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Positivity bounds—the consequences of requiring a unitary, causal, local UV completion—place strong
restrictions on theories of dark energy and/or modified gravity. We derive and investigate such bounds for
Horndeski scalar-tensor theories and for the first time pair these bounds with a cosmological parameter
estimation analysis, using CMB, redshift space distortion, matter power spectrum, and baryon acoustic
oscillation measurements from the Planck, SDSS/BOSS, and 6dF surveys. Using positivity bounds as
theoretical priors, we show that their inclusion in the parameter estimation significantly improves the
constraints on dark energy/modified gravity parameters. Considering as an example a specific class of
models, which are particularly well-suited to illustrate the constraining power of positivity bounds, we find
that these bounds eliminate over 60% of the previously allowed parameter space. We also discuss how
combining positivity requirements with additional theoretical priors has the potential to further tighten
these constraints: for instance, also requiring a subluminal speed of gravitational waves eliminates all but
≲1% of the previously allowed parameter space.

DOI: 10.1103/PhysRevD.101.021502

I. INTRODUCTION

Recently, significant progress has been made in develop-
ing parametrized approaches that allow model-independent
precision testing of our current leading theory of gravity,
general relativity (GR), as well as dark energy/modified
gravity-related deviations away from it, in a (linear) cosmo-
logical setting [1–10]. Simultaneously, there have been
advances in understanding what theoretical consistency
criteria are required of low-energy effective field theories
(EFTs) to allow for a well-defined high-energy (UV)
completion—and what these so-called “positivity bounds”
imply for (low-energy) theories of dark energy andmodified
gravity [11–27]. While cosmological parameter constraints
on deviations from GR have been computed using general
parametrized approaches and a variety of (current and
forecast) experimental data [28–43], positivity bounds have
so far not been pairedwith any such observational constraints
on gravity. Herewewill do so for the first time and show that
a holistic joint analysis, which takes into account both
theoretical priors required by positivity and observational
constraints from recent data, can significantly improve
cosmological parameter constraints on deviations from GR.
Scalar-tensor (ST) theories—minimal deviations from

GR in the sense that they only introduce a single additional
degree of freedom—are at the heart of the parametrized
approaches for dark energy and modified gravity that

have been developed so far. Accordingly, we will consider
Horndeski gravity [44,45], the most general Lorentz-
invariant ST action that gives rise to second order equations
of motion for the metric, gμν, and for the additional scalar
field, ϕ. Specifically, this amounts to any linear super-
position of the following four terms:

L2 ¼ Λ4
2G2; L3 ¼ Λ4

2G3½Φ�;
L4 ¼ M2

PlG4Rþ Λ4
2G4;Xð½Φ�2 − ½Φ2�Þ;

L5 ¼ M2
PlG5GμνΦμν −

1

6
Λ4
2G5;Xð½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�Þ;

ð1Þ

where second derivatives of ϕ enter via the dimensionless
matrixΦμ

ν ≡∇μ∇νϕ=Λ3
3, square brackets denote the trace,

e.g., ½Φ2�≡∇μ∇νϕ∇ν∇μϕ=Λ6
3, and the Gi are free func-

tions of ϕ and ∇μϕ∇μϕ. Specifically, we have chosen to
write theGi as functions of the dimensionless combinations
ϕ=Λ1 and X ≡ − 1

2
∇μϕ∇μϕ=Λ4

2, where the subscripts “;ϕ”
and “; X” denote derivatives with respect to these (dimen-
sionless) arguments and the constant mass scales Λi are
taken1 to be Λ1 ¼ MPl, Λ2

2 ¼ MPlH0, and Λ3
3 ¼ MPlH2

0.
Here MPl is the (reduced) Planck mass and H0 is the

1See Refs. [40,46] for further discussion of this choice.
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Hubble parameter today. From an EFT point of view, these
represent the scales at which different sectors of the theory
become strongly coupled, defining a regime of validity
beyond which trustworthy predictions can no longer be
made.2 The full Horndeski theory can then be written as

SH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li½ϕ; gμν�
�
: ð2Þ

In order to best illustrate the impact positivity bounds
can have on cosmological parameter estimation, we will
focus on a concrete example in the main text (and discuss
the general case in the Supplemental Material [58]).
Specifically, we consider the shift-symmetric part of the
L2 and L4 pieces in (1), i.e.,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fΛ4
2G2ðXÞ þM2

PlG4ðXÞR

þ Λ4
2G4;XðXÞð½Φ�2 − ½Φ2�Þg ð3Þ

and also allow for a small mass term, − 1
2
m2ϕ2. We will see

that this subclass of Horndeski theories is an excellent
example of how current positivity bounds and observatio-
nal constraints complement one another, but ultimately
stress that this is a first step toward a more complete,
integrated analysis: as more observational data become
available and additional positivity bounds are computed in
the future, we fully expect a much wider set of theories to
be constrained increasingly tightly.

II. POSITIVITY BOUNDS

Since many of the terms in (1) and (3) are nonrenorma-
lizable, these theories must break down at high energies
(typically aroundΛ3). They are intended as an effective low
energy description of some (potentially very complicated)
underlying microphysics. Rather than trying to guess at
this fundamental underlying theory, we will assume only
that it is consistent with a “standard”Wilsonian field theory
description—one in which Lorentz invariance, unitarity
(well-defined probabilities), analyticity (causality), and
polynomial boundedness (locality) are respected. From
these basic principles, one can construct a variety of
constraints which the low energy parameters (here encoded
in the Gi) must satisfy, known as “positivity bounds”
[11,14,18,23]. The simplest of these concerns the tree-level
scattering amplitude, A, between two massive particles on

a flat (Minkowski) background (see the Supplemental
Material [58] for subtleties related to massless particles
and nontrivial backgrounds). When expanded in powers of
the center of mass energy, s, and the momentum transfer, t,

Aðs; tÞ ¼ css
s2

Λ4
2

þ csst
s2t
Λ6
3

þ…; ð4Þ

the expansion coefficients must obey the bounds [11,14,21]

css ≥ 0; csst ≥ −css3Λ4
3=2Λ4

2 ð5Þ
up to additional contributions suppressed by Oðm2=Λ2

3Þ.
Notionally, this corresponds to diagnosing whether it is
possible (even in principle) for some new physics to enter
at the scales Λ3 and Λ2 to restore unitarity in the full UV
amplitude. If these bounds were violated, it would indicate
that this new high energy physics is quite unlike any
quantum field theory we know today.3

Expanding (3) about a flat background (gμν ¼ ημν þ
hμν=MPl) and canonically normalizing ϕ and hμν such that
Ḡ2;X ¼ 1 and Ḡ4 ¼ 2, the tree-level scattering amplitude
for ϕϕ → ϕϕ takes the form (4) with

css ¼
1

2
Ḡ2;XX þ Ḡ4;X; csst ¼ −

3

2
ðḠ4;XX þ Ḡ2

4;XÞ; ð6Þ

where an overbar indicates that the function is evaluated on
the flat background (hϕi ¼ 0). From (5), the existence of a
UV completion therefore requires

Ḡ2;XX ≥ −2Ḡ4;X; Ḡ4;XX þ Ḡ2
4;X ≤ 0; ð7Þ

where we have assumed Λ2 ≫ Λ3. The other elastic ampli-
tudes,ϕh → ϕh andhh → hh, vanish at leadingorder, and so
scattering with external gravitons does not impose any
additional positivity constraints. We show the analogous
bounds for a general Horndeski theory (2) in the
Supplemental Material [58]. The above amplitudes and
corresponding positivity bounds have been derived on a flat
background. However, since (3) is fully covariant, we may
also consider the evolution of fluctuations about a cosmo-
logical background (i.e., a ΛCDM background, where Λ
refers to the cosmological constant and CDM stands for cold
dark matter) and can assume that the positivity bounds (7)
continue to hold for theGi evaluated on the cosmological hϕi.

III. LINEAR PERTURBATIONS IN COSMOLOGY

Cosmological deviations from GR are especially tightly
constrained at the level of linear perturbations. We will
therefore follow the approach of Refs. [29,35], assuming a
ΛCDM-like background (motivated by the observed prox-
imity to such a solution) and constraining perturbations
around it. When perturbing (2) (c.f. [66]), one finds that

2Note that the near simultaneous detections of GW170817 and
GRB 170817A [47–51] have also been used to significantly
reduce the functional freedom in Horndeski gravity [52–55], in
particular placing tight restrictions on G4ðXÞ. However, the
frequencies of the merger are close to Λ3, so additional assump-
tions about the UV physics are necessary to apply these bounds
[56] (also see Refs. [53,57] for related discussions). Our goal here
is to remain as agnostic as possible about the UV physics, so we
will not fix the speed of cosmological gravitational waves here.

3For alternatives to the kind of “standard” Wilsonian UV
completion considered here, see Refs. [59–65].
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three independent combinations of the Gi control the linear
phenomenology [4]: αM, the running of the effective Planck
mass Meff

Pl ≡MMPl; αB, the “braiding” that quantifies
kinetic mixing between the metric and scalar perturbations;
and αT , the tensor speed excess, related to the sound speed
of tensor perturbations via c2GW ¼ 1þ αT . A fourth inde-
pendent combination, the kineticity αK, is effectively
unconstrained at the level of linear perturbations and does
not affect constraints on other parameters [29,35] (we have
explicitly verified this in the present context), so we will not
discuss it here. For the general Horndeski theory (2), the αi
are given in the Supplemental Material [58]. For our
specific example (3), one finds

M2αM ¼ −2
_X
H
ðG4;X þ 2XG4;XXÞ;

M2αB ¼ 8XðG4;X þ 2XG4;XXÞ;
M2αT ¼ 4XG4;X; ð8Þ

where M2 ¼ 2ðG4 − 2XG4;XÞ. It will be instructive to
rearrange the expressions for αM and αB and express them as

αB ¼ 2αT þ 16
X2

M2
G4;XX; αM ¼ −

1

4

_X
HX

αB: ð9Þ

Having expressed the αi in terms of the Gi and their
derivatives, we are now in a position to translate the positivity
bounds into priors on the αi. The css bound on Ḡ2;XX is not
particularly constraining at this level since none of the αi in
(8) depends on G2 (only αK depends on this). However, the
csst bound is highly constraining, since in an expanding
universe it demands

pos: prior∶ G2
4;X ≤ −G4;XX ⇒ αB ≤ 2αT − α2T: ð10Þ

Given only the very basic assumption that the Horndeski
EFT (3) can be completed in a “standard”Wilsonian way at
high energies, we have obtained a constraint (10) on the αi.
Naturally, given further theoretical assumptions about the
EFT and its underlying dynamics, there are further con-
straints that can be placed on the αi. For instance, if
gravitational waves were assumed to travel (sub-)luminally
at low energies, then this would translate into the condition,

lum: prior∶ αT ≤ 0: ð11Þ
As another example, if the background evolution is driven
by a hϕi with certain properties (monotonicity, for in-
stance), this also translates into possible conditions on the
αi—we will return to this point later. Combining some or
all of these different priors4 allows us to selectively carve

out regions in “theory space” and fit data to only the
corresponding low-energy parameter space. We stress that
the positivity bounds are the most fundamental of such
theoretical requirements and hence captured the widest
possible range of consistent UV models.

IV. COSMOLOGICAL PARAMETER
CONSTRAINTS

We are now in a position to compute constraints on the αi
(and hence on the deviations from GR they parametrize)
using cosmological data. To do so, we will perform a
Markov chain Monte Carlo (MCMC) analysis, using
Planck 2015 CMB temperature, CMB lensing and low-l
polarization data [67–69], baryon acoustic oscillation
(BAO) measurements from SDSS/BOSS [70,71], con-
straints from the SDSS DR4 LRG matter power spectrum
shape [72], and redshift space distortion (RSD) constraints
from BOSS and 6dF [73,74]. Computing cosmological
constraints requires choosing a parametrization for the αi.
Numerous such parametrizations exist—for a discussion of
their relative merits, see Refs. [4,28,29,35,75–79]. Here we
will pick arguably the most frequently used [4]

αi ¼ ciΩDE: ð12Þ

This parametrizes each αi in terms of just one constant
parameter, ci, and is known to very accurately capture the
evolution of a wide subclass of Horndeski theories [80,81]
(for further details and a comparison of results for different
parametrizations, see Ref. [28] and references therein).
When imposing priors, we require them to be satisfied at all
times, i.e., dynamically throughout the evolution until
today as well as at late times, when ΩDE → 1 on our
ΛCDM-like background. In the context of (12), this late
time limit yields the strongest bounds on the ci, given the
priors on the αi.

5

We now compute constraints on the modified gravity/
dark energy parameters cB, cM, and cT , marginalizing over
the standard ΛCDM parameters ΩCDM, Ωb, θs, As, ns,
and τreio—for technical details regarding the MCMC
implementation, see [28]. The results are shown in
Fig. 1 and Table I. For the Horndeski action (3), applying
the positivity prior (10) reduces the overall volume in ci
parameter space by a factor ≳3, i.e., eliminates ≳60% of
the previously allowed parameter space.6 To show how this
interfaces with other theoretical restrictions one may
impose, we also include the effects of the (sub-)luminality

4For example, demanding both the subluminality condition
(11) and the positivity bounds (7) requires a certain degree of self-
interaction Ḡ2;XX ≥ 0, which in turn has implications for how the
background hϕi evolves.

5We have checked that our data constraints are only marginally
different when compared to only imposing priors until today, i.e.,
in the interval ΩDE ∈ ½0; 0.7�.

6By the “volume” in parameter space, we mean the very simple
measure ΔcBΔcMΔcT , where Δci denotes the 95% confidence
interval for ci (note that this measure is not unique and many
alternative measures exist). For example, with no priors, we have
ΔcB ¼ 0.90þ 0.71 ¼ 1.61.
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prior (11)—this eliminates all but ≲1% of the parameter
space, showing how drastically such bounds can improve
constraints on deviations from GR.7 A key reason for this is
that the positivity prior, (sub-)luminality prior and data
constraints act in a highly complementary fashion: without
any priors, the data prefer negative cT and positive cB, a
combination that is ruled out by the positivity prior. That
prior þ data instead prefer a positive, (super-)luminal cT ,
which in turn is in tension with the subluminality require-
ment (which by itself is only mildly constraining—see
Table I). So jointly applying both priors drastically reduces
the available parameter space.
Physically, the positivity prior corresponds to requiring a

“standard” UV completion beyond Λ3 (in the sense dis-
cussed above) for the scalar sector of the theory. Assuming
such a UV completion, positivity bounds do not only
significantly tighten constraints, but importantly also shift
them by ≳1σ, stressing the importance of incorporating
such bounds into the data analysis. If the underlying

physics were to also mandate a (sub-)luminality prior, this
statement is further strengthened and the majority of the 2σ
confidence region computed without such joint priors can
then lie in a fundamentally unphysical region of parameter
space, as the cT − cB plane in Fig. 1 shows.
The data constraints themselves are primarily driven

by Planck CMB data, RSD measurements, and gradient
instabilities. Here Planck data constrain the ci primarily due
to the way they modify the (late) integrated Sachs-Wolfe
effect (ISW) effect, as accurately probed by large scales in the
CMB TT power spectrum. Second, RSDs provide a com-
plementary probe of galaxy clustering. This rules out large
positive cM, since this would lead to toomuch clustering (the
rate of structure growth becomes too large in that case).
Third, gradient instabilities are associated with an imaginary
“speed of sound,” leading to a dangerous growth of pertur-
bations. For scalar perturbations, such instabilities occur
when

ð2 − αBÞ
�
α̂ −

_H
H2

�
−
3ðρtot þ ptotÞ

H2M2
þ _αB

H
< 0; ð13Þ

where ρtot andptot are the total energy density and pressure in
the Universe and we have defined α̂≡ 1

2
αBð1þ αTÞ þ

αM − αT . The onset of these instabilities rules out large
negative αM and αB. For tensor perturbations, the analogous
constraint simply imposes αT ≥ −1. Note that we do not rule
out solutions with gradient instabilities a priori, but find that
the data rule out solutions with such significant instabilities
by themselves. Also note that, when using both priors,
including RSD measurements, no longer has a significant
effect, since the relevant parts of parameter space are ruled
out by the priors already.
Finally, from (9) and Fig. 1, one can observe that

additional priors on the background evolution for ϕ (which
we have remained agnostic about here) have the potential
to rule out the simple EFT (3) altogether. For instance,
assuming both priors (10) and (11), αM can only be positive
if _X > 0. Indeed, this illustrates a more general point: if one
has information about the full covariant theory, additional

FIG. 1. Cosmological parameter constraints for the quartic
Horndeski theory (3), using αi ¼ ciΩDE (12) and different
combinations of positivity (10) and (sub-)luminality priors
(11). The positivity priors are derived from ϕϕ → ϕϕ scattering.
Contours mark 68% and 95% confidence intervals, computed
using CMB, RSD, BAO, and matter power spectrum measure-
ments. Dotted lines mark ci ¼ 0 (the GR value), cT ≥ −1 (real
GW speed), and cB < 2cT − c2T (positivity). The positivity prior
eliminates over 60% of the 2σ parameter space. If also combined
with a (sub-)luminality prior, only ≲1% of the 2σ parameter
space survives.

TABLE I. Posteriors on the dark energy/modified gravity ci
parameters (12) for the quartic Horndeski theory (3) as displayed
in Fig. 1, i.e., following from different combinations of positivity
(10) and (sub-)luminality priors (11). Uncertainties shown denote
the 95% confidence level. The distribution for cT is typically
strongly skewed. We therefore do not give a mean value in such
cases and denote limit values due to prior boundaries (when there
is an excellent fit to the data on that boundary) with an asterisk.

cB cM cT

No priors 0.71þ0.90
−0.71 −0.02þ1.32

−0.89 −1� ≤ cT < 0.26

Luminality prior 0.73þ0.91
−0.72 −0.09þ1.29

−0.84 −1� ≤ cT ≤ 0�

Positivity prior 0.28þ0.47
−0.48 0.65þ0.91

−0.57 0.46þ0.61
−0.40

Both priors −0.16þ0.13
−0.22 0.38þ0.59

−0.31 −0.11 < cT ≤ 0�

7In the joint case, a corollary of these improved constraints is
that the allowed parameter values are pulled significantly closer
to their GR values.
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information e.g., from the background evolution of the
field can be used to place further constraints on the theory.
For such cases, while the current state of the art of Einstein-
Boltzmann solvers does not allow this yet [30,34], imple-
menting the full background evolution of the fields into the
present analysis would therefore be a highly promising
avenue for the future.

V. CONCLUSIONS

We have developed a holistic approach to deriving
cosmological parameter constraints on deviations from
GR while simultaneously taking into account both “pos-
itivity” priors from fundamental physics and constraints
from current observational data. In doing so, we have
computed and discussed new positivity bounds for the
general class of Horndeski theories. Using a particularly
simple subclass of these theories as an example, we have
explicitly shown that merging these bounds with current
data can significantly improve constraints on deviations
from GR, eliminating ≳60% of the previously allowed
parameter space. We have also shown that combining
fundamental positivity requirements with further theoreti-
cal priors can drastically improve constraints, for instance
an additional subluminality prior for the speed of gravita-
tional waves eliminates all but ≲1% of the previously
allowed parameter space. To place this improvement in a
broader context, constraints from future CMB S-4, large
synoptic survey telescope (LSST), and square kilometre
array (SKA) data are forecast [35] to shrink the currently
allowed parameter space by a factor of ∼20 (to be
compared8 with the factor ∼3 improvement from using
positivity priors and the factor ∼110 improvement from
combining positivity and subluminality priors). Another
example of future data that promises to strongly constrain

such cosmological theories is future gravitational wave
speed measurements at frequencies firmly within the
regime of validity for such theories [56]—measurements
that e.g., have the potential to rule out most of the simple
subclass of theories we have focused on here. More
generally, should future data collectively pull the contours
into the “positivity” region, this will experimentally con-
firm the QFT nature of the underlying UV physics, and the
priors presented here will be allowed for significantly
improved parameter estimation in advance of that future
data. Conversely, should there be increased tension
between future observations and the positivity bounds,
this is evidence that our Universe does not resemble a
standard QFTwith a Lorentz-invariant vacuum, providing a
qualitatively new probe of the high energy regime. Finally,
we stress that general Horndeski models are currently not
constrained as strongly as the example subclass we have
focused on (see the Supplemental Material [58] for details),
yet the example given clearly illustrates the strong potential
constraining power of positivity bounds. Indeed, with
several additional positivity bounds expected to exist (from
going beyond tree-level 2 → 2 scattering on flat space), this
underlines how essential and promising a joint approach
merging fundamental physical priors with data constraints
will be in going forward. In order to maximally constrain
deviations from GR using future data, it will be key to
ensure one is working with a physical parameter space
(instead of overfitting the data with unphysical parameter
choices) along the lines outlined here.
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