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Motivated by the recent work of Chigusa, Moroi, and Shoji, we propose a new simple gradient flow
equation to derive the bounce solution which contributes to the decay of the false vacuum. Our discussion
utilizes the discussion of Coleman, Glaser, and Martin, and we solve a minimization problem of the kinetic
energy while fixing the potential energy. The bounce solution is derived as a scale transformation of the
solution of this problem. We also show that the convergence of our method is robust against a choice of the
initial configuration.
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I. INTRODUCTION

The decay of the false vacua is an important topic in
particle physics and cosmology. The decay rate of the false
vacua can be calculated from “the imaginary part” of the
Euclidean path integral [1].1 In the path integral formalism,
we can see that the main contribution comes from the
bounce solution ϕB, which is a nontrivial solution of the
equation of motion with the least action. Thus, the bounce
solution plays a crucial role in the decay of the false vacua.
To calculate the bounce solution, we have to solve the
equation of motion with the boundary condition at infinity.
In general, it is not easy to calculate the bounce solution,
and this is particularly the case for models with multiscalar
fields.
Several algorithms to calculate the bounce action

have been discussed so far—e.g., gradient flow with
modifications [4–6], modified actions which have the
bounce solution as a local minimum [7–10], gradually
changing a coefficient of the friction term [the second
term on the lhs of Eq. (7)] [11,12], machine learning
[13,14], and so on. Also, public codes to calculate the
bounce solution are available, such as CosmoTransitions

[15,16], AnyBubble [17], and BubbleProfiler [18,19].
Some works discuss the bounce solution or action avoiding
the direct calculation—e.g., some approximations [20–22],
upper bounds [23–25], lower bounds [25–27], and an
alternative formulation [28–30].
One of the reasons for the technical difficulty is that the

bounce solution is a saddle point of the action; i.e., the

bounce is not a stable solution of a simple minimization
problem. Recently, Chigusa, Shoji, and Moroi [31]
proposed a new method to obtain the bounce solution.
They proposed a gradient flow equation whose fixed
point is the bounce solution. Their flow equation has the
gradient of the action and an additional term to lift up
unstable direction around the bounce solution. Motivated
by Ref. [31], in this paper, we propose a new simple flow
equation. Coleman, Glaser, and Martin (CGM) [32]
showed that the calculation of the bounce solution is
equivalent to the minimization of the kinetic energy T
while fixing the potential energy V < 0. This minimiza-
tion problem can be naturally formulated in a flow
equation. In the end, the bounce solution is obtained
as a scale transformation of the solution of this problem.
In Sec. II, we describe our formulation to calculate the
bounce solution. In Sec. III, we discuss numerical
analysis on several examples by using our flow equation,
and show that our flow equation works well.

II. FORMULATION

In this paper, we focus on the Euclidean action with n
scalar fields with the canonical kinetic term.

S½ϕ� ¼ T ½ϕ� þ V½ϕ�; ð1Þ

T ½ϕ� ¼
Xn
i¼1

Z
ddx

1

2
ð∇ϕiÞ2; ð2Þ

V½ϕ� ¼
Z

ddxVðϕÞ: ð3Þ

Here d is the dimension of the space, and we assume d is
larger than 2. The scalar potential V satisfies Vð0Þ ¼ 0,
∂V=∂ϕi ¼ 0, all of the eigenvalues of the Hessian of V at
ϕi ¼ 0 are non-negative, and V is somewhere negative.
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1For earlier discussions, see, e.g., Refs. [2,3].
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The bounce solution which contributes to the decay of
the false vacuum satisfies the equation of motion and the
boundary condition at infinity:

−∇2ϕi þ
∂V
∂ϕi

¼ 0; ð4Þ

lim
jxj→∞

ϕiðxÞ ¼ 0: ð5Þ

Also, the bounce solution should be a nontrivial solution,
i.e., ∃ i; x;ϕiðxÞ ≠ 0. Thus,

T ½ϕ� > 0; V½ϕ� < 0: ð6Þ

Note that V½ϕ� < 0 is required in order for the bounce
solution to be an extremum under the scale transformation:
ϕiðxÞ → ϕiðλxÞ. See, e.g., Ref. [32]. The bounce solution
has the least action among configurations which satisfy
the above conditions [Eqs. (4), (5), and (6)]. It is known
that the bounce solution has spherical symmetry [32–35].
Therefore, Eq. (4) can be simplified as

−
d2ϕi

dr2
−
d − 1

r
dϕi

dr
þ ∂V
∂ϕi

¼ 0: ð7Þ

In order to discuss the bounce solution, CGM [32]
introduced the reduced problem, which is defined as the
problem of finding a configuration vanishing at infinity
which minimizes T for some fixed negative V. The
existence of the solution of this problem is ensured by
CGM’s theorem B in Refs. [32,36]. Also, CGM’s theorem
A ensures that the bounce solution can be obtained as a
scale transformation of a solution of the reduced problem.
(See the Appendix.) Here we solve CGM’s reduced
problem by using a gradient flow equation. We introduce
functions φiðr; τÞ and propose the following gradient flow
equations:

∂
∂τ φiðr; τÞ ¼ ∇2φi − λ½ϕ� ∂VðφÞ∂φi

; ð8Þ

λ½φ� ¼
P

i

R∞
0 drrd−1 ∂VðφÞ

∂φi
∇2φiP

i

R
∞
0 drrd−1ð∂VðφÞ∂φi

Þ2
: ð9Þ

Here τ is “the time” for the flow of φ and ∇2φi ¼
∂2
rφi þ ðd − 1Þð∂rφÞ=r. We take the initial φðr; 0Þ such

that

V½φ�jτ¼0 < 0: ð10Þ

Note that limr→∞ φiðr; τÞ ¼ 0 should hold in order for V½ϕ�
to be finite. By using Eqs. (8) and (9), we can show

d
dτ

V½φ� ¼ 0; ð11Þ

d
dτ

T ½φ� ≤ 0: ð12Þ

To show Eq. (12), we used the following Cauchy-Schwarz
inequality:

�X
i

Z
∞

0

drrd−1ð∇2φiÞ2
��X

i

Z
∞

0

drrd−1
�∂VðφÞ

∂φi

�
2
�

≥
�X

i

Z
∞

0

drrd−1
∂VðφÞ
∂φi

∇2φi

�
2

: ð13Þ

Also, we can see that the equalities of Eqs. (12) and (13)
hold if and only if

∇2φi ¼ λ
∂VðφÞ
∂φi

ð14Þ

is satisfied. Equations (11) and (12) tell us that T ½φ�
monotonously decreases while V½φ� is constant during
the flow of φ. In the limit of τ → ∞, φ converges to a
configuration which satisfies ∇2φi − λð∂VðφÞ=∂φiÞ ¼ 0.
The convergence of φ is guaranteed by the existence of the
minimizer [32,36]. Note that this fixed point cannot be the
false vacuum φi ¼ 0, because V½φ� in the neighborhood of
the false vacuum is positive, and V½φ� is always negative
during the flow. As long as the initial condition is not fine-
tuned, φ at τ → ∞ should be a stable solution under the
small perturbation; i.e., T ½φ� should be a local minimum
under the small perturbation such that V½ϕ� is not changed.
In principle, the reduced problem could have several local
minima. Physically, this case happens if there exist several
directions of tunneling. In this case, φ at τ → ∞ depends on
the initial condition, and we can find the global minimum
among those local minima. The configuration which gives
the smallest value of T is the solution of the CGM’s
reduced problem.
Let ϕiðrÞð≡limτ→∞φiðr; τÞÞ be the solution of the

reduced problem, and derive the bounce solution. The
bounce solution ϕBðrÞ can be obtained by a scale trans-
formation of ϕ as

ϕBðrÞ ¼ ϕðλ1=2rÞ: ð15Þ

The above λ is calculated as limτ→∞ λ½φ�. Although CGM’s
theorem A ensures that this ϕB is the bounce solution, let us
see this more explicitly. We can immediately see that (i) ϕB
satisfies the EOM [Eq. (4)], and (ii) limr→∞ϕBðrÞ ¼ 0,
because V½ϕB� is finite. Also, we can see that (iii) S has
only one unstable direction around ϕB. Since ϕB is a scale
transformation of ϕ, ϕB is the global minimum of the action
S if the potential energy V is fixed. The direction in which
S decreases is the direction which changes V½ϕ�—i.e., the
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scale transformation. Therefore, ϕB, which is defined in
Eq. (15), is the bounce solution.
An essential point of our method is that the negative

eigenmode around the bounce solution can be related to
the scale transformation. By fixing the potential energy V,
we freeze fluctuation in this direction. Note that a method
which is proposed in Ref. [4] also utilizes this property.

III. EXAMPLE

In the previous section, we have seen that the CGM’s
reduced problem can be solved by the flow equation
[Eqs. (8) and (9)], and the bounce solution can be obtained
from Eq. (15). In this section, we discuss numerical results
for several examples, and show that our method works well.
First, let us take the following single scalar potential in

d ¼ 4 Euclidean space:

VðϕÞ ¼ 1

2
ϕ2 −

1

3
ϕ3: ð16Þ

We take the initial configuration at τ ¼ 0 as

φðr; 0Þ ¼
�
5ð1 − rÞ ð0 ≤ r ≤ 1Þ
0 ðr > 1Þ : ð17Þ

The flowof this field configuration is shown inFig. 1.We can
see the convergence of the configuration. In Figs. 2 and 3, we
show the flow of the configuration from different initial
conditions. We can see that the convergence of the configu-
ration is robust for different initial conditions. The final
configuration depends only on the value of V½φ�, and those
different final results are connected with each other by an
appropriate scale transformation.By using this result, we can
obtain the bounce solution from Eq. (15). We compare our
bounce solution with the result by CosmoTransitions [16] in
Fig. 4. We can see that the two results agree well, and our
method works.

FIG. 1. A flow of the field configuration with the potential
[Eq. (16)] with d ¼ 4 and the initial condition [Eq. (17)].

FIG. 2. Same as Fig. 1, except for the initial configuration.

FIG. 4. The black line is obtained from Eq. (15) in the limit of
large τ. The yellow dotted line is calculated by CosmoTransitions.

FIG. 3. Same as Fig. 1, except for the initial configuration.
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Next, let us discuss a case with two scalar fields. We take
the following potential:

V¼ðϕ2
1þ5ϕ2

2Þð5ðϕ1−1Þ2þðϕ2−1Þ2Þþc

�
1

4
ϕ4
2−

1

3
ϕ3
2

�
:

ð18Þ

Again, we compare our bounce solutions with the results by
CosmoTransitions. The case with c ¼ 2 is shown in Figs. 5 and
6, and the case with c ¼ 80 in Figs. 7 and 8. We can see that
our result agrees with that of CosmoTransitions.

IV. CONCLUSION

In this paper, motivated by a recent work of Chigusa,
Shoji, and Moroi [31], we proposed a new simple gradient
flow equation, which is defined in Eqs. (8) and (9). Our flow
equation solves the CGM’s reduced problem [32], i.e., the
minimization problem of kinetic energy T while fixing
potential energy V. This minimization problem can be
naturally formulated in a flow equation, and the bounce
solution can be obtained as a scale transformation of this
solution as Eq. (15). Since our flow equation solves the
minimization problem and the existence of the minimizer is
guaranteed by Refs. [32,36], the convergence of this method
is robust against the choice of initial configuration as long as
V½φ� < 0 is satisfied. A numerical package using this
method is presented in Ref. [37].2 This package calculates
the Euclidean bounce action in Oð0.1Þ s with Oð0.1Þ%
accuracy for models with 1–8 scalar field(s), which is faster
than CosmoTransitions [15,16], AnyBubble [17], and
BubbleProfiler [18,19].
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FIG. 5. The bounce solution in the r-ϕ plane is shown by solid
lines. The dashed lines are results of CosmoTransitions. We take the
potential [Eq. (18)] with c ¼ 2 in d ¼ 4 space.

FIG. 6. The same bounce solution as Fig. 5 in the ϕ1-ϕ2 plane.

FIG. 7. The bounce solution in the r-ϕ plane is shown by solid
lines. The dashed lines are results of CosmoTransitions. We take the
potential Eq. (18) with c ¼ 80 in d ¼ 4 space.

FIG. 8. The same bounce solution as Fig. 7 in the ϕ1-ϕ2 plane.

2See also https://github.com/rsato64/SimpleBounce.
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APPENDIX: CGM’S THEOREM A

In this Appendix, we briefly summarize the theorem A in
Ref. [32]. We denote the solution of the reduced problem
for a given V as ϕðVÞ. This theorem ensures that the bounce
solution is given by a scale transformation of ϕðVÞ.
ϕðV0Þ is a stationary point of T ½ϕ� þ λðV½ϕ� − V0Þ, where

λ is the Lagrange multiplier. Thus, ϕðV0Þ satisfies

−∇2ϕðV0Þi þ λ
∂V
∂ϕi

¼ 0: ðA1Þ

Here, λ should be appropriately chosen for the value of V0.
We define the following configuration ϕB:

ϕBðxÞ ¼ ϕðV0Þðλ1=2xÞ: ðA2Þ

We can see that this is the bounce solution. First, by using
Eqs. (A1) and (A2), we can check that ϕB satisfies the
EOM [Eq. (4)]. Next, let us show that the action of any
nontrivial solution of Eq. (4) is equal to or larger than
S½ϕB�. Let ϕ̃ be a nontrivial solution of Eq. (4). The action
of ϕ̃ is extremized under the scale transformation of ϕ̃.
Therefore,

ðd − 2ÞT ½ϕ̃� þ dV½ϕ̃� ¼ 0: ðA3Þ

There exists a solution of the reduced problem for
V ¼ V½ϕ̃�, and the kinetic energy is not larger than T ½ϕ̃�:

T ½ϕðV½ϕ̃�Þ� ≤ T ½ϕ̃�: ðA4Þ

T ½ϕB� and V½ϕB� are given as

T ½ϕB� ¼ λ1−d=2T ½ϕðV½ϕ�Þ�; ðA5Þ

V½ϕB� ¼ λ−d=2V½ϕ�: ðA6Þ

Here, λ ≥ 1 because of ðd − 2ÞT ½ϕB� þ dV½ϕB� ¼ 0 and
Eqs. (A3) and (A4). Thus, by using Eqs. (A4) and (A5), we
can show that

T ½ϕB� ≤ T ½ϕ̃�: ðA7Þ

S ¼ ð2=dÞT is satisfied for solutions of Eq. (4). Then,

S½ϕB� ≤ S½ϕ̃�: ðA8Þ

Thus, ϕB has the least action among the nontrivial solutions
of the EOM.
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