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We discuss the subleading power corrections to one-jet production processes in N-jettiness subtraction
using vector-boson plus jet production as an example. We analytically derive the next-to-leading power
(NLP) leading logarithmic corrections through O(ag) in perturbative QCD and outline the calculation of
the next-to-leading logarithmic corrections. Our result is differential in the jet transverse momentum and
rapidity, and in the vector boson momentum squared and rapidity. We present simple formulas that separate
the NLP corrections into universal factors valid for any one-jet cross section and process-dependent matrix-
element corrections. We discuss in detail features of the NLP corrections such as the process independence
of the leading-logarithmic result that occurs due to the factorization of matrix elements in the subleading
soft limit, the occurrence of poles in the nonhemisphere soft function at NLP, and the cancellation of

potential /7 /Q corrections to the N-jettiness factorization theorem. We validate our analytic result by
comparing them to numerically fitted coefficients, finding good agreement for both the inclusive and the
differential cross sections. The size of the power corrections for different definitions of 7, is studied.
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I. INTRODUCTION

There has been significant recent interest in the study of
subleading power corrections to factorization theorems in
QCD. This focus is driven in large part by the increasingly
precise data delivered by the Large Hadron Collider.
Obtaining theoretical predictions that match the experi-
mental precision increasingly requires going beyond the
leading-power formalisms that underly past theoretical
calculations. One recent example is the study of next-to-
leading power corrections to the N-jettiness factorization
theorem [1-7] that underlies the N-jettiness subtraction
method for precision cross section calculations [8,9]. Other
results include initial studies of the subleading power
corrections to the low transverse momentum factorization
theorem [10,11] and the study of subleading power
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corrections to threshold production of color-singlet
states [12—16].

A feature of these improvements is that they are limited
to color-singlet processes without jets in the final state.
Relatively few results for subleading corrections to jet
production processes are available, although some studies
of jet production at subleading power have recently been
initiated [17-19]. An understanding of the next-to-leading
power corrections to the N-jettiness factorization theorem
[20,21] in the presence of final-state jets is highly desirable.
Although N-jettiness subtraction has been used to derive
the next-to-next-to-leading order perturbative QCD correc-
tions needed to properly describe hadron collider data for a
host of processes [8,22-31], these applications are com-
putationally intensive. One approach to improve computa-
tional efficiency is to analytically calculate the power
corrections. This extends the region of validity of the
factorization theorem to higher N-jettiness values, amelio-
rating the difficulties that arise from numerically extracting
the large logarithms of N-jettiness that appear in the
individual cross section components.

In this paper, we take a first step toward understanding
the subleading power corrections to jet production

Published by the American Physical Society
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processes in N-jettiness subtraction by computing the next-
to-leading power (NLP) corrections to the one-jettiness
factorization theorem at next-to-leading order (NLO) in
perturbative QCD. Our primary results are simple analytic
formulas for the leading-logarithmic (LL) power correc-
tions. We additionally outline the extension of this calcu-
lation to NLL. We separate the power corrections into
process-independent terms valid for any one-jet production
process and process-dependent matrix element correction
factors. Important aspects of our results are summa-
rized below.

(i) We make use of the expansion by regions [32,33] to
perform the computation of the cross section. In
particular, we split the phase space into two beam
regions, a jet region and a soft region.

(i1)) We show that all NLP-LL corrections at NLO arise
from the emission of soft partons, as in the case of
color-singlet production [1,2], and show how to
obtain such subleading soft corrections by making
use of the subleading soft theorem [34]. This allows
us to write the NLP-LL result in a universal form
valid for all one-jet processes.

(iii) We show that the nonhemisphere soft contributions
defined in [35], which are finite at leading power,
contribute to poles when extended to next-to-leading
power. These poles are necessary for the consistency
of the result at NLP.

(iv) We demonstrate the cancellation of potential power
corrections suppressed only by /7 /Q, where 7 is
the one-jettiness event shape variable and Q is a
generic hard scale.

Our paper is organized as follows. In Sec. II, we discuss the
Born-level process for V + j production and introduce the
notation used in the remainder of the paper. We discuss our
strategy for the computation of the NLP corrections in
Sec. III and illustrate the separation of the phase space into
different regions. In Sec. IV, we write down a general
expression for the phase space that is valid in every region,
separating the case where the two final-state partons are
measured as two separate jets from the case where they are
part of the same jet. We then proceed to expand the phase
space in each region, listing all the relevant expansion
coefficients in the Appendix. We discuss the expansion of
the matrix elements in Sec. V, providing the explicit
expression of all the relevant expansion coefficients in a
Supplemental Material [36]. An important aspect of this
section is how the soft expansion can be predicted by the
subleading soft theorem, without needing the full NLO
amplitude. This leads to a simple, universal expression for
the NLP-LL result. There is currently no subleading
collinear factorization theorem for QCD amplitudes, which
is required for a similar universal description of the
NLP-NLL result. The beam and jet expansions to the
NLP-NLL level therefore require us to use the full NLO
amplitude. In Sec. VI, we derive as a check on our result the

leading-power cross section. The primary results of our
paper, which are the analytic forms of the NLP-LL
corrections, are presented in Sec. VII. In Sec. VIII, we
provide numerical checks of our analytic results, for both
the inclusive and the differential cross section. Finally, we
conclude in Sec. IX.

II. DESCRIPTION OF THE
BORN-LEVEL PROCESS

We will illustrate our derivation of the NLP corrections
using V + j production as an example. We show formulas
for the Born-level partonic process is q(q,) + g(gq,) —
V(py) + 9(q,), where V is a vector boson. The derivation
for the quark-gluon Born-level process is identical. We
parametrize the momenta in the lab frame of reference,

u VS

q Tna» qp —Tnhy
-4, (1)

where x, and x; are the Born momentum fractions of the
two initial-state partons, /s is the energy of the hadronic
collision, py is the jet transverse momentum, and 7 is the jet
pseudorapidity. We have defined the following lightlike
vectors that describe the two beam directions and the jet
direction:

¢ = prcoshpt,

Py =qa+ 4,

1 1
0 0 !

nh = , ont = .ot = cohn | 2
IS P N P I @
1 -1 tanh#

The phase space, including the flux factor and parton
distribution functions (PDFs), takes the form

a)f ('xb)
d_ / dxa/ Xb 2s~xa;b
X/ddeé(P%/_m%/)/ddQJ‘S(CI%MJ(C]J)

89(qa+qy—a;— pv)- (3)

PSBorn =

Here, ¢ and g are the initial-state quark flavors and M (q;)
is a jet measurement function that ensures us that g; is
indeed a jet (it can simply be a set of experimental cuts on
the jet py and pseudorapidity). In simplifying the Born
phase space, we wish to be differential in the vector boson
momentum squared and rapidity. Those quantities are
defined as

Q% = py - py = sx,%p —\/sprx,e™ —\/sprxpe,  (4)

1. (py+p} V/sx4 = pre”
v e BT ) =g ()
Py — Py \/_xb preé
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We can use the constraints on these quantities to solve for
the Born momentum fractions of the two initial-state
partons

PTe"

Xg = \/ pT + Q2 (6)
pre” e‘Y
Xp = i/E +$\/P%+Q2- (7)

Imposing the on shellness of the final-state gluon, we
obtain the following differential Born-level phase space:

dPSBorn _ Qd—Zpt]i"_3 fq (xu)fq (xh)
dQ*dydpydy  2s(2m)42 2sx,x,
x 8(Q* —my)M,(pr.n).  (8)

For future notational convenience, we define a partonic
Born-level phase space with the PDFs removed,

dPSpom  _ Quopf 5(Q% — my)
dQ*dYdp,dn  2s(2m)42 2sx,x,

M, (pr.n). )

The matrix element is a function of the invariants s,
where s;; = (p; + pj) if both p; and p; are initial- or final-
state partons, and s;; = (p; — p;)? if one is an initial-state
parton and the other is a final-state parton. The Born
amplitude squared is

Mao = Nog(2C) 2512 28020013 + 20) £ 5 55
orn ’

513823

(10)

where Ny, is an electroweak normalization factor.

III. STRATEGY FOR THE COMPUTATION

At NLO in QCD perturbation theory, the power cor-
rections arise from real-emission corrections. To study
the structure of the NLP corrections, we consider the
real-emission process ¢(q,,) + g(q},) = V(py) + 9(p3) +
g(p4) as an example, where the initial-state momenta are
labeled with a prime in order to distinguish them from the
Born initial-state momenta. The study of the gg - Vgg
process proceeds similarly, and we do not present it
explicitly. We will later present results valid for both
channels. The one-jettiness event-shape variable 7| can
be defined as [35]

o) g2

. {”a'P3 ny - P3 ”J'P3}
= min , ,
Pa Pb P

+min{na'P4’”b‘P4’"1'P4}, (11)
Pa Pb P

where ¢; are the two beam momenta and the jet momentum
at Born level, p, are the final-state parton momenta and Q;
are normalization factors. We have substituted 2¢ / Q; with

n* /p; for notational convenience. The lightlike momenta
n, ny, and n; are the same as in Eq. (2). From now on, the
subscript in 7| will be implicit and we will simply refer to

the one-jettiness as 7. The measurement of 7 is encoded in

the measurement function 8[7 — 7 (p3, p4)], which, due to
the presence of a jet in the final state, is considerably more
involved than in the zero-jettiness case.

The first simplification to the measurement function
comes from exploiting the symmetry p; <> p, relevant for
the partonic process under consideration. The gluons in the
final state are identical, leading to an overall factor of 1/2 in
the cross section. We can always assume that p3r > paur,
modulo relabeling p; <> p4. The relabeling freedom can-
cels the 1/2 symmetry factor. The momentum p4 = k can
therefore always be considered as the emitted gluon which
can become soft or collinear, while p; can always be
considered as a hard parton which is either the jet itself or
its hardest partonic component.

A procedure is needed to determine the jet momentum at
NLO. A clustering algorithm normally defines a distance
measure between the final-state particles. If this distance is
larger than a certain value (e.g., the size of the jet cone),
then the two final-state partons will be clustered as two
separate jets, and the parton with the largest transverse
momentum (p3) will be the leading jet. Otherwise, if the
distance between the final-state partons is small, the jet
momentum will be the sum of the momenta of the two
partons. We find it simplest to use N-jettiness itself as a jet
algorithm. The scalar product n; - k is indeed a measure of
the distance between the two final-state partons. When this
distance is smaller than all the other scalar products that
appear in the one-jettiness definition of Eq. (11), then the
two final-state partons are clustered as a single jet whose
momentum is p3 + p4. Otherwise, the two final-state
partons form two separate jets.

If the final-state partons are clustered as separate jets,
then ¢/, = p4, since ps is hard and must therefore be the
only jet in the low-7 limit. This means that the first
minimum in Eq. (11) is zero, since n; - p3 = n3 - p3 = 0. If
the two final-state partons are instead clustered together in
the same jet, then the first minimum in Eq. (11) must be
%, since ps is not allowed to be soft or collinear to the

beam direction due to the jet measurement function. It can,
however, be collinear to the jet direction ;.

These assumptions being made, the measurement func-
tion can be written as

O[T =T (p3.pa)] =O(T, =T ,)O(T, - T,)8(T - T,)
+0O(7,-T7,)0(7T,=T,)0(T -T,)
+O(7,-7,)0(T,-7,)8(T -T9),

(12)
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where we have defined
mek ook mps gy

7T = ,
Yo pi Py

In order to further simplify the measurement function, we
will make use of the expansion by regions [32,33]. The
necessary regions are listed below.
(i) Beam a region: 7, < 7 ,,7 ;. The measurement
function becomes

O[T =T (ps.pa)l = (T =T,).  (14)

(ii)) Beam b region: 7, <7 ,,7 ;. The measurement
function becomes

5[7—7A—(P3,P4)] = 8(T = T,). (15)

(iii) Jet region: 7, < 7T ,,7,. The measurement func-
tion becomes

ST =T (ps.ps)l = 8(T = T)).  (16)

(iv) Softregion: 7, ~ 7T, ~7T ; < Q. The measurement
function cannot be expanded since all of the terms
that appear in it are homogeneous. We make use of

the hemisphere decomposition [35] and write the
measurement function as

ST =T (ps, pa)]
=0(T,-T)8(T-T;)+6(T,-T))

(T, =T8T =T,) = 8T - T,)]

+ (i <)), (17)

where with a slight abuse of notation 5(7 — 7 ) is
always substituted with (7 — 77,). We emphasize
that Eq. (17) is not an expansion, as for any choice of
i and j, we reproduce exactly the complete meas-
urement function Eq. (12). The choice of i and j will
be different for each term in the integrand, and in
Secs. VI A and VII A we illustrate how we make this
choice.

In our computaton, we proceed by expanding the phase

space and the matrix element in each region.

IV. NLO PHASE SPACE

The NLO phase space differential in the vector boson
momentum squared and rapidity, and in the jet transverse
momentum and pseudorapidity, is

dPS fa&a)fa) [ ., s d )
dQ2depTdi1 (2” 2d 3/d§a/d§b 25 ga(fb /d pVé(pV _mV)/d p35(p3>
x / & pad(p2)8 (g, + gl = py = p3 = pMy(a,)3T =T (3. pa)]

(s}~ 09| ¥

where i is the minimal subtraction renormalization scale.
The initial-state momentum fractions have been labeled as
&,, &, in order to distinguish them from the Born initial-
state momentum fractions x,, x,. We parametrize p, = k
according to a Sudakov decomposition, where the two
lightlike vectors that describe the directions of the decom-
position are in general n; and nf,

ki

—nj + K. (19)
J

The integral in the final-state gluon momentum can then be

written as

[ oty =202 5,7 [ agsint gy

x/dT,-Ti‘e

where we have defined the hatted invariants §;;

4T T+ (20)

Jci

as [35]

1 py - n . .
- 5102 (22 ol = by (. el = (ps. ) (18)
Pv Ny
! n;,-n
§ = 21
/ 2pip; 2

The operators pr(ps, ps) and 7(ps3, ps) in Eq. (18)
measure the jet transverse momentum and rapidity.

When the two final-state partons are separate, then they
are simply pr = psr and n = 53. When the two final-state
partons are part of the same jet, we define the jet
momentum ¢, = p; + p, and then measure its transverse
momentum and pseudorapidity.

In the two-jet case, we change variables from &,, &,
to Q% Y, similar to the procedure followed at Born
level. When ij = ab, for example, this change of
variables is

ky + €"pr

NG
eY
+ 7 \/ kaky + p7 + Q* + 24/ kkypreosd,  (22)

$a =
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k,+e"pr

Vs
e—Y
+ 7 \/kakb + p2+ Q% + 2k, kyprcosg.  (23)

&=

The phase space in the two-jet case is then

dPSij’zj . dngBom Qd 3/"0 (3, ) 1+¢
dQ2dYdprdny  dQ?dYdprdn4(2m)d!
x/ d¢(Sil’12¢)_£/dTiTi_6 d7,T5°
0
’é‘z”f,@a)f,(fb) [T~ T (ps. pa)l-
(24)

In the one-jet case, the jet momentum is ¢} = p4 + pl.
To derive a convenient form of the phase space, we first
|

parametrize the jet momentum in terms of its transverse
mass, transverse momentum, and pseudorapidity,

my coshy
Pr el
q = 0 = prcoshnynly + (my — pr) 3"’3
my sinh gy
e u
+ (my = pr) —-nj,. (25)

2
We then change variables from &,, &, to Q%, Y

n Y

ga e\;n—T \/— pT<l>Q2 (26)
-n

f= = f Ph+ 0% (27)

We can solve the on-shell condition of p; for my,

1
my =5 [e”paT atepy Ty + \/ (¢"paT o+ e "pp Ty = 2pr)* + 8pgp, T cosh n] (28)

The phase space in the one-jet case is then

dPSi]"]J B
dQ*dydp,dy

dl;gBom
dQ?dYdprdn 4(27)®!

X /dT,»T;E d7 ;77¢(2mpd ,)

st st [ gty
0

XaXp

?fi(é:a)fj(é:b)é[lf - 'ZA—(P& P4)]’ (29)
aSh

where J,,. denotes the Jacobian that arises when removing the my integration.
Finally, we can summarize the structure of the phase space for both the one-jet (1J) and the two-jet (2J) cases,

dps;; , dPSpn  Quap® x
5 j.nJ o . Bo d— 3/2(1 (3, ) 1+g/ d¢(sin2¢)—£
d0%dYdp,dy  dQ2dYdp,dy4(27) 0
X /de’Tf_E deT]TEq)ij,nJ(Tiaij¢)5[7 - T(P3’P4)]v (30)

where the phase space measure ®;;,,(7;.7 ;. ¢) wil
be expanded according to the small quantities in each
region.

A. Soft region and nonhemisphere poles

In the soft region, all of the components of the emitted
gluon momentum k are soft. Expanding in the soft limit
corresponds to rescaling 7; — A7 ; for all i and taking the
limit 4 — 0. The expansion of the phase space ®;; ,; as it
appears in Eq. (30) is

P ns(Tan TpTy) = Y @iy THTTh. (31)

soft nJ
n,m,l

|
where it is understood that in the one-jet case we sub-
stitute 7, — 7,. The expansion coefficients are given in
Appendix A 1.

Due to the fact that the 7'; projections are homogeneous
in the soft region, knowing the expansion coefficients is not
enough to fully describe the NLP phase space. We must
further study the measurement function, which in the
soft region is expressed by Eq. (17). We can split the
measurement function into a hemisphere term and a non-
hemisphere term, where the latter is made of two pieces:
one proportional to §(7 — 7 ;) and the other one propor-
tional to §(7 — 7 ,,). We can represent this in the schematic
way,
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O[T =T (p3s Pa)l = Fijemi + Fiji + Fijm + (i <)),
(32)

where we have defined an hemisphere contribution and two
nonhemisphere contributions,

=0(T,;,-T)5(T - T)), (33)

fij,hemi
}—ij,i = _®(Tj -7,)0(7T,-7,)5(T -T,), (34)
Fijm=0O(T;=T;)0(T;=T7,)8(T =T,). (35)

At leading power, the hemisphere terms contain poles,
while the nonhemisphere terms are finite. To see why this is
the case, we first define the ratios

|

x=& Z=Tm7sjm+s,-mx_2czos¢ 5
7, T, 5 3 3 e

ij ij

(36)

As we will show in Sec. VI, the leading power (LP)
hemisphere cross section is always proportional to

0'2“0% ij.hemi & AE d¢(sjn2¢)—e / dT,’Ti_l—g
X /deTJTI‘E(Q(Tj -T)8(T -T))
Q
= ﬂf—'—%/dxx—'—f@(x -1). (37)
Q43
The integrand is independent of ¢, and the x integral
clearly gives a pole when x — +o0. For the nonhemisphere

contributions, the cross sections from the ij, i region and
the ij, m region are proportional to

Ot iji “Aﬂdfﬁ(smzfﬁ)_e/dTiTi_l_S/deTfl_g(a(T,j—Ti)Q(Ti—Tm)é(T—Ti)

=712 /0” d¢(sin2¢)‘£/dxx_l_€®(x - 1)6(1 -z). (38)

0L i o A " dep(sin? )¢ / 4T 771 / 4T [ T71°0(T; = T)O(T,; - T,)8(T - T,,)

=712 /” dp(sin® ¢p)~¢ / doxex™'72%*0(x — 1)0(1 - 2). (39)
0

Both integrals are finite, since the limit x — +o0 is cutoff
from the integral by the constraint z < 1. In principle, there
could be a pole when z — 0, but the LP integrand does not
contain negative powers of z.

This statement is not true anymore at NLP. The soft ij, i
contribution will still be finite even at NLP, but the soft
ij,m contribution will have a pole. In fact, the power
counting is such that a negative power of z does indeed
appear at NLP,

GNLP X /dTZT7285(T— ZT,)

soft ij,m

1 (T2

= — (_> — T—282—1—2s' (40)
T\ <

To better understand this pole, let us investigate in detail the
nonhemisphere constraints @(x — 1)@(1 — z). First, z < 1
can be expressed as

> Sjm T SimX — Si; _ .

z<1 = cos¢ — min- (41)
2./8im$ imX
If ¢y < —1, the azimuthal integral is unconstrained.

Otherwise, there is a nonzero lower limit in the cos¢

integral. The two scenarios are respectively represented by
the following conditions:

3'1" Zg‘m
x < x_,
~1<cmn<1=x <x<x, (43)

where we have introduced the following limits in the x
integral:

VA TEVA T (44)

Sim

So far, we have split the i j, m region into a subregion where
the ¢ integral is unconstrained and a region where the cos ¢
integral has a lower limit. Physically, the limit cos ¢ — —1
does not present any singularities, since in that limit z is
strictly positive as can be seen from Eq. (36). Therefore, it
makes sense to further split the azimuthal integral into a
component that can contain a pole and a finite component,

1 1 Cmin
/ dcos¢:/ dcos¢—/ dcos¢. (45)
Cmin -1 -1
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We then define three subregions from ij, m, /ﬂ dp(sin? p)~ez-1% — Qi <§U‘> 1_2£|x )
0 Q43 \Sim
Fijm=Fijmr+ Fijma+ Fijmss (46) (50)

where the constraints in each subregion are . . .
where we have introduced a limit in the x integral where a

fij,m,l =0(x— 1)@<3zj - fjm)@(x— -x)8(7 =T,), pole appears,

(51)
Fijma = Ox—1)0(x—x_)0(x, —x)8(T =T ,).
(48) In the special case where 7 ,, = 77}, then the measurement
functions produces a factor (z/)~!*2¢, where

Fij,mﬁ = _®(x - 1)®(Cmin — COs ¢>®(X - x—) T’
r_ T J
O(x, —x)3(T ~T,). (49) d=g, = o (52)
We have constructed our subregions so that the integral ~ The O(7) terms are NNLP, and therefore we do not take

ij, m,3 is always finite, while ij, m, 1 and ij, m,2 can have ~ them into account. The relevant integral in x, assuming for
a pole. Let us now solve the unconstrained azimuthal  the time being a generic function g(x) as our integrand, can

integral in the presence of a factor 77172, be expressed in terms of a finite contribution and a pole,
|
Xmax X Xmax X) — gl X, Fmax N
/ dx g( )1_26 _ / dxg( ) g( 0) + g(xO) dx|x _ x0|—1+2&
Xmin |x - x0| Xmin |x - x0| Xmin
Xmax g(x) - g(x ) 1
= / dxio + | = g(x0)®(xmax - )CO)®(X0 - xmin)
o |x — xo €
+ g(XO)Knonhemi (x()’ Xmin» xmax) . (53)

The value of the finite integrand depends on the ordering between x, and the generic integration limits which we named x;,
and Xy,

10g [(xmax - xO)(x() - xmin)] if Xmin < X0 < Xmax >

X0~*min 3 X
Knonhemi (XO’ Xmin> xmax) = log (xU_xm‘“) it Ymin < max < 10, (54)
Kmax =X 1
log (xmm—xg) if x5 < Xpmin < Xmax-

We notice that the pole is only there if X, < xo < Xpax. This condition is satisfied for F;;,, ; and F;; , », respectively,
when

Fom: {302 5m L [552 % (55)
ij.m, 1 < X0 <x_ :§’1m > §im ’
F -{X‘SXOS“:{%SMW (56)
ijm32 - R n .
Xo = 1 Sim 2 Sim

Therefore, the nonhemisphere pole term in the cross section is proportional to

SR T (-
i a( )(ﬂ)@@m—@mmmrmuw (57)

dQ?dYdpydy £ 8ij

We note that in the case m = J, this pole comes from the limit 7, — 0 and is therefore associated with a soft gluon emitted
close to the hard jet.
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This concludes our treatment of the phase space in the
soft limit. To summarize, we wrote down the expansion of
the phase space, then we analyzed the measurement
function and found out that there are new poles in the
nonhemisphere ij, m region corresponding to the limit
T,, = 0. We were able to further split the nonhemisphere
region so as to isolate the poles and separate them from the
finite contributions. The contribution of these nonhemi-
sphere poles to the pole cancellation at NLP is an important
check of our result.

B. Beam region

In the beam region, the emitted gluon is collinear to one
of the two initial-state partons. We study explicitly the
beam a region, since the beam b region is related to it by a
trivial relabeling a <> b. The quantity that is small in the
beam region is kr, the gluon transverse momentum. In
Sec. IV, we derived a general formula for the phase space,
Eq. (30). We start from there and make the change of

variables
1=
T, = & <_Z“) (58)
Pb Za

Z, 1s the argument of the leading-power splitting function,
while the transverse momentum of the gluon is

kr = \/koky, = paﬂbx/Exa< Z")ﬁ- (59)

An important observation is that in the beam region we
expand in /7 rather than in 7. This might in principle lead

to corrections proportional to 7 ~!/2 in the differential cross
section. Such apparent terms cancel upon azimuthal inte-

gration. Factors of v/7 are always accompanied by factors
of cos ¢, which makes the azimuthal integral vanish.

Upon introducing the momentum fraction z,, the phase
space in the beam region is

d'lsgBom Qd 3”
dQ*dYdp,dn4(2x)*!

x A " dp(sin2p) ¢

1dz, (1-2,\"
X / Z2a < Zd) (I)beam a(T’ Za> ¢)
x, <a Za

(60)

dPSbeam a
dQ*dydp,dy

- (Vsxapa) T

The constraint x, <z, <1 derives from the constraint
0 <¢, < 1. To be precise, the actual constraint expanded
in 7 is

24 2 X, + O(VT). (61)

Terms of order v/7 and beyond contribute at NLL, but not
at LL.

Finally, as in the soft region, we expand the phase space
measure

(Dbeama T Zaa

§ :(Dbeama Zfl’
n,m
- § :q)beama

n,m

YT (1 —z,)".  (62)

The relevant
Appendix A 2.

expansion coefficients are given in

C. Jet region

In the jet region, the two gluons in the final state are
collinear. Starting from Eq. (30), we choose ij = Ja as
Sudakov axes and make the change of variables

-n
7, =5 Pra (63)
Pa

We note that we could choose ij = Jb as Sudakov axes,
and the final result would be the same. The treatment of the
jet region follows almost exactly one of the beam regions.
The phase space is

dPSj
dQ?dydp,dy

dPSBom Qd—3:u(2)8
dQ*dYdp,dn4(2x)?!

x (2prpycoshn)' =T | dg(sin? ¢)

1
X / dz,0(psr — par)z;°(1 = 2;)7¢
X (T, 2y, ). (64)

The constraint p;7 > p4r can be explicitly expressed as

P3r 2 Par = 2y < + O(WT). (65)
Like for the beam region, terms of order VT and beyond do
not contribute to the NLP-LL cross section.

We use the following notation for the expansion of the
phase space measure:

Z Jet (ZJ’

Zq)_]entm ¢)Tn m

(66)

]et T ZJ?

The expansion coefficients are given in Appendix A 3.

V. MATRIX ELEMENT EXPANSION

For the process of V + j production which we consider
in this paper, the NLO amplitude can be taken from [37].
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With the full amplitude and having completely specified all
the kinematics in each region, we can proceed to expand the
invariants s;; that appear in the amplitude and hence obtain
the expansion of the matrix element region by region. The
notation for the matrix element expansion in the soft region
is the following:
nm.l) g orml
Msoft nJ(Tm le TJ ZMsoft n.IT T T (67)

n,m,l

Regarding the beam and jet region, the notation will be

Mbeam a T Zav ZMbeam a Za’ T
- ZMbeam a ¢)Tn(l - Za) ’ (68)
M T, 2. ¢) = ZM}Q (2. )T

- ZMM

The method of expanding the full NLO amplitude
is not particularly amenable to a generalization to more
complicated processes where we do not have an analytic
|

HTZr.  (69)

representation of the amplitude. At leading power, soft and
collinear factorization theorems (as summarized in [38] for
example) allow us to predict the first order in the 7
expansion without knowing the full NLO amplitude. In
fact, a straightforward application of the leading-power soft
theorem gives us

_1— 1 C .
Mgofiwzjl’o) = Miofiqul'o) = (4”%) (CF - 7A> 48 s Mpoms

(70)
(=1.0-1) _ 4 ,(~1.0-1) _ Ca\ -
Msofl2] _Msoftlj —<47ms) 2 48,y Mpoms
(71)
(0~1-1) _ 1 ((0~1.-1) Ca\ .
Msoft 2J - Msoft 1J - (47[(1‘?) 7 4sbJMBom'
(72)

An equally straightforward application of the collinear
factorization theorem allows us to obtain the first terms in
the expansion of the matrix element in the beam region and
in the jet region,

_ 2Cr 1422
Méealr)n a = (4”as) \/EXITO —z - 8(1 - Za):| MBoms (73)
(-1) 26, [(l=z,+25)°
M, = (47ras)prJ coshy | (1=2,02) + Ajet ( 27)25€08(2¢p) | Mpom, (74)

where the coefficient AJ(; D" does not contribute to the
leading-power cross section due to the azimuthal integral
vanishing. Its explicit form can be obtained using the collinear
factorization of the matrix element presented in [38].

At next-to-leading power, there have been recent efforts
toward understanding the collinear behavior of QCD
amplitudes [39]. However, a factorized formula for the
|

[

subleading collinear case does not exist yet. We can only
expand the full amplitude in the collinear regions.
Regarding the soft region, a subleading soft theorem in
QED has been known for a long time [34]. The extension to
color-ordered QCD amplitudes with the emission of soft
gluons does not present any significant issues. The sub-
leading soft theorem reads

0 1 0

NLO,LP+NLP
M *

i p; 12
4za, - P —
ol = )Z{ (k- p)Wk-py) " (-p)(k-p)) Op; kep;" Dp;

LJ

}<ABom|f,~ T Apen). (75)

Here, Ap,, indicates the Born amplitude and all the momenta p/ are incoming. The color factors are in our case

T, T,=T, T;=Cpr. T, T,=Cy,

S T,===A (76)

The NLO amplitude in the soft limit up to next-to-leading power, expressed as a function of the NLO invariants s;; and the

Born invariants s;;, is
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NLO,LP+NLP __ 4s'y
M

soft

— (4ra, ){ (cF - %‘)

S14524

00
8513
1
X_

(@)

1 0
’ (4ﬂas>{314 [2CF <2S12 Os1 o <6S13

/
4s'5

@)
)

514834

0

0 0

0 0

0
|:2CF (2512 B + S23<
$24 S12
0 0
+Cyul s3| 5—
A ( » <8513

1 0 0
#om Gl (350 -
$34 Os13

2512534

o)

0 0

gl
(10, 3|

0 0

2513504

3S12>
S14524

Cy 0
- (CF - 7) (3513
0

Cy
* a523> - <7>

0
8512

* aszz»)

S14534

Ca\ 2523514 9
" < 2 > Os 12 "

Equation (77) allows us to extract all of the relevant soft
coefficients and express them in a process independent way
in terms of derivatives of the Born matrix element, without
needing to know the full amplitude. We will see later that
the next-to-soft corrections are sufficient to obtain the full
NLP-LL result, without knowing the exact form of the full

amplitude.
We conclude this section by presenting some useful
relations between the beam and jet matrix element expansion
|

$24534

8S13

(77)

)

coefficients and the soft matrix element coefficients. The
matrix element can be expanded in 7 and in z, or z;. The
first orders in the z, and z; expansions correspond to the soft
limit of the collinear region, so we are able to map such
coefficients to the soft ones. Since a negative power of
(1 —z,) or z; is the only way that we can produce a pole,
respectively, in the beam region and in the jet region, having
these relations will allow us to check the cancellation of ™!
poles. For the beam a region, the relations are

(-1.-1,0)

(-1,0,—-1)
Mg a (#) = (\/Exapa)‘l{MS‘if‘ Moo } (78)
Sab SaJ
My () = (ﬁxm‘%{z\/ cos pMuyy; } (79)
Sa a]
(0-1-1) o -1,0,-1)
0. M, 1 +2cos(2¢ .
MO (P) = (Vxgpa) 24 o2l 4 7 os{ A( 2)) ' : (80)
SabSaJ absaj
0.—1.0 0,0,—1 0.—1,~1 ~1.1
MO=D (@) = (V5xapa)™ 1{Méoft2j)+M£0ft21)_ ZMéoftZJ ) SbJMsoft2J )
beama e gab gaj (\/_xapu)gabgal ab
1,0,— A —1.1,-1
2sbJ(1 + 2C05(2¢>)M30ﬂ 2J . Sb!(l + 2COS(Z¢)) soﬂ 2J ) 81
(\/—xapa) absaJ uJ . ( )

For the beam b region, the relations are the same upon relabeling a <> b, Y <> =Y, n <> —. The relations between the

matrix element in the jet region and the soft region are
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o M(—I,O,—l) M(O,—l,—l)
M V(@) = Qpray Coshn)‘l{ soft1J 4~ soft 1J } (82)
Saj Spy

~1/2.-3)2 3 § (0,~1,-1)

/\/lj(e[ /2= )(45) = (2prp; coshn) 3{2 A JA3 cos ¢M§0ft i } (83)
SalShy
(-1,-1,0) 5 (0,—1,—1)
_ . 142 2
-/\/lj(;)t 2)(¢> _ (szpJ cosh n)—Z{M\softAlj + ( + COS( (Zﬁ)) soft 1J }7 (84)
SarSvs a!sbJ
(-1.0,0) (0.-1,0) 4 (0,~1,~1)
_ 3 2 1
ME() = @prpycostn) {FEenis g Mot S SEED) £ 1 a1
SaJ Shr (2prpy coshn)28,,54,
N 1—1,—-1 1-1
+ Sab(2 COS(2¢) — )Mgoft 1J : + ab'/\/fszoft 1J >} (85)
Shs Sas
|

VI. LEADING-POWER CROSS SECTION discussion of the hard function, which matches exactly the
virtual corrections to the cross section in dimensional

In this section, we reproduce the leading-power cross
section in the small-7 limit as a check on our approach. To
obtain this result, we multiply the leading-power matrix .
element by the leading-power phase space. We arrange the A. Soft function
calculation into beam, jet, and soft functions to match To compute the soft function contribution, we first
results in the literature. For simplicity, we omit an explicit ~ consider the integrand in the soft region,

regularization.

da%oﬁt _ dPSBorn ﬁ (4ﬂﬂ(2))g (§ ) l+e /ﬂd¢(sin2¢)—s
dQ*dydprdn  dQ*dYdprdy \4z) \/zl'(5—¢€) g 0

x / AT, 7 [ 4T T3 f (v o (0)8T = T (ps. ps)]

-1,-1,0 -1,0,—1 0,—-1,-1
X {Mgoft : Mgoft : Mgoft >}

+ +

1.0, | 1.0, 1,1, (86)

The superscripts on the matrix element structures indicate the powers of 7 ; that appear in the denominator for that term. At
leading power, there is no difference between the two-jet parametrization and the one-jet parametrization for both the phase
space and matrix element. The structure of the measurement function of Eq. (17) in the soft region requires us to choose the
two Sudakov axes that appear in the hemisphere decomposition. We make the following choices:

(i) ij = ab will be used for Msofi 19,
(i1) ij = aJ will be used for ML= 1).
(iii) ij = bJ will be used for MO

soft
Due to the symmetric configuration of the integrand, we can express the result in terms of the ij hemisphere contribution
and the ij,i and ij, m nonhemisphere contributions, following the decomposition of the measurement function from
Sec. IVA. The contributions to the differential cross section are

dasoft ij hemi _ daBorn 47'5 7'2 as (675”)
dQ?dydp;dn  dQ*dYdp,dy 4x \/_1"(

« / AT T / AT, T710(T, ~ T)5(T - T,)

-1 —l)
soft

s G /0 dgb(sin2gp)~

daBorn

—7(%?)(&)[ i c( z )-”—25(7)] (7)
~dQdvdprdy T \ax) [\ s \fsn) 6 ’
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do—kfft ij,i o dGBom 77 A (eyEﬂz)E S \eT—1-2¢
B =T (4T; - Tj) T 71(%') T
dQ*dYdp;dy  dQ*dYdp,dy 4r) \/al(5— €)
X /”dqs(sinzqs)—e/dxx-l-f@(x— 1)O(1 - z), (88)
0
d LP B . . YE 1,2\€
fsott im de'Born AT . Tj) ay (e /14 ) (S,ij)ef]'—l—ZE
dQ*dYdprdn dQ“dYdp dn 4r) \/al'(5— €)
x / " dgp(sin2gp)~ / dxx 1220 (x — 1)0(1 - ). (89)
0

The color factors T,- T ; have been introduced in Eq. (76). i and j can indicate either a quark, an antiquark, or a gluon. We
have used the following & expansions:

eevE e s
=g '~ D2 +0(), (90)

where we have defined the standard plus distributions

£,0) = {M] (92)

X

The sum of the nonhemisphere integrals of Eqgs. (88)—-(90) can be expanded in € and cast in the same form as in [35]. We
therefore reproduce the leading-power soft function known in the literature.

B. Beam function

It is straightforward to obtain the differential cross section using the leading-power phase space and matrix element in the
beam region,

dgl&fama _ daBom Cra; ee \/Exapa \/Exapa’]' —l-e
dQ2dYdp;dydT  dQ2dYdprydp \ 2z JT(1—¢e) \ 42 U2

Id a 1 - a) ¢ a 1 31
e =

where 6p,,, indicates the Born-level partonic cross section with PDFs removed. We use the following & expansions:

<\/3xapa> <\/§xa2pa7>“‘5 L@ (\/Exzapa> o (x/E)ZzzpaT >

2

H H € p
_ o[ V5%aPa VSxap T
( w >£1< w > o4
(1= 27702 = 2020 12— el (1 - 2,) = Tog a1 — 2] (95)

The finite part of the cross section takes the form
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dall;gam a d6om Crag ldz, X,
2 =32 —fil — fj(xb)
dO“dYdprdnd7 dQ-dYdprdy \ 2z x, Za Za

2

« {5(7) [—5(1 —z) T L (- )1+ ) + (1 21 ta logzuﬂ

6 -2,

(V) (VT ) 1 - 20+ 22) 4 2000 - 2 (Vo) (VY o)

This corresponds exactly to the quark beam function contribution to the cross section in the literature [40].

C. Jet function

Combining the leading-power phase space and matrix element in the jet region, we obtain the differential cross section,

dajlgl: _ dogom ecre Cua,\ (2prpycoshn\ (2prpycoshyT \ ~1-¢
dQ*dYdp;dnd7  dQ*dYdp;dpT(1 —¢) \ =z U u?
3 (1—z;+23)?
x [ “dzyzyE(l —zy)f —— . 97
A ZJZ] ( Z./) Zj(l _Zj) ( )

We use the following e expansion:

<2prJ cosh 17) <2prJ cosh ;1’Z'>—1—6 5(T) n (ZprJ cosh 17>£ (ZprJ cosh 11’Z'>
- = 0

P 2 e 2 P
2 h 2 hnT
_8< PPy €05 n> c ( prpy coshy > (98)
H H
We can also perform the integral in z;,
3 1 11 67 n°
dz;z717¢(1 = z,)71=¢(1 - M= (-2 ), 99
[ozg-z) -z e 3 == e 5+ ) (99)
The finite part of the differential cross section becomes
Ao _ dowm (4Ca\ [ 5 [67 _#) 1L (2prpycoshin) . (2prpscoshnT
dQ*dYdp,;dndT — dQ2dYdpydn \ =x 36 4| 12 e 0 >
2 cosh 2 coshy7
N < W;2 ">£1< prmﬂz n )} (100)

This corresponds to the gluon contribution to the jet function with n; set to zero [41].

VII. NEXT-TO-LEADING POWER CROSS SECTION

In this section, we derive the cross section at next-to-leading power. We organize the calculation using the previously
defined beam, jet, and soft regions. For each region, we discuss the terms that enter the NLP cross section, focusing on the
leading logarithmic contributions first, characterized by the presence of a pole, and discussing the finite next-to-leading
logarithmic contributions later. Eventually, the final result will take the form

doNLP dl;§30 u -
= m s CLL log — CNLL , 101
dQ2depTd17dT dQZdepTdﬂ (47[) (Zl{ o log Q + a } ( )

a

where the index a runs over all the regions: beam a, beam b, jet, soft ij hemi, soft ij nonhemi.
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A. Soft region

We start our treatment by defining the product of the soft matrix element times the soft phase space,

1
SnJ(Tav Tb’ TJ) = <m> Msoft nJ(Ta’ Tb’ TJ)(I)soft nJ(Ta» Tb’ TJ) (102)

The NLP cross section in the soft region is, using i and j as reference axes,

doNLP dPSg a,\  (dnpd) e [T ;
- om - §;)71He [ d )= | AT T7¢ | AT T755|T — T (p3,
dQ?dYdprdy  dQ?dYdpdy (4;:) AT —e) (i) /o Peirg) / o TS0 =T e pa)

7, 71, 1, 1.0, 7.7, 7,7,

-1,0,0 0,-1.0 0,0,-1 -1.-11 -1,1,-1 1,-1,-1
WAL Ll FOE il e P o

where the measurement function determines whether the ~ and we choose the most symmetric configuration as
two-jet parametrization or the one-jet parametrization  follows:

should be used. The superscripts on the S,; denote the (1) ij = ab will be used for S ~L-LD) , half of S, J] 0.0)
powers in the 7; expansions; for example, Sfl;l’_l'l) and half of Snoj 10,

denotes the coefficient of the term with 7, and 7, in (ii) ij = aJ will be used for Sn 7 . half of S J100)
the denominator, and 7 ; in the numerator. The n in the and half of S (}0 -1)

subscript denotes whether the one- or two-jet parameter- (iii) ij = bJ will ge used for S L=1=1 " half of SOJ 10)

ization is used. The measurement function in the hemi-
sphere decomposition requires us to choose a pair of
Sudakov axes ij for each term in the integrand, just as
at leading power. This choice will not affect the final result,

and half of $%7Y

In order to compute the hemisphere cross section, we need
the following integrals:

/ﬂ d¢(sin2¢)‘€/d’]’,~/deT;"STf@(Tj -T)8(T -T)) = %T‘zg[—l + O(e)], (104)
0 d-3
_ Qi 1
/ d(sin® ) /dT /dTT “THQ(T, ~ T )(T —T,) = 27 28( ) (105)
0 Q3 €
P 5. 5. /5. 5 T 7.
/ dqﬁ(sinzqﬁ)‘s / a7, / deTi—l—eijl—e (i]_m T, + 5;,_,,1 i 2COS¢M)
0 Sij Sij Sij
O -T)6(T -T,) = Qo e | Lim s”"+c9( ) (106)
J Qd 3 £ S S “\

The results shown are straightforward to derive by direct integration. We now have all the ingredients needed to compute the
hemisphere cross section. We sum over all the hemispheres and obtain

PS e 00) | o(0.-1.0)
Uls\(l)]l:tph%%m _ dPSpom as (477,'/4(2)) T2 l S( 1 + 82]
dQ*dYdp;dn  dQ*dYdpydy \4z) T(1 — &) e 2(5,)1¢
1.0,0) (0.0.~1) 0.-1,0) (0.0.~1) 1.-1.1) 1-1.1
S0 sl SO0y 80 SGH g, + 8 s,

2(840)'"* 2(8,)'"* (3ap)*™*
ngl 1.-1) S, —|—8111 1 -1) o Sglj—l ~1) S +S]11_] —1) $up
+ Yo T : (107)
(3as) (SbJ)

To compute the nonhemisphere NLP soft function, we note that in Sec. IV A we analyzed the structure of the constraints
and described a way to separate the LL structures from the NLL ones. Summing over all contributions, the NLP-LL cross
section is
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dGIs\(I)IftP flI(;Ir;hemi _ dPSpom a5 (471-/4(2))5 T2 l
dQ?dYdp;dn  dQ*dYdpydy \4x) T'(1 — &) €

Sﬁ;l’o’o) S(S’_l’o) 321 € 2\ ¢

2al ) &(5,., — 5§ 201 (5., — %
S SN
a O, —§ °bJ
X( ST T A L I 2

(0,—1,0) (0,0,-1) A2\ e 2\ e
x<52f +2 )[(”) O(8as = Sap) + “’) @(Sab—sm]}- (108)

28 X

Spy

B. Beam region

Like in the soft region, we define the product of matrix element and phase space. This time, we integrate inclusively over
the azimuthal angle, since no observable constrains this variable,

Bo(T.20) = ( : )& [ 502 07 Moo T 20 ) @1 o T 200, (109)

471'as Qd—Z

We note that the z, expansion of Bgo)(za) is

B2 4 g1 - Z4) + BYY(1 - Za)? + .
BEIO)(ZH) — ( (1 _)Z )2 ( ) . (110)

This means that the first two terms in the z, expansion of BE,O)(Z”) will contribute to the LL cross section, while the
remaining terms are finite. In particular, we notice that the first term in Eq. (110) has the form of a power-law divergence.
This peculiar behavior was also observed in Refs. [39,42] at next-to-leading power in the case of multiple collinear
directions. The finite contribution coming from this term, however, is a NLP-NLL contribution, as it is not associated with a
pole (and therefore a leading log). In order to extract the pole, we sum and subtract the first two terms in the expansion,

Ldz, 0 / Ldz, | 40 B B o-»f 2 1 1 1—x,
a a) — a a) — - a, - - = 21
/ ZZ‘gB (%) e Zo Be'(za) (-2, (1-2,) B e

o1 1= 1 -
+ B {——+ ta +log< x)} (111)
&

a xa

We have included the z;>*¢ factor from the phase space of Eq. (60). The beam a contribution to the cross section at NLP-LL is

dGbNeI;E{LaL _ d13.§ Born ((ZS ) (4”/4% ) ‘

1 ) )
— & e 2 ) {28072 4 g0~ 112
dQ2dYdp,dy — dQ2dYdpydn \4z) T(1 - ¢) (Vsxapa) < e>{ * } (112)

C. Jet region

The jet region treatment proceeds analogously to the beam region. We define the product of matrix element and phase
space, integrated over the azimuthal angle

T(T.2) = ( : )Q— [ a5y Mo T 21 90l T 21, (113)

471'(XS Qd—Z

We write the integral in z; as
1

1 1 (0.-2) (0.-1) 1
/ deZ;g(l _Zj)_gj(())(Zj) = / de |:\7<0)(Zj) _j—z_j—] _j(O,—Z) + <—E—10g2>j<0'_1). (114)
0

0
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The cross section at NLP-LL is

do NLP,LL dﬁg (471.
orn IM ) —& —& -
Qz(;;dprdn:szdeprdﬂ <4n) T(1 - g) (2Prescosh) T ( )m(l o )

D. Cancellation of poles

A strong consistency check of our computation is the cancellation of e~! poles. Poles come from the soft function, the

two beam functions, and the jet function,

dali)lgthole - df)gBom a 1 S( 1.0.0) +Szg 1.0) +S( 1.0.0) +32(;0 -1) +S(o 1.0) —1—82(}0 -1)
dQ?dydp,;dy  dQ*dYdp,dy \4z Sap 84 8y,
—1.-1.1) 1-1.1) 1.1,-1) d=1)A 1-1.-1) (1-1,-1
+S(21 Sbj:; SZJ aJ_'_SgJ Sbljz’ SIJ )Sab +S(21 Sas +811 s ab}, (116)
Sab Sas shJ
d bNe];l;pOle dl/)gBorn Ay 1 (0,-2) (0,~1)
“ s — )28 B~ 117
dQ2dYdp,dy  dQ2dYdp,dn \4x (Vsrapa) [ =5 ) + } (117)
d NLE’APOIG dl/)'gBorn (0,-2) (0,—1)
szdbeYad;Tdi’] dQ2deprdl7 (471’) (\/_xbpb) <_ _> {28 + B } (1 18)
dgNLRpole df)g
jet Born (0,-1)
2 hn| —— 119
d0™dYdpydy — dQ?dYdprdy (4 ) Prprees ”( )w g (119)

Thanks to the relations between the beam and jet matrix element expansion coefficients and the soft matrix element
expansion coefficients that we derived in Sec. V, together with the phase space expansion coefficients, the following
relations required for pole cancellation are indeed satisfied:

1,0,0) (0,~1,0 0,0,~1 (0,0,-1 1-1,1 1-1,1 —L1-1),
SZJ +Szj ) S;J ) SZJ ) Szj s bJ+521 s aJ+S§J 81
. 2 2
ab SaJ sbJ Sab Sas
Si=1=s - _ - _
22 = (Vaxap) 2B+ BTV (Vi) 28 7+ B, (120)
bJ
G100 g(0-10) (=111 . SlL=1=1)¢ ,
T T P = oy cosh) 7O, (121
Saj Shy SaJ Spy
|
We note that these consistency relations are satisfied Ot i = iy /3 O ii o HSim (122)
separately for each term in the integrand of Eq. (103) soft ij hemi = 4/ i) soft ij nonhemi 5
and also that the contribution of the nonhemisphere poles is
crucial to obtaining this cancellation. ) )
H p
Obeam a = > Obeam b = ’ (123)
E. Summary of the NLP-LL result VSXaPa VSxppp
This section contains the main result of our paper. We 5
already anticipated the final form of the NLP cross section 0. — H (124)
in Eq. (101). By expanding in &, we can now write down the " 2prp,coshy

coefficients Q, and CL“ and discuss the terms that

contribute to CN'-. We start by listing the logarithm  We note that these logarithmic arguments can be changed

arguments Q, that naturally appear when evaluating the
cross sections in each region,

by changing the choice of p;, which shifts terms between
the LL and NLL contributions. We now list LL coefficients,
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(0.-1,0) —1=1,1)
Cgof[ ab hemi — — 82{ - 282] 2 207 ) Cbeam a \/Exapa [28510'_2) + BEJO’_I)]’ (134)
Sab Sab
N S50 agi s, il = Vaum 2872 + B (135)
Csoft ba hemi — % 32 ’ (125)
ab ab leélf = 2pzp; coshy gD (136)
SO0-1) 5 g(-L1-1)¢
CSL&»} aJ hemi — — = - o) il ) We recall that the S,,; coefficients are defined in Sec. VII A,
Sas Sas while the B; and J, coefficients are defined, respectively,
Ss;l 0.0) ) Sg;l 1 —l>§ab in Secs. VII B and VII C. All three structures can be written
Cooft Jahemi — T g ; 2 ’ (126) in terms of process-independent phase-space corrections
¢ “ given in the Appendix. From Sec. V, we see that the matrix
SO0 5 gll-l-D)s S elements appearing in these structures can be expressed in
Cuaft b7 hemi = — 2 S ) =, terms of the universal next-to-soft matrix element expan-
Sbl Sb1 sion. This demonstrates that the NLP-LL cross section can
L S 5(; L0 28 111’_1 - ab 197 be written in terms of universal factors valid for any 1-jet
soft Jb hemi — 74 Si] ’ (127) process. We provide an explicit expression for the coef-
ficients~(Eqgs. 125-136) in a supplemental Material [36].
S( 1.0,0) 0 10)
CLL — @ . .
soft ab nonhemi — ( Sbj ) F. NLP-NLL contributions
(128) In this section, we analyze the terms that contribute
to the NLP-NLL cross section. In the color-singlet case,
5( 1,0,0) 0 1,0) it was observed in Refs. [6,7] that different definitions of
Csofl ba nonhemi — ( 3 5 )6 = 34) N-jettiness, corresponding to different values for p, and p,,
@« bl in Eq. (11), can produce very different power corrections.
(129) In particular, the hadronic definition (p, = p, = 1) had
(=1.0,0) 0 0.~1) much larger power corrections than the leptonic definition
CU  vombemi = (S )@ ) (Pa = V/$Xp, pp = /5X,). It was found that LL corrections
SbJ alone provide a sufficient improvement to the N-jettiness
(130) cross section in the leptonic case, whereas NLL corrections
are necessary in the hadronic case.
S( 100 00 D For processes with one jet in the final state, the NLL
Cot Ja nonhemi = ( S )6 = 8h). power correction are inherently process dependent since
they require the subleading collinear matrix elements. It is
(131) not unreasonable to assume that, like in the color-singlet
o 1,0) S (0,0,-1) case, there is a choice of p; that reduces the impact of power
CLL L onhemi = < 2/ )G) —Sap)s corrections, avoiding the need to implement NLL contri-
butions. We therefore do not provide a complete analytical
(132)  computation of the NLL contribution and only outline how
such contributions arise.
L 52(} 1.0) Sg}’o'_l) R R (1) Soft region: Starting from Eq. (103), we write down
Cofi Jb nonhemi = < + 5 )G(Sab —Sar), the measurement function explicitly. Then, we ex-
ab al . . . . . .
pand in e and consider the finite contributions. The
(133) hemisphere contributions are straightforward,
ol P () {_S< sy S s
dQ?dydp;dn  dQ*dYdp,dy \4x 28 28,7
_S(o -1,0) +Sl(}0 -1) S(2J1 —1,1) 4 a1+32/1 ~Lhg 5
284, (3ap)?

_ngl L=1)4 5 +S”l 1, —1)sbj _Sglj—l —1)

( aJ)

l—l -1
Sy + S8 “’}. (137)

(Sbj)
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As for the nonhemisphere contributions, we identi-
fied three different terms in the ij, m nonhemisphere
region in Eq. (46). The first and second terms will
produce finite contributions that can be read from

Eq. (53),
[ 9(x)
Xmin |'x - x0| 1-2e
ote [ 4260 =0
Xmin |x x0|

+ g(XO)Knonhemi (XO’ Xmin» xmax) ’ (138)
while the third term is already finite. The NLL
contribution to the cross section will be the sum of
the finite parts of the three ij, m terms, plus the sum
of all ij, i terms.

(i) Beam region: The NLL contributions come from the
finite terms in Eq. (111), plus contributions coming
from the 7 expansion of the lower integration limit
in z, in Eq. (61).

(iii) Jet region: Similar to the beam region, there are
finite NLL contributions that can be obtained from
Eq. (114). There are also contributions from the 7°
expansion of the upper integration limit in gz;
in Eq. (65).

VIII. NUMERICS

In this section, we provide a numerical validation of our
analytic results. We consider the partonic process gg —
Z+ g at /s =14 TeV. We use the CT10 PDF set [43]
with fixed scales pp =up =m,, and we choose
pa = pp =py; = 1. In order to study the behavior of the
power corrections, we assume that the N-jettiness cross
section for a very small value of 7, (0.0001 GeV) is a
good approximation of the exact NLO cross section. For
the channel considered, we have checked that the difference
between the two is about 0.5%. We then study the differ-
ence between this low-7 , reference result and the NLO
cross section as a function of 7, normalized to the
leading order cross section.

We first show in Fig. 1 the cross section as a function of
T ... When no power corrections are included compared to
when NLP-LL power corrections are included. We obtain
the leading-power cross section in two ways. We first use
Monte Carlo for FeMtobarn processes (MCFM) [44] which
implements an anti-k; preclustering algorithm to define N-
jettiness. We also use an independent code that treats N-
jettiness itself as the jet algorithm, according to the
framework that we used to compute power corrections in
this paper.

We note that the size of the deviation from zero, which
includes all power corrections (not just NLP-LL) is
significantly larger in the presence of a preclustering jet
algorithm for all values of 7 .. We also note that using
N-jettiness as a jet algorithm and for our choice of 7

= 0201 pp — Z + 1 jet (14 TeV)
3 qq + qq channel
5] inclusive cross section
ﬁ 0.15¢ anti-kp jet algorithm, R = 0.4
g
S
Z 010}
L — LP
£ — LP+NLPLL
= 0.05r
L
Q
g
0.00
0.001 0.01 OAl 1
Tewe  (GeV)
§ 0.04 pp — Z + 1 jet (14 TeV)
S qq + qq channel
§ inclusive cross section
ﬁ 0.02p N-jettiness as jet algorithm
g
g 0.00
|
l\\; -0.02
s — P
o
é — LP+ NLP,LL
= -0.041
0.001 0.01 0.1 1
T (GOV)
FIG. 1. Behavior of the NLO cross section as a function of 7 .

The red line represents the leading-power result, while the blue
line includes the NLP-LL power corrections. The difference
between the top and the bottom insets is the jet algorithm choice
for the leading-power result. In the top plot, we use MCFM with
an anti-ky preclustering jet algorithm. In the bottom plot, we use
N-jettiness itself as a jet algorithm.

definition, equivalent to the hadronic definition in the color-
singlet case, the NLP-LL contributions seem to overcorrect
the LP result. For the purpose of validating our result, a 7
definition that produces large power corrections is prefer-
able in order to avoid numerical noise. However, for other
applications of the N-jettiness subtraction scheme, another
definition might be more suitable.

In order to validate our result for the LL power
corrections, we define the full nonsingular cross section as

Full nonsing(7 )
_ ONLO (Tcul = 0.0001 GCV) - GNLO(Tcut)

0L0

(139)

The functional form of the full nonsingular cross section is

Full nonsing(7 ¢y) = A7 102 7 ot + BT cu
+ CTcut log Tcut + DTcul )

(140)
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where the ellipsis denotes neglected power corrections at
O(T3,) and above. We perform a fit to extract the
coefficients A, B, C, D and then compare the fitted A with
the analytic A. For the inclusive cross section, we find

Ainel — 0.0345 4+ 0.0014, (141)

Aincl

analytic

= 0.0346. (142)
This indicates excellent agreement between the fitted and
the analytic LL coefficient. In Fig. 2, we plot the full
nonsingular cross section as defined in Eq. (139), together
with the LL. power corrections.

We have also performed the same validation for the dif-
ferential cross section in the jet rapidity # choosing as a
benchmark value # = 2, in the jet transverse momentum py
choosing as a benchmark value p;y = 50 GeV and in the
vector bosonrapidity Y choosing as abenchmark value Y = 2.
The results for the fits and the analytic coefficients are
|

. =50 GeV
AlZZ = 0.0598 +0.0013, AP =

fitted
Al = 00614, AT OV = 0,032,

analytic

We again find good agreement between our analytic
coefficients for the LL power correction and the fitted
results. Plots for the differential cross section are shown in
Fig. 3.

We have also studied the partonic channel gg - Z + g.
The LL power corrections for the inclusive cross section are
about a factor of 10 smaller than in the ¢g channel in the 7,
range that determines the fit of the leading log coefficient
(between 0.001 and 0.1 GeV). Therefore, the error on the
fit is too large to be considered valid. Nevertheless, we
provide a plot of the 7, dependence of the cross section
and the comparison between analytic power corrections and
the full nonsingular cross section in Fig. 4.

The last numerical study that we performed concerns the
impact of choosing different normalization factors p;. As
mentioned in Sec. VIIF, in the case of color singlet, it was
observed that the impact of power correction is greatly
reduced if one defines 7, in the frame of reference where
the color singlet is at rest, rather than in the hadronic frame.
Boosting the frame of reference and setting p; =1 is
equivalent to staying in the hadronic frame and defining
the p; factors so as to match what the boosted definition
would be. In particular, in the color-singlet case, it is
sufficient to set

lep vy ep _ Y
a _ev

P =T (144)

where Y is the color-singlet rapidity. It was also observed in
[31] that a similar effect occurs for V + 1 jet processes
when one defines 7 in a frame where the system V + 1 jet

0.00 F

pp — Z + 1 jet (14 TeV)
qq + qq channel
inclusive cross section

-0.01r

|
e
<)
no
T

N-jettiness as jet algorithm

nonsingular cross section

-0.03
e full nonsing. data
—0.04 — full nonsing. fitted
— analytic LL power corrections
0.001 0.01 0.1 1

7;11', (G(-‘\’)

FIG. 2. Full nonsingular cross section as a function of 7 as
defined in Eq. (139) for the inclusive case. The solid red line
represents a fit of the form Eq. (140). The data refer to the
numerical results from our code for Z + jet production. The solid
green line indicates the analytic leading logarithmic power
corrections, normalized to the LO cross section.

0.0306 + 0.0016, Agtfe%j = 0.0321 £ 0.0046
AY=2

=0.0372. (143)

analytic

|

is at rest. We can reproduce this definition with our
framework by boosting to such a frame and determining
the p; factors needed to match this definition. We define the
following quantities:

A

0% = (pv +4;)* =24, - qp = $X,X,

~ 1 . 1
Y:_log[w] — “logX®.  (146)
(pv +4a;)-n, Xp

(145)

2 2

The boosted momenta are then

N Q N Q N Pr
q’ézin’a‘, q’,ﬁzin’,ﬁ, i = 0
prsinh (7 — 17)

(147)

As defined in [31], the boosted 7T is

Tboosted

) ¥ _p coshn
:E min{ e'n, - pp, € Ny P, =~y P s
k

cosh (n—7Y)
(148)
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0.00 ]
0.04 pp — Z + 1 jet (14 TeV) p 001
qq + qq channel e pp— Z +1jet (14 TeV)
n=2 qq + qq channel
= N-jettiness as jet algorithm E _oo2 n=2
2‘- 0.02¢ 1 ; ’ N-jettiness as jet algorithm
o 5 —o003f 1
Es =
1‘ 0.00 <
€ ~0.04} ]
3 =
£® g
= -0.02} q = _0.05L] ° full nonsing. data 1
s — LP — full nonsing. fitted
ER sing. fitte
e — LP+NLPLL —0.06 | | — analytic LL power corrections ]
-0.04+ J
0.001 0.01 0.1 1 0.001 0.01 0.1 1
T (GeV) T (GeV)
0.00 - ]
0.04 pp — Z +1 jet (14 TeV) <
— qq + Gq channel
% pr =50 GeV -0.01 1
= N-jettiness as jet algorithm
0.02} ] g
g _oo2l PP Z+1jet (14 TeV) ]
2 qq + qq channel
g5 5 pr =50 GeV
=000 =] N-jettiness as jet algorithm
< -0.03r 1
2 o =0
e
= -0.02f 1 S -0.04f 1
T p = 0.04 o full nonsing. data
o —
g5 P4 NLPLL — full nonsing. fitted
— — LP+NLP,
_0.04} ] —0.05 | — analytic LL power corrections 1
0.01 0.1 1 0.01 0.1 1
Tour  (GeV) Tt (GeV)
0.00 ¢ 1
0.04 pp — Z + 1 jet (14 TeV) 1
—_— qq + qq channel
E Y =2
= N-jettiness as jet algorithm
S o002t | . -002 |
= 0 5
= 2 pp — Z + 1 jet (14 TeV)
2| 2 g+
£I® 5 | qq + qq channel |
| 0.00 - -0.04 Y —9
% N-jettiness as jet algorithm
== 002 1 £ —0.06] 1
/8: — LP o full nonsing. data
£=
~— — LP+ NLP,LL — full nonsing. fitted
-0.04} 1 _oosh | analytic LL power corrections ]
0.01 0.1 1 R

0.01 0.1 1

7;l\t (GCV) 7_ (G \')
cut ev

FIG. 3.  On the left, we show plots analogous to Fig. 1. On the right, we show plots analogous to Fig. 2 for the differential cross section
at the values 1 = 2 (top), pr = 50 GeV (middle), and Y = 2 (bottom).
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0.01
. 0.00 z
%
&)
g
S -001f <
I
K
g —0.02f pp — Z + 1 jet (14 TeV) g
T qg + qg channel
£ inclusive cross section
% _0.03L N-jettiness as jet algorithm ]
E .
3 — LP
=
-0.041 — LP+ NLPLL 1
-0.05— : ‘
0.01 0.1 1

,7:;ut (Ge\/)

0.04
pp — Z + 1 jet (14 TeV)
qg + qg channel
0.03 inclusive cross section

N-jettiness as jet algorithm

e full nonsing. data

— full nonsing. fitted

— analytic LL power corrections

nonsingular cross section

UITIIIT I T TT o hdds
0.00 g s = = 5 3 =

TyYy -

-0.01

0.01 0.1 1
7;111 (Gev)

FIG. 4. Analogous to Fig. 3 but for the inclusive cross section in the gg channel.

which means that the factors p; for the boosted 7
definition are

cosh (7 —Y)
coshy
(149)

boosted __ ,—¥ boosted __ ¥ boosted __
Pa =e Pb =e P -

A posteriori, having computed the LL power corrections
analytically, we can see why this definition has smaller
power corrections. In fact, with respect to O and ¥, the
initial-state momentum fractions are

>
Q
~b
>
Q
L

(150)

0.25
pp — Z + 1 jet (14 TeV)
qq + qq channel
inclusive cross section
anti-kp jet algorithm, R = 0.4

0.20

0.15}

0.10 — hadronic

— boosted

0.05 — minimal

1/010 [oxL0(Teut) — oxL0 (Teur = 0.0001 GeV)]

0.00 "
0.001 0.01 0.1 1

T (GeV)

FIG.5. 7T, dependence of the cross section according to three
combination of the normalization factors: the hadronic definition
(p, = pp = py = 1), the boosted definition (149), and the min-
imal definition (152).

The argument of the logarithms of Eq. (124) in the beam
and jet regions becomes

[\S]

2
Qboosted __ boosted _ 'M_ boosted _ H

beam a — <beam b — Q ’ jet m’
(151)

clearly smaller than in the hadronic case for large rapid-
ities V.

We can also define the p; in a slightly different way, so as
to also minimize the argument Qi We introduce the
minimal definition

5 5 1

Y minimal Y pminimal —

Pb =e

minimal __ —
P = e

coshn’
(152)

We can now perform a numerical study of the behavior of
the cross section with respect to 7 ., according to these
three definitions, as shown in Fig. 5. We confirm what
observed in [31] for Higgs + 1 jet: the boosted definition
reduces the impact of power corrections. The minimal
definition has an even slightly better behavior for large
values of 7 . In future studies, we plan to study the impact
of power corrections for various new definitions of 7,
corresponding to different combinations of the p; factors.

IX. CONCLUSIONS

In this paper, we have derived the next-to-leading power
corrections to the N-jettiness factorization theorem for one-
jet processes. We have used the process of vector boson
plus jet as an illustrative example. The NLP corrections can
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be written in a simple analytic form and come from two
sources: process-independent phase space corrections and
process-dependent subleading power matrix element cor-
rections. At the leading-logarithmic level, the matrix
element corrections can be written in a universal form
using results for next-to-leading soft corrections, leading to
a simple universal form for the NLP-LL corrections. At
NLP, the soft nonhemisphere terms contribute to the poles
and therefore give leading-logarithmic corrections to the
cross section, unlike at LP where they are finite.

We note that for the partonic process considered here as
an example the universal next-to-leading soft correction
comes from gluon emission and is available in the
literature. It is known from color-singlet production that
soft quarks also contribute at the leading-logarithmic level
at NLP [1,2]. A corresponding form of the next-to-leading
soft corrections for quarks has yet to be derived. We expect
that such an expression can be obtained. Other possible
future directions to expand upon this work include detailed
numerical studies of how different p; choices affect the size
of the power corrections and the extension of this derivation
to the NNLO level.
|
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APPENDIX: PHASE SPACE EXPANSION
COEFFICIENTS

We compile here the expansion of the NLO phase space
in 7 for the various regions.

1. Soft region

We begin by studying the NLO parton momentum
fractions. In order to determine the expansion coefficients
in the two-jet case, we expand the initial-state momentum
fractions for small 7,

£ o= x e Mprp, (1 N e"py ) Py e"prp;coshn (A1)
2f\/pT+Q2 2/pF+ 0 Vs T s ph+ @
—Y+i1 —Y—n -Y h
Pr Pa "prow € prpjcoshn
& =xp + (1 +7> Pog + T, - ). (A2)
2v/p3 + @/ V5 2f\/pr+Q2 VsV pE+ @2

Using these expressions, we can immediately derive the expansion coefficients for the phase space measure of Eq. (24),

DY) = £ (xa)f4(xs). (A3)
B = a0 o) e x5 (e )|
Ay fa() w% =y 2 (14 NP—TPQ) ™
BN = S ol) e T e )
a2 (14 pi =) +fq<xa>fg<xh>2\;s_;%, (A3)
B = Fy(n o) P T O
) ) DTN ) s C0Sh (A6)

GE

=

The superscripts denote the orders in the 7 ,, 7, and 7 ; expansions of each term. This matches the notation for the soft-

region expansion introduced in Eq. (103).
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In the one-jet case, the expansion of the initial-state
momentum fractions is

e'pycoshy

o =x,+ G 7, (A7)
£ =x,+ ﬂp’i\/‘;"smﬂ (A8)
The phase space expansion coefficients are
Pty = Fa(xa) (%) (9)
ity =0. (A10)
i1y =0, (Al1)

(0,0,1)
soft 1J —

pycoshy (e e
fq(xa)fq( b) \/E (xb +xa
e'pycoshy

NG

e ""p;coshy
NG .

To obtain our final form, we must express 7 ; in terms of
T', =T, which we defined in Eq. (13),

p, T coshn—e"p, T, —e""p,T b)
2pr

+ fo(xa)fq(xp)

+fq(xa)f£’1(xb) (Alz)

(A13)

2. Beam region

In order to obtain the expansion coefficients of the beam-
region phase space, we first expand the initial-state
momentum fractions for small 7,

Xg € Y prv/XaPa eV x,p,(0* + p2sin’e) (1 - Za)
b=t T O cos¢\/_ T+ AT 0" )T (Al4)
— _YPT\/ XaPa era/)a(Q2 + P%Sinzfﬁ) 1- Za Pa
RN Cosdn/_ ’ { 2(p7 + Q)2 < Za ) ’ 75} . A1
Upon substitution in Eq. (24), these lead to the following phase space coefficients, relevant at LL:
(Df)gfrzl a beam b fq< )f (A16)
(1/2.1/2), . __ P1COSQ eV eF
<I)beam a (¢> - Tsl/4 pT + Q2 |:_fq< )f?](xb) (x_b + Z)
) + e x5 )] (a17)
beam o = [0 0) + 00 (3 () (AI8)
Pl = ~Fa(¥)f2() + Xaf 4 (%) f4(3), (A19)
. prcos¢ PrX e’ e
Ve @) =7\ g2 [—fq(xa)fq () (xb + x)
0 + e s3] (A20)
i s = e [~ 33 00) + 5 )3 ) (A21)
P 5 = =Fo(5a) o (X6) + 0 f o (%) f (). (A22)
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3. Jet region

The first step in determining the expansion coefficients in the jet region is to expand 7 ; in terms of 7 = 77,

T,=010-z)T+
Pr

We then expand the transverse mass of the jet

my = pr+ p;ycoshnT.

2 cosh cosh
J\/(1 — z;)zy cos pT/? +%(—1 + 3zy + zycos(2¢))T>.

(A23)

(A24)

Finally, we can derive the phase space expansion coefficients upon substituting these expressions into Eq. (29),

q)j(g{()) = fq (xu)fq (xh)’

) 1 [2p;coshy
(I)J'(elt/zl/2>(¢):§ Jqu(xa>fq<xb)COS¢,

h n e
ol — Lrcoshn [— ( n ) £ o) fa(58) + €7 (k) (5) + eF () o (x0)|

NG

Xa

o » = 0.

jet

(A25)

(A26)

(A27)

(A28)
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