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We find in one-loop calculations and spectator models that twist-3 generalized parton distributions
exhibit discontinuities. In the forward limit, these discontinuities grow into Dirac delta functions which are
essential to satisfy the sum rules involving twist-3 parton distribution functions (PDFs). We calculate twist-
3 quasi-PDFs as a function of longitudinal momentum and identify the Dirac delta function terms with
momentum components in the nucleon state that do not scale as the nucleon is boosted to the infinite
momentum frame.
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I. INTRODUCTION

A complementary picture of the nucleon structure is
obtained by simultaneous information on both transverse
spatial and longitudinal momentum distributions of par-
tons. The relevant physical observables are generalized
parton distributions (GPDs) [1–4]. Theoretically, they are
calculated from nonforward matrix elements of nonlocal
operators, and experimentally, they are accessible through
exclusive deep inelastic scattering experiments, such as
deeply virtual Compton scattering (DVCS) [4,5]. GPDs
give information about the spin, momentum, and spatial
distribution of the quarks, antiquarks, and gluons within a
fast moving nucleon [6–8] and, therefore, provide a
remarkable insight on its inner structure.
One property to classify the GPDs is their twist [9]. Twist

determines the order in Q2 (squared four-momentum trans-
fer) at which a matrix element contributes to the physical
amplitude of a given hard process.With increasing twist, the
number of partons which participate in that matrix element
also tend to increase. At leading twist, twist-2, GPDs
describe two-particle correlations in the nucleon, while
the next leading twist, twist-3, GPDs also involve three-
particle correlations, such as quark-gluon-quark (qgq). It is
advantageous to define the twist in the infinite momentum
frame (IMF)where the nucleon has a largemomentum in the
longitudinal direction (direction of the nucleon propaga-
tion), i.e., Pþ ≫ M, and nearly zero momentum in the
transverse direction, i.e.,PT ≈ 0 [10]. In the IMF, the twist of
a distribution can be identified with its behavior under a
longitudinal momentum boost. While twist-2 distributions
are invariant under the boosts along the longitudinal direc-
tion, twist-3 distributions change as 1=Pþ.
In the Bjorken limit, the matrix elements are dominated

by twist-2 operators [11]. Even though they are mostly
relevant for subleading corrections, there are several
motivations to study twist-3 GPDs. For example:

(i) They involve a novel type of information on qgq
correlations which is not contained in twist-2

distributions. These qgq correlations can be inter-
preted as an average transverse color Lorentz force
acting on the quarks inside a nucleon [12]. The new
information embodied in twist-3 GPDs is the dis-
tribution of that force on the transverse plane.

(ii) At low Q2, the twist-3 contamination can be sig-
nificant. Therefore, twist-3 corrections may not be
negligible in the upcoming detailed measurements
of DVCS amplitude at 12 GeV in Jefferson Lab. On
the other hand, it has been shown that in the analysis
of DVCS amplitude, the electromagnetic gauge
invariance requires twist-3 contributions in the
asymptotic regime [13,14].

(iii) Twist-3 GPDs may provide an alternative source of
information on orbital angular momentum of the
quarks through the sum rule which relates the second
moment of a particular twist-3 GPD, G2, and kinetic
angular momentum of the quarks inside a longitu-
dinally polarized nucleon [15–17],

Lq
kin ¼ −

Z
dxxGq

2ðx; ξ ¼ 0; t ¼ 0Þ; ð1Þ

where x is the average longitudinal quark momen-
tum, ξ is the longitudinal, and t is the total
momentum transfer to the nucleon.

Twist-3 GPDs generically exhibit discontinuities at the
points of particular interest and importance (x ¼ �ξ).
These points correspond to configurations in which one
of the partons has a vanishing momentum component in the
matrix element describing the scattering amplitude. There
are several studies [17–30] which reveal the discontinuties
of twist-3 GPDs using Wandzura-Wilczek (WW) approxi-
mation [31]. However, we show that twist-3 GPDs are also
discontinuous in the quark target model (QTM) and scalar
diquark model (SDM) without using WW approximation.
Potentially the discontinuities lead to divergent scattering
amplitudes and endanger the factorization of the hard-
scattering process [32]. However, in Ref. [33] it has been
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shown that the discontinuities cancel for the linear combi-
nations of twist-3 GPDs which enter the DVCS amplitude,
and therefore, twist-3 amplitudes are consistent with DVCS
factorization. Even though they do not exhibit a problem for
factorization, we will show that in the forward limit the
discontinuities can grow intoDirac delta functionswhich are
essential for satisfying relevant Lorentz invariance relations.
Investigating twist-3 quasi-PDFs (parton distribution func-
tions) as a function of the longitudinal momentum reveals
that theDirac delta function terms correspond tomomentum
components in the nucleon state that do not scale as the
nucleon is boosted to the IMF.
There are several parametrizations of the correlators

which define GPDs [25,27,34]. The relations between the
different parametrizations are given in Ref. [33]. We use the
following parametrization [28] and adopt the light front
gauge Aþ ¼ 0 where the Wilson lines can be ignored [35]:

1

2

Z
dz−

2π
eixp

þz−hP0; S0jq̄
�
−
z−

2

�
γjq

�
z−

2

�
jP; Si

¼ 1

2pþ ūðP0; S0Þ
�
Δj

⊥
2M

G1 þ γjðH þ Eþ G2Þ

þ Δj
⊥

pþ γþG3 þ
iϵjkT Δk⊥
pþ γþγ5G4

�
uðP; SÞ; ð2Þ

1

2

Z
dz−

2π
eixp

þz−hP0; S0jq̄
�
−
z−

2

�
γjγ5q

�
z−

2

�
jP; Si

¼ 1

2pþ ūðP0; S0Þ
�
Δj

⊥
2M

γ5ðẼþ G̃1Þ þ γjγ5ðH̃ þ G̃2Þ

þ Δj
⊥

pþ γþγ5G̃3 þ
iϵjkT Δk⊥
pþ γþG̃4

�
uðP; SÞ: ð3Þ

In Eqs. (2) and (3), PðP0Þ is the incoming (outgoing), pþ is
the average longitudinal nucleon four-momentum, SðS0Þ is
the initial (final) nucleon spin, M is the nucleon mass,
and H;E; H̃; Ẽ are twist-2, G1;…; G4; G̃1;…; G̃4 are
twist-3 GPDs.
In this study, we focus on the twist-3 GPDs G2 and G̃2

since they are essential in the sense that G2 is related to the

quark kinetic orbital angular momentum via Eq. (1), and G̃2

reduces to g2ðxÞ in the forward limit which enters the
polarized deep inelastic scattering (DIS) cross section [36].
This paper is organized as follows: In Secs. II and III, the

twist-3 GPDs G2 and G̃2 are calculated using QTM and
SDM, respectively. The behaviors of their discontinuities
under decreasing skewness parameters (ξ → 0) are inves-
tigated and summarized in Table I. In Sec. IV, the forward
limit of G̃2, twist-3 PDF g2ðxÞ, is calculated using SDM.
The discontinuities of G̃2 are identified with a Dirac delta
function term in g2ðxÞ. With the motivation of investigating
the origin of this singularity, also the quasi-PDF, gquasi2 ðkzÞ,
is calculated. Determining gquasi2 ðkzÞ shows that the Dirac
delta function term in g2ðxÞ corresponds to a momentum
component in the nucleon state that does not scale as the
nucleon is boosted to the IMF. As shown in Sec. V,
neglecting the Dirac delta functions leads to the violation
of sum rules for twist-3 PDFs and GPDs. In Sec. VI, our
work is summarized.

II. G2 AND G̃2 IN QUARK TARGET MODEL

In QTM, a quark or an antiquark releases a photon/gluon
and recombines with it after the interaction. Figure 1
shows QTM in a symmetric frame where the kinematic
variables are Δ, the four-momentum transfer; P ¼ p−
Δ
2
ðP0 ¼ pþ Δ

2
Þ, the incoming (outgoing) four-momentum;

p, the average momentum (with p⊥ ¼ 0); k − Δ
2
ðkþ Δ

2
Þ,

the four-momentum before (after) the interaction.
To calculate G2, the matrix element on the left-hand side

(LHS) of Eq. (2) is written using QTM with the vertex
operator, Γ ¼ γ⊥,

−
ig2

2

Z
d4k
ð2πÞ4 δðk

þ − xpþÞūðP0; S0Þγμ ð=kþ Δ
2
þmÞ

½ðkþ Δ
2
Þ2 −m2 þ iϵ� γ

⊥ ð=k − Δ
2
þmÞ

½ðk − Δ
2
Þ2 −m2 þ iϵ� γ

ν

×

�
gμν −

nνðpμ − kμÞ
pþ − kþ

−
nμðpν − kνÞ
pþ − kþ

�
1

½ðp − kÞ2 − λ2 þ iϵ� uðP; SÞ

¼ 1

2pþ ūðP0; S0Þ
�
Δ⊥
2M

G1 þ γ⊥ðH þ EþG2Þ þ
Δ⊥
pþ γþG3 þ

iϵ⊥k
T Δ⊥

k

pþ γþγ5G4

�
uðP; SÞ; ð4Þ

and the coefficient of the vector structure, ðH þ Eþ G2Þ, is identified. In Eq. (4), g is the coupling strength, m ¼ M is the
quark/antiquark, and λ is the renormalization mass. To extract G2 from the combination, ðH þ Eþ G2Þ, H is calculated in
QTM using the parametrization,

TABLE I. The behavior of the discontinuities of the twist-3
GPDs, G̃2 and G2, as ξ → 0 in QTM and SDM.

Twist-3 GPD QTM SDM

G2 Divergent Divergent
G̃2 Finite Divergent
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1

2

Z
dz−

2π
eixp

þz−hP0; S0jq̄
�
−
z−

2

�
γþq

�
z−

2

�
jP; Si ¼ 1

2pþ ūðP0; S0Þ
�
γþH þ iσþρΔρ

2M
E

�
uðP; SÞ: ð5Þ

For simplicity, only the divergent contributions are
considered. Since E is finite, it does not contribute to
the divergent parts of the matrix elements in Eqs. (4)
and (5).
Identifying ξ with the longitudinal momentum transfer

fraction (ξ ¼ Δþ=2pþ), the three regions regarding the
interval of the longitudinal momentum fraction
(x ¼ kþ=pþ) have to be distinguished to evaluate the k−

integrals on the LHS of Eq. (4):
(i) For ξ < x ≤ 1, the incoming and outgoing longi-

tudinal momentum fractions, x − ξ and xþ ξ, are
positive, and the correlator involves an incoming and
an outgoing quark.

(ii) For − ξ ≤ x ≤ ξ, the incoming longitudinal momen-
tum fraction, x − ξ, is negative and the outgoing,
xþ ξ, is positive. In this region, the correlator
involves an incoming antiquark and outgoing quark.

(iii) For − 1 ≤ x < ξ, both momentum fractions are neg-
ative, describing an incoming and an outgoing
antiquark.

The regions ξ < x ≤ 1 and −1 ≤ x < ξ are commonly
referred to as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
regions [37–40] and −ξ ≤ x < ξ as the Efremov-
Radyuskin-Brodsky-Lepage (ERBL) region [41,42].
Regarding these regions, the divergent part of G2 in
QTM is calculated as

G2 ¼

8>><
>>:

g2

π2
ð1þxÞ
ð1−ξ2Þ lnΛ⊥ for ξ < x < 1;

− g2

2π2
ð1þxÞ
ξð1þξÞ lnΛ⊥ for − ξ ≤ x ≤ ξ;

0 for − 1 < x < ξ;

ð6Þ

where Λ⊥ is the transverse momentum cutoff. Since it
violates the conservation of momentum in QTM, the
distribution does not have support in the −1 < x < ξ
region.
To calculate G̃2, the matrix element on the LHS of

Eq. (3) is written using QTM with the vertex operator,
Γ ¼ γ⊥γ5, and the coefficient of the axial vector structure,
ðH̃ þ G̃2Þ, is identified,

−
ig2

2

Z
d4k
ð2πÞ4 δðk

þ − xpþÞūðP0; S0Þγμ ð=kþ Δ
2
þmÞ

½ðkþ Δ
2
Þ2 −m2 þ iϵ� γ

⊥γ5
ð=k − Δ

2
þmÞ

½ðk − Δ
2
Þ2 −m2 þ iϵ� γ

ν

×

�
gμν −

nνðpμ − kμÞ
pþ − kþ

−
nμðpν − kνÞ
pþ − kþ

�
1

½ðp − kÞ2 − λ2 þ iϵ� uðP; SÞ

¼ 1

2pþ ūðP0; S0Þ
�
Δ⊥
2M

γ5ðẼþ G̃1Þ þ γ⊥γ5ðH̃ þ G̃2Þ þ
Δ⊥
pþ γþγ5G̃3 þ

iϵ⊥k
T Δ⊥

k

pþ γþG̃4

�
uðP; SÞ: ð7Þ

H̃ is calculated in the same model, but with the vertex operator, Γ ¼ γþγ5, using the parametrization

1

2

Z
dz−

2π
eixp

þz−hP0; S0jq̄
�
−
z−

2

�
γþγ5q

�
z−

2

�
jP; Si ¼ 1

2pþ ūðP0; S0Þ
�
γþγ5H̃ þ γ5Δþ

2M
Ẽ

�
uðP; SÞ: ð8Þ

Considering only the divergent parts, where Ẽ does not
contribute to the matrix elements in Eqs. (7) and (8), G̃2 is
calculated as

G̃2 ¼

8>><
>>:

g2

π2
ðxþξ2Þ
ð1−ξ2Þ lnΛ⊥ for ξ < x < 1;

− g2

2π2
ðxþξ2Þ
ξð1þξÞ lnΛ⊥ for − ξ ≤ x ≤ ξ;

0 for − 1 < x < ξ:

ð9Þ

As Fig. 2 shows, G2 and G̃2 exhibit discontinuities at the
points x ¼ �ξ which correspond to vanishing longitudinal FIG. 1. QTM in a symmetric frame.
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FIG. 2. Discontinuities of the twist-3 GPDs, G2 and G̃2 in QTM for Λ⊥ ¼ 2, and g ¼ 1.
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momentum components in the initial or final state. In the
limit of ξ → 0, the discontinuities of G̃2 stay finite, and the
contribution from the ERBL region partially cancels upon

integrating over x. Whereas, the discontinuities of G2

diverge, and its ERBL region resembles a representation
of a Dirac delta function, as explained in Appendix A. In
the following section, the discontinuities of G2 and G̃2 and
their behaviors as ξ → 0 are investigated using SDM.

III. G2 AND G̃2 IN SCALAR DIQUARK MODEL

In a SDM, the three valence quarks of the nucleon are
considered to be a bound state of a single quark and a scalar
diquark. We assume that the virtual photon is interacting
only with the single quark (active quark) and the scalar
diquark is a spectator as shown in Fig. 3.
To calculate G2, the matrix element on the LHS of

Eq. (2) is written using SDM,

ig2

2

Z
d4k
ð2πÞ4 δðk

þ − xpþÞūðP0; S0Þ ð=kþ Δ
2
þmÞ

½ðkþ Δ
2
Þ2 −m2 þ iϵ� γ

⊥ ð=k − Δ
2
þmÞ

½ðk − Δ
2
Þ2 −m2 þ iϵ�

1

½ðp − kÞ2 − λ2 þ iϵ� uðP; SÞ

¼ 1

2pþ ūðP0; S0Þ
�
Δ⊥
2M

G1 þ γ⊥ðH þ Eþ G2Þ þ
Δ⊥
pþ γþG3 þ

iϵ⊥k
T Δ⊥

k

pþ γþγ5G4

�
uðP; SÞ; ð10Þ

and the coefficient of the vector structure, ðH þ Eþ G2Þ, is identified. In Eq. (10),M, m, and λ denote the nucleon, quark,
and diquark masses, respectively. G2 is extracted considering only the divergent contributions, as in the QTM case,

G2 ¼

8>>><
>>>:

− g2

2π2
ð1−xÞ
ð1−ξ2Þ lnΛ⊥ for ξ < x < 1;

− g2

8π2
ð2xþξ−1Þ
ξð1þξÞ lnΛ⊥ for − ξ ≤ x ≤ ξ;

0 for − 1 < x < ξ:

ð11Þ

To calculate G̃2, the matrix element in Eq. (3) is written using SDM,

ig2

2

Z
d4k
ð2πÞ4 δðk

þ − xpþÞūðP0; S0Þ ð=kþ Δ
2
þmÞ

½ðkþ Δ
2
Þ2 −m2 þ iϵ� γ

⊥γ5
ð=k − Δ

2
þmÞ

½ðk − Δ
2
Þ2 −m2 þ iϵ�

1

½ðp − kÞ2 − λ2 þ iϵ� uðP; SÞ

¼ 1

2pþ ūðP0; S0Þ
�
Δ⊥
2M

γ5ðẼþ G̃1Þ þ γ⊥γ5ðH̃ þ G̃2Þ þ
Δ⊥
pþ γþγ5G̃3 þ

iϵ⊥k
T Δ⊥

k

pþ γþG̃4

�
uðP; SÞ; ð12Þ

the axial vector structure coefficient, ðH̃ þ G̃2Þ, is identified, and after calculating H̃, the divergent part of G̃2 is obtained,

G̃2 ¼

8>>><
>>>:

− g2

2π2
ðx−ξ2Þ
ð1−ξ2Þ lnΛ⊥ for ξ < x < 1;

g2

8π2
ð2x−2ξ2þξþ1Þ

ξð1þξÞ lnΛ⊥ for − ξ ≤ x ≤ ξ;

0 for − 1 < x < ξ:

ð13Þ

As shown in Fig. 4, G2 and G̃2 exhibit discontinuities at the
points x ¼ �ξ. These discontinuities diverge as ξ → 0, and
the ERBL regions of both GPDs resemble a representation
of a Dirac delta function.

The behaviors of the discontinuities of G̃2 and G2 as
ξ → 0 in QTM and SDM are summarized in Table I. In the
following section, twist-3 PDFs and quasi-PDFs are inves-
tigated using SDM.

FIG. 3. SDM in a symmetric frame.

SINGULARITIES IN TWIST-3 QUARK DISTRIBUTIONS PHYS. REV. D 101, 016010 (2020)

016010-5



FIG. 4. Discontinuities of the twist-3 GPDs, G2 and G̃2, in SDM for Λ⊥ ¼ 2 and g ¼ 1.
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IV. TWIST-3 PDFS AND TWIST-3 QUASI-PDFS
IN SCALAR DIQUARK MODEL

For equal momenta and spins of the initial and final
hadron states, the matrix elements defining GPDs reduce to
the matrix elements defining PDFs [43]. There are three
quark PDFs ðf1; g1; h1Þ at twist-2 level and three quark
PDFs ðe; hL; g2Þ at twist-3 level. The complete set of
PDFs is defined by the matrix elements of quark bilocal
operators,

Z
dλ
2π

eiλxhP; Sjq̄ð0ÞγμqðλnÞjP; Si

¼ 2½f1ðxÞp̂μ þM2f4ðxÞn̂μ�; ð14Þ
Z

dλ
2π

eiλxhP; Sjq̄ð0Þγμγ5qðλnÞjP; Si

¼ 2fg1ðxÞp̂μðS · n̂Þ þ gTðxÞSμ⊥ þM2g3ðxÞn̂μðS · n̂Þg;
ð15Þ

Z
dλ
2π

eiλxhP; Sjq̄ð0ÞqðλnÞjP; Si ¼ 2MeðxÞ; ð16Þ
Z

dλ
2π

eiλxhP;Sjq̄ð0Þiσμνγ5qðλnÞjP;Si

¼2

�
h1ðxÞ

ðSμ⊥p̂ν−Sν⊥p̂μÞ
M

þhLðxÞMðp̂μn̂ν− p̂νn̂μÞS · n̂

þh3ðxÞMðSμ⊥n̂ν−Sν⊥n̂μÞ
�
; ð17Þ

where P, S, and M are the momentum, spin, and mass of
the parent hadron, respectively. p̂ and n̂ are lightlike
vectors, i.e., p̂2 ¼ n̂2 ¼ 0, with the components,
p̂− ¼ p̂⊥ ¼ 0, p̂þ ¼ Pþ and n̂þ ¼ n̂⊥ ¼ 0; n̂− ¼ 1=Pþ.
The spin vector, Sμ, is decomposed as Sμ ¼
ðS · n̂Þp̂μ þ ðS · p̂Þn̂μ þ Sμ⊥. x represents the parton’s
light-cone momentum fraction and each PDF has a support
in the −1 ≤ x ≤ 1 interval. The PDFs, f4, g3, and h3 appear
at twist-4 level. In the parametrization given by
Eq. (15), gTðxÞ ¼ g1ðxÞ þ g2ðxÞ.
Even though the matrix elements entering the cross

section are usually dominated by twist-2 operators in
the Bjorken limit, and twist-3 operators are mostly relevant
for subleading corrections, the twist-3 PDFs, g2ðxÞ
and hLðxÞ, are unique in the sense that they appear
as leading contributions in some spin asymmetries.
For example, g2ðxÞ can be measured in the transversely
polarized DIS, and hLðxÞ can be measured in the
longitudinal-transverse double spin asymmetry in the
polarized Drell-Yan process [44].
The twist-3 GPD, G̃2, reduces to the twist-3 PDF, g2ðxÞ,

in the forward limit. In order to investigate the Dirac delta
function behavior of G̃2 in the ERBL region in the forward

limit, g2ðxÞ ¼ gTðxÞ − g1ðxÞ is calculated using Fig. 5, as
explained in Appendix A.
g2ðxÞ contains the following term which contains a

singularity:

g2;δðkþÞ ¼ −
ig2

ð2πÞ2
ðkþ þ m

M PþÞ
ðPþ − kþÞ

Z
d2k⊥
ð2πÞ2

dk−

ðk2 −m2 þ iϵÞ2 ;

ð18Þ

where m is the quark and M is the nucleon mass.
The singularity originates from the light-cone energy

integral,

Z
dk−

ðk2 −m2 þ iϵÞ2 ; ð19Þ

which is performed using Cauchy’s theorem. Obviously,
for kþ ≠ 0,

Z
dk−

ðk2 −m2 þ iϵÞ2 ¼
Z

dk−

½2kþðk− − ðk2⊥þm2Þ
2kþ þ iϵ

2kþÞ�2
¼ 0;

ð20Þ

since enclosing the double pole, k− ¼ ðk2⊥þm2Þ
2kþ − iϵ

2kþ, can be
avoided by closing the contour in the appropriate half-plane
of the complex k− plane. However, when kþ ¼ 0 is
included, the result of this integral is not zero,

Z
dkþdk−

1

ðk2 −m2 þ iϵÞ2

¼
Z

dkþdk−
1

ð2kþk− − k2⊥ −m2 þ iϵÞ2 ¼
iπ

k2⊥ þm2
:

ð21Þ

Thus, combining Eq. (20) with Eq. (21) implies that1

FIG. 5. SDM in the forward limit.

1This result has been first derived in Ref. [45].
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Z
dk−

ðk2 −m2 þ iϵÞ2 ¼
iπ

k2⊥ þm2
δðkþÞ: ð22Þ

Therefore, the singular term is

g2;δðkþÞ ¼ −
ig2

ð2πÞ2
ðkþ þ m

M PþÞ
ðPþ − kþÞ

Z
d2k⊥
ð2πÞ2

dk−

ðk2 −m2 þ iϵÞ2

¼ g2

16π2
ðkþ þ m

M PþÞ
ðPþ − kþÞ ln

�
Λ2⊥ þm2

m2

�
δðkþÞ; ð23Þ

where Λ⊥ is the transverse momentum cutoff.
The term in Eq. (23) is given in terms of longitudinal

momentum, kþ. In order to express it as a function of the
longitudinal momentum fraction, it is integrated over kþ
and multiplied by Pþ,

g2;δðxÞ ¼
g2

16π2
ðxþ m

MÞ
ð1 − xÞ ln

�
Λ2⊥ þm2

m2

�
δðxÞ: ð24Þ

To illustrate the origin of the Dirac delta function
contribution, now we consider the twist-3 quasi-PDF,
gquasi2 ðxÞ. While PDFs are calculated using light-cone
coordinates, when calculating quasi-PDFs one treats the
operators in normal coordinates where the nucleon moves
purely in a spatial direction with a momentum Pz [46,47].
PDFs are recovered from quasi-PDFs by taking the
Pz → ∞ limit [48–50].
In addition, we also consider the distributions as func-

tions of longitudinal momenta, i.e., g2ðkþÞ and gquasi2 ðkzÞ, as
shown in Fig. 6.2 The twist-3 distributions are identified by
their scaling property under a longitudinal nucleon momen-
tum boost: Twist-3 PDFs scale with 1=Pþ, and twist-3
quasi-PDFs with 1=Pz. Whereas the distributions in Fig. 6
have two components, one of which obeys the twist-3
scaling properties, while the other component at kzðkþÞ¼0
does not scale as the nucleon is boosted to higher
longitudinal momenta. In other words, the kzðkþÞ ¼ 0
component does not change with 1=Pzð1=PþÞ.
The nonscaling component of the PDF g2ðkþÞ corre-

sponds to the term g2;δðkþÞ given by Eq. (23), while the

nonscaling (ns) component of the quasi-PDF gquasi2 ðkzÞ
originates from the term,

gquasi2;ns ðkzÞ ¼ −
g2

16π2
m
M

1

ðk2⊥ þ k2z þm2Þ1=2
����
Λ⊥

k⊥¼0

: ð25Þ

Figure 7 shows the distributions as functions of x where
the expression in Eq. (25) is multiplied by Pz. It can be seen
that the nonscaling component of the quasi-PDF gquasi2 ðxÞ
can be identified with a representation of a Dirac delta
function at x ¼ 0 as the nucleon is boosted to the IMF,
i.e., Pz → ∞.
Operator product expansion (OPE) analysis of the matrix

elements allows the twist-3 distributions to be decomposed
into the contributions expressed in terms of twist-2 dis-
tributions (WW part) [31], a quark mass term, and the rest
which involve interactions. For example, for g2ðxÞ the
decomposition reads

g2ðxÞ ¼ gWW
2 ðxÞ þ gm2 ðxÞ þ ḡ2ðxÞ; ð26Þ

where the WW part is given by [51]

gWW
2 ðxÞ ¼ −g1ðxÞ þ

Z
1

x

dy
y
g1ðyÞ: ð27Þ

In QCD, ḡ2ðxÞ corresponds to the pure quark-gluon
correlation part of the twist-3 distribution. These pure
quark-gluon correlations, which are also called genuine
twist-3 terms, involve a novel type of information that is not
contained in twist-2 distributions. For example, the x2

moment of the genuine twist-3 part of polarized PDF ḡ2ðxÞ
can be identified with the transverse component of the
average color Lorentz force acting on the struck quark at
the instant after absorbing the virtual photon [12].
An important question is, whether the components which

do not scale under a longitudinal momentum boost come
from the WW parts of twist-3 distributions. In order to
address this question, in addition to g1ðxÞ and g2ðxÞ, also
the twist-2 PDFs f1ðxÞ; h1ðxÞ, and twist-3 pdfs eðxÞ; hLðxÞ
are calculated using SDM. The PDFs calculated with QTM
are taken from Ref. [52].
As shown in Table II, all the twist-3 PDFs calculated in

SDM and QTM contain a δðxÞ term only with the exception
of g2ðxÞ in QTM, whereas such a term does not appear in
any of the twist-2 PDFs. As an example, the twist-2 PDF
g1ðxÞ and the twist-2 quasi-PDF gquasi1 ðxÞ are calculated in
SDM. Figure 8 shows that gquasi1 ðxÞ converges to g1ðxÞ as
Pz → ∞ without generating a δðxÞ. Therefore, any poten-
tial singularity which can result from the integral in Eq. (27)
does not originate from Eq. (19). For this reason, the WW
part is not the source of the δðxÞ contribution in a twist-3
distribution.
As another example, twist-3 PDF eðkþÞ and quasi-PDF

equasiðkzÞ are shown in Fig. 9. As the nucleon is boosted to
the IMF, equasiðkzÞ converges to eðkþÞ. eðkþÞ contains a
δðkþÞ term which corresponds to a nonscaling term in

2For simplicity, the massesM, m, and λ are set to “1” to obtain
the plots of the PDFs and the quasi-PDFs. Therefore, the
quantities, which carry the units of those masses, are dimension-
less. Consequently, the transverse momentum cutoff, Λ⊥, the
longitudinal quark momenta, kzðkþÞ, and the longitudinal nu-
cleon momenta, PzðPþÞ, in Figs. 6, 7, 8, 9, and 10 do not have
units.
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FIG. 6. g2ðkþÞ and gquasi2 ðkzÞ in SDM for m ¼ M ¼ λ ¼ 1 and Λ⊥ ¼ 2.
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FIG. 7. g2ðxÞ and gquasi2 ðxÞ in SDM for m ¼ M ¼ λ ¼ 1 and Λ⊥ ¼ 2. x ¼ kþ
Pþ for g2ðxÞ and x ¼ kz

Pz for g
quasi
2 ðxÞ.
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FIG. 8. g1ðxÞ and gquasi1 ðxÞ in SDM for m ¼ M ¼ λ ¼ 1 and Λ⊥ ¼ 2. x ¼ kþ
Pþ for g1ðxÞ and x ¼ kz

Pz for g
quasi
1 ðxÞ.
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FIG. 9. eðkþÞ and equasiðkzÞ in SDM for m ¼ M ¼ λ ¼ 1 and Λ⊥ ¼ 2.
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FIG. 10. eðxÞ and equasiðxÞ in SDM for m ¼ M ¼ λ ¼ 1 and Λ⊥ ¼ 2. x ¼ kþ
Pþ for eðxÞ and x ¼ kz

Pz for equasiðxÞ.
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equasiðkzÞ at kz ¼ 0 as Pz → ∞. Figure 10 shows that this
component becomes a representation of δðxÞ in equasiðxÞ as
the nucleon is boosted to the IMF.
There are several studies in which the singularity of

eðxÞ was discussed using the chiral quark soliton model
[53–56]. The main difference is, in pQCD calculations,
such as scalar diquark and quark target models, the delta
functions arise from rainbow type diagrams while in the
chiral quark soliton model, they arise from quark loops.

V. VIOLATION OF SUM RULES

The following sum rules for twist-3 distributions involve
the point x ¼ 0,

Z
1

−1
dxg1ðxÞ ¼

Z
1

−1
dxgTðxÞ; ð28Þ

Z
1

−1
dxh1ðxÞ ¼

Z
1

−1
dxhLðxÞ; ð29Þ

Z
1

−1
dxeðxÞ ¼ 1

2M
hPjψ̄ð0Þψð0ÞjPi ¼ d

dm
M: ð30Þ

However, this point cannot be achieved in DIS experiments

since x is defined as x ¼ Q2

2P·q and x ¼ 0 corresponds to
P · q → ∞. Therefore, experimental measurements cannot
confirm but would rather claim the violation of these sum
rules even though they are direct consequences of Lorentz
invariance.
For example, Lorentz invariance of twist-3 GPDs imply

that

Z
1

−1
dxGiðx; ξ;ΔÞ ¼ 0;

Z
1

−1
dxG̃iðx; ξ;ΔÞ ¼ 0: ð31Þ

If x ¼ 0 and hence the δðxÞ are not included, Eq. (31) is
violated as follows:

lim
ϵ→0

Z
ϵ

−1
dxGiðx;ξ¼ 0;ΔÞ þ lim

ϵ→0

Z
1

ϵ
dxGiðx;ξ¼ 0;ΔÞ ≠ 0;

ð32Þ

lim
ϵ→0

Z
ϵ

−1
dxG̃iðx;ξ¼ 0;ΔÞ þ lim

ϵ→0

Z
1

ϵ
dxG̃iðx;ξ¼ 0;ΔÞ ≠ 0:

ð33Þ

The Lorentz invariance relations in Eq. (31) can be
regarded as a nonforward generalization of the Burkhardt-
Cottingham sum rule given in Eq. (28) [57]. Since the LHS
of Eq. (28) is the axial charge, the integral on the right-hand
side (RHS) is finite. If the twist-3 PDF, gTðxÞ, has a
contribution proportional to δðxÞ and g1ðxÞ does not,
experimental measurements would not be able to confirm
this sum rule. Similar arguments apply to the h and σ-term
sum rules in Eqs. (29) and (30), respectively. Therefore, the
violation of the sum rules from the experimental data would
provide indirect evidence on the existence of the Dirac delta
functions.

VI. SUMMARY AND DISCUSSION

We have investigated the twist-3 GPDs G2 and G̃2 using
QTM and SDM. In both models, these twist-3 GPDs
exhibit discontinuities at the points x ¼ �ξ. In the limit
ξ → 0, the discontinuities of G2 are divergent in both
models, and the ERBL region resembles a representation of
a δðxÞ. However, the discontinuities of G̃2 behave differ-
ently in the two different models: they diverge in SDM but
stay finite in the QTM as ξ → 0.
In the forward limit, G̃2 reduces to g2ðxÞ, and the

discontinuities grow into a δðxÞ in SDM. Calculation of
the quasi-PDF gquasi2 ðkzÞ reveals that the δðxÞ term corre-
sponds to a component that does not scale as the nucleon is
boosted to the IMF.
The δðxÞ contribution is not unique to the case of g2ðxÞ,

and all the other twist-3 PDFs contain a δðxÞ in both QTM
and SDM only with the exception of g2ðxÞ in the QTM.
These δðxÞ terms are not related to the twist-2 (WW) parts
of the twist-3 PDFs since model calculations show that
none of the twist-2 PDFs contain such a term. Violations of
the sum rules containing twist-3 PDFs and GPDs exper-
imentally would provide indirect evidence on the existence
of these δðxÞ contributions.
In effective field theories with four fermion interaction

vertices, singularities in GPDs and PDFs may already arise
at the twist-2 level [58]. However, the singularities we have
discussed that arise for QCD and Yukawa type interactions
are restricted to twist-3 or higher.
In generalized tadpole diagrams, i.e., diagrams where a

subdiagram is connected to the rest of the diagram at a
single vertex, the appearance of δðxÞ terms is trivial: there is
no momentum flowing through the subdiagram, and its

TABLE II. Dirac delta functions in PDFs calculated using SDM
and QTM. ✗ denotes there is no δðxÞ and✓ denotes there is a δðxÞ
in a PDF.

Twist-2 PDF SDM QTM

f1ðxÞ ✗ ✗
g1ðxÞ ✗ ✗
h1ðxÞ ✗ ✗

Twist-3 PDF SDM QTM

eðxÞ ✓ ✓
hLðxÞ ✓ ✓
g2ðxÞ ✓ ✗
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contribution to the PDF does not scale in the IMF. However,
the appearance of δðxÞ is not trivial for the rainbowlike
diagrams considered here, and we demonstrated that for
higher twist PDFs there still appears such a component.
An important remark is, how the Delta function is

effected by QCD evolution, i.e., its Q2 dependence which
can be related to the transverse momentum cutoff, Λ⊥. In
the model calculation, performed in Sec. IV, the δðxÞ
appears as the nucleon is boosted to the IMF regardless
of the value of Λ⊥, even though its coefficient evolves with
Λ2⊥. Therefore, QCD evolution affects the coefficient of the
δðxÞ but its existence is a Q2 independent result.
Integrals with similar pole structures to that of Eq. (19)

such as

Z
dk−

k2 −m2 þ iϵ
ð34Þ

have been studied in connection with the light front vacuum
[59–61]. The integrals involving the higher powers of the
denominator in Eq. (34) can be obtained by repeated
differentiation with respect to m2. The relation between
the light front vacuum and the δðxÞ in twist-3 PDFs will be
studied in Ref. [62].
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APPENDIX A: G2 IN QTM

The divergent part of G2 is calculated as

−ig2
Z

d2k⊥dk−
ð2πÞ4

k−8ðpþÞ2ð1þ xÞ
½ðkþ Δ

2
Þ2 −m2 þ iϵ�½ðk − Δ

2
Þ2 −m2 þ iϵ�½ðp − kÞ2 − λ2 þ iϵ� : ðA1Þ

k− in the numerator of Eq. (A1) can be replaced by the expression

k− ¼ m2

2pþ −
½ðp − kÞ2 − λ2�
2ðpþ − kþÞ −

ðk2⊥ þ λ2Þ
2ðpþ − kþÞ : ðA2Þ

The second term in Eq. (A2) cancels the propagator in the denominator in Eq. (A1) leading to the following contribution
which is nonzero only in the ERBL region, −ξ < x < ξ:

ig24pþ ð1þ xÞ
ð1 − xÞ

Z
d2k⊥dk−
ð2πÞ4

1

½ðkþ Δ
2
Þ2 −m2 þ iϵ�½ðk − Δ

2
Þ2 −m2 þ iϵ� : ðA3Þ

The result of this integral is dominated by the following term which diverges as ξ → 0 yielding a representation of δðxÞ:

−
g2

2π2
ð1þ xÞ
ξð1 − xÞ lnΛ⊥: ðA4Þ

APPENDIX B: G̃2 IN QTM

The divergent part of G̃2 is calculated as

−ig2
Z

d2k⊥dk−
ð2πÞ4

k−8ðpþÞ2ðxþ ξ2Þ
½ðkþ Δ

2
Þ2 −m2 þ iϵ�½ðk − Δ

2
Þ2 −m2 þ iϵ�½ðp − kÞ2 − λ2 þ iϵ� : ðB1Þ

Similarly, k− in the numerator of Eq. (B1) can be replaced by the expression given by Eq. (A2) where the second term
cancels the propagator in the denominator leading to the contribution,

ig24pþ ðxþ ξ2Þ
ð1 − xÞ

Z
d2k⊥dk−
ð2πÞ4

1

½ðkþ Δ
2
Þ2 −m2 þ iϵ�½ðk − Δ

2
Þ2 −m2 þ iϵ� : ðB2Þ
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The result of this integral is dominated by the term

−
g2

2π2
ðxþ ξ2Þ
ξð1 − xÞ lnΛ⊥: ðB3Þ

Due to the appearance of ξ2 in the numerator, this
expression is finite as ξ → 0, unlike the expression
in Eq. (A4).

APPENDIX C: gTðxÞ IN SDM

gTðxÞ is obtained by using γμ ¼ γ⊥ in the parametriza-
tion given by Eq. (15),

Z
dλ
2π

eiλxhP; Sjq̄ð0Þγ⊥γ5qðλnÞjP; Si ¼ 2gTðxÞS⊥: ðC1Þ

The LHS of Eq. (C1) is written using SDM,

gTðxÞS⊥ ¼ ig2

2

Z
d4k
ð2πÞ4 δðk

þ − xPþÞūðpÞ

×
ð=kþmÞ

ðk2 −m2 þ iϵÞ γ
⊥γ5

ð=kþmÞ
ðk2 −m2 þ iϵÞ uðpÞ

×
1

½ðp − kÞ2 − λ2 þ iϵ� : ðC2Þ

Using the identities,

ūðPÞuðPÞ ¼ 2M; ðC3Þ

ūðPÞγμuðPÞ ¼ 2Pμ; ðC4Þ

ūðPÞγ5uðPÞ ¼ 0; ðC5Þ

ūðPÞγμγ5uðPÞ ¼ 2Sμ; ðC6Þ

ūðPÞγþγ⊥γ5uðPÞ ¼
2Pþ

M
S⊥; ðC7Þ

ūðPÞγ−γ⊥γ5uðPÞ ¼
2P−

M
S⊥ ¼ M

Pþ S⊥; ðC8Þ

ūðPÞγ−γþγ5uðPÞ ¼
2M
Pþ Sþ; ðC9Þ

the numerator of the integrand in Eq. (C2) is calculated as

ūðPÞð=kþmÞγ⊥γ5ð=kþmÞuðPÞ

¼ 2

�
xþ m

M

�
ð2k−Pþ þmMÞS⊥: ðC10Þ

As in the cases for G2 and G̃2, k− in this numerator is
replaced by the expression

k− ¼ M2

2Pþ −
½ðP − kÞ2 − λ2�
2ðPþ − kþÞ −

ðk2⊥ þ λ2Þ
2ðPþ − kþÞ ; ðC11Þ

and the second term cancels the propagator in the denom-
inator of Eq. (C2). Thus, two types of k− integrals appear in
the expression for gTðxÞ,

gTðxÞ¼
ig2

16π4
ðxþm

MÞ
ð1−xÞ

Z
d2k⊥½MðMþmÞð1−xÞ−k2⊥−λ2�

×
Z

dk−

ðk2−m2þ iϵÞ2½ðP−kÞ2−λ2þ iϵ�

−
ig2

16π4
ðxþm

MÞ
ð1−xÞ Þ

Z
d2k⊥

Z
dk−

ðk2−m2þ iϵÞ2 : ðC12Þ

As Eq. (22) shows, the energy integral in the second line of
the above equation is the origin of the δ-function.
The full expression for gTðxÞ is obtained as follows by

using a transverse momentum cutoff, Λ⊥:

gTðxÞ ¼ −
g2

16π2

�
xþ m

M

��½MðM þmÞð1 − xÞ − λ2 þ ω�
ðk2⊥ þ ωÞ

þ lnðk2⊥ þ ωÞ
�

Λ2⊥

k2⊥¼0

þ g2

16π2
ðxþ m

MÞ
ð1 − xÞÞ

× ln

�
Λ2⊥ þm2

m2

�
δðxÞ; ðC13Þ

where ω is given by

ω ¼ −xð1 − xÞM2 þ ð1 − xÞm2 þ xλ2: ðC14Þ

APPENDIX D: g1ðxÞ IN SDM

g1ðxÞ is obtained by using γμ ¼ γþ in the parametrization
given by Eq. (15),

Z
dλ
2π

eiλxhP; Sjq̄ð0Þγþγ5qðλnÞjP; Si ¼ 2g1ðxÞSþ: ðD1Þ

The left-hand side of Eq. (D1) is written using SDM,

g1ðxÞSþ ¼ ig2

2

Z
d4k
ð2πÞ4 δðk

þ − xPþÞūðpÞ

×
ð=kþmÞ

ðk2 −m2 þ iϵÞ γ
þγ5

ð=kþmÞ
ðk2 −m2 þ iϵÞ uðpÞ

×
1

½ðp − kÞ2 − λ2 þ iϵ� : ðD2Þ

The numerator of the integrand in Eq. (D2) is calculated
using the identities given by Eqs. (C3)–(C9),
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ūðpÞð=kþmÞγþγ5ð=kþmÞuðpÞ
¼ −4kþ2S− − ½2k2⊥ − 2m2 − 4mMx�Sþ
¼ 2½ðmþ xMÞ2 − k2⊥�Sþ: ðD3Þ

The following expression is obtained for g1ðxÞ using a
transverse momentum cutoff, Λ⊥:

g1ðxÞ ¼ −
g2

16π2
ð1 − xÞ

�½ωþ ðmþ xMÞ2�
k2⊥ þ ω

þ lnðk2⊥ þ ωÞ
�

Λ2⊥

k2⊥¼0

: ðD4Þ

Similar to other twist-2 PDFs, the numerator in Eq. (D3)
does not have a term involving a k−, and therefore, the
cancellation of the propagator which leads to the δðxÞ
contribution does not occur for g1ðxÞ.

APPENDIX E: g2ðxÞ IN SDM

g2ðxÞ is obtained as follows by using Eqs. (D4) and
(C13) in the relation gTðxÞ ¼ g1ðxÞ þ g2ðxÞ:

g2ðxÞ¼
g2

16π2

�
2ω−

m
M
½ðMþmÞ2−λ2�þðmþxMÞ2

�

×
ð1−xÞ
ðk2⊥þωÞ

����
Λ2⊥

k2⊥¼0

þ g2

16π2

�
2xþm

M
−1

�
lnðk2⊥þωÞ

���Λ2⊥
k2⊥¼0

þ g2

16π2
ðxþm

MÞ
ð1−xÞ

�
ln

�
Λ2⊥þm2

m2

�
δðxÞ; ðE1Þ

where the last term is called g2;δðxÞ in Eq. (24).
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