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We derive mass formulas for the P-wave orbitally excited D�
0ðsÞ, D

0
1ðsÞ, D1ðsÞ, and D�

2ðsÞ heavy charmed

mesons including all effects from one-loop corrections that contribute at leading order in chiral expansion.
In our formalism, the effects to first order inmq, wheremq is the light quark mass, and to first order inm−1

c ,
where mc is the charm quark mass, and mq=mc terms are considered. The experimental and lattice QCD
results on the charmed meson spectra are employed to fix the large number of counterterms appearing in the
effective chiral Lagrangian used in this work. This allows us to test the validity of perturbative expansion of
our theory. The results presented in the current paper are useful to other applications of excited charmed and
bottom meson systems.
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I. INTRODUCTION

The spectra and decays of the charmed mesons have
been studied extensively; for a review, see [1]. The proper-
ties of these mesonic bound states, which contain heavy
quarks, are almost described using heavy quark sym-
metries. In the heavy quark limit, heavy quark spin
decouples from the dynamics of QCD, and the spin and
parity, jPl , of the light degrees of freedom (light antiquarks
and gluons) are used to classify degenerate charmed meson
states into spin doublets. The low-lying states form the
following heavy spin doublets,

½Dqð0−Þ;D�
qð1−Þ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

jPl ¼1
2
−ðL¼0Þ

; ½D�
0qð0þÞ;D0

1qð1þÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jPl ¼1

2
þðL¼1Þ

; ½D1qð1þÞ;D�
2qð2þÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

jPl ¼3
2
þðL¼1Þ

;

ð1Þ

where q is the SU(3) index. The strong interactions of these
heavymesonswith soft pseudo-Goldstone bosons (π,K, and
η) are constrained by chiral symmetry. The formal approach
to employ these two approximate symmetries of QCDwhen
investigating the properties of mesons containing heavy
quarks is an effective field theory. The effective field theory
that describes the low-energy strong interactions of heavy

mesons and light pseudo-Goldstone bosons is heavy meson
chiral perturbation theory (HMChPT).
Within this framework, an effective Lagrangian, which

obeys chiral and heavy quark symmetry constraints, is built
to analyze the spectroscopy of the ground-state jPl ¼ 1

2
−

doublets at the heavy quark limit (Refs. [2–7]), including
corrections to first order in light quark and charm quark
masses (Refs. [8–10]). The authors of Ref. [11] have
extended the applications of this effective theory to study
the masses of the ground-state (jPl ¼ 1

2
− doublets) and the

lowest excited-state (jPl ¼ 1
2
þ doublets) charmed mesons.

In their studies, the corrections from leading order chiral
and heavy quark symmetry violating terms and one-loop
effects from couplings within and between charmed mes-
ons that form jPl ¼ 1

2
− and jPl ¼ 1

2
þ heavy spin doublets

have been considered. However, the loop effects from the
coupling of these states to the higher excited-state jPl ¼ 3

2
þ

doublets are not calculated in [11]. As emphasized by the
authors of [11], the virtual loop effects from these higher
excited states (jPl ¼ 3

2
þ doublets) are crucial to the physics

of jPl ¼ 1
2
þ doublets. This is because jPl ¼ 1

2
þ and jPl ¼ 3

2
þ

doublets are separated by nearly ≤ 130 MeV, and their
coupling is at leading order in derivative chiral expansion.
The single pion transition between excited-state jPl ¼ 3

2
þ

doublets and the ground-state jPl ¼ 1
2
− doublets proceeds

through d waves and is hence suppressed by one derivative
in the effective Lagrangian [12].
In the present paper, the virtual loop effects from the

higher excited-state jPl ¼ 3
2
þ doublets to the masses of the

lowest excited-state jPl ¼ 1
2
þ doublets are calculated.
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We also use the third-order chiral Lagrangian, which
includes the relevant excited charmed mesons as explicit
degrees of freedom, to derive mass expressions for the
excited-state jPl ¼ 3

2
þ doublets including all leading loop

effects and corrections due to chiral and heavy quark
symmetry breaking. The mass formulas for the excited-
state jPl ¼ 1

2
þ and jPl ¼ 3

2
þ doublets contain a large number

of unknown parameters that cannot be determined uniquely
from experimental measurements on the meson spectrum
alone. We, therefore, follow the approach employed in our
previous work [13,14] to fit these unknown counterterms. It
is based on (i) reducing the number of unknown parameters
by grouping them into a number of linear combinations that
is equivalent to the number of observed charmed states and
(ii) using experimental information on masses and cou-
plings to evaluate the loop functions, which makes the fit
linear. The privilege of feeding loop integrals with physical
masses is to put the threshold of decaying particles in the
correct place. The chirally symmetric terms appearing in
some linear combinations can be disentangled from SU(3)
symmetric terms using lattice QCD results on the charmed
meson spectrum. The lattice QCD work undertaken by the
authors of [15] provides sufficient information for perform-
ing this task. By fitting counterterms, our mass expressions
can be applied to investigate various mass splittings within
excited charmed mesons and their analog bottom mesons.
This paper is organized as follows. The effective

Lagrangian formalism we use is presented in Sec. II. In
Sec. III, the mass formulas for excited charmed meson jPl ¼
1
2
þ and jPl ¼ 3

2
þ doublets are given. They contain a large

number of unknown counterterms, which can be fixed
using empirical and lattice information on masses and
coupling constants. Section IV explains the fitting method
and draws conclusions on the results and validity of ChPT
in the heavy light sector.

II. EFFECTIVE CHIRAL LAGRANGIAN

Before writing down the relevant effective chiral
Lagrangian, let us first introduce the fields representing
the light pseudo-Goldstone and heavy charmed mesons and
show how they change under chiral SUð3ÞL × SUð3ÞR and
heavy quark SUð2Þs symmetry transformations; we refer
the interested reader to Refs. [8,11,12,16–21].
The pseudo-Goldstone octet is incorporated into the 3 × 3

unitarymatrixUðxÞ¼ expði2ϕðxÞ=fÞ,whereϕðxÞ isgivenby

ϕðxÞ ¼
X8
i¼1

λiϕiðxÞ
2

¼ 1

2

0
BBB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCCA; ð2Þ

where λi are the Gell-Mann matrices and f is the pion decay
constant, f ¼ 92.4 MeV. The field U transforms linearly
under chiral symmetry,U → RUL†, whereR andL represent
global elements of SUð3ÞR and SUð3ÞL, respectively. To
describe the interactions of pseudo-Goldstone bosons with
matter fields representing, in our case, the heavy charmed
mesons, it is convenient to introduce the coset field
uðxÞ ¼ ffiffiffiffiffiffiffiffiffiffi

UðxÞp
. The field u transforms nonlinearly under

chiral symmetry, u → RuK−1, where the SUð3Þ-valued
function K is given by KðL;R;UÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffi
RUL†

p
Þ−1R ffiffiffiffi

U
p

.
The pseudo-Goldstone bosons derivatively couple

to heavy mesons through the vector and axial vector
combinations,

Vμ ¼ 1

2
ðuþ∂μuþ u∂μuþÞ ¼ 1

2f2
½ϕ; ∂μϕ� þOðϕ4Þ;

Aμ ¼ i
2
ðuþ∂μu − u∂μuþÞ ¼ −

1

f
∂μϕþOðϕ3Þ: ð3Þ

Under the unbroken SUð3ÞLþR flavor symmetry, the Aμ

and Vμ fields transform homogeneously, Aμ → KAμK†,
and inhomogeneously, Vμ → KVμK† þ K∂μK†.
The heavy meson fields representing the components of

heavy spin doublets shown in Eq. (1) are incorporated into
the following 4 × 4 matrices:

Hq ¼
1þ =v

2
ffiffiffi
2

p ðD�μ
q γμ −Dqγ

5Þ;

Sq ¼
1þ =v

2
ffiffiffi
2

p ðD0μ
1qγμγ

5 −D�
0qÞ;

Tα
q ¼

1þ =v

2
ffiffiffi
2

p
�
D�αμ

2q γμ −D1qμ

ffiffiffi
3

2

r
γ5
�
gαμ −

1

3
γμðγα − vαÞ

��
;

ð4Þ
where the various operators annihilate heavy mesons of
four-velocity v with quark content Qq̄ and the subscript q
stands for light quark flavor. Here, we use the notation
employed in [18] to define the fields for the charmed meson
states. In our approach, we have chosen to define the
nonrelativistic meson fields Dq, D

�μ
q , D�

0q, D
0μ
1q, D

μ
1q, and

D�αμ
2q in four dimensions to maintain the heavy quark

symmetry at the quantum level [13]. In the current work,
we neglect the possible mixing between the axial-vector
D0μ

1 and Dμ
1 charmed meson states.

The above fields are normalized as follows:

h0jDð�Þ
ð0ÞqjQq̄ð0−ðþÞÞi ¼ 1; h0jD�μ

q jQq̄ð1−Þi ¼ ϵμ;

h0jDð0Þμ
1q jQq̄ð1þÞi ¼ ϵð0Þμ; h0jD�μν

2q jQq̄ð2þÞi ¼ ϵμν;

ð5Þ

where ϵμ (ϵμν) is the polarization vector (tensor) of the
initial state. The vector and tensor polarizations are
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normalized as ϵ · ϵ ¼ −1 and ϵμνϵμν ¼ 1, respectively, and
satisfy vμϵμ ¼ 0, ϵμν ¼ ϵνμ, vμϵμν ¼ vνϵμν ¼ 0, and
ϵμνgμν ¼ ϵμμ ¼ 0.
The velocity-dependent superfields Hq, Sq, and Tα

q

transform as doublets under heavy quark symmetry
SUð2Þs and as antitriplets under the unbroken flavor
SUð3ÞLþS. Their complex conjugates are defined as
H̄q ¼ γ0Hþ

q γ
0, S̄q ¼ γ0Sþq γ0, and T̄α

q ¼ γ0Tþα
q γ0.

Having introduced the field operators for the light
pseudo-Goldstone and heavy charmed meson particles,
we are now in a position to present the most relevant
pieces of the chiral Lagrangian. We begin by writing the
lowest-order Lagrangian for the pseudo-Goldstone bosons,

Lm ¼ f2

4
h∂μU∂μU†i þ f2B0

2
hmqU† þ Um†

qi; ð6Þ

where h…i means the trace and the factor B0 is related to
the quark condensate of light quark flavors and the pion
decay constant. The quantity mq is the light quark mass
matrix, mq ¼ diagðmu;md;msÞ. We work in the isospin
limit, mu ¼ md ¼ mn and mq ¼ diagðmn;mn;msÞ, where
the subscripts n and s denote nonstrange and strange light
quark flavors, respectively.
The kinetic piece of the effective Lagrangian describing

heavy fields is

Lkin ¼ −hH̄aðiv ·Dba − δHδabÞHbi
þ hS̄aðiv ·Dba − δSδabÞSbi
þ hT̄α

aðiv ·Dba − δTδabÞTαbi; ð7Þ

where δA, A ∈ fH; S; Tg, represents the residual mass of
the sector A and the covariant derivative is given by
Dμ

ba ¼ δba∂μ þ Vμ
ba. The free propagators for the heavy

fields are

scalar meson∶
i
v:k

;

vector meson∶
−iðgμν − vμvνÞ

v:k
;

tensor meson∶
i
v:k

1

2

�
ðgμν − vμvνÞðgρσ − vρvσÞ

þ ðgμσ − vμvσÞðgνρ − vνvρÞ

−
2

3
ðgμρ − vμvρÞðgνσ − vνvσÞ

�
: ð8Þ

We are interested in the low-energy transitions between
heavy mesons with a single pseudo-Goldstone bosons. The
interactions between states in the same heavy spin doublets
are governed by the leading order Lagrangian

L1
int ¼ ghH̄aHb=Abaγ

5i þ g0hS̄aSb=Abaγ
5i þ g00hT̄α

aTαb=Abaγ
5i;
ð9Þ

where the dimensionless quantities g, g0, and g00 represent
the coupling constants that measure the strengths of strong
transitions between charmed states that form 1

2
−, 1

2
þ, and 3

2
þ

heavy quark spin doublets, respectively. These coupling
constants can be measured experimentally. The lowest-
order interaction Lagrangian that describes the strong
transitions between doublets with a soft single pseudo-
Goldstone bosons is given by

L2
int ¼ hhH̄aSb=Abaγ

5i þ h0hS̄aTμ
bAμbaγ

5i þ H:c: ð10Þ

The strong transitions between 3
2
þ and 1

2
− spin doublets

proceed through d waves and hence are suppressed by one
derivative in the chiral Lagrangian. For the interactions
between doublets, we only consider the leading contribu-
tions given in Eq. (10).
The other terms in the effective chiral Lagrangian needed

are the following higher order mass counterterms

Lmass ¼ −
ΔH

8
hH̄aσ

μνHaσμνi þ aHhH̄aHbimu
ba þ σHhH̄aHaimu

bb −
ΔðaÞ

H

8
hH̄aσ

μνHbσμνimu
ba −

ΔðσÞ
H

8
hH̄aσ

μνHaσμνimu
bb

þ ΔS

8
hS̄aσμνSaσμνi − aShS̄aSbimu

ba − σShS̄aSaimu
bb þ

ΔðaÞ
S

8
hS̄aσμνSbσμνimu

ba þ
ΔðσÞ

S

8
hS̄aσμνSaσμνimu

bb

þ 3

16
ΔThT̄α

aσ
μνTαaσμνi − aThT̄α

aTαbimu
ba − σThT̄α

aTαaimu
bb þ

3

16
ΔðaÞ

T hT̄α
aσ

μνTαbσμνimu
ba

þ 3

16
ΔðσÞ

T hT̄α
aσ

μνTαaσμνimu
bb; ð11Þ

where Δ is the hyperfine operator and mu
ab is the mass

matrix, which breaks chiral symmetry, and it is defined as

mu
ba ¼ 1

2
ðumquþ u†mqu†Þba. The factors a, σ, ΔðaÞ, and

ΔðσÞ are dimensionless coefficients.

III. P-WAVE CHARMED MESON MASSES

The authors of Ref. [11] have used HMChPT to derive the
mass formulas for the charmed meson states that form
members of the jPl ¼ 1

2
− and 1

2
þ spin doublets. They expressed
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the masses up to third order in the chiral expansion including
one-loop corrections and leading heavy quark and chiral
symmetry violating terms. The one-loop graphs they calcu-
lated are shown in Figs. 1(a)–1(d). However, the contributions
from the leading one-loop graph in Fig. 1(e) have not been
considered in [11]. As stated above, these loop effects are
important to the physics of the jPl ¼ 1

2
þ spin doublets; i.e., they

contribute at leading order to the interaction Lagrangian as
shown in Eq. (10) [see Eqs. (9) and (10)].
The current paper is devoted to extending the applications

of HMChPT to the spectroscopy of the excited P-wave
charmed mesons that form members of the jPl ¼ 1

2
þ and 3

2
þ

spin doublets. The missing one-loop corrections repre-
sented in Fig. 1(e) are calculated, and the mass expressions
for the excited states belonging to 3

2
þ spin doublets are

derived up to third order in the chiral expansion including
leading one-loop corrections (Fig. 2) and corrections due to
breaking of chiral and heavy symmetry.
Using the effective Lagrangian presented in the previous

section, we write down the mass expressions for all the
P-wave orbitally excited charmed mesons:

mr
D�

0q
¼δSþaSmqþσSm̄−

3

4
ðΔSþΔðaÞ

S mqþΔðσÞ
S m̄ÞþΣD�

0q
;

mr
D0

1q
¼δSþaSmqþσSm̄þ1

4
ðΔSþΔðaÞ

S mqþΔðσÞ
S m̄ÞþΣD0

1q
;

mr
D1q

¼δTþaTmqþσTm̄−
5

8
ðΔTþΔðaÞ

T mqþΔðσÞ
T m̄ÞþΣD1q

;

mr
D�

2q
¼δTþaTmqþσTm̄þ3

8
ðΔTþΔðaÞ

T mqþΔðσÞ
T m̄ÞþΣD�

2q
;

ð12Þ

where mr
D defines the residual masses that are measured

with respect to some reference mass of OðmQÞ and
m̄ ¼ 2mn þms. The symbol ΣD represents the one-loop
corrections, which appear at leading order in the chiral
expansion, to the excited D meson masses. The one-loop
effects are shown in Figs. 1(c)–1(e) and 2, and their explicit
expressions are given in the Appendix.
The theory is a double expansion in ΛQCD=mQ and

Q=Λχ , where mQ and Q represent the heavy quark mass
(charm quark in the case of the charmed mesons) and low-
energy scales in the theory (Q ∼mπ , mK , mη), respectively
[11]. The quantity Λχ defines the chiral symmetry breaking
scale, Λχ ¼ 4πf ≈ 1.5 GeV. Based on the power counting
rules, the coefficients δ, Δ, ΔðaÞ, ΔðσÞ scale as Q. The terms
with light quark mass mq ∝ m2

π ∼Q2, and hence, m̄ ∼Q2.
The loop functions ΣD scale as Q3.
One can link the terms appearing in the above mass

formula to the observed charmed meson spectrum. In the
mass expansion [Eq. (12)], terms with δA (chirally sym-
metric, at order Q) and σA [SUð3Þ symmetric, at order Q2]
coefficients give the same contributions to charmed meson
masses in sector A. The SUð3Þ mass splittings within

charmed mesons are due to aA (at order Q2) and ΔðaÞ
A (at

order Q3) in our mass expansion. Terms containing ΔA,

ΔðσÞ
A , and ΔðaÞ

A give rise to chirally symmetric (at order Q),
chiral symmetry breaking (at order Q3), and SUð3Þ
symmetric breaking (at order Q3) hyperfine splittings,
respectively. Therefore, by fitting these unknown coeffi-
cients, one can use the theory to calculate several mass
splittings in the heavy-light meson systems.

IV. RESULTS AND CONCLUSION

To make the theory more predictive, the unknown
counterterms appearing in Eq. (12) must be determined
using experimental information on charmed meson masses
and coupling constants. However, as their numbers exceed
the number of observed spectra, a unique fit for them from
utilizing a nonlinear fit is impossible [11]. Here, we follow
the method employed in [13,14] to determine their unique

FIG. 1. Feynman diagrams shown in (a) and (b) represent the self-energy of the H field and those shown in (c)–(e) represent the self-
energy of the S field. The dashed line represents the pseudo-Goldstone bosons: π, K, and η. The loop effects shown in (a)–(d) have been
calculated in [11]. The virtual loop effects from the diagram shown in (e) are calculated in the present paper.

FIG. 2. The one-loop self-energy diagrams for the T field. The
notation is the same as in Fig. 1.
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values using experimental and lattice information on
masses and couplings. To this end, let us begin by
introducing [13]

ηA ¼ δA þ
�
aA
3
þ σA

�
m̄;

ξA ¼ ΔA þ
�
ΔðaÞ

A

3
þ ΔðσÞ

A

�
m̄; ð13Þ

LA ¼ ðms −mnÞaA; FA ¼ ðms −mnÞΔðaÞ
A ; ð14Þ

where A ∈ fS; Tg. The combinations ηA and ξA (LA and
FA) preserve (violate) SUð3Þ flavor symmetry. The combi-

nations ξA and FA contain the operators ΔA, Δ
ðaÞ
A , and ΔðσÞ

A ,
which break SUð2Þs heavy quark spin symmetry. The
quantity mn (ms) represents the mass of the nonstrange
(strange) light quark. Our one-loop formulas given in
Eq. (12) can be expressed in terms of the above defined
parameters as

mr
D�

0q
¼ ηS −

3

4
ξS þ αqLS − βqFS þ ΣD�

0q
;

mr
D0

1q
¼ ηS þ

1

4
ξS þ αqLS þ

1

3
βqFS þ ΣD0

1q
;

mr
D1q

¼ ηT −
5

8
ξT þ αqLT −

5

6
βqFT þ ΣD1q

;

mr
D�

2q
¼ ηT þ 3

8
ξT þ αqLT þ 1

2
βqFT þ ΣD�

2q
; ð15Þ

where the numerical values of the light flavor coefficients
αq and βq are as follows: αn ¼ −1=3, αs ¼ 2=3,
βn ¼ −1=4, βs ¼ 1=2. Now, the number of unknown
parameters in Eq. (15) equals the number of charmed
meson states. By using physical values of masses and
couplings in evaluating loop integrals, the one-loop pieces
become constant, and hence one can extract the numerical
values of parameters ηA, ξA, LA, and FA when fitting the
above mass expansion to the observed spectrum. From fit
results, one can only fix SUð3Þ-violating coefficients aA
and ΔðaÞ

A ; see Eq. (14). However, the other coefficients (δA,

σA, ΔA, Δ
ðσÞ
A ) cannot be fixed using an experimental fit

alone; see Eq. (13). To extract them, lattice results on
charmed meson masses evaluated at different quark masses
(nonphysical pion masses) are needed. By fitting the lattice
data to the above mass expressions, one can extract
parameters ηA, ξA, LA, and FA at different light quark
masses. Having determined ηA and ξA at physical (by fitting
to experimental data) and nonphysical (by fitting to lattice
data) light quark masses, one can then use a constrained

fitting procedure to fix the coefficients δA, σA,ΔA, andΔ
ðσÞ
A .

Experimental measurements on the charmed meson
masses used in this work [22,23] are given in Table I.
The ground states enter the loop functions that contribute to

the masses of the excited-state 1
2
þ spin doublets; see the

Appendix. In our fit, we use experimentally determined
masses: six from the nonstrange sector and six from the
strange sector. For the nonstrange sector, we take the
isospin limit of the well-determined masses and use the
masses of the excited charmed mesonsD00

1 and D�þ
0 , which

are reported with relatively small uncertainties. We use the
following physical values: mn ¼ 4 MeV, ms ¼ 130 MeV,
mπ ¼ 140 MeV, mK ¼ 495 MeV, and mη ¼ 547 MeV.
For the couplings, the values g ¼ 0.64� 0.075 and
h ¼ 0.56� 0.04, which have been measured from strong
decays of the charmed mesons [10], are used. The coupling
constants g0, g00, and h0 are experimentally unknown.
However, we use the computed lattice QCD value for g0 ¼
−0.122ð8Þð6Þ [24] and 0.5 for g00 and h0. For the normali-
zation scale, we use μ ¼ 1 GeV.
To fit the mass expansion in Eq. (15) to the experiment,

let us first define the following experimental residual
masses for the excited charmed mesons,

mD�
0
¼ 340.4ð7.0Þ MeV; mD�

0s
¼ 309.25ð50Þ MeV;

mD0
1
¼ 418ð36Þ MeV; mD0

1s
¼ 450.95ð60Þ MeV;

mD1
¼ 413.4ð1.2Þ MeV; mD1s

¼ 526.555ð70Þ MeV;

mD�
2
¼ 454.50ð68Þ MeV; mD�

2s
¼ 560.55ð80Þ MeV;

ð16Þ

which are measured from the nonstrange vector charmed
meson mass, mD� . The nonstrange flavor index n in
Eq. (16) is suppressed. By fitting our one-loop mass
formula [Eq. (15)] to the corresponding experimental
spectrum [Eq. (16)], one gets

ηS ¼ 506ð19Þ MeV; ξS ¼ 65ð26Þ MeV; ð17Þ

LS ¼ 29ð30Þ MeV; FS ¼ 49ð39Þ MeV; ð18Þ

TABLE I. The listed charm meson states are used in our fitting;
for details please refer to the text. The spin and parity of the light
degrees of freedom jPl are used to classify these heavy mesons;
see Eq. (1). The angular momentum and parity of the meson are
represented by Jp. We take all masses from the Particle Data
Group [22] except the mass ofD00

1 , which is reported by the Belle
Collaboration [23].

jPl JP cū M (MeV) cd̄ M (MeV) cs̄ M (MeV)

3
2
þ 2þ D�0

2
2460.7(4) D�þ

2
2465.4(1.3) D�þ

s2 2569.1(8)
3
2
þ 1þ D0

1
2420.8(5) Dþ

1
2423.2(2.4) Dþ

s1 2535.11(6)
1
2
þ 1þ D00

1
2427(36) � � � � � � Dþ0

s1 2459.5(6)
1
2
þ 0þ D�0

0
2300(19) D�þ

0
2349(7) D�þ

s0 2317.8(5)
1
2
− 1− D�0 2006.85(5) D�þ 2010.26(5) D�þ

s 2112.2(4)
1
2
− 0− D0 1864.83(5) Dþ 1869.65(5) Dþ

s 1968.34(7)
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ηT ¼ 637ð1Þ MeV; ξT ¼ 140ð1Þ MeV; ð19Þ

LT ¼ 184ð1Þ MeV; FT ¼ 45ð2Þ MeV; ð20Þ

where the associated uncertainties involve the experimental
errors on charmed meson masses and couplings (g and h)
and the error on g0 from LQCD. The errors are dominated
by the uncertainty in the D�

0 and D0
1 masses.

Using Eqs. (14), (18), and (20), one can fix the SUð3Þ-
breaking coefficients,

aS ¼ 0.23ð24Þ; ΔðaÞ
S ¼ 0.39ð31Þ;

aT ¼ 1.4592ð87Þ; ΔðaÞ
T ¼ 0.355ð16Þ: ð21Þ

To fix the other coefficients (δA, ΔA, σA, ΔðσÞ
A ), the

combinations ηA and ξA must be extracted at different light
quark masses as the experimental information [see Eqs. (17)
and (19)] is not enough to disentangle chirally symmetric
terms from the SUð3Þ symmetric one; see Eq. (13). For our
purpose, the continuum lattice results on the charmed meson
spectroscopy that are computed at different light quarkmasses
are required. Such findings are made available in [15]. In our
fit, we consider the results that are obtained using the lightest
pion masses (mπ ≲ 250 MeV), which are within the validity
of ChPT. Such data are given in ensembles D15.48
(mn ¼ 5 MeV, ms ¼ 382 MeV, mπ ¼ 224 MeV) and
D20.48 (mn ¼ 6 MeV, ms ¼ 382 MeV, mπ ¼ 257 MeV)
of Ref. [15]. In Table II, the continuum charmed meson
masses at nonphysical pion masses in each ensemble are
presented. To make the continuum extrapolation, strategy 3
explained in [15] is employed. As the discretization errors are
negligible, one can safely use the mass relations ðð2m2

K −
m2

πÞphys þm2
π;LÞ=2 and ð2ð2m2

K −m2
πÞphys þm2

π;LÞ=3 to
obtainm2

K andm2
η, respectively, where the subscriptLmeans

the latticemeasured pionmass. Thesemass relations are valid
as the calculations in [15] performed at the physical value of
the strange valence quark mass; i.e., the physical value of
2m2

K −m2
π is reproduced using mK;L and mπ;L measured in

each ensemble. In leading order ChPT, the quantity 2m2
K −

m2
π gives the strange light quark mass and is not sensitive to

the nonstrange light quark mass. The errors associated with
the lattice calculations of the charmed meson masses are
negligible at our level of precision.
By fitting the mass formula in Eq. (15) to the lattice

results [Table II] on the residual masses, one finds

D15.48:

ηS ¼ 788ð12Þ; ξS ¼ 132ð15Þ;
ηT ¼ 1022ð16Þ; ξT ¼ 228ð29Þ; ð22Þ
LS ¼ 272ð20Þ; FS ¼ −3ð27Þ;
LT ¼ 158ð30Þ; FT ¼ 138ð56Þ; ð23Þ

D20.48:

ηS ¼ 811ð12Þ; ξS ¼ 130ð15Þ;
ηT ¼ 1037ð16Þ; ξT ¼ 237ð29Þ; ð24Þ
LS ¼ 259ð20Þ; FS ¼ 2ð27Þ;
LT ¼ 162ð31Þ; FT ¼ 136ð56Þ; ð25Þ

which are given in MeV units. The associated uncertainties
include the experimental errors on the couplings and errors
on the charmed meson masses from LQCD.
What matters to us from the lattice fit [Eqs. (22)–(25)] is

that ηA and ξA are extracted at different (nonphysical) light
quark masses. Therefore, using experimental [Eqs. (17) and
(19)] and lattice [Eqs. (22) and (24)] results, one can now
separate the chiral symmetric terms from those that respect
SUð3Þ symmetry as shown in Eq. (13). To do so, a
constrained fitting procedure [25] is utilized. In the fit,
the extracted values in Eq. (21) are used as priors on the

coefficients aA and ΔðaÞ
A . For the coefficients δA, ΔA, σA,

and ΔðσÞ
A , broad priors are used. We choose 0� 1000 MeV

(0� 1000) as priors on δA and ΔA (σA and ΔðσÞ
A ).

Performing a least chi-squared fit, one gets

δS ¼ 346ð30Þ MeV; ΔS ¼ 29ð40Þ MeV;

ΔðσÞ
S ¼ 0.13ð15Þ; σS ¼ 1.08ð11Þ;
δT ¼ 426ð6Þ MeV; ΔT ¼ 90ð11Þ MeV;

ΔðσÞ
T ¼ 0.243ð81Þ; σT ¼ 1.047ð45Þ; ð26Þ

where the uncertainties on the above values include the
experimental errors of charm meson masses and coupling
constants and errors from lattice data on charmed meson
masses.
Clearly, the extracted values given in Eqs. (21) and (26)

for the coefficients that appear in the effective chiral

TABLE II. The strategy 3 illustrated in [15] is used to obtain the above continuum masses, which are given in MeVunits. In Ref. [15],
the ground-state mass mD was used to tune the charm quark mass. In our fit, we use the experimental value given in Table I for this
nonmeasured lattice mass.

Ensemble mD� mDs
mD�

s
mD�

0
mD0

1
mD�

s0
mD0

s1
mD1

mDs1
mD2

mDs2

D15.48 2029.0(7.0) 1962.6(2.8) 2119.3(3.8) 2351(10) 2490(15) 2400(11) 2565(10) 2634(22) 2624(22) 2747(30) 2742(25)
D20.48 2030.0(7.1) 1959.9(2.8) 2117.7(3.9) 2364(10) 2503(15) 2404(11) 2570(10) 2636(22) 2627(23) 2754(31) 2745(25)
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Lagrangian are consistent with the perturbative expansion
of the theory. By fitting the counterterms, our one-loop
mass expressions given in Eq. (12) can be used to study
several mass splittings within excited charmed mesons. As
an illustration, let us use the theory to compute the
hyperfine splitting,

mD�
2s
−mD1s

¼ ΔT þ ΔðaÞ
T ms þ ΔðσÞ

T m̄þ ΣD�
2s
− ΣD1s

: ð27Þ

Using our results, one gets 34(16) MeV for this hyperfine
splitting, which agrees well with the observed value,

mD�
2s
− mD1s

¼ 33.99ð80Þ MeV; see Table I. Well-
measured experimental and lattice data on charmed meson
masses are necessary to reduce the uncertainties on the
coefficients [Eqs. (21) and (26)] and hence the predicted
hyperfine splitting.Our results can also be used to predict the
analog bottom meson states, and this is left for future work.

APPENDIX

Here we present the explicit expressions for the self-
energies of the excited charmed mesons

ΣD�
0
¼ g02

4f2

�
3K1ðmD0

1
−mD�

0
; mπÞ þ

1

3
K1ðmD0

1
−mD�

0
; mηÞ þ 2K1ðmD0

1s
−mD�

0
; mKÞ

�

þ h2

4f2

�
3K2ðmD −mD�

0
; mπÞ þ

1

3
K2ðmD −mD�

0
; mηÞ þ 2K2ðmDs

−mD�
0
; mKÞ

�

þ h02

4f2

�
2

3

�
3K1ðmD1

−mD�
0
; mπÞ þ

1

3
K1ðmD1

−mD�
0
; mηÞ þ 2K1ðmD1s

−mD�
0
; mKÞ

��
; ðA1Þ

ΣD�
0s
¼ g02

4f2

�
4K1ðmD0

1
−mD�

0s
; mKÞ þ

4

3
K1ðmD0

1s
−mD�

0s
; mηÞ

�

þ h2

4f2

�
4K2ðmD −mD�

0s
; mKÞ þ

4

3
K2ðmDs

−mD�
0s
; mηÞ

�

þ h02

4f2

�
2

3

�
4K1ðmD1

−mD�
0s
; mKÞ þ

4

3
K1ðmD1s

−mD�
0s
; mηÞ

��
; ðA2Þ

ΣD0
1
¼ g02

4f2

�
1

3

�
3K1ðmD�

0
−mD0

1
; mπÞ þ

1

3
K1ðmD�

0
−mD0

1
; mηÞ þ 2K1ðmD�

0s
−mD0

1
; mKÞ

��

þ g02

4f2

�
2

3

�
3K1ð0; mπÞ þ

1

3
K1ð0; mηÞ þ 2K1ðmD0

1s
−mD0

1
; mKÞ

��

þ h2

4f2

�
3K2ðmD� −mD0

1
; mπÞ þ

1

3
K2ðmD� −mD0

1
; mηÞ þ 2K2ðmD�

s
−mD0

1
; mKÞ

�

þ h02

4f2

�
1

9

�
3K1ðmD1

−mD0
1
; mπÞ þ

1

3
K1ðmD1

−mD0
1
; mηÞ þ 2K1ðmD1s

−mD0
1
; mKÞ

��

þ h02

4f2

�
5

9

�
3K1ðmD�

2
−mD0

1
; mπÞ þ

1

3
K1ðmD�

2
−mD0

1
; mηÞ þ 2K1ðmD�

2s
−mD0

1
; mKÞ

��
; ðA3Þ

ΣD0
1s
¼ g02

4f2

�
1

3

�
4K1ðmD�

0
−mD0

1s
; mKÞ þ

4

3
K1ðmD�

0s
−mD0

1s
; mηÞ

��

þ g02

4f2

�
2

3

�
4K1ðmD0

1
−mD0

1s
; mKÞ þ

4

3
K1ð0; mηÞ

��

þ h2

4f2

�
4K2ðmD� −mD0

1s
; mKÞ þ

4

3
K2ðmD�

s
−mD0

1s
; mηÞ

�

þ h02

4f2

�
1

9

�
4K1ðmD1

−mD0
1s
; mKÞ þ

4

3
K1ðmD1s

−mD0
1s
; mηÞ

��

þ h02

4f2

�
5

9

�
4K1ðmD�

2
−mD0

1s
; mKÞ þ

4

3
K1ðmD�

2s
−mD0

1s
; mηÞ

��
; ðA4Þ
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ΣD1
¼ g002

4f2

�
5

54

�
3K1ðmD�

2
−mD1

; mπÞ þ
1

3
K1ðmD�

2
−mD1

; mηÞ þ 2K1ðmD�
2s
−mD1

; mKÞ
��

þ g002

4f2

��
2

3

��
5

6

�
2
�
3K1ð0; mπÞ þ

1

3
K1ð0; mηÞ þ 2K1ðmD1s

−mD1
; mKÞ

��

þ h02

4f2

��
2

9

��
3K1ðmD�

0
−mD1

; mπÞ þ
1

3
K1ðmD�

0
−mD1

; mηÞ þ 2K1ðmD�
0s
−mD1

; mKÞ
��

þ h02

4f2

��
1

9

��
3K1ðmD0

1
−mD1

; mπÞ þ
1

3
K1ðmD0

1
−mD1

; mηÞ þ 2K1ðmD0
1s
−mD1

; mKÞ
��

; ðA5Þ

ΣD1s
¼ g002

4f2

��
5

54

��
4K1ðmD�

2
−mD1s

; mKÞ þ
4

3
K1ðmD�

2s
−mD1s

; mηÞ
��

þ g002

4f2

��
2

3

��
5

6

�
2
�
4K1ðmD1

−mD1s
; mKÞ þ

4

3
K1ð0; mηÞ

��

þ h02

4f2

��
2

9

��
4K1ðmD�

0
−mD1s

; mKÞ þ
4

3
K1ðmD�

0s
−mD1s

; mηÞ
��

þ h02

4f2

��
1

9

��
4K1ðmD0

1
−mD1s

; mKÞ þ
4

3
K1ðmD0

1s
−mD1s

; mηÞ
��

; ðA6Þ

ΣD�
2
¼ g002

4f2

��
1

18

��
3K1ðmD1

−mD�
2
; mπÞ þ

1

3
K1ðmD1

−mD�
2
; mηÞ þ 2K1ðmD1s

−mD�
2
; mKÞ

��

þ g002

4f2

��
4

3

��
3K1ð0; mπÞ þ

1

3
K1ð0; mηÞ þ 2K1ðmD�

2s
−mD�

2
; mKÞ

��

þ h02

4f2

��
1

3

��
3K1ðmD0

1
−mD�

2
; mπÞ þ

1

3
K1ðmD0

1
−mD�

2
; mηÞ þ 2K1ðmD0

1s
−mD�

2
; mKÞ

��
; ðA7Þ

ΣD�
2s
¼ g002

4f2

��
1

18

��
4K1ðmD1

−mD�
2s
; mKÞ þ

4

3
K1ðmD1s

−mD�
2s
; mηÞ

��

þ g002

4f2

��
4

3

��
4K1ðmD�

2
−mD�

2s
; mKÞ þ

4

3
K1ð0; mηÞ

��

þ h02

4f2

��
1

3

��
4K1ðmD0

1
−mD�

2s
; mKÞ þ

4

3
K1ðmD0

1s
−mD�

2s
; mηÞ

��
: ðA8Þ

The chiral loop integrals K1ðω; mÞ and K2ðω; mÞ are [13]

K1ðω; mÞ ¼ 1

16π2

�
ð−2ω3 þ 3m2ωÞ ln

�
m2

μ2

�
− 4ðω2 −m2ÞFðω; mÞ þ 16

3
ω3 − 7ωm2

�
;

K2ðω; mÞ ¼ 1

16π2

�
ð−2ω3 þm2ωÞ ln

�
m2

μ2

�
− 4ω2Fðω; mÞ þ 4ω3 − ωm2

�
; ðA9Þ

renormalized in the MS scheme, and the function Fðω; mÞ is defined as

Fðω; mÞ ¼

8>><
>>:

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p
cos−1ðωmÞ; m2 > ω2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 −m2
p

½iπ − cosh−1ð− ω
mÞ�; ω < −m;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 −m2
p

cosh−1ðωmÞ; ω > m:

ðA10Þ
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