
 

Coherent quantum enhancement of pair production in the null domain
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We present an exactly solvable example of coherent quantum interference effects in the creation of
electron-positron pairs from the collision of a photon with ultrashort laser pulses. Being characterized
entirely by null, or lightlike, directions, this setup realizes an all-optical double-slit in the “null” domain,
and exhibits features both in common with, and distinct from, a time domain double-slit (Ramsey
interferometer). We show that by tailoring the order and amplitude of the pulses one can control signatures
of both quantum and classical physics in the produced positron spectrum.
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The properties of the quantum vacuum allow for all-
optical analogues of the double-slit experiment, in which
patches of space are polarized by strong fields, effectively
creating a diffraction grating through which probe light can
be passed to exhibit quantum interference [1,2]. As well as
such “spatial” realizations, it is also possible to realize a
temporal, “time domain” double-slit, or Ramsey interfer-
ometer [3], based on the quantum vacuum; applying
sequences of time-delayed electric fields [4,5], pairs are
created from the vacuum via the Schwinger effect [6] and
their spectra exhibit coherent quantum interference.
Here we combine spatial and temporal realizations of all-

optical multiple slits, through pair production stimulated
byboth strong fields andphotonicprobes.Asboth thephoton
and fieldwill becharacterizedbynull, or lightlike,directions,
we refer to the resulting interference as being in the “null”
domain. Existing investigations of the Schwinger effect and
associated interference have used a variety of versatile
techniques, including e.g., numerical solution of quantum
kinetic equations [4] and semiclassical approximations
[5,7,8].Herewewillgive, to leadingorder in the finestructure
constant, results which are exact in the strong field and of
closed form. We can do so by considering the limit of
ultrashort field duration, modeled though delta-function
pulses. (See [9] for delta pulses in Schwinger pair creation.)
This will allow us to clearly identify how both quantum
effects, e.g., path-interference, and classical effects, e.g.,
postcreation acceleration, appear in observables, giving
insight into the impact which the spacetime distribution of
multiple pulses has on the produced pair spectrum [10].
Our calculations have the advantage of supplying explicit

and easily interpretable results which exhibit interference
effects common in many tunneling phenomena, for example
strong-field ionization [11–13]. With an eye to experiment,

we remark that analogues of multiple slit interference
persist in stimulated pair production even when pulses are
not ultrashort [14], and also that short, intense pulses of
femto- and atto-second duration be constructed by a variety
of methods [15,16]. Further, stimulated pair production
is more immediately realizable, experimentally [17],
than the Schwinger effect (which requires extreme field
strengths even with optimization of the field profile
[18–24]) and indeed will be investigated in upcoming
experiments [25,26].
Our starting point is the quantum mechanical probability

of electron-positron pair creation from a probe photon,
momentum lμ, in the presence of classical electric and
magnetic fields modeling a strong laser pulse. This will be a
plane wave traveling in the −z direction, thus depending on
“lightfront time” ϕ ≔ tþ z. The transverse electromag-
netic fields of the wave are described by the potential
eAμ ≡ aμ ¼ ð0; a1ðϕÞ; a2ðϕÞ; 0Þ with eE1 ¼ eB2 ¼ −a01,
eE2 ¼ −eB1 ¼ −a02. We consider a linearly polarized field,
a2 ¼ 0, of ultrashort duration such that the electric field
becomes a delta function, so a1 → mξHðϕÞ, a Heaviside
step function of (dimensionless) height ξ. This parametri-
zation corresponds to taking the simultaneous limit of high
field strength and short pulse duration [27], such that the
total work done on a particle traversing the field remains
fixed—this is mξ [28]. (As such ξ matches the usual
definition of the intensity parameter in laser-matter inter-
actions [29,30].)
The calculation of the pair creation probability employs

the well-known Volkov solutions [31] and is given in [27].
We also use the LSZ reduction of [32] which accounts
for the asymptotically nonvanishing potential a1 and has
the advantage of allowing us to parametrize the probability
with the produced positron’s physical, final momentum,
transverse to the laser propagation direction q⊥ ≡ fq1; q2g,
and its longitudinal “lightfront” momentum u ≔
n · q=n · l, where nμ ¼ ð1; 0; 0; 1Þ. From this we define a*anton.ilderton@plymouth.ac.uk

PHYSICAL REVIEW D 101, 016006 (2020)

2470-0010=2020=101(1)=016006(5) 016006-1 © 2020 American Physical Society

https://orcid.org/0000-0002-6520-7323
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.016006&domain=pdf&date_stamp=2020-01-06
https://doi.org/10.1103/PhysRevD.101.016006
https://doi.org/10.1103/PhysRevD.101.016006
https://doi.org/10.1103/PhysRevD.101.016006
https://doi.org/10.1103/PhysRevD.101.016006


second on-shell momentum π̄μ≔qμ−aμþnμð2q ·a−a2Þ=
2n ·q which is, using the exact solution of the Lorentz force
equation, equal to the classical initial momentum of the
positron, had it traversed the delta function and been
accelerated to final momentum qμ [28]. In terms of these
momenta the pair production probability P is, for α the
fine-structure constant,

P ¼ αm2

4π2

Z
d2q⊥

Z
1

0

du
u
ð1 − uÞF½q; π̄; ξ�; ð1Þ

where the key quantity F is, for h ≔ 1=2 − 1=4uð1 − uÞ,

F½q; π̄; ξ� ≔ 1

ðl · qÞ2 þ
1

ðl · π̄Þ2 −
2

l · ql · π̄
ð1þ ξ2hÞ: ð2Þ

This expression is similar to that obtained for scattering of a
particle off an instantaneous kick [33], but with additional
field-dependent structure.
The produced positron momentum spectrum is given by

stripping the integrals from (1). We show the spectrum in
Fig. 1 for l⊥ ¼ 0, describing a head-on collision between
the photon and field, and u ¼ 1=2, the symmetric point
corresponding to the produced positron and electron each
carrying half of the initial photon’s lightfront momentum.
The spectrum exhibits two peaks at momenta q⊥ ¼ 0 and
q⊥ ¼ a⊥. These arise primarily from the first two terms in
F, see (2), while the final “cross” term contributes more
broadly across the whole spectrum. To explain the double-
peak structure, we first note that if the sign of the delta
pulse is swapped, then the second peak switches to
q⊥ ¼ −a⊥. Assume then that the dominant contribution
to the spectrum comes from particles created at zero
transverse momentum. (This is natural since the sum of
the pair’s transverse momenta is conserved [29,30,34]
and equal to l⊥, which is zero here.) Then positrons created
in the rapid rise of an ultrastrong, ultrashort pulse see and

are accelerated by essentially the whole field, picking up
the full possible transverse momentum a⊥ from it. Hence
the spectral peak at q⊥ ¼ a⊥. Positrons created in the fall
of the field, on the other hand, see little of it and so acquire
little momentum after creation. Hence the spectral peak at
q⊥ ¼ 0. This interpretation is consistent with the change in
the spectrum when the pulse changes sign, for then the
former source of positrons picks up −a⊥ when accelerated
by the field.
We remark that time-domain spectra for Schwinger pair

production in time-dependent electric fields typically
exhibit only a single spectral peak at zero momentum
[4,5,7]. Since the semiclassical calculations used there
require the electric field strength to be small (much lower
than the Schwinger field ES ¼ m2=e), we compare by
taking ξ ≪ 1. In this case our two spectral peaks coalesce
into a single structure at q⊥ ¼ 0, similar to the time domain
results. Thus we can make contact with the literature by
calculating perturbatively in ξ, which will be useful below,
but our calculations already reveal structures beyond
existing results.
With this, we can turn to the investigation of quantum

interference effects. Consider two delta pulses of opposite
sign and separated by a distance 2Δϕ in lightfront time ϕ.
Wewill see that there is a strong causal aspect to our results,
so that we take the “positive” delta pulse (as above) to lie at
the larger value of ϕ. We can again calculate the spectrum
exactly [27]; it is given by making the replacement, in the
single pulse result (1),

F½q; π̄; ξ� → 4sin2ðΘÞF½q; π̄; ξ�; ð3Þ

where Θ ¼ Δϕ l · π̄=n · lð1 − uÞ arises in the calculation as
an accumulated phase [5] between the two pulses. Thus the
effect of adding a second pulse of opposite sign is, without
approximation, to coherently enhance the positron spec-
trum through a double slit interference pattern. This is
shown in Fig. 2 (left panel), for the same ξ as in Fig. 1; the
interference fringes are clearly visible and are controlled by
the combined separation/energy parameter θ ¼ Δϕm2=n · l
which appears in the interference angleΘ. Now we observe
that Θ may be written

Θ ¼ u
2ð1 − uÞ lμ

Z
Δϕ

−Δϕ
dφ

π̄μ

n · q
≡ u

2ð1 − uÞ l · δx: ð4Þ

The integral δxμ is, using the Lorentz force equation,
exactly equal to the change in position of a classical
positron, created in the first pulse, during the elapsed
lightfront time between the two pulses. This suggests that
the physical origin of the interference pattern in (3) is path-
interference between trajectories of produced positrons.
Using the above physical picture, we can easily identify the
dominant sources of interference. As illustrated in Fig. 2,
positrons created in the rise of the first peak are accelerated

FIG. 1. Left: in an ultrashort pulse (red line), positrons created
in the rise of the field are accelerated, yielding a spectral peak at
momentum a⊥ ¼ fmξ; 0g, while those created in the fall of the
field are not, leading to a peak at zero momentum. Dashed lines
illustrate the potential. Right: the spectrum for l⊥ ¼ 0, u ¼ 1=2,
ξ ¼ 5 as a function of transverse positron momenta fq1; q2g in
units of m (q1 is the momentum in the field polarisation
direction), showing the two spectral peaks.
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by the whole field, picking up −a⊥ in transverse momentum
at the first delta, but then þa⊥ at the second, ending with
zero transverse momentum. Positrons created in the fall of
the second peak receive no momentum, as before. These two
creation and acceleration events both source a spectral peak
at q⊥ ¼ 0, and interfere. Positrons created in the fall/rise of
the first/second delta, on the other hand, pick up only þa⊥
in transverse momentum. These are the two events which
interfere and source the second spectral peak at q⊥ ¼ a⊥.
Further, if we exchange the signs of the deltas, we find that
the spectral peaks appear at q⊥ ¼ 0 and, now, q⊥ ¼ −a⊥;
this is consistent with our interpretation, because changing
the signs of the pulses has the same effect as exchanging
their time ordering, and massive particles always propagate
from smaller to larger ϕ [35–37]. Hence the positrons
created in the fall/rise of the first/second peak now pick
up −a⊥ when accelerated by the field.
The interplay of quantum interference and classical

dynamics in our results has an interesting consequence
when we consider a sequence of two pulses of the same
sign. From studies of Schwinger pair production which
realize a double-slit in the time domain, coherent
enhancement would not be expected in this case [5].
However, those results hold in the semiclassical approxi-
mation, which we can here go beyond to identify new
effects.
We take two delta pulses of the same sign and (for

reasons which will become clear) each doing half the work
of the previous case, so ξ → ξ=2. There is now only one
dominant contribution to the zero momentum part of the
spectrum, namely pairs created after the second pulse, see
Fig. 3. Similarly, only pairs created before the first pulse,
and then accelerated twice, source a spectral peak at
q⊥ ¼ a⊥. Hence we expect peaks at q⊥ ¼ 0 and q⊥ ¼
a⊥ as before, without interference or enhancement. This is
as expected from the time-domain results. However,
positrons created in the fall of the first pulse, or the rise
of the second, are both accelerated to a⊥=2; hence, if
our physical interpretation is correct, we should expect a
third spectral peak, between the others, with coherent

enhancement. To verify this, define π̂μ to be equal to π̄μ
but with ξ → ξ=2; the positron spectrum and production
probability in this case are now given by adding to
F½q; π̄; ξ� in (1) the term

FIG. 2. Coherent quantum interference in the spectrum of positrons produced in a sequence of two delta pulses of opposite sign, with
other parameters as for Fig. 1. The negative amplitude pulse occurs causally before that with positive amplitude, and θ ¼ 1 here. The two
spectral peaks from the single pulse case in Fig. 1 persist (left), amplified by coherent interference arising via two possible creationþ
acceleration events, illustrated on the right.
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FIG. 3. In a sequence of two pulses with the same sign, the
spectrum exhibits three peaks (upper panel, ξ ¼ 12, θ ∈ f1; 1.5g
and q2 ¼ 0). The outer peaks align with those of the single pulse,
and receive only mild interference effects. The third peak lies
halfway between these two and is coherently enhanced by a 4 sin2

factor. The middle panel shows the same spectrum as a function
of q1 and q2 (θ ¼ 1); the outer peaks are smooth, while
interference fringes clearly dominate the middle peak. The
dominant pair creation events sourcing the peaks and interference
are illustrated in the bottom panel.
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2sin2ðΘÞ
�
F

�
q; π̂;

1

2
ξ

�
þ F

�
π̄; π̂;

1

2
ξ

�
− F½q; π̄; ξ�

�
: ð5Þ

Writing out the term multiplying 2 sin2ðΘÞ explicitly, we
find the following “additive” correction to the single pulse
spectrum: there is a quadratic term 2=l · π̂2, yielding a peak
at q⊥ ¼ a⊥=2, multiplied by, overall, the coherent inter-
ference factor 4 sin2ðΘÞ. The remaining terms are all
“cross,” going like 1=ðl · π̂l · qÞ etc., which contribute to
a lesser extent across all peaks. Thus, in agreement with
our predictions and as confirmed in Fig. 3, the single-pulse
peaks persist, showing only weak interference effects,
while the new peak is coherently enhanced relative to that
in a single pulse of intensity parameter ξ=2 [38].
It follows that by changing the order and signs of several

delta pulses we can exert a degree of control on the
spectrum (beyond simply adjusting the separation Δϕ to
change the frequency of oscillations in Θ): we can arrange
for interference to appear in one or multiple peaks, and
not others. For example, if we have two ordered pulses
characterized by −ξ=2 and þξ, then the spectrum will
exhibit single-pulse peaks at q⊥ ¼ 0 and a⊥=2, with little
interference, and a third peak with coherent enhancement at
q⊥ ¼ a⊥. Adding further pulses can increase the degree of
enhancement and introduce additional parameters which
affect the spectrum. To illustrate this we consider a final
example of four equally spaced pulses of alternating signs
(−þ −þ). In the time domain, this setup yields a 4-slit
interference pattern overlaying the single peak spectrum,
but here the structure is richer. We find that the single pulse
spectrum is multiplied by

42 sin2Θ cos2ðΘþ Θ0Þ; ð6Þ

in which the new parameterΘ0, equal toΘ evaluated at zero
field, arises from free particle propagation between the
second and third deltas, whereas Θ arises as above from
propagation between e.g., the first and second. To recover
the time domain results we can again take the weak
field limit ξ ≪ 1. In this limit Θ → Θ0 and so our 4-pulse
factor (6) reduces to

42sin2ðΘ0Þcos2ð2Θ0Þ ¼
sin2ð4Θ0Þ
cos2ðΘ0Þ

; ð7Þ

which is precisely the expected 4-slit Fabry-Perot interfer-
ence pattern. This shows nicely that multiple-slit interfer-
ence underlines pair production in weak fields, but that in
the strong field, ξ > 1, regime, which is experimentally
accessible [17,25,26], there is even more structure. This
structure is fully explorable in our model.
To conclude, we have described quantum interference

effects in an all-optical double-slit setup, in which pairs are
produced from the quantum vacuum through the interaction
of a photon with ultrashort laser pulses. By idealizing the
laser fields as delta-function pulses, we have been able to give
exact, closed-form results for the produced positron spectrum
which explicitly demonstrate coherent quantum enhance-
ment when multiple pulses are present. The produced
positron spectra have a depth of structure not noted before,
and which goes beyond existing semiclassical descriptions,
yet admits a simple physical interpretation in terms of two-
path interference [39], and the classical physics (charge
acceleration) along those paths. It would be interesting to
obtain the analogous results for the Schwinger effect in the
time domain, though this remains challenging analytically.
(See e.g., [40] for numerical results on two spatially separated
pulses of the same sign.)We hope also that our results will be
useful in other areas—it has been shown for example that
understanding path interference can resolve discrepancies
between the theory and experiment [39,41] of tunneling
phenomena in photoelectron holography [42,43].
We have also shown that the location and degree of

interference effects in positron spectra can be controlled
[7,10] by changing the number and amplitude of the pulses.
Armed with this understanding, it will be interesting to
establish in future work the extent to which spectral control
can be achieved at upcoming experiments [25,26]. This
requires establishing the role of e.g., transverse size effects
on pairs, postcreation [44]; these can be mitigated by using
short pulses [45] (in which interference does persist [14]),
which would be the goal. We also note that interference has
been used, experimentally, in laser-based analogue com-
puters [46] with pulses of femtosecond duration, yet
agreement with theory based on delta-function fields was
nevertheless excellent. This also hints at the possibility of
using pair production interference as an analogue computer.
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