and the very existence of

(quasi)-de Sitter solutions in string theory has recently
been questioned (see for example [5]). It is thus important
to approach this question from different perspectives and
explore and further develop alternative models for the very
early Universe.
It is widely believed that quantum gravity is holographic

[6–8], meaning that there is an equivalent description using
a quantum field theory (QFT) (with no gravity) in one
dimension less. Holographic dualities are still conjectural
and this is even more so in the case of cosmology. The
cosmological holographic framework however has already
passed a number of nontrivial tests and we will provide
additional support in this paper. Work on holographic
cosmology was initiated in [9–12], with standard inflation
fitting in this framework as a strongly coupled QFT (see for
example [13–32]). Holographic cosmology also contains
qualitative new models for the very early universe obtained
by considering QFTs at weak coupling [33]. These new
models correspond to a strongly coupled nongeometric
phase of gravity and they will be the focus of this paper.
In the context of cosmology the dual QFT is a three

dimensional Euclidean theory, which is located at future
infinity and its partition function, in the presence of
sources for gauge invariant operators, is identified with
the wave function of the universe. The fields parametrizing
the (Dirichlet) boundary conditions at future infinity1 are
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1Note that the asymptotic structure near the timelike boundary
of AdS [34,35] is mapped to the asymptotic structure near the
spacelike boundary of de Sitter [36] via analytic continuation
[37], see also [38] and [39]. The same analytic continuation also
maps general perturbations (at least to quadratic order) around
domain-walls/FRW cosmologies [33,40–42], and this translates
into specific analytic continuation on the QFT side, as discussed
in [33,40–42].
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identified with the sources of dual operators and the
arguments of the wave function of the Universe [12].
The dimension which is reconstructed holographically is
the time direction and cosmic evolution is mapped to
inverse RG flow. The holographic description is currently
known only for the very early universe, the period usually
associated with inflation, and the transition to standard
cosmology is via “instant reheating”, i.e., the outcome of
this period becomes the initial conditions for the sub-
sequent evolution via Einstein equations (see [43]).
In the holographic framework, models are defined by

providing the dual QFT, and in the models describing a
nongeometric early Universe this is a three dimensional
superrenormalizable theory: SUðNÞ gauge theory for a
gauge field Ai coupled to scalars ϕ and fermions ψ , with
action [33]

S ¼ 1

g2YM

Z
d3xTr

�
1

2
FijFij þ ðDϕÞ2 þ ψ̄Diγ

iψ

þμðψ̄ψϕÞ þ λϕ4

�
; ð1Þ

plus a nonminimal coupling
R
d3xξRϕ2, where R is the

scalar curvature—on a flat 3d background the nonmini-
mality parameter ξ appears only in the improvement
term in the energy momentum tensor. All fields are in
the adjoint of SUðNÞ and we suppress numerical factors
and flavor indices (see [44] for the details). This theory has
a “generalized conformal structure,” which means that if
one promotes g2YM to a field with appropriate conformal
transformations the theory becomes conformal [45,46], or
that by assigning “4d dimensions” to the fields, ½Φ� ¼
½Ai� ¼ 1, ½ψ � ¼ 3=2, all terms in the action scale in the
same way.
The phenomenology of thesemodels has beenworked out

in [33,40–42,47–50], using methods from [12,37,51,52].
The models predict a scalar power spectrum of the form

Δ2
S ¼

Δ2
0

1þ gq�
q ln j q

βgq� j þOðgq�q Þ2
; ð2Þ

where β, g are parameters that are obtained by a 2-loop
computationof the2-point function of the energymomentum
tensor and there is a similar form for the tensor power
spectrum. These models have been compared against
WMAP [43,53] and Planck data [44,54] and it was found
that within their regime of validity2 they provide an excellent
fit to data and are competitive with ΛCDM—the fit to data
shows that holographic cosmology (HC) and ΛCDM are
within one sigma.
In this paper, we would like to discuss how holographic

cosmology addresses the hot Big Bang problems. We will

start by first reviewing how inflation solves these problem
and then move to discuss them within the context of
holographic cosmology. As this part is standard material
we will be brief—the details can be found in most
cosmology textbooks.

II. INFLATION AND HOT BIG
BANG PROBLEMS

A. Smoothness and horizon problems, or Why is the
Universe uniform and isotropic?

The question can be formulated as follows: why is the
Universe so smooth and correlated on large scales when
different parts of the sky were not in causal contact at the
initial time? In hot big bang cosmology, the points in the
CMB separated by more than 1.6° could not have been in
causal contact because their past light cones do not overlap
before the spacetime is terminated by the initial singularity
(see for example [55,56]). One has to increase the horizon
distance at the surface of last scattering at least by a factor
of 66 to be consistent with observations.
Inflation’s answer to this problem is that the exponential

blow up of a small patch creates the whole observable
Universe, and this patch was in causal contact. Let tbi the
time inflation began, tI it ended and Ne ¼ HðtIÞðtI − tbiÞ
the number of e-foldings. Assuming nothing much hap-
pened between the end of inflation and the beginning of
radiation domination, a short computation shows that the
horizon problem is avoided provided we have enough e-
foldings of inflation.

B. Flatness problem, or Why do we
have Ω ≃ 1 in the past?

Observations tell us that the Universe is approximately
flat today. If the Universe were exactly flat in the past, then
cosmic evolution would preserve this property and it would
be exactly flat today. However, if Ω − 1 ≠ 0 but small,
extrapolating into the past using matter domination (MD)
and radiation domination (RD) formulae, we find an
extremely flat Universe at initial times. Quantitatively,
ΩðtÞ − 1 ∝ t2ð1−pÞ for aðtÞ ∝ tp. In both RD (p ¼ 1=2)
and MD (p ¼ 2=3) eras, ΩðtÞ − 1 increases with time, so it
must have been very small in the past, and to avoid fine
tuning we need a period of p > 1, to bring it down to the
value we obtain now.
Indeed, inflation naturally drives Ω very close to one.

A short computation (see for example [55]) shows that
Ω0 − 1 ¼ ðΩðtbiÞ − 1Þe−2NeððaðtIÞHðtIÞ=ða0H0ÞÞ2, where
(as usual) the subscript 0 denotes todays values, and this
leads to exactly the same condition needed to solve the
horizon problem.

C. Relic (monopole) problem, or Why do we not see
relics in the Universe?

In phase transitions we would obtain relics, for example
monopoles from grand unified theories (GUT) phase

2One of the results of [44,54] is that the model becomes
nonperturbative at very low multipoles (less than 30) and a
nonperturbative evaluation of the power spectrum is needed to
model this region.
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transitions, where we would expect about one monopole
per nucleon, or 10−9 monopoles per photon. However, from
direct searches in materials on Earth we know that there are
≤ 10−30 monopoles per nucleon (see [55], chapter 4.1.C),
so we need a reduction factor of 10−30.
Relics in general are also constrained by their gravita-

tional effects (see [57], chapter 7.5): in order to not over-
close the Universe, we need a reduction factor of about
10−11, much less stringent than for monopoles.
Inflation’s answer to the problem of both monopoles and

general relics is that it dilutes them during the period of
exponential inflation. Inflation therefore needs to happen
after, or at most during the phase transition.

III. RESOLUTION USING HOLOGRAPHIC
COSMOLOGY

We now turn to the same questions in the context of
holographic cosmology, where gravity is strongly coupled
and the dual field theory is weakly coupled.

A. Smoothness and horizon problems

These models describe a nongeometric early Universe so
geometric concepts such as light-cones are meaningless,
and the traditional formulation of the problem is not valid.
Nevertheless it would be useful to understand the mecha-
nism that put in causal contact parts of the sky that from
the perspective of hot big bang cosmology appear to be
uncorrelated.
In holographic cosmology cosmological observables are

computed from correlation functions of the dual QFT, and
the correlations at the surface of last scattering are those of
these correlators. In QFT correlation functions at different
scales are related to each other via renormalization group
flow. As time evolution is mapped to inverse RG flow,
points widely separated at the surface of last scattering
would be linked by RG flows that connect the UV with the
deep IR, so as long as the QFT is well-defined in the IR,
there is no horizon problem, as any two points at the surface
of scattering will be causally linked via a deep enough
RG flow.
The theories we discuss here are superrenormalizable so

they are naively IR divergent. This is the holographic dual
of the bulk initial singularity. These theories however are
expected to be nonperturbatively IR finite [58,59] and this
has recently been confirmed by lattice studies [60]. It
follows that in this class of models there is no horizon
problem, irrespectively of the details of each model.
We now illustrate that the usual inflationary resolution of

the horizon problem is an example of the same mechanism.
For concreteness we discuss the case of asymptotically de
Sitter inflation but the same comments apply more gen-
erally. Any two points separated by distance L at the space-
like boundary of de Sitter (the end of this phase) may be
linked via bulk geodesics that go to the interior of de Sitter.

From the perspective of the dual QFT (and after using the
domain-wall/cosmology correspondence [61] to map this
question to AdS), the (renormalized) length of these geo-
desics provide the 2-point function of a dual operator
inserted at each of the two points [62]. A short computation
(see for example [63,64]) shows that L ∝ 1=r0, where r0 is
the maximum radial distance reached in the bulk. Recall
that the radial coordinate encodes RG flow in the dual QFT,
so the number e-folding corresponds to the amount of RG
flow for which the dual field theory is strongly coupled and
nearly conformal: it is simple to verify (using the fact that
L ∝ 1=r0) that the factor multiplying the RG scale corre-
sponds to the factor eNe in inflation.

B. Flatness problem

To formulate the question in the context of holographic
cosmology, we consider a small deviation from a flat
background (Ω ¼ 1) and we would like to show that under
time evolution (=inverse RG flow) the flat geometry is an
attractor. Like in the inflationary case, this needs to be
addressed independently of the usual cosmology that
follows: we must show that the nongeometric phase alone
can do this.
In holography the spacetime where the dual QFT lives is

a fixed nondynamical background, so one may wonder
whether the flatness problem makes sense in this context. A
small deviation from flatness means that the spacetime
metric is gij ¼ δij þ hij, where δij is the metric on flat R3

and hij is a small deviation. By a standard argument, the
deviation induces a new coupling in the action

R
d3xTijhij,

where Tij is the energy-momentum tensor of the dual QFT
on R3 (plus higher order terms). The new coupling hij will
run under RG flow and (as time evolution is inverse RG
flow) this is the counterpart of the fact that the density
parameter Ω evolves in a nonflat Friedmann-Lemaître-
Robertson-Walker. Note that if hij ¼ 0, this coupling will
not be induced by the RG flow (in a Lorentz invariant QFT)
and this is counterpart of the statement that if the Universe
is flat, it remains flat at all times.
The flatness question is now whether the new coupling

dies off or dominates in the UV. If it dies off then the flat
geometry is an attractor, as in inflation. The perturbative
superrenormalizable QFTs [with action given in (1)] that
feature in holographic cosmology have a generalized
conformal structure and this implies that when the coupling
is very small they effectively behave like CFTs: they are
nearly conformal. Since we are interested in the late time
behavior and the QFT is superrenormalizable, there is no
loss of generality to assume that we are in the regime where
the QFT is nearly conformal. The question is then whether
the deforming operator (i.e., Tij) is relevant or irrelevant.
Since the deformation is also assumed to be very small in
the UV (Ω ∼ 10−54), it suffices to compute the dimension of
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T in the undeformed theory.3 If the operator is relevant it
would die off in the UV and dominate in the IR and the
opposite if it is irrelevant.
We therefore need to determine the dimension of T and

this can be done from its 2-point function. In momentum
space (and close to the fixed point) the 2-point function
should behave as q2Δ−d (see for example [65]) and we can
extract Δ from it. Tij is of course marginal (dimension 3 in
3 dimensions) at the classical level, and at the quantum
level the hTijTkli correlator decomposes into a scalar and a
tensor piece, both of the type q3N2fðg2effÞ, where g2eff ¼
g2N=q is dimensionless. The factor of q3 captures the
classical dimension of T and implies that to leading order
the CMBR power spectra are scale invariant. In perturba-
tion theory, g2eff ≪ 1, and at 2-loops (see [40,43,54] for
details) the form f is4

fðg2effÞ ¼ f0ð1 − f1g2eff ln g
2
eff þ f2g2eff þOðg2effÞÞ; ð3Þ

where f1 < 0 both for the best fit to the CMBR data,
and for most of the general theoretical parameter space.
This implies (again for g2eff ≪ 1) that fðg2effÞ ∝ q2δ∼
1–2δ ln g2eff þ � � � giving 2δ ≃ f1g2eff < 0, and thus Δ ¼
3þ δ making Tμν (marginally) relevant.5 This means that
the perturbation will die off in the UV and it would lead to
changes of order one in the IR. Recalling that in holo-
graphic cosmology time evolution corresponds to inverse
RG flow, i.e. from IR to UV, this is precisely what we set
out to show.

C. Relic and monopole problem

Let us start with monopoles. To study this problem our
starting point should be a bulk theory with GUT phase
transition and analyse how the effects of monopoles are
encoded in the dual QFT. To avoid the monopole problem
we need to establish that their effects are washed out at late
times, or equivalently in the UV from the perspective of the
dual QFT.
Bulk gauge symmetries correspond to boundary global

symmetries, so to properly analyze this problem we would
need to consider boundary QFTs that have the required
global symmetry and pattern of symmetry breaking. It is an
interesting problem (that we leave for future work) to

classify the QFTs with such properties, start with ’t Hooft-
Polyakov monopoles in the bulk and analyse their effects in
complete generality.
Here we will proceed by solving a related problem: we

will consider instead a Dirac monopole in the bulk. The
bulk theory will thus involve a Uð1Þ gauge field and we
should consider a monopole field Aμ in the bulk, which by
the standard AdS=CFT dictionary, will induce a new
coupling in the boundary theory,

R
d3xAð0Þij̃i, where j̃i

is the magnetic current and Að0Þi is the boundary value of
Aμ. As in our study of the flatness problem, we would like
to study whether such a coupling will have an effect in the
UV, and this can be analyzed by extracting the dimension of
j̃i near the UV when the theory is nearly conformal.
This is still a nontrivial problem as we usually work with

electric variables. Luckily, 3d CFTs with a global Uð1Þ
symmetry allow for an Slð2;ZÞ action, whose S-generator
exchanges the electric and magnetic currents [66]. In the
bulk this operations corresponds to usual electromagnetic
duality (see also [67,68]). The 2-point function of sym-
metry currents in a CFT is given by (ignoring the contact
terms which are relevant in general for the action of
Slð2;ZÞ but not relevant for us)

hjiðqÞjjð−qÞi ≃ q

�
δμν −

qμqν
q2

�
t ð4Þ

where t is a constant (in a CFT) and the S-generator takes
t → 1=t. This is not a symmetry: it maps one CFT to
another. In a theory with a generalized conformal structure
the form of the 2-point function is the same but t is now a
function of g2eff . We will assume that the discussion in [66]
generalizes to such theories, at least when geff ≪ 1 and the
theory is nearly free (and thus nearly conformal).
Our strategy is now to start from a theory with an electric

current, compute its 2-point function to 2-loop order and
then use the S-operation to obtain the corresponding result
for the theory with the magnetic current, from which we
will read off its anomalous dimension. This computation
will be done in a toy model: an SUðNÞ gauge theory for a
gauge field Ai coupled to 6 complex scalars ϕa

α, a ¼ 1, 2, 3
and α ¼ 1, 2, with the index a transforming in the 3 ofSOð3Þ
[all fields are also in the adjoint of SUðNÞ]. The Euclidean
action is (we denote spatial indices by i ¼ 1, 2, 3)

S ¼ 2

g2YM

Z
d3xTr

�
1

4
FijFij þ jDiϕ⃗αj2 þ λjϕ⃗1 × ϕ⃗2j2

�
ð5Þ

and the global symmetry current is jai ¼
P

α¼1;2 ϕ⃗
�
αTaDiϕ⃗αþ

H:c:, where Ta are SOð3Þ generators. This model has the
feature of admitting Abelian vortex solutions of the form
ϕa
1 ¼ ϕa

1ðrÞeiϕ,ϕa
2 ¼ ϕa

2ðrÞeiϕ, whichmay be used to justify
the S-operation below, as it will be explained in detail
elsewhere [69].

3In the deformed theory, the leading correction can be
computed using conformal perturbation theory and it is of
order Oðh2ij).

4Note that as the theory (1) is asymptotically free, the two point
function hTijTkli in the undeformed theory approaches its free-
field value as q → ∞ (and thus g2eff → 0), i.e., all loop corrections
vanish. Here we are interested to extract the precise way these
corrections go to zero, as this controls how the new coupling
behaves in the deformed theory.

5Note that in the standard CMBR inflationary description,
f1 < 0 translates into a red tilt (ns − 1 < 0). Turning things
around flatness implies that the spectrum should be red.
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A 2-loop calculation, whose details will be presented
in [69], leads to the 2-point function in (4) with
t ¼ 1þ 2g2eff=π

2 ln q, which means that the anomalous
dimension of jai is given by 2δðjÞ ¼ 4

π2
g2eff > 0, making

jaμ an irrelevant operator. Applying the S-operation then
implies δðj̃Þ ¼ −δðjÞ ¼ − 2

π2
g2eff < 0. It follows that the

effects of the Dirac monopole in the bulk are washed out in
the UV.
In general such analysis may be used to rule out

holographic models: only models with negative anomalous
dimension for the magnetic current solve the monopole
problem.
Other relics may be studied in a similar way. We note

however that the main effect is via the gravitational
perturbation they generate and as such analysis will be
similar to that of the flatness problem.

IV. ENTROPY PROBLEM AND
THE ARROW OF TIME

The current total entropy of the Universe (about 1088 per
horizon volume today) requires an explanation because it is
appears either too large or too low. Evolving to the past
with standard RD and MD formulas, we find that the
entropy inside the horizon at big bang nucleosynthesis was
SHðtBBNÞ ∼ 1063, but one may have expected a number of
order one per horizon in standard cosmology, at least at the
end of a phase transition. On the hand, as emphasized by
Penrose [70] (see also [71,72]) the entropy of the observ-
able Universe could have been a lot higher: if the entire
mass of the observable universe were collected into a single
black hole the entropy would be about 10121. Usually this
version is associated with the question of the arrow of time
and the very special nature of the initial conditions needed
in the very early Universe, and in general this issue is
considered an open problem.
In holography, time evolution is inverse RG flow, so the

arrow of time is linked to the monotonicity of the RG flow,
which for three dimensional QFTs was established in [73].
The total entropy grows because the degrees of freedom in
the UV are larger than that in the IR. This is a general

property of RG flows and not a choice of a model.
Furthermore, universality of IR dynamics makes the low
entropic initial conditions natural. To explain quantitatively
why the total entropy is as large we observe it today
requires developing a holographic model for reheating and
this is outside the scope of this work.

V. CONCLUSIONS

In this paper we have shown that the (nongeometric)
holographic cosmology model of [33] is capable of solving
the standard problems of hot big bang cosmology: the
smoothness and horizon problems, the flatness problem
and the monopole and relic problems. In holographic
cosmology time evolution translates into inverse RG flow
and these problems are naturally resolved using properties
of the RG flow. In these models the resolution of the initial
singularity is mapped to the IR finiteness of the dual QFT
and the arrow of time is linked with the monotonicity of RG
flow. Together with the previously found fact that the
CMBR fitting is as good as for standard ΛCDM with
inflation our results mean that holographic cosmology is a
viable alternative for a Standard Model of cosmology.
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