
 

Deconfinement and chiral phase transitions in quark matter with a strong
electric field

William R. Tavares ,1,* Ricardo L. S. Farias ,2,† and Sidney S. Avancini 1,‡

1Departamento de Física, Universidade Federal de Santa Catarina,
88040-900 Florianópolis, Santa Catarina, Brazil

2Departamento de Física, Universidade Federal de Santa Maria,
97105-900 Santa Maria, Rio Grande do Sul, Brazil

(Received 4 December 2019; published 29 January 2020)

The deconfinement and chiral phase transitions are studied in the context of the electrized quark matter at
finite temperature in the two-flavor Polyakov–Nambu–Jona-Lasinio model. Using the mean field
approximation and an electric field independent regularization we show that the effect of temperature
and/or electric fields is to partially restore the chiral symmetry. The deconfinement phase transition is
slightly affected by the magnitude of the electric field. To this end we show how the effective quark masses
and the expectation value of the Polyakov loop are affected by the electric fields at finite temperatures. As a
very interesting result, the pseudocritical temperatures for chiral symmetry restoration and deconfinement
decrease as we increase the magnitude of the electric fields; however, both start to increase after some
critical value of the electric field.
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I. INTRODUCTION

Recent numerical simulations provide possibilities for
strong electromagnetic fields to be present in noncentral
heavy ion collisions (HIC) [1–4]. These indications suggest
even more properties to be explored in the strongly
interacting quark matter, besides the usual strong magnetic
fields [5], that are supposed to be created in noncentral HIC
or in magnetars [6,7]. The event-by-event fluctuations of
the proton positions in the colliding nuclei in Auþ Au
heavy-ion collisions at

ffiffiffi
s

p ¼ 200 GeV in RHIC@BNL
and Pbþ Pb at

ffiffiffi
s

p ¼ 2.76 TeV in ALICE@LHC indicate
the creation of strong electric fields that can be of the same
order of magnitude of the already predicted magnetic fields
[1–3,8]. In asymmetric Cuþ Au collisions [4,9,10] it is
expected that a strong electric field is generated in the
overlapping region. This happens because there is a differ-
ent number of electric charges in each nuclei and it is
argued that this is a fundamental property due to the charge
dipole formed in the early stage of the collision. Also,
different projectile-target combinations are studied from

symmetric to asymmetric collisions systems, showing that
the electric field is more significant in the former [11]. The
time evolution for electric and magnetic fields in HIC can
be estimated and the prediction depends on the conduc-
tivity of the medium [12]. In a complementary way, the
study of strong electric fields can be very useful when
searching for the chiral magnetic effect (CME) [5], given
the speculated possibility of reversing the sign of some
experimental observables related to the CME [4,13] if the
lifetime of such fields is long enough. Such scenarios could
give an opportunity to explore anomalous transport proper-
ties such as chiral electric separation [14–17], which is a
generation of an axial current in a system with both vector
and axial densities [18].
It is natural in this scenario to ask how some properties of

quantum chromodynamics(QCD) under strong conditions
(i.e., high temperatures and densities) can be affected by
such fields. In the low energy limit we should use effective
theories or lattice QCD (LQCD) techniques, once we are
dealing with the nonperturbative behavior of QCD. One of
the main aspects that should be explored is the chiral
symmetry restoration of QCD, where several studies have
explored a series of interesting phenomena, like the magnetic
catalysis [19–21], the chiral magnetic effect [5], and the
inverse magnetic catalysis [22–27] predicted by lattice QCD
results [28,29], all of them studied in the context of a pure
magnetic field. A natural extension of these works can be
done by exploring the role of magnetic fields in the
deconfinement transition as well [30–35]. The effective
theories or LQCD investigations in general are dealing with
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the chiral condensate, which is an approximate order
parameter for the chiral phase transition [30]. On the other
hand, the deconfinement in a gauge theory is associated with
the spontaneous symmetry breaking of the center symmetry,
in which the approximate order parameter is the Polyakov
loop [36,37]. The predictions of some effective models for
the physics associated with the Polyakov loop have been
widely studied in the literature [38–42].
The main goal of our work is to include for the first time

the effects of a pure electric field on the Polyakov extended
SU(2) Nambu–Jona-Lasinio model (PNJL) [43], to study
how the deconfinement phase transition temperature Tl

pc is
affected by these fields, and also to explore its connection
with the chiral pseudocritical temperature Tχ

pc. To this end,
we will implement the Schwinger proper-time quark
propagators in a constant electric field, which have been
explored in previous works [44–47] related to the study of
the gap equation and thermodynamical properties of the
model. We also implement in the Schwinger proper-time
formalism the Polyakov loop, which should be useful for
future evaluations even at eE ¼ 0. As the Nambu–Jona-
Lasinio model SU(2) model (NJL) in 3þ 1 D is non-
renormalizable, the regularization procedure is the same as
that presented in [44], where the pure-electric field con-
tribution was analytically solved and the finite thermoelec-
tric part was numerically evaluated. Finally, the Schwinger
pair production [48,49] will be presented. Previous studies
have shown [44,45] that in the present approximation this
quantity is mainly determined by the effective quark
masses, which in turn incorporates the effects of temper-
ature and electric field. Thus, there will be quantitative
differences between the results for the pair production rate
when calculated in the PNJL or NJL model.
The work is organized as follows. In Sec. II we introduce

the standard formalism for the two-flavor NJL and PNJL
models at finite temperature, including the effects due to the
strong electric field. In Sec. III we present the regularization
scheme adopted in this work. In Sec. IV we present our
numerical results. Finally, in Sec. V we discuss our results
and conclusions. We leave for the Appendix the explicit
calculations of the trace of the Polyakov loop.

II. GENERAL FORMALISM

In the presence of an electromagnetic field the two-flavor
NJL model Lagrangian can be written as

L ¼ ψ̄ði=D − m̃Þψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2� −
1

4
FμνFμν;

ð1Þ

where Aμ, Fμν ¼ ∂μAν − ∂νAμ are the electromagnetic
gauge potential and tensor fields, respectively; G is the
coupling constant; and Dμ ¼ ði∂μ −QAμÞ is the covariant
derivative.

Also, τ⃗ are the isospin Pauli matrices; Q is the diagonal
quark charge matrix, Q ¼ diagðqu ¼ 2e=3; qd ¼ −e=3Þ;
ψ ¼ ðψu;ψdÞT is the two-flavor quark fermion field; and
m̃ ¼ diagðmu;mdÞ represents the current quark mass
matrix. Here, we adopt the isospin approximation, i.e.,
mu ¼ md ¼ m. We choose Aμ ¼ −δμ0x3E in order to
obtain a constant electric field in the z-direction.
In the mean field approximation the Lagrangian density

reads

L ¼ ψ̄ði=D −MÞψ þGhψ̄ψi2 − 1

4
FμνFμν; ð2Þ

where the constituent quark mass is defined by the
following expression:

M ¼ m − 2G
X
f¼u;d

ðϕE
f þ ϕE;T

f Þ; ð3Þ

where we have both a pure electric field, ϕE
f , and a

thermoelectric field, ϕE;T
f , contribution. We will use the

following definition of the quark condensate:

ϕf ¼ hψ̄fψfi ¼ −
Z

d4p
ð2πÞ4 Tr½iSfðpÞ�; ð4Þ

where f ¼ u, d stands for the quark flavors. Following the
procedure described in [44], the pure electric condensate
contribution ϕE

f can be calculated using the full Schwinger
proper-time quark propagator [48] in a constant electric
field, resulting in the expression

ϕE
f ¼ −

MNc

4π2
Ef

Z
∞

0

ds
e−sM

2
f

s
cotðEfsÞ; ð5Þ

where Ef ¼ jqfjE and Nc ¼ 3 is the number of colors.
As already derived in [44,45], the thermoelectric con-

tribution can be written as

ϕE;T
f ¼ −

MNc

2π2
X∞
n¼1

ð−1ÞnEf

Z
∞

0

ds
e−sM

2
f

s
cotðEfsÞ

× e
−

Efn
2

4j tanðEfsÞjT2 : ð6Þ
The thermodynamical potential has been derived in

[44,45] simply by integrating Eq. (3) with respect to the
effective quark mass M, yielding

Ω ¼ ðM −mÞ2
4G

−
X
f¼u;d

ðθEf þ θE;Tf Þ; ð7Þ

where we have defined θEf and θE;Tf as

θEf ¼ −
Nc

8π2

Z
∞

0

ds
e−sM

2

s2
Ef cotðEfsÞ; ð8Þ
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θE;Tf ¼ −
Nc

4π2
X∞
n¼1

ð−1Þn
Z

∞

0

ds
e−sM

2

s2
Ef cotðEfsÞ

× e
−

Efn
2

4j tanðEfsÞjT2 : ð9Þ
The Schwinger pair production rate is given by Γ ¼

−2ℑðΩÞ [45,48], where ℑðΩÞ corresponds to the imaginary
part of the effective potential. Explicitly, one obtains for Γ

ΓðM; E; TÞ ¼ Nc

4π

X
f

E2
f

X∞
k¼1

e
−M2πk

Ef

ðkπÞ2 ; ð10Þ

where we need to perform the summation over the flavor
indices f ¼ u, d, and as we will see later, the entire
Schwinger pair production dependence on the external
conditions is contained only in the effective mass
M≡MðE; TÞ.

A. The electrized SU(2) PNJL

The extended version of the two-flavor NJL model
Lagrangian in the presence of an electromagnetic field
coupled with the Polyakov loop is given by

L ¼ ψ̄ði=D − m̃Þψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�

−
1

4
FμνFμν − Uðl; l̄; TÞ; ð11Þ

now the covariant derivative is given by Dμ ¼ ði∂μ−
QAμ − iAμÞ, where Aμ ¼ δμ0A

0 is the Polyakov gauge,
the strong coupling constant g is absorbed in the definition
AμðxÞ ¼ g λa

2
Aμ

aðxÞ, λa are the Gell-Mann matrices, and
Aμ

aðxÞ is the SUð3Þ gauge field.
For the pure gauge sector, let us define the Polyakov

line as

LðxÞ ¼ P exp

�
i
Z

β

0

dτA4ðτ; x⃗Þ
�
; ð12Þ

where P is a path ordering and β ¼ 1
T. Also, A4 ¼ iA0 is

the temporal component of the Euclidean gauge
field ðA4; A⃗Þ.
The effective potential Uðl; l̄; TÞ for the Polyakov fields is

parametrized in order to reproduce lattice results in the mean
field approximation [38,39]. We adopt the Ansatz [39],

Uðl; l̄; TÞ
T4

¼ −
b2ðTÞll̄

2
−
b3ðl3 þ l̄3Þ

6
þ b4ðll̄Þ2

4
; ð13Þ

where b2ðTÞ is given by

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð14Þ

The parameters of the potential Uðl; l̄; TÞ will be given in
Sec. IV. We should also mention that the thermal expect-
ation value of the Polyakov loop is given by [40]

l≡ 1

Nc
hTrcLðxÞi; l̄≡ 1

Nc
hTrcL†ðxÞi: ð15Þ

As we will see, our most interesting results occur for
temperatures around the pseudocritical temperatures for
deconfinement Tl

pc and for chiral symmetry restoration
Tχ
pc. We verify that the different Ansätze for Uðl; l̄; TÞ [50]

almost agree in this region. Therefore, our results remain
essentially the same if we change the form of the effective
potential for the Polyakov loop Uðl; l̄; TÞ.
Once we are working with the background field A4, we

can obtain the condensate as a straightforward generalization
of the expression given in Eq. (4) for zero temperature and
density using the following symbolic replacements [41]:

i
Z

d4p
ð2πÞ4 → −T

1

Nc
Trc

X∞
n¼−∞

Z
d3p
ð2πÞ3 ; ð16Þ

ðp0; p⃗Þ → ðiωn þ μ − iA4; p⃗Þ; ð17Þ
where wn ¼ ð2nþ 1ÞπT is the Matsubara frequency. In this
work we consider only the zero baryon chemical potential
case, and hence l ¼ l̄. Once the traced Polyakov loop is
given by l ¼ 1

Nc
Tr expði A4

T Þ, we can write the background

field in the Polyakov gauge [42,51] as A4 ¼ gAð3Þ
4

λ3
2
þ

gAð8Þ
4

λ8
2
, and it is straightforward to see that Að8Þ

4 ¼ 0 at
μ ¼ 0. Therefore, we implement the Polyakov loop in the
condensate ϕE;T;l at μ ¼ 0 by using the prescriptions given
by Eqs. (16) and (17). After calculating the trace in the color
space, one obtains

ϕE;T;l
f ¼−

M
2π2

X∞
n¼1

ð−1ÞnEf

Z
∞

0

ds
e−sM

2

s
cotðEfsÞ

×e
−

Efn
2

4j tanðEfsÞjT2
�
1þ2cos

�
ncos−1

�
3l−1

2

���
: ð18Þ

By making use of this expression in Eq. (3) the SU(2)
PNJL gap equation reads

M −m
2G

¼ −
X
f¼u;d

ðϕE
f þ ϕE;T;l

f Þ: ð19Þ

Finally, the thermodynamical or effective potential is
obtained following a standard procedure [41] using the
prescriptions (16) and (17), yielding

Ω ¼ Uðl; TÞ þ ðM −mÞ2
4G

−
X
f¼u;d

ðθEf þ θE;T;lf Þ: ð20Þ

It is straightforward to show that

θEf ¼ −
Nc

8π2

Z
∞

0

ds
e−sM

2

s2
Ef cotðEfsÞ; ð21Þ
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θE;T;lf ¼ −
1

4π2
X∞
n¼1

ð−1Þn
Z

∞

0

ds
e−sM

2

s2
Ef cotðEfsÞ

× e
−

Efn
2

4j tanðEfsÞjT2
�
1þ 2 cos

�
ncos−1

�
3l − 1

2

���
:

ð22Þ
The effective quark masses and the expectation value of

the Polyakov loop are obtained by minimizing the ther-
modynamical potential, i.e., calculating ∂Ω

∂M ¼ 0 and
∂Ω
∂l ¼ 0. The derivative ∂Ω

∂M ¼ 0 was already obtained in
Eq. (19) and ∂Ω

∂l ¼ 0 is given by

0 ¼ T4

2
½−b2ðTÞl − b3l2 þ b4l3�

þ 1

4π2
X
f¼u;d

Z
∞

0

ds
s2

e−sM
2

Ef cotðEfsÞ
X∞
n¼0

ð−1Þn

× e
−

Efn
2

4j tanðEfsÞjT2
� ffiffiffi

3
p

n sin½ncos−1ð3l−1
2
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3l2 þ 2lþ 1
p

�
: ð23Þ

III. REGULARIZATION

In this work we use the vacuum-subtraction scheme
[44–47]. We define for the vacuum-subtracted condensate
the following quantity:

ϕ̄E
f ¼ −

MNc

4π2

Z
∞

0

ds
e−sM

2

s2
½Efs cotðEfsÞ − 1�: ð24Þ

The gap equation, Eq. (3) in the SU(2) NJL model and
Eq. (19) in the SU(2) PNJL, should be calculated using the
following regularized condensate ϕE

f :

ϕE
f ¼ ϕ̄E

f þ ϕvac
f ; ð25Þ

where we have adopted the 3D cutoff scheme [52,53]
to regularize the infinite field independent vacuum
contribution

ϕvac
f ¼ −

MNc

2π2

�
ΛEΛ −M2 ln

�
EΛ þ Λ

M

��
; ð26Þ

where EΛ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

f

q
. In the same way, for the effective

potential in the SU(2) NJL model, Eq. (7), and Eq. (20) in
the SU(2) PNJL model, we should use the regularized θEf
given by

θEf ¼ θ̄Ef þ θvacf ; ð27Þ
where the finite field dependent term is

θ̄Ef ¼ −
Nc

8π2

Z
∞

0

ds
e−sM

2

s3

�
Efs cotðEfsÞ − 1þ ðEfsÞ2

3

�
;

ð28Þ

and the infinite vacuum contribution θvacf is given by

θvacf ¼ Nc

8π2

Z
∞

0

ds
e−sM

2

s3
: ð29Þ

The regularized θvacf is given in the 3D cutoff scheme by

θvacf ¼ −
Nc

8π2

�
M4 ln

�
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

M

�

− Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
ðM2 þ 2Λ2Þ

�
: ð30Þ

It is important to note that the poles associated with the
imaginary part of the effective potential can be associated to
the zeros of the sinðEfsÞ which appear in the denominator
of both our gap equation and the effective potential when
Efs ¼ nπ for n ¼ 1; 2; 3;… . We interpret these integrals as
the Cauchy principal value [44,46] and that the true ground
state of the theory is given by the real part of the
thermodynamical potential.
Using the techniques adopted in [44], we can use the

principal value (or the real part) of θ̄Ef , given by

ℜðθ̄EfÞ ¼ −
Nc

2π2
ðEfÞ2

�
ζ0ð−1Þ þ π

4
yf

þ y2f
2

�
γE −

3

2
þ ln yf

�
−

1

12
ð1þ ln yfÞ

þ
X∞
k¼1

k

�
yf
k
tan−1

�
yf
k

�
−
1

2
ln

�
1þ

�
yf
k

�
2
�

−
1

2

�
yf
k

�
2
��

; ð31Þ

where yf ¼ M2=ð2EfÞ. In the same manner, we obtain for
the principal value of the vacuum-subtracted condensate ϕ̄E

f

ℜðϕ̄E
fÞ ¼ −

MNc

4π2

Z
∞

0

ds
e−sM

2

s2
½Efs cot ðEfsÞ − 1�

¼ MNc

2π2
Ef

�
π

4
þ yfðγE − 1þ ln yfÞ

þ
X∞
k¼1

�
tan−1

yf
k
−
yf
k

��
: ð32Þ

As discussed in [44], the quantities ϕE;T
f and θE;Tf depend

on the temperature and following the procedure adopted in
Ref. [54] we set the lower limits of the integration to zero,
since theses integrals are ultraviolet finite.

IV. NUMERICAL RESULTS

In this section we show our numerical results. The
parameter set for the SU(2) NJL model is [53]
Λ ¼ 587.9 MeV, GΛ2 ¼ 2.44, and m ¼ 5.6 MeV. The
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parameters associated with the pure gauge sector are the
following: a0 ¼ 6.75, a1 ¼ −1.95, a2 ¼ 2.625, a3 ¼
−7.44, b3 ¼ 0.75, and b4 ¼ 7.5. In the pure gauge sector,
the transition temperature is given by T0 ¼ 270 MeV [39].
A lower value of T0 is usually necessary in order to include
the effects ofNf ¼ 2 in the theory. Following the procedure
adopted in Refs. [35,55], we use T0 ¼ 208 MeV.
In Fig. 1 we show the effective quarkmasses as a function

of the temperature for different values of electric fields in
the two-flavor NJL model. As expected, for the NJL model
at eE ¼ 0.01 GeV2, as we increase the temperature, the
effective quark masses decrease, as a signature of the chiral
symmetry restoration. If we increase the electric field to
eE ¼ 0.10 GeV2, at low temperatures the effective quark
masses slightly decrease as an effect of the restoration of the
chiral symmetry guided by the electric field. This effect was
already explored in previous works in the literature at finite
temperature [44,45] and at T ¼ 0 [52,56]. As we increase
the electric field it can be seen that the pseudocritical
temperature has decreased with the increase of the electric
field. In Fig. 2, we show how− dM

dT changes with the increase
of the electric field. The peak of each curve is interpreted as
the pseudocritical temperature for chiral symmetry restora-
tion Tχ

pc for the corresponding electric field. In Fig. 3 we can
see the pseudocritical temperature as a function of electric
field for the two-flavor NJL model, showing the behavior

previously predicted, that as we grow the electric field
the pseudocritical temperature decreases until we reach a
critical value eE ¼ 0.31 GeV2. At this point, the pseudoc-
ritical temperature starts increasing as we increase the
electric field.
Next, we discuss our results for the SU(2) PNJL model.

We show in Fig. 4 the expectation value of the Polyakov
loop as a function of the temperature for different values of
electric fields. We can see that the effect of the strong
electric fields slightly changes the Polyakov loop expect-
ation value in comparison with the effect on the effective
quark mass. These changes are more prominent at
T ∼ 170 MeV, where the increase of the electric field
tends to strengthen the deconfined phase. Also, we should
mention that the effect of the electric field in the Polyakov
loop is given in an indirect way though the gap equa-
tion (19) and Eq. (23) (that are coupled), once the electric
fields do not couple directly with the Polyakov loop.
In Fig. 5 we show the effective quark masses as a

function of the temperature for different values of electric
fields in the two-flavor PNJL model; the behavior ofM as a
function of eE and T is in qualitative agreement with that
predicted in the NJL model. The quantity − dM

dT for the two-
flavor PNJL model is in Fig. 6 and in Fig. 7 we show the
pseudocritical temperature for the chiral symmetry restora-
tion as a function of T, as we increase the electric field. The
results obtained in the PNJL model are in quantitative

FIG. 1. Constituent quark mass M as a function of the temper-
ature for different values of eE in the SU(2) NJL model.

FIG. 2. Thermal susceptibility − dM
dT as a function of the

temperature for different values of eE in the SU(2) NJL model.

FIG. 3. Pseudocritical temperature for chiral symmetry resto-
ration Tχ

pc as a function of eE in the SU(2) NJL model.

FIG. 4. Expectation value of the Polyakov loop for different
values of eE in the PNJL model.
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agreement with the NJL results, corroborating the idea that
the present results are model independent.
The quantity dl

dT as a function of the temperature for
different values of electric fields is shown in Fig. 8; the
pseudocritical temperature for deconfinement Tl

pc corre-
sponds to the maximum of each curve for different values
of electric fields. In Fig. 9 we show Tl

pc as a function of the
electric field. The pseudocritical temperature for the
deconfinement transition slightly decreases as we increase
the electric field until eE ∼ 0.270 GeV2. At this point, the
deconfinement temperature transition starts to increase in a
similar way that we have predicted for the pseudocritical
temperature for chiral symmetry restoration.
In Fig. 10 for the NJL SU(2) model the variation of the

effective quark masses as a function of the electric field is
shown for fixed temperatures: T ¼ 0, 170, 200, and
220 MeV. At low values of the electric fields eE ∼ 0,
we can see the temperature effect on the partial restoration
of the chiral symmetry. As we increase the magnitude of the
electric field, the general aspect is the restoration of the
chiral symmetry with the electric field.
For the PNJL SU(2) results we have almost the

same analysis, but the quantitative results are different as
we can see in Fig. 11. In Fig. 12, where we compare the
two models at T ¼ 170 MeV and T ¼ 220 MeV, we can
see quantitative differences on the numerical results.

At T ¼ 170 MeV the NJL SU(2) model partially restores
the chiral symmetry with a lower electric field than the
PNJL SU(2) model. In the lower panel of Fig. 12 we have
the comparison of the models at T ¼ 200 MeV.We see that
the PNJL SU(2) model has a much higher value of the
effective quark mass at eE ∼ 0 than the NJL SU(2) model.
Also, both models tends to partially restore the chiral
symmetry to higher values of electric fields, following the
previous analysis. At T ¼ 0 almost no difference is seen.
All these results show quantitative differences between the
two models and how the confinement can change the
scenario of the restoration of the chiral symmetry.
It is interesting to point out the prediction of the

differences of the effects of the electric fields on Tl
pc

and Tχ
pc in the PNJL model. The electric fields tends to

influence more easily the chiral transition than the decon-
finement. The behavior of the chiral condensate and the
Polyakov loop in an environment with constant magnetic
field has been explored in [31].
We see that the difference between the pseudocritical

temperatures for chiral symmetry restoration at eE ¼
0.15 GeV2 and eE¼0.2GeV2 is about ΔTχ

pc∼8.7MeV.
In the same manner, the difference in the deconfinement
temperature is given by ΔTl

pc ∼ 1.43 MeV. As a conclu-
sion, the quarks can be in a deconfined phase with chiral
symmetry still not restored. This is a very interesting result,
in the opposite direction of what happens when we have the

FIG. 5. Constituent quark mass as a function of T for different
values of eE in the PNJL model.

FIG. 6. − dM
dT as functions of T for different values of eE in the

PNJL model.

FIG. 7. Pseudocritical temperature Tχ
pc for chiral symmetry

restoration of electrized quark matter as a function of the electric
field eE in the PNJL model.

FIG. 8. dl
dT as functions of T for different values of eE in the

PNJL model.
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quarkyonic phase [51,57] that occurs for some values of
μ ≠ 0 and eE ¼ eB ¼ 0. At strong enough electric fields,
where both Tχ

pc and Tl
pc increase as when we increase the

electric field, the variation in the respective transition
temperatures become larger and different. For example,
if we take eE ¼ 0.25 GeV2 and eE ¼ 0.30 GeV2 we have,
respectively, ΔTχ

pc ∼ 15.88 MeV and ΔTl
pc ∼ 2.18 MeV.

We should pay attention to the fact that we are working
with magnitudes of the electrical fields that are valid for the
NJL and PNJL models eE ∼ Λ2.

FIG. 11. Effective quark masses as a function of the electric field
for fixed values of the temperature in the PNJL SU(2) model.

FIG. 9. The pseudocritical temperature Tϕ
pc for the deconfine-

ment transition of electrized quark matter as a function of the
electric field eE in the PNJL model.

FIG. 10. Effective quark masses as a function of the electric
field for fixed values of the temperature in the NJL SU(2) model.

FIG. 12. Effective quark masses as a function of the electric
field for fixed values of the temperature in the NJL SU(2) model
compared with the PNJL SU(2) model for T ¼ 170 MeV (top
panel) and T ¼ 200 MeV (bottom panel).

FIG. 13. Top: The pair production Γ of electrized quark matter
as a function of the temperature for different values of electric
fields in the PNJL model. Bottom: The same values of eE for the
NJL model.
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In Fig. 13 we show the Schwinger pair production
as a function of the temperature at fixed electric fields
eE ¼ 0.05 GeV2, eE¼0.10GeV2, eE¼0.15GeV2, eE¼
0.20GeV2, eE ¼ 0.25 GeV2, and eE ¼ 0.30 GeV2. In the
region where we have chiral symmetry restoration we can
see that the production rate grows, and after some value of
temperature the Schwinger pair production stabilizes.
Another interesting aspect is that if you fix the electric
field, in the NJL model the Schwinger pair production
stabilizes for larger values and it happens at low temper-
atures if we compare with the PNJL model results.

V. CONCLUSIONS

In this work we have presented a study for strongly
electrized quark matter within the SU(2) PNJL and NJL
models at finite temperatures in the mean field approxi-
mation. We have shown that the constituent quark masses
decrease as we grow both electric fields and temperatures,
as a signature of the partial restoration of the chiral
symmetry. In this scenario, as expected, the pseudocritical
temperature for chiral symmetry restoration decreases as
we grow the electric fields. The deconfinement is guided by
the expectation value of the Polyakov loop, and our results
show that the electric fields tend to anticipate the transition
to the deconfined phase, and the effects due to the electric
fields are more prominent in the chiral transition than the
deconfinement one. On the other hand, we show that for
strong enough electric fields, both pseudocritical temper-
atures for chiral symmetry and deconfinement temperatures
start to increase after a critical value of the electric field, a
very interesting effect that has been identified for the first
time in the literature. This effect propagates to all quan-
tities, as the Schwinger pair production. For comparison,
we also show the results in the NJL model, where the same
qualitative results are obtained, revealing that the main
characteristics of this type of theory are model independent.
Also, we observe that for some values of electric fields, the
quarks can be in a deconfined phase with the chiral
symmetry still not restored, in the opposite direction of
the observed quarkyonic phase for systems at finite
baryonic density and zero external fields. We expect to
use this type of phenomenology to extend the analysis for
electromagnetic fields and more general purposes in the
future, e.g., in systems that present a chiral imbalance of
right-handed and left-handed quarks, in finite baryonic
densities, and in the physics behind the chiral magnetic
effect [5,58,59]. Works in these directions are under way
and we expect to report our results soon.
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APPENDIX: THE TRACE OF
THE POLYAKOV LOOP

The Polyakov loop can be expressed by a diagonal
matrix L ¼ diagðeiφ; eiφ0

; e−iðφþφ0ÞÞ. As discussed in
[42,60], the perturbative vacuum has φ ¼ φ0 ¼ 0, i.e.,
the T ¼ 0 limit, and the confining vacuum can be chosen
to be φ ¼ 2π

3
and φ0 ¼ 0. For simplicity, we can adopt φ0 ¼

0 from the beginning. The Polyakov loop with this
assumption assumes l ¼ 1

Nc
TrcL ¼ 1

Nc
TrcL†. This is true

for the limit μ ¼ 0 [61].
The simplification adopted here implies l ¼

1
3
ð1þ 2 cosφÞ. It is useful to invert the last relation for

future evaluations:

φ ¼ cos−1
�
3l − 1

2

�
: ðA1Þ

In this work wewill implement the μ ¼ 0 case (where we
have l̄ ¼ l) and Trc; i.e., the trace over the color space is
performed following the steps given in Eqs. (16) and (17).
First we decompose the trace as

Trc½ðLÞn þ ðL†Þn� ¼ TrcðLÞn þ TrcðL†Þn: ðA2Þ

To evaluate the trace of Ln and ðL†Þn we should note that
the Ansatz is already in the Jordan form [62]; then we can
use the following result:

TrAn ¼
X
i

λni ; ðA3Þ

where the λi are the eigenvalues of the matrix A. Applying
this result directly to Eq. (A2), we obtain

TrcðLÞn þ TrcðL†Þn ¼ 2ð1þ eiφn þ e−iφnÞ;
¼ 2ð1þ 2 cos nφÞ: ðA4Þ

Using now Eq. (A1) in the last equation, we can
reach

TrcðLÞn þ TrcðL†Þn

¼ 2 ×

�
1þ 2 cos

�
ncos−1

�
3l − 1

2

���
: ðA5Þ
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