
 

Behavior of observables for neutral meson decaying to two vectors
in the presence of T, CP, and CPT violation in mixing only

Anirban Karan1,* and Abinash Kumar Nayak 2,†

1Department of Physics, Indian Institute of Technology,
Hyderabad, Kandi, Sangareddy, Telangana 502285, India

2Department of Theoretical Physics, The Institute of Mathematical Sciences,
Taramani, Chennai 600113, India

and Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India

(Received 3 September 2019; published 30 January 2020)

When a neutral meson (P0 or P̄0) decays to two vector particles, a large number of observables can be
constructed from the differential decay rate based on the polarization of the final state. But, theoretically, all
of them are not independent to each other and hence, some relations among observables emerge. These
relations have been well studied in the scenario with no T and CPT violations in neutral meson mixing and
no direct CP violation as well. In this paper, we have studied the relations among observables in the
presence of T, CP, and CPT violating effects in mixing only. We find that except for four of them, all
the other old relations get violated and new relations appear if T and CPT violations in mixing are present.
The invalidity of these relation will signify the presence of direct violation of T, CP, and CPT (i.e., a
violation in the decay itself).
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I. INTRODUCTION

CPT invariance is believed to be a sacred principle of any
locally Lorentz invariant quantum field theory. In any
axiomatic quantum field theory, this discrete symmetry
emerges to be exact up to any order. It has a direct
connection with the preservation of Lorentz symmetry
[1,2]. Because of its great theoretical importance, it is
necessary to test the validity of this principle experimentally.
CPT invariance predicts the masses or lifetimes of any
particle and its anti-particle to be the same, which has been
tested for lots of particles through direct experiments [3].
But one can argue that these quantities are usually domi-
nated by strong or electromagnetic interactions and hence
there exits a possibility for tiny CPT violating effects,
mediated by weak interactions, to be undetectable in those
direct experiments. In this regard, the mixing of the neutral
pseudoscalar meson (K0, D0, B0

d; B
0
s) with its own anti-

particle is a promising area [4] to search for CPT violating
effects as this phenomenon is a second order electroweak
process. However, since the most general mixing matrix

includes T and CP violating parameters as well, we have to
study the effects of CP, T, and CPT violation together.
Searches forCP,T, andCPT violation using leptonic and

semi-leptonic channels as well as the modes where neutral
pseudoscalar meson decays to two other pseudoscalars or
one vector and one pseudoscalar have been performed
extensively [5–21]. However, the effects of CPT violation
on the modes where neutral pseudoscalar meson decays to
two vectors (P0 or P̄0 → V1V2) are not very well studied.
Though Refs. [22–24] discuss these modes involving two
vectors, they only consider the standard model (SM)
scenario (i.e., onlyCP violation in mixing) and its extension
to a model with CPT conserving generic new physics
effects. However, Ref. [25] has taken CPT violation into
account for describing the mode B0

s → J=ψϕ and Ref. [26]
has discussed triple products and angular observables for
B → V1V2 decays in light of CPT violation. In this paper,
we have revisited the prospect of searchingCPT violation in
mixing through P0 → V1V2 decays using a helicity-based
analysis for the time-dependent differential decay rate. We
would also like to emphasize that we have taken a model-
independent approach in the sense thatwe do not specify any
definite model that might lead to CPT violation.
The usual technique to deal with the oscillations of

neutral pseudoscalar mesons is to consider a final state f
to which both P0 and P̄0 can decay. If f consists of two
vectors, a large number of observables can be constructed
from the time-dependent differential decay rate depending
on the polarization or orbital angular momentum of the
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final state. But, all of these observables will not be
independent to each other and hence there emerge various
relations among them. In Refs. [23,24], these relations have
been discussed in the context of the SM scenario only for
the modes B0

d or B̄
0
d decaying to two vectors. In this paper,

we study these relations in the presence of T, CP, and CPT
violations in mixing only. We have confined our analysis to
the case where CPT violation is small compared to the SM
amplitude, which is justified based on the data from several
experiments [7,8,12,18,21]. Since independent theoretical
parameters for this case are more in number than the SM
scenario, it is expected to obtain a fewer number of
relations among observables. We find that except for four,
all the other old relations in the SM get violated and new
relations appear if T and CPT violations in mixing are
present. These new relations will hold true even if the T,
CP, and CPT violations become zero; however, they will
not form the complete set of relations in that case as they
are fewer in number. These new relations will break down
only if T, CP, and CPT violating effects are present in
decay too (i.e., direct violation).
The paper is organized as follows. In the next section,

we briefly describe the theoretical formalism for CPT
violation in P0 − P̄0 mixing and express the time dependent
differential decay rate of P0 and P̄0 in terms of the mixing
parameters. In Sec. III, we construct helicity-dependent
observables from the differential decay rates and express
them in terms of T, CP, and CPT violating parameters
assuming T and CPT violations in mixing to be very
small. We also solve for all the unknown theoretical param-
eters as functions of the observables. In. Sec. IV, we establish
the independent relations among these observables in the SM
case and the scenario with the presence of T and CPT
violations in mixing separately. We also discuss how these
relations can help us in distinguishing three different scenar-
ios: (a) the SM case; (b) T,CP, andCPT violation inmixing;
and (c) direct violation of T, CP, and CPT. Finally, we
summarize and conclude in Sec. V.

II. THEORETICAL FORMALISM

We begin by reviewing the most general formalism
for P0 − P̄0 mixing, in which CPT and T violations are
incorporated. This formalism has already been discussed in
Ref. [19]; however, for the sake of completeness we present
it in this section. In the ðP0 − P̄0Þ basis, the generic mixing
Hamiltonian can be expressed in terms of two 2 × 2
Hermitian matrices M and Γ, respectively, the mass and
decay matrices, as M − ði=2ÞΓ. It should be noticed that
the mixing matrix M − ði=2ÞΓ is non-Hermitian and it is
justified as the probability of finding P0 and P̄0 decreases
with time due to the presence of the non-null decay matrix
Γ. Now, since any 2 × 2matrix can be expanded in terms of
three Pauli matrices σj and identity matrix I with complex
coefficients, we can write

M −
i
2
Γ ¼ E sin θ cosϕσ1 þ E sin θ sinϕσ2

þ E cos θσ3 − iDI ð1Þ

where E; θ;ϕ, and D are complex entities in general.
Comparing both sides of this equation, we obtain

D ¼ i
2
ðM11 þM22Þ þ

1

4
ðΓ11 þ Γ22Þ;

E cos θ ¼ 1

2
ðM11 −M22Þ −

i
4
ðΓ11 − Γ22Þ;

E sin θ cosϕ ¼ ReM12 −
i
2
ReΓ12;

E sin θ sinϕ ¼ −ImM12 þ
i
2
ImΓ12; ð2Þ

where Mij and Γij are (i; j)-th elements of M and Γ
matrices, respectively.
The eigenvectors of the mixing HamiltonianM − ði=2ÞΓ

are the mass eigenstates (jPLi and jPHi) and they can be
expressed as linear combinations of the flavor eigenstates
(jP0i and jP0i) as follows:

jPLi ¼ p1jP0i þ q1jP̄0i;
jPHi ¼ p2jP0i − q2jP̄0i; ð3Þ

where p1 ¼ N1 cos θ2 ; q1 ¼ N1eiϕ sin θ
2
; p2 ¼ N2 sin θ

2
, and

q2 ¼ N2eiϕ cos θ2 with N1, N2 being two normalization
factors and the L, H tags indicate light and heavy physical
states, respectively. Since, the physical states, as given by
Eq. (3), depend only on the parameters θ and ϕ, they are
called the mixing parameters for the P0 − P̄0 system. It
should be noticed that the physical states are not orthogonal
in general since the mixing matrix is non-Hermitian.
The time evolution of flavor states (jB0i≡ jB0ðt ¼ 0Þi

and jB̄0i≡ jB̄0ðt ¼ 0Þi) are given by

jP0ðtÞi ¼ hþjP0i þ h− cos θjP0i þ h−eiϕ sin θjP̄0i;
jP̄0ðtÞi ¼ hþjP̄0i − h− cos θjP̄0i þ h−e−iϕ sin θjP0i; ð4Þ

where hþ ¼ e−iðM−iΓ
2
Þt cos

��
ΔM − i

ΔΓ
2

�
t
2

�
;

h− ¼ e−iðM−iΓ
2
Þti sin

��
ΔM − i

ΔΓ
2

�
t
2

�
: ð5Þ

Here M ¼ ðMH þMLÞ=2, ΔM ¼ MH −ML, Γ ¼
ðΓH þ ΓLÞ=2, and ΔΓ ¼ ΓH − ΓL with ML;H and ΓL;H

to be masses and decay widths of the light and heavy
mass eigenstates, respectively.
Let us now consider a final state f to which both P0 and

P̄0 can decay. Using Eq. (4), the time-dependent decay
amplitudes for the neutral mesons are given by
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AmpðP0ðtÞ → fÞ ¼ hþAf þ h− cos θAf þ h−eiϕ sin θĀf;

AmpðP̄0ðtÞ → fÞ ¼ hþĀf − h− cos θĀf þ h−e−iϕ sin θAf; ð6Þ

where Af¼hfjHΔF¼1jP0i and Āf¼hfjHΔF¼1jP̄0i. Hence, the decay rates ΓfðP0ðtÞ → fÞ and Γ̄fðP̄0ðtÞ → fÞ can be
expressed as

dΓ
dt

ðP0ðtÞ → fÞ ¼ 1

2
e−Γt½sinhðΔΓt=2Þf2Reðcos θjAfj2 þ eiϕ sin θA�

fĀfÞg
þ coshðΔΓt=2ÞfjAfj2 þ j cos θj2jAfj2 þ jeiϕ sin θj2jĀfj2 þ 2Reðeiϕ cos θ� sin θA�

fĀfÞg
þ cosðΔMtÞfjAfj2 − j cos θj2jAfj2 − jeiϕ sin θj2jĀfj2 − 2Reðeiϕ cos θ� sin θA�

fĀfÞg
− sinðΔMtÞf2Imðcos θjAfj2 þ eiϕ sin θA�

fĀfÞg�; ð7Þ

dΓ
dt

ðP̄0ðtÞ → fÞ ¼ 1

2
e−Γt½sinh ðΔΓt=2Þf2Reð− cos θ�jĀfj2 þ eiϕ

�
sin θ�A�

fĀfÞg
þ cosh ðΔΓt=2ÞfjĀfj2 þ j cos θj2jĀfj2 þ je−iϕ sin θj2jAfj2 − 2Reðeiϕ�

cos θ sin θ�A�
fĀfÞg

þ cosðΔMtÞfjĀfj2 − j cos θj2jĀfj2 − je−iϕ sin θj2jAfj2 þ 2Reðeiϕ�
cos θ sin θ�A�

fĀfÞg
þ sinðΔMtÞf2Imð− cos θ�jĀfj2 þ eiϕ

�
sin θ�A�

fĀfÞg�: ð8Þ

III. OBSERVABLES

A. Decay rates

Any final state consisting of two vectors can have three
different values for the orbital angular momentum quantum
number f0; 1; 2g corresponding to the polarization states
f0;⊥; kg, respectively. As we are not considering CPT
violation in decay, we can express the decay amplitudes for
modes and conjugate modes in terms of transversity
amplitudes as [22–24,26]

AfðP0 → V1V2Þ ¼ A0g0 þAkgk þ iA⊥g⊥ ¼
X
λ

Aλgλζλ;

ĀfðP̄0 → V1V2Þ ¼ Ā0g0 þ Ākgk − iĀ⊥g⊥ ¼
X
λ

Āλ gλζ�λ ;

ð9Þ

where the helicity index λ takes the value f0; k;⊥g and ζλ
takes the value f1; 1; ig for these three helicities, respec-
tively. The factors gλ are the coefficients of helicity
amplitudes (Aλ or Āλ) in the linear polarization basis
and only depend on kinematic angles [27]. In the absence
of a direct violation for CP, T, and CPT, these helicity
amplitudes can be expressed as

Aλ ¼ Āλ ¼ aλeiδλ ; ð10Þ

where aλ and δλ are two real quantities indicating the
magnitudes and phases for different helicity amplitudes.
Now, using Eqs. (7)–(10), the time-dependent decay

rates for P0 → V1V2 and P̄0 → V1V2 modes can be written
as [22–26]

dΓ
dt

ðP0ðtÞ → V1V2Þ ¼ e−Γt
X
λ≤σ

�
Λλσ cosh

�
ΔΓt
2

�
þ ηλσ sinh

�
ΔΓt
2

�
þ Σλσ cosðΔMtÞ − ρλσ sinðΔMtÞ

�
gλgσ; ð11Þ

dΓ
dt

ðP̄0ðtÞ → V1V2Þ ¼ e−Γt
X
λ≤σ

�
Λ̄λσ cosh

�
ΔΓt
2

�
þ η̄λσ sinh

�
ΔΓt
2

�
þ Σ̄λσ cosðΔMtÞ þ ρ̄λσ sinðΔMtÞ

�
gλgσ; ð12Þ

where both λ and σ take the value f0; k;⊥g.
From Eq. (11) we see that for each helicity combination,

there are four observables ðΛλσ; ηλσ;Σλσ; ρλσÞ and six such
helicity combinations are possible. Hence, we get a total 24
observables for the P0 → V1V2 mode. Similarly, there will

be 24 different observables ðΛ̄λσ; η̄λσ; Σ̄λσ; ρ̄λσÞ for the P̄0 →
V1V2 mode too. These observables can be measured by
performing a time-dependent angular analysis of P0ðtÞ →
V1V2 and P̄0ðtÞ → V1V2 [22–24]. The procedure described
in Ref. [26] can be helpful in this regard. On the other hand,
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probing polarizations of the final state particles may also
aid in the measurement of these observables. One important
point to notice here is that Refs. [22–24] did not consider
sinhðΔΓt

2
Þ terms in the decays of B0

d and B̄0
d since ΔΓ is

consistent with zero [3] for these modes. In that case, ηλσ
and η̄λσ remain undetermined and one should work with the
remaining ð18þ 18Þ ¼ 36 observables for a mode and its
conjugate mode. However, since we are considering a
general scenario here, we keep all the terms and proceed.

B. Parametric expansion

In Ref. [28], T. D. Lee discusses the CPT and T
properties ofM and Γmatrices. First, if the CPT invariance
holds, then, independently of the T symmetry,

M11 ¼ M22; Γ11 ¼ Γ22 ⇒ θ ¼ π

2
½Using Eq:ð2Þ�:

ð13Þ

In addition, if the T invariance holds, then, independently
of the CPT symmetry,

Γ�
12

Γ12

¼ M�
12

M12

⇒ Imϕ ¼ 0 ½Using Eq:ð2Þ�: ð14Þ

Hence, incorporating the T, CP, and CPT violations in
P0 − P̄0 mixing, we parametrize θ and ϕ as [19]

θ ¼ π

2
þ ϵ1 þ iϵ2 and ϕ ¼ −2β þ iϵ3 ð15Þ

where β is the CP violating weak phase, ϵ1 and ϵ2 are CPT
violating parameters, and ϵ3 is a T violating parameter. The
notations of Belle, BABAR, and LHCb Collaborations
[7,8,12,18] are a bit different from ours; however, the
two notations are related to each other by the following
transformation [19]:

cos θ ↔ −z; sin θ ↔
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
; eiϕ ↔

q
p
; ð16Þ

or; equivalently∶ ϵ1 ¼ ReðzÞ; ϵ2 ¼ ImðzÞ; ϵ3 ¼ 1−
���� qp

����:
ð17Þ

Now, comparing Eq. (7) to Eq. (11), one can easily infer
that all of the observables will be functions of the complex
quantities θ and ϕ. As T and CPT violations are expected
to be very small [7,8,12,18,21], we can expand all the
observables in terms of ϵj (j ∈ f1; 2; 3g). So, using
Eqs. (10) and (15), we expand all of the 24 helicity-
dependent observables for P0 → V1V2 in terms of ϵj
(j ∈ f1; 2; 3g) keeping up to the linear terms as follows:

Λii ¼ a2i ð1 − ϵ3 − ϵ1 cos 2β þ ϵ2 sin 2βÞ;
Λ⊥⊥ ¼ a2⊥ð1 − ϵ3 þ ϵ1 cos 2β − ϵ2 sin 2βÞ;
Λ0k ¼ 2a0ak cosðΔ0 − ΔkÞ

× ð1 − ϵ3 − ϵ1 cos 2β þ ϵ2 sin 2βÞ;
Λ⊥i ¼ 2a⊥aiððϵ2 cos 2β þ ϵ1 sin 2βÞ cosΔi

þ ϵ3 sinΔiÞ; ð18Þ

ηii ¼ −a2i ðϵ1 − cos2βþ ϵ3 cos2βÞ;
η⊥⊥ ¼ −a2⊥ðϵ1 þ cos2β− ϵ3 cos2βÞ;
η0k ¼ −2a0ak cosðΔ0 −ΔkÞðϵ1 − cos2βþ ϵ3 cos2βÞ;
η⊥i ¼ −2a⊥aiðð1− ϵ3Þ sin2β cosΔi þ ϵ1 sinΔiÞ; ð19Þ

Σii ¼ a2i ðϵ3 þ ϵ1 cos 2β − ϵ2 sin 2βÞ;
Σ⊥⊥ ¼ a2⊥ðϵ3 − ϵ1 cos 2β þ ϵ2 sin 2βÞ;
Σ0k ¼ 2a0ak cosðΔ0 − ΔkÞ

× ðϵ3 þ ϵ1 cos 2β − ϵ2 sin 2βÞ;
Σ⊥i ¼ −2a⊥aiððϵ2 cos 2β þ ϵ1 sin 2βÞ cosΔi

− ð1 − ϵ3Þ sinΔiÞ; ð20Þ

ρii ¼−a2i ðϵ2þ sin2β− ϵ3 sin2βÞ;
ρ⊥⊥ ¼−a2⊥ðϵ2− sin2βþ ϵ3 sin2βÞ;
ρ0k ¼−2a0ak cosðΔ0−ΔkÞðϵ2þ sin2β− ϵ3 sin2βÞ;
ρ⊥i ¼−2a⊥aiðð1− ϵ3Þcos2β cosΔiþ ϵ2 sinΔiÞ; ð21Þ

where i ∈ f0; kg and Δi ¼ δi − δ⊥. Similarly, it is also
possible to expand the observables of the conjugate mode
P̄0 → V1V2 in terms of ϵj (given in the Appendix).

C. Solutions

As can be seen from the expansion of the observables
given by Eqs. (18)–(21), there are a total of nine unknown
parameters (i.e., three of aλ, three of ϵj, two ofΔi, and β). In
the SM case, there are six unknown parameters (three of aλ,
two of Δi, and β) as stated in Refs. [23,24]; however, for
our scenario, we have three extra parameters emerging due
to T and CPT violation in mixing, namely, ϵ1;2;3, thus
resulting in nine theoretical parameters. It should be noted
that Refs. [23,24] originally deal with the SM scenario plus
CP violation in decay, not T and CPT violations in mixing;
hence, in addition to six unknown SM parameters, they
have three more amplitudes (bλ), three more strong phases
(δbλ ), and one extra weak phase related to the CP violating
part of the decay amplitudes (Aλ or Āλ). Now, we go back
to our scenario and solve the nine theoretical parameters in
terms of the observables as follows:
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aλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λλλ þ Σλλ

p
; ð22Þ

ϵ1 ¼ −
1

2

�
ηii

Λii þ Σii
þ η⊥⊥
Λ⊥⊥ þ Σ⊥⊥

�
; ð23Þ

ϵ2 ¼ −
1

2

�
ρii

Λii þ Σii
þ ρ⊥⊥
Λ⊥⊥ þ Σ⊥⊥

�
; ð24Þ

ϵ3 ¼
1

2

�
Σii

Λii þ Σii
þ Σ⊥⊥
Λ⊥⊥ þ Σ⊥⊥

�
; ð25Þ

sin 2β ¼ −
1

2

�
ρii
Λii

−
ρ⊥⊥
Λ⊥⊥

�
; ð26Þ

cos 2β ¼ 1

2

�
ηii
Λii

−
η⊥⊥
Λ⊥⊥

�
; ð27Þ

cosðΔ0 − ΔkÞ ¼
1

2

�
Λ0k þ Σ0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ00 þ Σ00

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λkk þ Σkk

p
�
; ð28Þ

sinΔi ¼
1

2

�
Λ⊥i þ Σ⊥iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λii þ Σii
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ⊥⊥ þ Σ⊥⊥
p

�
; ð29Þ

cosΔi ¼ XiΛiiΛ⊥⊥
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λii þ Σii
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ⊥⊥ þ Σ⊥⊥
p

Λ⊥⊥Σii þ ΛiiΣ⊥⊥ þ 2Λ⊥⊥Λii

�
; ð30Þ

where ; Xi ¼
�ðΛ⊥i − Σ⊥iÞðΛ⊥⊥Σii þ ΛiiΣ⊥⊥Þ þ 2ðΛiiΛ⊥⊥Λ⊥i − ΣiiΣ⊥⊥Σ⊥iÞ

ðη⊥⊥ρii − ηiiρ⊥⊥ÞðΛii þ ΣiiÞðΛ⊥⊥ þ Σ⊥⊥Þ
�
; ð31Þ

with λ ∈ f0; k;⊥g and i ∈ f0; kg. In principle, we should
present only nine equations as the solutions for nine
unknown parameters. But, we have listed more than nine
relations from Eq. (22) to Eq. (30) because the observables
involve several angular parameters. Actually, to specify any
angular variable without any ambiguity, one must quantify
both sin and cos of that angle. However, as can be seen in
Sec. IV B, the extra equations will result in some relations
among observables by applying various trigonometric
identities.

IV. OBSERVABLE RELATIONS

A. SM relations

In the SM scenario, all three ϵj become zero and there
remain only six unknown parameters (3 of aλ, 2 ofΔi, and β)
in the theory. But the number of observables for the P0 →
V1V2 mode is 24. Hence, 18 independent relations among
observables must emerge and they are the following:

Σλλ ¼ 0; Σ0k ¼ 0; Λ⊥i ¼ 0; ð32Þ
ρii
Λii

¼ ρ0k
Λ0k

¼ −
ρ⊥⊥
Λ⊥⊥

; ð33Þ

ρ2⊥i

4Λ⊥⊥Λii − Σ2⊥i
¼

Λ2
0k − ρ2

0k
Λ2
0k

; ð34Þ

Λ0k ¼
1

2Λ⊥⊥

�
Σ⊥0Σ⊥k þ ρ⊥0ρ⊥k

� Λ2
0k

Λ2
0k − ρ2

0k

��
: ð35Þ

ηii
Λii

¼ η0k
Λ0k

¼ −
η⊥⊥
Λ⊥⊥

; ð36Þ

η⊥i

ρ⊥i
þ η0k
ρ0k

¼ 0; ð37Þ

η2
0k þ ρ2

0k ¼ Λ2
0k; ð38Þ

with λ ∈ f0; k;⊥g and i ∈ f0; kg. Here, Eq. (32) contains
six relations (for three different λ and two different i),
Eqs. (33) and (36) contain three relations each (for two dif-
ferent i) whereas there are two relations (for two different i)
inside of Eqs. (34) and (37).
However, for vanishing ΔΓ, only 18 observables will be

accessible to us (as discussed in the Sec. III A) and hence,
in that case, we should obtain 12 independent relations
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among observables. Those 12 relations are given by
Eqs. (32)–(35), as discussed in Refs. [23,24].
One important point to state is that one can use the

solutions, given by Eqs. (22)–(29), in the SM scenario also.
But, Xi, given by Eq. (31), takes the form 0

0
in this case and it

causes problems in finding cosΔi from Eq. (30). Still, one
can express cosΔi (i ∈ f0; kg) in this scenario as follows:

cosΔi ¼ −
�

Λ0kρ⊥i

2η0k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛiiΛ⊥⊥

p
�
; ð39Þ

which can easily be verified by substituting vanishing ϵj into
Eqs. (18)–(21). Hence, using Eqs. (30), (32), and (39), one
can writeXi (i ∈ f0; kg) in the limit ϵj→0 (j ∈ f1; 2; 3g) as

Xi ¼ −
�

Λ0kρ⊥i

η0kΛiiΛ⊥⊥

�
: ð40Þ

Nevertheless, we shall see in the next section that most of
these 18 relations from Eqs. (32)–(38) will get violated if T
and CPT violations in mixing are also present. On the other
hand, if there exists direct violation of T, CP, or CPT
instead of T and CPT violating effects in mixing, then most
of these relations also get violated. Hence, it is impossible
to infer from this set of relations whether CPT violation (if
it exists at all) is present in mixing or in decay.

B. T and CPT violation

In addition to the CP violating weak phase, if there
exists T and CPT violation in mixing, we have nine
unknown theoretical parameters (three of ϵj, three of aλ,
two of Δi, and β). But the number of observables is still 24.
So, there should appear ð24 − 9Þ ¼ 15 relations among
observables. In order to find them we substitute the solutions
of unknown parameters, given by Eqs. (22)–(30), back to the
expansion of observables, given by Eqs. (18)–(21). Thus we
get 11 independent relations, which are given below:

Λ0k
Λii

¼ Σ0k
Σii

¼ ρ0k
ρii

¼ η0k
ηii

; ð41Þ

ρ2
0k þ η2

0k
Λ2
0k

¼ ρ2⊥⊥ þ η2⊥⊥
Λ2⊥⊥

; ð42Þ

η⊥i ¼
1

2

�
Σ⊥i

ΛiiΛ⊥⊥
fη⊥⊥ðΛii þ ΣiiÞ þ ηiiðΛ⊥⊥ þ Σ⊥⊥Þg

þ XifΛ⊥⊥ρii − Λiiρ⊥⊥g
�
; ð43Þ

ρ⊥i ¼
1

2

�
Σ⊥i

ΛiiΛ⊥⊥
fρ⊥⊥ðΛii þ ΣiiÞ þ ρiiðΛ⊥⊥ þ Σ⊥⊥Þg

− XifΛ⊥⊥ηii − Λiiη⊥⊥g
�
; ð44Þ

with i ∈ f0; kg. It should be noticed that there are six
independent relations in Eq. (41), two relations in Eq. (43),
and two relations in Eq. (44).
There are four more such independent relations among

observables which emerge due to the following trigono-
metric identities:

sin2αþ cos2α ¼ 1 ðwhere α ¼ Δ0;Δk or 2βÞ; ð45Þ

cosðΔ0 − ΔkÞ ¼ cosΔ0 cosΔk þ sinΔ0 sinΔk: ð46Þ

Substituting expressions for different angular variables
from Eqs. (26)–(30) into the above trigonometric identities,
given by Eqs. (45) and (46), we get the remaining four
relations as

� ðΛ⊥i þ Σ⊥iÞ2
ðΛii þ ΣiiÞðΛ⊥⊥ þ Σ⊥⊥Þ

�

þ 4X2
iΛ2

iiΛ2⊥⊥
� ðΛii þ ΣiiÞðΛ⊥⊥ þ Σ⊥⊥Þ
ðΛ⊥⊥Σii þ ΛiiΣ⊥⊥ þ 2Λ⊥⊥ΛiiÞ2

�
¼ 4;

ð47Þ
�
ρ00
Λ00

−
ρ⊥⊥
Λ⊥⊥

�
2

þ
�
η00
Λ00

−
η⊥⊥
Λ⊥⊥

�
2

¼ 4; ð48Þ

ðΛ0k þ Σ0kÞ −
1

2

�ðΛ⊥0 þ Σ⊥0ÞðΛ⊥k þ Σ⊥kÞ
ðΛ⊥⊥ þ Σ⊥⊥Þ

�

¼
�

2X0XkΛ00ΛkkΛ2⊥⊥ðΛ00 þ Σ00ÞðΛkk þ ΣkkÞðΛ⊥⊥ þ Σ⊥⊥Þ
ðΛ⊥⊥Σ00 þ Λ00Σ⊥⊥ þ 2Λ⊥⊥Λ00ÞðΛ⊥⊥Σkk þ ΛkkΣ⊥⊥ þ 2Λ⊥⊥ΛkkÞ

�
; ð49Þ

with i ∈ f0; kg. Equation (47) contains two relations (for
two different i). However, it should be noticed that though
sin 2β and cos 2β can be expressed in two ways using the
helicities 0 and k separately [as shown in Eqs. (26) and (27)],

we obtain only one relation among observables from the
trigonometric identity: sin2 2β þ cos2 2β ¼ 1. It happens
because Eq. (41) ensures the following: ðρ00=Λ00Þ ¼
ðρkk=ΛkkÞ and ðη00=Λ00Þ ¼ ðηkk=ΛkkÞ.
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However, one should keep in mind that the relations in
Eqs. (41)–(46) will not hold true for all orders in ϵj as we
are computing the observables perturbatively up to the first
order in ϵj. The corrections to these relations are quadratic
or of higher order in ϵj and hence can be neglected for
sufficiently small values of ϵj. Now, if one wants to check
the validity of the 18 relations of last section [given by
Eqs. (32)–(38)] in this scenario, he/she would find ϵj order
correction terms in 14 of them. The four relations, which
remain intact in both the scenarios are ðρii=ΛiiÞ ¼
ðρ0k=Λ0kÞ and ðηii=ΛiiÞ ¼ ðη0k=Λ0kÞ, which can easily
be observed from Eqs. (33), (36), and (41).
It should be noted that the 15 relations of this section

[Eqs. (41)–(44) and Eqs. (47)–(49)] hold true even if
all ϵj become zero. It can be verified straightforwardly by
setting ϵj ¼ 0 in a parametric expansion of observables
[Eqs. (18)–(21)] and then substituting those expressions
for observables into these 15 relations. But it does not
mean that we have 15 more independent relations in
the SM case. One can easily check that the 18 relations
in last section automatically satisfy the 15 relations of
this section. In other words, the 18 relations of the
previous section are embedded in a complicated form
inside the 15 relations of the present section. However, as
discussed in last section, one has to be careful in dealing
with Xi while verifying since it takes the 0

0
form in SM

scenario.
Now, if direct violations of T, CP, and CPT are

present in the decay mode, most of these 15 relations will
not hold true and that can be used as a smoking gun
signal of confirming those effects. In that case, the 18
relations of the SM scenario will be disobeyed too. On
the other hand, if these 15 relations are satisfied, then one
becomes sure that there is no direct violations of T, CP,
and CPT, but it cannot be confirmed whether T and CPT
violations in mixing are present or not since those 15
relations are satisfied on both the occasions. In this
circumstance, the validity of the 18 relations in the last
section should be examined. If those 18 relations hold
true, it would signify the absence of T and CPT violation
in mixing and if they get violated, the presence of them
will be confirmed.
There is another way to confirm the existence of T, CP,

and CPT violation in decay. In this analysis, we have
used the observables of the P0 → V1V2 mode only for
solving all of the nine unknown parameters, as shown in
Eqs. (22)–(30). Similarly, it is also possible to solve them
by using the observables of the P̄0 → V1V2 mode, as given
in the Appendix. These two sets of solutions should match
numerically in the absence of new physics effects in decay.
Hence, significant deviations in the numerical values of the
nine unknown parameters from these two sets of solutions
will definitely indicate sizeable contributions of T, CP, and
CPT violations in decay.

V. CONCLUSION

In conclusion, we have studied the behavior of observ-
ables for neutral meson decaying to two vectors in the
presence of T, CP, and CPT violation in mixing.
Polarizations of the final state with two vectors provide
us with a large number of observables in these modes. We
choose the final state in such a way that both P0 and P̄0 can
decay to it. We establish the complete set of 15 relations
among observables which must be obeyed if there do not
exist any direct violations of T, CP, and CPT and these
relations can be used as the smoking gun signal to confirm
their presence or absence. In addition to that we also listed
the full set of 18 relations among observables which should
be satisfied if there is no violation of T and CPT in the
mixing of P0 − P̄0 and these relations can be used to probe
their existence unambiguously.
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APPENDIX: OBSERVABLES FOR P̄0 → V1V2
AND THE SOLUTIONS

The expansion of observables for the P̄0 → V1V2 mode
in terms of ϵj (j ∈ f1; 2; 3g) is given by

Λ̄ii ¼ a2i ð1þ ϵ3 þ ϵ1 cos 2β þ ϵ2 sin 2βÞ;
Λ̄⊥⊥ ¼ a2⊥ð1þ ϵ3 − ϵ1 cos 2β − ϵ2 sin 2βÞ;
Λ̄0k ¼ 2a0ak cosðΔ0 − ΔkÞð1þ ϵ3 þ ϵ1 cos 2β

þ ϵ2 sin 2βÞ;
Λ̄⊥i ¼ 2a⊥aiððϵ2 cos 2β − ϵ1 sin 2βÞ cosΔi

þ ϵ3 sinΔiÞ; ðA1Þ

η̄ii ¼ a2i ðϵ1 þ cos 2β þ ϵ3 cos 2βÞ;
η̄⊥⊥ ¼ a2⊥ðϵ1 − cos 2β − ϵ3 cos 2βÞ;
η̄0k ¼ 2a0ak cosðΔ0 − ΔkÞðϵ1 þ cos 2β þ ϵ3 cos 2βÞ;
η̄⊥i ¼ −2a⊥aiðð1þ ϵ3Þ sin 2β cosΔi þ ϵ1 sinΔiÞ;

ðA2Þ

Σ̄ii ¼ −a2i ðϵ3 þ ϵ1 cos 2β þ ϵ2 sin 2βÞ;
Σ̄⊥⊥ ¼ −a2⊥ðϵ3 − ϵ1 cos 2β − ϵ2 sin 2βÞ;
Σ̄0k ¼ −2a0ak cosðΔ0 − ΔkÞðϵ3 þ ϵ1 cos 2β

þ ϵ2 sin 2βÞ;
Σ̄⊥i ¼ −2a⊥aiððϵ2 cos 2β − ϵ1 sin 2βÞ cosΔi

þ ð1þ ϵ3Þ sinΔiÞ; ðA3Þ
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ρ̄ii ¼ −a2i ðϵ2 þ sin 2β þ ϵ3 sin 2βÞ;
ρ̄⊥⊥ ¼ −a2⊥ðϵ2 − sin 2β − ϵ3 sin 2βÞ;
ρ̄0k ¼ −2a0ak cosðΔ0 − ΔkÞðϵ2 þ sin 2β þ ϵ3 sin 2βÞ;
ρ̄⊥i ¼ −2a⊥aiðð1þ ϵ3Þ cos 2β cosΔi − ϵ2 sinΔiÞ; ðA4Þ

with λ ∈ f0; k;⊥g and i ∈ f0; kg.
The solutions for nine unknown parameters (i.e., three of

aλ, three of ϵj, two of Δi, and β) in terms of the observables
of the P̄0 → V1V2 mode are given by

aλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ̄λλ þ Σ̄λλ

q
; ðA5Þ

ϵ1 ¼
1

2

�
η̄ii

Λ̄ii þ Σ̄ii
þ η̄⊥⊥
Λ̄⊥⊥ þ Σ̄⊥⊥

�
; ðA6Þ

ϵ2 ¼ −
1

2

�
ρ̄ii

Λ̄ii þ Σ̄ii
þ ρ̄⊥⊥
Λ̄⊥⊥ þ Σ̄⊥⊥

�
; ðA7Þ

ϵ3 ¼ −
1

2

�
Σ̄ii

Λ̄ii þ Σ̄ii
þ Σ̄⊥⊥
Λ̄⊥⊥ þ Σ̄⊥⊥

�
; ðA8Þ

sin 2β ¼ −
1

2

�
ρ̄ii
Λ̄ii

−
ρ̄⊥⊥
Λ̄⊥⊥

�
; ðA9Þ

cos 2β ¼ 1

2

�
η̄ii
Λ̄ii

−
η̄⊥⊥
Λ̄⊥⊥

�
; ðA10Þ

cosðΔ0 − ΔkÞ ¼
1

2

�
Λ̄0k þ Σ̄0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ̄00 þ Σ̄00

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ̄kk þ Σ̄kk

q
�
; ðA11Þ

sinΔi ¼ −
1

2

�
Λ̄⊥i þ Σ̄⊥iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ̄ii þ Σ̄ii

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ̄⊥⊥ þ Σ̄⊥⊥

p
�
; ðA12Þ

cosΔi ¼ X̄iΛ̄iiΛ̄⊥⊥
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ̄ii þ Σ̄ii

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ̄⊥⊥ þ Σ̄⊥⊥

p
Λ̄⊥⊥Σ̄ii þ Λ̄iiΣ̄⊥⊥ þ 2Λ̄⊥⊥Λ̄ii

�
;

ðA13Þ

where ; X̄i ¼
�ðΛ̄⊥i − Σ̄⊥iÞðΛ̄⊥⊥Σ̄ii þ Λ̄iiΣ̄⊥⊥Þ þ 2ðΛ̄iiΛ̄⊥⊥Λ̄⊥i − Σ̄iiΣ̄⊥⊥Σ̄⊥iÞ

ðη̄⊥⊥ρ̄ii − η̄iiρ̄⊥⊥ÞðΛ̄ii þ Σ̄iiÞðΛ̄⊥⊥ þ Σ̄⊥⊥Þ
�
; ðA14Þ

with λ ∈ f0; k;⊥g and i ∈ f0; kg.
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[5] M. C. Bañuls and J. Bernabéu, Studying indirect violation of
CP, T and CPT in a B factory, Nucl. Phys. B590, 19 (2000).

[6] E. Alvarez and J. Bernabéu, Correlated neutral B meson
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