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In the limit of extremely intense electromagnetic fields the Maxwell equations are modified due to the
photon-photon scattering that makes the vacuum refraction index depend on the field amplitude. In the
presence of electromagnetic waves with small but finite wave numbers the vacuum behaves as a dispersive
medium. We show that the interplay between the vacuum polarization and the nonlinear effects in the
interaction of counter-propagating electromagnetic waves can result in the formation of Kadomtsev-
Petviashvily solitons and, in one-dimension configuration, of Korteveg-de-Vries type solitons that can
propagate over a large distance without changing their shape.
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I. INTRODUCTION

Fast progress in the laser and free electron laser tech-
nology aimed at developing sources of extremely high
power electromagnetic radiation has called into being a vast
area of nonlinear physics related to the behavior ofmatter and
vacuum irradiated by ultraintense electromagnetic fields [1].
Among the rich variety of nonlinear effects induced by a

relativistically strong light, we will choose as the topic of
the present paper the formation and evolution of electro-
magnetic solitary waves in the quantum vacuum.
Relativistic electromagnetic solitons propagating in col-

lisionless plasma have been extensively studied theoreti-
cally [2–13], with computer simulations [6,14–30], and in
the experiments on the laser-plasma interaction [31–37].
Typically solitons in relativistic plasmas can be regarded
as pulses of electromagnetic radiation trapped inside the
cavities formed in the plasma electron density by the pulse
ponderomotive pressure. In the limit of small but finite
soliton amplitude they are described by the nonlinear
Schroedinger equation (for the properties of theNSE solitons
see Refs. [38–41]). Relativistic electromagnetic solitons can
provide one of theways of anomalous absorption of the laser
energyby transforming it into energyof fast particles and into
energy of high and low frequency electromagnetic radiation.

The properties of solitons that are formally similar to the
NSE solitons were analyzed theoretically in Refs. [42,43].
We note that NSE solitons are predicted to be formed in
the quantum vacuum. They correspond to electromagnetic
pulses trapped in the local modulations of the refraction
index of the vacuum. In classical electrodynamics the
vacuum refraction index equals unity, i.e., electromagnetic
waves do not interact with each other. On the contrary, in
quantum electrodynamics (QED) electromagnetic waves
interact in vacuum via virtual electron-positron pair exci-
tation which is related to vacuum polarization [44–48].
In the other words, the electromagnetic field can excite a
virtual electron-positron plasma. The experiments on the
detection of the photon-photon scattering using high power
laser facilities [49–56] is one of the most attracting goals in
fundamental science.
The electromagnetic field intensity required for the obser-

vation of the vacuum polarization is characterized by the
QED critical electric field. It is also known as the Schwinger
field [44] ES ¼ m2

ec3=eℏ, where e and me are the electron
charge and mass, c the speed of light in vacuum, and ℏ is
the Planck constant. The corresponding normalized wave
amplitude aS ¼ eES=meωc ¼ mec2=ℏω and light intensity
are 5.1 × 105 and 1029 W=cm2, respectively. By virtue of
the Lorentz invariance, a plane electromagnetic wave does
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not induce the vacuum polarization. In other words, there is
no self-action of a single plane wave. The situation becomes
different for counterpropagating electromagnetic pulses,
when they mutually change the vacuum refraction index
seen by the other wave. The refraction index depends
nonlinearly on the colliding electromagnetic wave amplitude
[44,45,57], and the resulting wave self-action can lead to
wave steepening and wave breaking [58,59]. In the long-
wavelength limit the QED vacuum is a dispersionless
medium, i.e., the phase and group velocity of the electro-
magneticwave are equal. Thevacuumdispersion effects seen
at small but finite photon momentum have been analyzed in
Refs. [60,61]. These effects can also be found by using an
approach developed in Refs. [62,63]. In general, the non-
linearity and dispersion balance provides the condition
for the formation of solitary waves [38–40], which can
propagate over large distance without changing their shape.
Alongwith the solitons described by theNSE equation, were
solitons described by the Korteveg-de-Vries (KdV) equation
[64] (a generalization of the KdV equation to the multidi-
mensional case is knownas theKadomtsev-Petviashvili (KP)
equation [65]) [38–40].
Below we show that the vacuum polarization and the

nonlinear effects in the interaction of counterpropagating
electromagnetic waves can result in the formation of the
relativistic electromagnetic solitons and nonlinear waves
described by the KP, KdV, and dispersionless Kadomtsev-
Petviashvili (dKP) equations. Realizing conditions for the
soliton formation in the superstrong laser beam collisions
we might be able to understand better vacuum behavior
testing the appearance of excitation of the electron positron
Dirac sea.
The paper is organized as follows. In Sec. II we discuss the

EMwave dispersion in the QED vacuum as well as the long
wavelength limit. The nonlinear EM waves in vacuum are
discussed in Sec. III. First, equations of nonlinear electro-
dynamcis are written down, then the case of the counter-
propagating EMwaves is investigated. In Sec. IVwe discuss
EM waves in the QED vacuum described by Kadomtsev-
Petviashvili, dispersionless Kadomtsev-Petviashvili, and
Korteveg-de-Vries equations. We conclude in Sec. V.

II. ELECTROMAGNETIC WAVE DISPERSION
IN THE QED VACUUM

A. Dispersion equation

The dispersion equation giving the relationship between
the frequency ω and the wave vector k of a relatively high
frequency small amplitude electromagnetic wave colliding
in the QED vacuum with a low frequency wave can be
written in the form

ω2 − k2c2 −
μ2k;⊥c4

ℏ2
¼ 0: ð1Þ

In this case, the low frequency wave is approximated by the
crossed field wave with electric E and magnetic B fields
orthogonal to each other of equal amplitude, E0 ¼ B0.
Here μk;⊥ is the “invariant photon mass” [63] (on the effects
of the field inhomegeity and the limits of applicability of
the crossed field approximation see Refs. [66,67]). The
subscripts k;⊥ of μk;⊥ correspond to the parallel and
perpendicular polarizations of the colliding electromag-
netic waves in the reference frame where they are counter-
propagating to each other. For the sake of brevity we
assume below that the wave polarizations are parallel and
denote by μ the invariant photon mass.
The invariant mass depends on the photon frequency (it

is the photon energy expressed in terms of the quantum
parameter χγ). The invariant

χγ ¼
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kρFρσFστkτ

p
mecES

; ð2Þ

characterizes the QED processes of photons interacting
with an electromagnetic field. Here kρ is the 4-moment of
the photon, Fρσ is the electromagnetic field tensor given by

Fρσ ¼ ∂ρAσ − ∂σAρ; ð3Þ

with Aρ being the 4-vector potential of the electromagnetic
field, ρ ¼ 0, 1, 2, 3, ∂ρ denotes partial derivative with
respect to the 4-coordinate xρ. Here and below summation
over repeating indices is assumed.
For a photon counterpropagating to the crossed E0—B0

fields, the invariant equals

χγ ¼
E0

ES

ℏðωþ kxcÞ
mec2

; ð4Þ

where kx is the x component of the wave vector.
According to Ref. [63] the square of the invariant photon

mass μ is given by

μ2 ¼ αm2
e

6π

Z
∞

1

du
8u − 2

ζu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 1Þp df

dζ
ð5Þ

with

ζ ¼
�
4u
χγ

�
2=3

ð6Þ

and

fðζÞ ¼ i
Z

∞

0

dt exp

�
−i
�
ζtþ t3

3

��
: ð7Þ

In the right-hand side (r.h.s.) of Eq. (5) α ¼ e2=ℏc ≈ 1=137
is the fine structure constant.
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The function fðζÞ can be written as a linear combination
of the Airy function AiðζÞ and the inhomogeneous Airy
function GiðζÞ, as

fðζÞ ¼ π½iAiðζÞ þGiðζÞ�: ð8Þ

Using the analytical properties of the Airy functions
AiðζÞ and GiðζÞ (see Refs. [68,69] and Appendix A; GiðζÞ
is also known as the Scorer function [70]) we can present
the dependence of fðζÞ on the variable ζ in the limit
ζ → þ∞ (i.e., in the limit χγ ≪ 1) as

fðζÞ ¼ 1

ζ
þ 2

ζ4
þ � � � þ i

π

2ζ1=4
exp

�
−
2

3
ζ3=2

�
: ð9Þ

and its derivative is then

f0ðζÞ ¼ −
1

ζ2
−

8

ζ5
− � � � − i

π

8ζ5=4
exp

�
−
2

3
ζ3=2

�

− i
π

2
ζ1=4 exp

�
−
2

3
ζ3=2

�
: ð10Þ

We can neglect the last term in the derivative in the limit
χγ ≪ 1. Substituting this expression into the integrand in
the r.h.s. of Eq. (5) and calculating the integral we find
expansions of the real and the imaginary parts of the square
of the photon mass at χγ ≪ 1,

ℜ½μ2� ¼ −αm2
e

4

45π

�
χ2γ þ

1

3
χ4γ þOðχ6γÞ

�
; ð11Þ

ℑ½μ2� ¼ −αm2
e
1

8

ffiffiffi
3

2

r
χγ exp

�
−

8

3χγ

�
þ…: ð12Þ

Furthermorewe neglect the effects of the exponentially small
imaginary part (12) which describes the electron-positron
pair creation via the Breit-Wheeler process [71,72].
We assume here that the Poynting vector of the strong

low frequency wave cE ×B=4π is directed in the negative
direction along the x-axis. For definiteness we set
E ¼ ezE0, B ¼ eyE0. The high frequency electromagnetic
wave propagates in the negative direction along the x-axis.
Substituting the real part of the photon mass given by the

first two terms in Eq. (11) into the dispersion equation (1)
we obtain for the relationship between the electromagnetic
wave frequency and the wave number

ω2 − k2 þ 4αW2
0

45π
ðωþ kxÞ2 þ

4αW4
0

135π
ðωþ kxÞ4 ¼ 0; ð13Þ

where W0 ¼ E0=ES is the electric field of the cross field
electromagnetic wave normalized on ES, k2 ¼ k2x þ k2y,
the wave number and frequency are normalized on ƛ−1C ¼
mc=ℏ and cƛ−1C ¼ m2

c=ℏ.

We can rewrite the dispersion equation (13) as

ω2 − k2x þ κ1ðωþ kxÞ2 þ κ2ðωþ kxÞ4 ¼ k2y: ð14Þ

Here parameters κ1 and κ2 are given by

κ1 ¼ 4αW2
0=45π and κ2 ¼ 4αW4

0=135π: ð15Þ

The parameters κ1 and κ2 give a measure of the vacuum
polarization and vacuum dispersion effects, respectively.
The term k2y in the r.h.s. of Eq. (14) describes the electro-
magnetic wave diffraction.
We note that the expression for the electromagnetic wave

dispersion in the QED vacuum given by last terms in the
r.h.s. of Eqs. (13) and (14) being the consequence of the
6-photon mixing is different from the dependence found
in [60] and used in Ref. [42] for describing the envelope
solitons. Due to the symmetry of dispersion equation (1)
with the invariant photon mass given by relationships
(5)–(7) the first nonvanishing dispersion term corresponds
to the 6-photon mixing.
Using the relationships between the frequency ω and

wave-number k and the partial derivatives with respect to
time and spatial coordinates,

ω ↔ −i∂t; kx ↔ i∂x; and ky ↔ i∂y ð16Þ

we obtain from Eq. (14)

∂−ð∂þa − κ1∂−a − 2κ2∂−−−aÞ ¼ −
1

2
∂yya ð17Þ

with ∂− ¼ ∂x− , ∂þ ¼ ∂xþ , and ∂−−− ¼ ∂3
−. ∂� ¼ ∂x� ¼

ð∂=∂x�Þ.
In Eq. (17) aðx−; xþ; yÞ is the z component of the 4

vector potential. Here and below we use the so-called
Dirac’s light cone coordinates x− and xþ defined as (see
e.g., Ref. [73])

xþ ¼ xþ ctffiffiffi
2

p ; x− ¼ x − ctffiffiffi
2

p ; ð18Þ

As is well known, the coordinates (x; t) in the laboratory
frame of reference are related to the coordinates ðx0; t0Þ
in the frame of reference moving with the normalized
velocity β as

x0 ¼ x cosh η − ct sinh η;

t0 ¼ t cosh η − ðx=cÞ sinh η; ð19Þ

where

η ¼ ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
: ð20Þ
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The Lorentz transform of the light-cone variables, x0þ, x0−,
defined in Eq. (18) is

x0þ ¼ x0 þ ct0ffiffiffi
2

p ¼ e−η
xþ ctffiffiffi

2
p ¼ e−ηxþ;

x0− ¼ x0 − ct0ffiffiffi
2

p ¼ eþη x − ctffiffiffi
2

p ¼ eþηx−: ð21Þ

As a result

ð∂−Þ0 ¼ e−η∂− and ð∂þÞ0 ¼ eþη∂þ: ð22Þ

Now we introduce the field variables u and w defined as

u ¼ ∂−a and w ¼ ∂þa: ð23Þ

They are related to the electric, ez ¼ −∂ta (along z), and
magnetic, by ¼ −∂xa (along y), fields by the following
relations

u ¼ ez − byffiffiffi
2

p ; w ¼ −
ez þ byffiffiffi

2
p : ð24Þ

The Lorentz transform of the fields u and w is

u0 ¼ e0z − b0yffiffiffi
2

p ¼ e−η
ez − byffiffiffi

2
p ¼ e−ηu;

w0 ¼ −
e0z þ b0yffiffiffi

2
p ¼ −eþη

ez þ byffiffiffi
2

p ¼ eþηw: ð25Þ

The field product uw ¼ ðb2y − e2zÞ=2,

u0w0 ¼ uw; ð26Þ

is Lorentz invariant in the (t; x)-plane. It is proportional to
the first Poincaré invariant F of the Maxwell equations,
which will be introduced below. We note that W0 trans-
forms like w:

W0
0 ¼ eηW0: ð27Þ

B. Dispersionless vacuum in the long wavelength limit

1. Counterpropagating electromagnetic waves

Equation (13) is obtained within the framework of the
approximation, which assumes that the parameter χγ is
small. Neglecting the dispersion and diffraction effects we
can write Eq. (14) as

ðωþ kxcÞ½ωð1þ κ1Þ − kxcð1 − κ1Þ� ¼ 0: ð28Þ

Taking into accounts the relations given byEqs. (16) and (18)
this equation leads to the wave equation

∂−ð∂þa − κ1∂−aÞ ¼ 0; ð29Þ

with the solution

aðx−; xþÞ ¼ fðxþÞ þ gðx− þ κ1xþÞ: ð30Þ

Functions fðxÞ and gðxÞ are determined by the initial
conditions a0ðxÞ and _a0ðxÞ. A dot denotes a differentiation
with respect to time.
Using the fact that κ1 ≪ 1, the solution (30) can be

written in the following form

aðx; tÞ ¼ fðxþ ctÞ þ gðx − vtÞ; ð31Þ

where v ¼ cð1 − κ1Þ=ð1þ κ1Þ.
The Cauchy problem is determined by the initial

conditions

a0ðxÞ ¼ fðxÞ þ gðxÞ;
_a0ðxÞ ¼ cf0ðxÞ − vg0ðxÞ: ð32Þ

A prime here and below denotes a differentiation with
respect to the function argument.
Since a00ðxÞ ¼ f0ðxÞ þ g0ðxÞ we can find that

fðxÞ ¼ v
cþ v

a0ðxÞ þ
1

cþ v

Z
x
_a0ðsÞds;

gðxÞ ¼ c
cþ v

a0ðxÞ −
1

cþ v

Z
x
_a0ðsÞds: ð33Þ

Substituting these expressions into Eq. (31) we obtain the
solution to the wave equation (29)

aðx; tÞ ¼ va0ðxþ ctÞ þ ca0ðx − vtÞ
cþ v

−
1

cþ v

Z
xþt

x−vt
_a0ðsÞds: ð34Þ

In the case v ¼ c it becomes a standard d’Alembert
formula.
Figure 1 shows the electromagnetic waves in the (x; t)

plane, which are determined by the initial conditions
_a0¼0 and a0¼expð−x2=l2Þ with l¼0.125 and κ1¼1=3,
i.e., v ¼ 0.5c. There are two waves. One of them prop-
agates from the right to the left with the speed of light in
vacuum. The other wave propagates from the left to the
right with speed equal to v. The ratio of their amplitudes is
equal to v=c.
The vacuum polarization in the field of interacting

electromagnetic waves changes the electromagnetic wave
propagation velocity making Cherenkov radiation possible
in vacuum [74–76].
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2. Frederick’s diagrams

In the long-wavelength limit, when kx → 0 one can
neglect the last term in the l.h.s. of Eq. (13), i.e., neglect the
dispersion but retaining the diffraction effects. Then the
dispersion equation can be written as

ω2 − k2c2 þ κ1ðωþ kc cos θÞ2 ¼ 0; ð35Þ

where k ¼ jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2⊥

p
. Here we introduce the angle

between the wave vector direction and the x-axis equal to
θ ¼ arccosðkx=kÞ in the polar coordinate system.
The solution of Eq. (35) gives the wave frequency

ω ¼ −kc
κ1 cos θ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ1sin2θ

p
1þ κ1

: ð36Þ

This relationship yields the phase diagram representing
the dependence of normalized phase velocity βph ¼ ω=kc
on the angle θ,

βph ¼ −
κ1 cos θ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ1sin2θ

p
1þ κ1

: ð37Þ

Frederick’s diagram (it is the polar diagram for group
velocity of the wave, for details, e.g., see [77]) can be
obtained by calculating the group velocity vg ¼ ∂ω=∂k.
Taking into account that ω ¼ kvph, where the phase
velocity vph depend on the direction of k only we obtain

vg ¼ vph
k
k
þ v⊥g

k⊥
k

: ð38Þ

Here the perpendicular to the wave vector component
equals v⊥g ¼ k∂vph=∂k, i.e., jv⊥gj ¼ v⊥g ¼ ð∂ω=∂θÞ=k
For the normalized value of the perpendicular compo-

nent βg⊥ ¼ vg⊥=c we have

βg⊥ ¼ κ1 sin θðcos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ1sin2θ

p
Þ

ð1þ κ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ1sin2θ

p : ð39Þ

Fig. 2 presents the polar phase diagrams for the phase βph

velocity and the group velocity βg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2ph þ β2⊥g

q
: a) κ1 ¼

0.3 and b) κ1 ¼ 0.9. As it is clearly seen the phase and
group velocities are equal to each other for waves propa-
gating along the x-axis being equal to speed of light in
vacuum for copropagating waves, i.e., for θ ¼ 0when βg ¼
βph < 1 and βg ¼ βph ¼ −1 for θ ¼ π. In the cases θ ≠ 0

and θ ≠ π, the phase velocity is smaller than the group
velocity.

FIG. 2. Polar phase diagrams for group velocity βg (blue), phase velocity βph (red) and speed of light in vacuum β ¼ 1 (green):
(a) κ1 ¼ 0.3; (b) κ1 ¼ 0.9.

FIG. 1. Electromagnetic waves in the (x; t) plane for _a0 ¼ 0 and
a0 ¼ expð−x2=l2Þ with l ¼ 0.125 and κ1 ¼ 1=3.
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III. NONLINEAR ELECTROMAGNETIC WAVES
IN VACUUM

A. Equations of nonlinear electrodynamics

Our consideration here is based on using the Euler–
Heisenberg Lagrangian describing the electromagnetic
field in the long-wavelength limit. It is given by [44,78]

L ¼ L0 þ L0; ð40Þ

where

L0 ¼ −
m4

e

16πα
FμνFμν ð41Þ

is the Lagrangian in classical electrodynamics, Fμν is the
electromagnetic field tensor determined by Eq. (3).
In the Euler–Heisenberg theory, the QED radiation

corrections are described by L0 on the right-hand side of
Eq. (40), which can be written as [44]

L0 ¼ m4
e

8π2
Mðe; bÞ ¼ m4

e

8π2

Z
∞

0

exp ð−ηÞ
η3

×

�
−ðηe cot ηeÞðηb coth ηbÞ þ 1 −

η2

3
ðe2 − b2Þ

�
dη:

ð42Þ

Here the invariant fields e and b are expressed in terms the
Poincaré invariants

F ¼ 1

4
FμνFμν; G ¼ 1

4
FμνF̃μν; F̃μν ¼ 1

2
εμνρσFρσ

ð43Þ

as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

q
−F

r
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

q
þF

r
;

ð44Þ

respectively. Here εμνρσ is the Levi-Civita symbol in four
dimensions.
Here and in the following text, we use the units

c ¼ ℏ ¼ 1, and the electromagnetic field is normalized
on the QED critical field ES.
In the 3D notations the Poincaré invariants are

F ¼ 1

2
ðB2 −E2Þ; G ¼ B ·E: ð45Þ

As explained in Ref. [44] the Euler–Heisenberg
Lagrangian in the form given by Eq. (42) should be used
for obtaining an asymptotic series over the invariant electric
field e assuming its smallness. The resulting expression is

L0 ¼ κ

��
F2 þ 7

4
G2

�
þ 8

7
F

�
F2 þ 13

16
G2

��
þ… ð46Þ

with κ ¼ e4=90π2m4
e.

In the Lagrangian (46) the first two terms on the right-
hand side and the last two correspond respectively to four
and to six photon mixing.

B. Counterpropagating electromagnetic waves

In what follows we consider the interaction of counter-
propagating electromagnetic waves with the same linear
polarization. In this case the invariantG vanishes identically.
This field configuration can be described in a transverse
gauge by a vector potential having a single component,
A ¼ Aez, with ez the unit vector along the z axis. In terms of
the light cone coordinates [see Eq. (18)] the vector potential
A is given by

A ¼ aðxþ; x−Þ: ð47Þ

In these variables the Lagrangian (40) takes the form

L ¼ −
m4

4πα
½wu − ϵ2ðwuÞ2 − ϵ3ðwuÞ3�; ð48Þ

where the field variables u and w are defined by Eq. (23).
The dimensionless parameters ϵ2 and ϵ3 in Eq. (48) are
given by

ϵ2 ¼
2e2

45π
¼ 2

45π
α and ϵ3 ¼

32e2

315π
¼ 32

315π
α; ð49Þ

where α ¼ e2=ℏc ≈ 1=137 is the fine structure constant,
i.e., ϵ2 ¼ 7ϵ3=8 ≈ 10−4.
The field equations can be found by varying the

electromagnetic action

SðaÞ ¼
Z

dxþ
Z

dx−LðaÞ; ð50Þ

with respect to the vector potential aðxþ; x−Þ which gives

∂−ð∂uLÞ þ ∂þð∂wLÞ ¼ 0: ð51Þ

As a result, we obtain the system of equations

∂−w ¼ ∂þu; ð52Þ

½1 − uwð4ϵ2 þ 9ϵ3uwÞ�∂þu

¼ w2ðϵ2 þ 3ϵ3uwÞ∂−uþ u2ðϵ2 þ 3ϵ3uwÞ∂þw; ð53Þ

Equation (52), is a consequence of the symmetry of the
second derivatives, ∂−;þa ¼ ∂þ;−a and it expresses the
vanishing of the 4-divergence of the dual electromagnetic
field tensor F̃μν.
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The solution to Eq. (52) can be found to be

wðxþ; x−Þ ¼
Z

x− ∂þu dx− þ w0ðxþÞ; ð54Þ

where w0ðxþÞ corresponds to the electromagnetic wave
propagating from the right to the left along the x-axis with a
speed equal to the light speed in vacuum.

C. The Hopf equation

The system of equations (52) and (53) is a system of
quasilinear equations. It admits a rich variety of solutions
including those solutions that describe the formation of
singularities during the electromagnetic field evolution
(e.g., see Ref. [79,80]). This system also admits solutions
in the form of simple waves [58] in which w is a function
of u, i.e., w ¼ wðuÞ. In this case, Eqs. (52) and (53) take
the form

J∂−u ¼ ∂þu; ð55Þ

∂−u ¼ 1 − uwð4ϵ2 þ 9ϵ3uwÞ − Ju2ðϵ2 þ 3ϵ3uwÞ
w2ðϵ2 þ 3ϵ3uwÞ

∂þu

ð56Þ
where J ¼ dw=du is the Jacobian. Consistency of these
equations implies that

u2J2 −
1 − uwð4ϵ2 þ 9ϵ3uwÞ

ϵ2 þ 3ϵ3uw
J þ w2 ¼ 0: ð57Þ

Introducing the new variables

r ¼ uw and l ¼ ln u; ð58Þ
for which

J ¼ 1

u2

�
dr
dl

− r

�
; ð59Þ

we can write the solution to Eq. (57) asZ
uw 2ðϵ2 þ 3ϵ3rÞdr

F ðrÞ ¼ l ð60Þ

where

F ðrÞ
¼ 1 − 2ϵ2r − 3ϵ3r2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8ϵ2rþ 6ð2ϵ22 − 3ϵ3Þr2 þ 48ϵ2ϵ3r3 þ 45ϵ23r

4

q
;

ð61Þ
Expanding this solution up to linear terms in ϵ2 and ϵ3 we

obtain for the Jacobian J

J ¼ w2ðϵ2 þ 3ϵ3uwÞ þ…: ð62Þ
We assume that the electromagnetic wave corresponding to
the variable u in Eq. (62) counterpropagates with respect to

the unperturbed wave w0 ¼ w0ðxþÞ, taken to depend on xþ
only. Using Eqs. (29) and (54) and the smallness of the
parameter ϵ2 we can obtain that

wðxþ; x−Þ ≈ w0ðxþÞ þ ϵ2w0ðxþÞuðxþ; x−Þ: ð63Þ

Further we consider the electromagnetic wave w0ðxþÞ
to have a constant amplitude w0 ¼ −

ffiffiffi
2

p
W0 ¼ const, i.e., to

correspond to crossed fields. In this case, the Jacobian (62) is

J ¼ 2ϵ2W2
0 − 6

ffiffiffi
2

p
ϵ3W3

0uþ…: ð64Þ

Substitution of J given by Eq. (64) into Eq. (55) yields

∂þu − ð2ϵ2W2
0 − 6

ffiffiffi
2

p
ϵ3W3

0uÞ∂−u ¼ 0: ð65Þ

In the third term describing nonlinear effects we retain
the 6-photon mixing effects because as it is shown in
Refs. [58,59] the 4-photonmixing photon effects is of higher
order of a small parameter α. We note that the envelope
solitons considered in Refs. [42,43] have been discussed
within the framework of the 4-photonmixing approximation.
Introducing the new dependent variable

ū ¼ −ð2ϵ2W2
0 − 6

ffiffiffi
2

p
ϵ3W3

0uÞ ð66Þ

we can rewrite Eq. (65) as the Hopf equation

∂þūþ ū∂−ū ¼ 0: ð67Þ

Equation (67) has two groups of symmetries. It means
that it remains the same if we make two sets of substitution:

ū → u0 þ ū x− → x− þ u0xþ; ð68Þ

and

x− →
x−

X− ; xþ →
xþ

Xþ ; ū →
Xþ

X− ū; ð69Þ

where u0, X− and Xþ are arbitrary real constants. Under
the transformations (68), (69) solutions of Eq. (67) go into
solutions.
As is well known, the Hopf equation describes the

steepening of nonlinear waves (see Ref. [38]). In the case
of a finite amplitude electromagnetic wave in the QED
vacuum this equation has been obtained and analysed in
Refs. [58,59].
The solutions to the Hopf equation (67) can be obtained

as follows [38,77]. The l.h.s. of the Hopf equation is a full
derivative of the function ūðxþ; x−Þ along the character-
istics of Eq. (67) determined by the equation

dx−

dxþ
¼ ū: ð70Þ
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The function ū in Eq. (70) is constant, defined by initial
conditions at xþ ¼ 0, and this equation can be rewritten as

dx−

dxþ
¼ ūð0; x−0 Þ≡ ū0ðx−Þ: ð71Þ

Relationship between variables x− and xþ on the character-
istics can be represented as

x− ¼ x−0 þ ū0ðx−0 Þxþ; ð72Þ

whereas the general solution of the Hopf equation, defined
by the initial condition ū0ðx−Þ, can be written implicitly as

ūðx−; xþÞ ¼ ū0ðx− − ūðx−; xþÞxþÞ: ð73Þ

The value x−0 , appearing in Eqs. (72)–(74), is the x−-
coordinate on the characteristic at xþ ¼ 0. In other
words the variables ðxþ; x−0 Þ are the Lagrange coordinates.
Equation (72) gives relationship between the Euler ðxþ; x−Þ
and Lagrange coordinates ðxþ; x−0 Þ.
Evaluating the gradient of the function ūðx−; xþÞ

we obtain

∂−ū ¼ ð∂−x−0 Þð∂ū0=∂x−0 Þ; ð74Þ

where

∂−x−0 ¼ 1

1þ xþð∂ū0=∂x−0 Þ ð75Þ

is the Jacobian of the transformation from the Lagrange
to the Euler variables. In the region where ∂ū0=∂x−0 is
negative the gradient (74) grows. The growing of the
Jacobian corresponds to the steepening of the wave and
to the generation of high order harmonics (e.g., see
discussion in Refs. [58,77]). At the coordinate

xþbr ¼ 1=j∂ū0=∂x−0 j ð76Þ

the wave gradient tends to infinity: i.e., the wave breaks.
This corresponds to the so called gradient catastrophe.
Using the relationship (18) between the light cone coor-
dinates ðx−; xþÞ and variables (x; t) we can find that the
breaking time equals tbr ¼ 1=cj∂ū0=∂x0j. Here x0 is the
Lagrange coordinate if the Euler coordinates are (x; t).
In a dispersive medium the nonlinear wave steepening

can be balanced by the dispersion effects resulting in
formation of quasistationary nonlinear waves such as
collisionless shock waves and solitons.

IV. ELECTROMAGNETIC WAVES IN THE QED
VACUUM DESCRIBED BY THE KADOMTSEV-

PETVIASHVILI, THE DISPERSIONLESS
KADOMTSEV-PETVIASHVILI, AND THE

KORTEVEG-DE VRIES EQUATIONS

Below we show that combining the effects of difraction,
dispersion, and nonlinearity we obtain the nonlinear KP,
dKP, and the KdV wave equations.
The Cauchy problem for these equations can be solved

exactly [81] (see also Refs. [38–40] and the literature cited
therein). The solution includes in particular breaking non-
linear waves and interacting solitons.
From the theory of nonlinear waves we know that in the

limit of small but finite nonlinearity, the terms that describe
the dispersion and the diffraction appear in the nonlinear
wave equations additively. As far as it concerns the
diffraction, it can be implemented into the wave equation
by considering the case when the electromagnetic potential
(47) depends not only on the variables xþ and x− but also
on the transverse coordinate y (i.e., the beam size the z
direction is substantially larger than along the y coordi-
nate). The nonlinear effects resulting in the finite amplitude
wave breaking are described by Eq. (67).

A. Kadomtsev-Petviashvili equation

Combining Eqs. (17) and (67) we obtain the Kadomtsev-
Petviashvili equation

∂−ð∂þūþ ū∂−ū − ∂−−−ūÞ ¼ −∂yyū: ð77Þ
In Eq. (77) the variables are normalized as x− → x−=L,
xþ → xþ=L, y →

ffiffiffi
2

p
y=L with L ¼ ð2κ2Þ1=2. If one uses

the units with ℏ ¼ c ¼ 1, and fields are measured in ES,
then the coefficient κ2 defined in Eq. (15) equals κ2 ¼
ð4α=135πÞW4

0m
−2
e .

Equation (77) remains unchanged under the transform
(68). It is invariant also against the transforms:

xþ → xþ=X; x− → x−=X1=3;

y → y=X2=3; ū → ū=X2=3; ð78Þ
where X is an arbitrary positive number.
In non-normalized variables Eq. (77) takes the form

∂−

�
∂þu −

�
4e2

45π
W2

0 −
32

ffiffiffi
2

p
e2

105π
W3

0u

�
∂−u

−
8e2

135πm2
e
W4

0∂−−−u

�
¼ −

1

2
∂yyu: ð79Þ

Typical examples of the Kadomtsev-Petviashvili equa-
tion solitons are discussed in Appendix B.
To demonstrate the Lorentz-invariance of the problem

under consideration it is convenient to rewrite Eq. (79) in
the equivalent form
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∂þu −
�
4e2

45π
W2

0 −
32

ffiffiffi
2

p
e2

105π
W3

0u

�
∂−u

−
8e2

135πm2
e
W4

0∂−−−u ¼ −
1

2
∂yya; ð80Þ

∂−a ¼ u: ð81Þ

As it can be seen from Eqs. (21)–(25) each of the terms in
the Eq. (80) is Lorentz-invariant in the (t; x)-plane.
Moreover, the way of derivation of this equation shows

that, if we skip the nonlinear term, then remaining equation
is completely Lorentz-invariant in the ðt; x; yÞ-hyperplane.
Returning back to the whole equation, we may say, that it
remains the same under action of any weak rotation in
ðx; y; zÞ-hyperplane and any weak Lorentz-transformation
in ðt; y; zÞ-hyperplane. The “weak rotation” means neglect-
ing the quadratic terms relative to the rotation angles and to
the angle η in Eqs. (19). As far it concerns “weak Lorentz-
transformation,” according to Ref. [82] it is sufficient to
satisfy the requirement that the components of one vector
be small compared to those of another in just one frame of
reference; by virtue of relativistic invariance, the four-
dimensional formulas obtained on the basis of such an
assumption will be valid in any other reference frame.
In regard with a relationship between the KdV and KP

solitons discussed in the present paper and the solitons
which can be obtained with NSE, here we briefly discuss
the evolution of a packet of quasimonochromatic waves
described by the 2D KP equation Eq. (B1). We assume that
the carrier wave wavelength is short enough: k0l ≫ 1. In
this case, a multiscale expansion technique can be applied
[38] for finding the solution describing the wave packet
evolution. It can be easily shown, the approach developed
in Refs. [83,84] in the present case results in obtaining the
3D version of the nonlinear Schroedinger equation (NSE).
From the NSE analysis, in this case, it follows that the
wave packets are neither subject to self-focusing nor to
bunching and, hence, during their evolution the NSE
solitons are not formed.

B. Dispersionless KP equation

Neglecting the dispersion effects in Eq. (77) we obtain
the so-called dispersionless KP equation

∂−ð∂þūþ ū∂−ūÞ ¼ −∂yyū; ð82Þ

The dispersionless KP equation describes the nonlinear
wave breaking in a non-one-dimensional configuration
[85–89].
As noted above, formally the nonlinear wave steepening

and breaking correspond to the growth of the field gradient
and to the appearance of the gradient catastrophe. This
process can be demonstrated by analysing the self-similar
solution of Eq. (82) of the form

ūðxþ; x−;x⊥Þ ¼ gðxþÞx− −
σ

2
k2yy2; ð83Þ

where g and ky are the longitudinal and the transverse
inverse scale-lengths of the field ū, and σ ¼ �1.
Substituting (83) into Eq. (82) we obtain an ordinary
differential equation for the function gðxþÞ,

g0 þ g2 ¼ σk2y; ð84Þ

where a prime denotes a differentiation with respect to the
variable xþ. Its solution reads

g ¼ −ky tan
�
kyxþ − arctan

�
g0
ky

��
ð85Þ

if σ ¼ −1 and

g ¼ ky tanh

�
kyxþ − arctanh

�
g0
ky

��
ð86Þ

for σ ¼ þ1. Here g0 is equal to gjxþ¼0.
In the case σ ¼ −1, as

xþ →
1

2ky

�
π þ 2 arctan

�
g0
ky

��
ð87Þ

the gradient of g tends to minus infinity. This corresponds
to the wave breaking and to the formation of the shock
wavelike structure.

C. Korteveg-de Vries equation

If one neglects the effects of the transverse inhomoge-
neity by assuming ∂yyū ¼ 0, then Eq. (77) reduces to the
Korteveg-de Vries equation [64]

∂þūþ ū∂−ū − ∂−−−ū ¼ 0: ð88Þ

It has the same symmetries as Eq. (77) in Sec. IVA.
We may not distinguish solutions of this equations related

with each other by these symmetries. Equation (88) rewritten
in physical variables looks as:

∂þu −
�
4e2

45π
W2

0 −
32

ffiffiffi
2

p
e2

105π
W3

0u

�
∂−u

¼ 8e2

135πm2
e
W4

0∂−−−u: ð89Þ

Equation (88) has the well known single soliton sol-
utions [38–40,64]. They can be presented in terms of
Eq. (89), when u → 0 at jx−j → ∞, and W0um > 0, as:

u ¼ um
cosh2½qðx− þ vxþÞ� ; ð90Þ
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This is a constant shape localized nonlinear wave propa-
gating with constant velocity ð1 − vÞ=ð1þ vÞ. Its ampli-
tude, um, and v, are related to each other, as well as the
soliton width, q−1, as

v ¼ 4e2

45π
W2

0

�
1þ 8

ffiffiffi
2

p

7
W0ūm

�
;

q2 ¼ 3
ffiffiffi
2

p

7
m2

e
ūm
W0

: ð91Þ

Evaluation of the soliton characteristic width, ls ¼ 1=q,
yields

ls ≈ 2
1

me

ffiffiffiffiffiffiffi
W0

ūm

s �
¼ 2ƛC

ffiffiffiffiffiffi
E0

Em

s �
; ð92Þ

whereas the soliton formation length is approximately
equal to

lf ≈
100

e2
W−4

0

me

�
W0

ūm

�
3=2

�
¼ 100

α
ƛC

�
ES

E0

�
4
�
E0

Em

�
3=2

�
:

ð93Þ

Here E0 and Em are the amplitudes of the counterpropagat-
ing waves ƛC ¼ ℏ=mec is the Compton wavelength.
Assuming E0=Em ¼ 100 and E0=ES ≈ 1 we obtain for
the soliton width ls ¼ 1.5 × 10−2 nm and for the soliton
formation length lf ¼ 4 μm.
We note that the field invariant F for this soliton, as

determined by Eq. (43), is negative, i.e., it can be
considered as an electromagnetic object where the elec-
tron-positron pair creation can occur via the Schwinger
mechanism [44,78,90,91].

V. CONCLUSIONS

We have obtained an analytical description of relativistic
electromagnetic solitons that can be formed in a configu-
ration consisting of two countercrossing electromagnetic
waves propagating in the QED vacuum. These extreme
high intensity electromagnetic waves in the QED vacuum
are described by partial differential equations that belong
to the family of the canonical equations in the theory
of nonlinear waves such as the Hopf, the Korteweg-de
Vries, the dispersionless Kadomtsev-Petviashvili, and the
Kadomtsev-Petviashvili equations.
In the case of the soliton solution of the KdV and KP

equations the nonlinearity effects are balanced by the wave
dispersion. The description of the nonlinearity leading to
the wave steepening requires to take into account the
6-photon mixing process (for details see Refs. [58,59])
within the framework of the theoretical model based on the
Heisenberg-Euler Lagrangian (42), which being principally
dispersionless corresponds to the long wavelength limit.

An adequate approach for calculating the QED vacuum
dispersion is based on the perturbation theory developed in
Refs. [62,63] where the expression for the invariant photon
mass (5), which is a pole of the photon Green’s function in
a crossed field, has been obtained. The approach elaborated
in Refs. [62,63] is valid as long as αχ2=3γ ≪ 1. As known,
e.g., see [48] in the small amplitude long wavelength limit,
when one can neglect the effects dispersion and the
nonlinearity is weak the approaches based on the perturba-
tion theory and on the Heisenberg-Euler paradigm are
equivalent. Analysis of analytical properties of the fðζÞ
function (seeAppendixA allowed us to derive the dispersion
term in Eq. (11) which leads to the wave equation in the
form (17). The dispersion term combination with the non-
linear term results in the KdV and KdP equations.
These equations have a wide range of applications in

mathematics and physics that spans from fluid mechanics
to solid state physics and to plasma physics. The soliton
theory is also used in quantum field theory [92–95]. In the
present paper we extend the field of applications of the
KdV, KP and dKP equations to the QED vacuum.
The QED vacuum polarization effects are planned to be

studied with the next generation lasers (see for details
[47,48,52,53,55,96,97]).
In particular these effects can be revealed bymeasuring the

phase difference between the phase of the electromagnetic
pulse colliding with the counterpropagating wave and the
phase of the pulsewhich does not interact with high intensity
wave, as well as by analyzing the wave frequency spectrum
with specific features corresponding to the soliton formation.
Revealing the change in the parameters of colliding

extremely intense laser beams will shed a light on the
space-time properties and vacuum texture.
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APPENDIX A: ANALYTICAL PROPERTIES
OF THE f ðζÞ FUNCTION

According to Eqs. (7) and (8) the function fðζÞ can be
presented in terms of the Airy functions AiðζÞ and GiðζÞ
(see also Ref. [98]). Integral representations of the standard
Airy function AiðζÞ and of the inhomogeneous Airy
function GiðζÞ (it is also known as the Scorer function)
are [68,69]
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AiðζÞ ¼ 1

π

Z
∞

0

dt cos

�
ζtþ t3

3

�
ðA1Þ

and

GiðζÞ ¼ 1

π

Z
∞

0

dt sin

�
ζtþ t3

3

�
; ðA2Þ

respectively. They obey the differential equations

Ai00 − ζAi ¼ 0 ðA3Þ

and

Gi00 − ζGi ¼ −
1

π
: ðA4Þ

Here a prime denotes a differentiation with respect to the
variable ζ. The equations should be solved with the initial
conditions corresponding to expressions (A1) and (A2) and
to (A5) and (A6) below.
The functions AiðζÞ and GiðζÞ can be expanded into the

Maclaurin series as follows.

AiðζÞ ¼ 3−2=3

π

X∞
n¼0

Γ
�
nþ 1

3

�
sin

�
3n − 1

3
π

� ð31=3ζÞn
n!

;

ðA5Þ

and

GiðζÞ ¼ 3−2=3

π

X∞
n¼0

Γ
�
nþ 1

3

�
cos

�
3n − 1

3
π

� ð31=3ζÞn
n!

:

ðA6Þ

In the limit ζ → 0, i.e., for χγ → ∞ with the relationship
between ζ and χγ given by Eq. (6) expressions (A5), (A6)
give

fðζÞ ¼ i
3−2=3

2

�
Γ
�
1

3

�
ð

ffiffiffi
3

p
þ iÞ

þ Γ
�
2

3

�
ð−

ffiffiffi
3

p
þ iÞ31=3ζ

�
þ…: ðA7Þ

For large ζ, when ζ → ∞ and jarg ζj < π, asymptotic
expansions of AiðζÞ and GiðζÞ yield

AiðζÞ ¼ ζ−1=4

2π
exp

�
−
2

3
ζ3=2

�

×
X∞
n¼0

ð−1ÞnΓ
�
3nþ 1

2

� ð9ζ3=2Þ−n
ð2nÞ! ; ðA8Þ

GiðζÞ ¼ 1

πζ

X∞
n¼0

ð3nÞ!
n!

ð3ζ3Þ−n: ðA9Þ

As a result we obtain for the asymptotic expansion of the
function fðζÞ in the limit ζ ≫ 1

fðζÞ ¼ 1

ζ
þ 2

ζ4
þ 120

ζ7
þ � � � þ iπ

2ζ1=4
exp

�
−
2ζ3=2

3

�
:

ðA10Þ

APPENDIX B: SOLITONS OF KADOMTSEV-
PETVIASHVILI EQUATION

Here several typical examples of the solitons of
Kadomtsev-Petviashvili equation [99–101] are presented.
By rescaling independent and depended variables the KP
equation can be reduced to the normalized form

∂−ð∂þuþ 6u∂− þ ∂−−−uÞ ¼ 3∂yyu: ðB1Þ

A rich variety of the soliton solutions of the KP equation
can be found with using the Hirota method [102], Backlund
transformation or the Wronskian technique [103].
The localized solution of the KP equation (B1) is known

as the “lump” and has the form [101,104–106]

uðxþ; x−; yÞ ¼ 24v
3 − v½ðx− þ vxþÞ2 − vy2�

f3þ v½ðx− þ vxþÞ2 þ vy2�g2 : ðB2Þ

It is shown in Fig. 3(a). The propagation velocity in the x�
variables v of the lump soliton and its maximum amplitude
are related as ūm ¼ 8v. The lump width is

ffiffiffiffiffiffiffiffi
3=v

p
and is

inversely proportional to the square root of its amplitude as
in the case described by Eq. (92). At x− ¼ vxþ, along the
y axis the function ū monotonically decreases as ū ∼ y−2.
In the plane ðx−; yÞ it changes sign on the hyperbola
given by equation

ðx− þ vxþÞ2 − vy2 ¼ 3=v: ðB3Þ

This hyperbola is clearly seen in Fig. 3(b), where the
isocontours of ūð0; x−; yÞ are plotted.
Multi-solitons for the KP equation can be found from

equation u ¼ 2∂−−ðln fÞ (see Ref. [102] and literature cited
therein). To single-soliton solution to the KP equation the
function fðx−; xþ; yÞ equals

f ¼ 1þ expðθ1Þ; ðB4Þ

where θ1¼k1ðx−þω1xþþp1yÞþξ1 with ω1 ¼ k31 þ 3p2
1.

The corresponding KP soliton is given by
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FIG. 3. Lump soliton for v ¼ 5: a) ūðx; y; 0Þ; b) contours of equal value of ūðx; y; 0Þ.

FIG. 4. Single soliton for KP equation.

FIG. 5. Double soliton for KP equation.
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u ¼ k21
2cosh2ðθ1=2Þ

: ðB5Þ

It describes “oblique KdV” soliton whose maximum is
localized on the line θ1 ¼ 0. It is shown in Fig. 4.
Double soliton solution for the KP equation is given by

the function f equal to

f¼ 1þb1 expðθ1Þþb2 expðθ2Þþb12 expðθ1þθ2Þ; ðB6Þ

where θi ¼ kiðx− þ ωixþ þ piyÞ þ ξi with ωi ¼ k3i þ 3p2
i

(i ¼ 1, 2) and

b1 ¼ −
k1 þ k2 þ p1 − p2

k1 − k2 − p1 þ p2

; b2 ¼
k1 þ k2 − p1 þ p2

k1 − k2 − p1 þ p2

;

b3 ¼ −
k1 − k2 þ p1 − p2

k1 − k2 − p1 þ p2

: ðB7Þ

Double soliton for the KP equation is shown in Fig. 5.
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