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We propose a novel realization of spontaneous supersymmetry breaking in de Sitter vacuum by F- and
D-terms in N ¼ 1 four-dimensional supergravity coupled to a chiral superfield with SUð1; 1Þ=Uð1Þ target
space. Our construction features gauged Uð1ÞR symmetry rotating the chiral scalar field by a phase. Both
supersymmetry and R-symmetry can be spontaneously broken, and for two particular parameter choices we
obtain no-scale supergravity with positive tunable cosmological constant.
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I. INTRODUCTION

Supersymmetry (SUSY) is a compelling idea that is
motivated by both phenomenological (beyond the Standard
Model) and theoretical (string theory) point of view. If
nature indeed uses supersymmetry it must be spontane-
ously broken. In the simplest scenario SUSY breaking
happens in the hidden sector and is mediated to the visible
sector (supersymmetric Standard Model) by gravitational
interactions. It is therefore of interest to study SUSY
breaking in the context of N ¼ 1 four-dimensional super-
gravity (SUGRA).
On the other hand, according to observations the

Universe is currently expanding with acceleration [1,2].
The simplest way to describe such a universe is by
introducing a (very) small positive cosmological constant.
In supergravity the task of adding a positive cosmological
constant is known to be nontrivial because of the restric-
tions on the scalar potential imposed by supersymmetry.
For example in pure (standard) supergravity one can only
have zero (Minkowski vacuum) or negative (anti-de Sitter
vacuum) cosmological constant [3]. It is possible to
generate a positive cosmological constant if we allow other
(nongravitational) multiplets. One interesting possibility is
that the same field(s) that breaks SUSY can also generate
the cosmological constant. This is possible, for example,
in the simplest Polonyi model [4–6].

In this work we will focus on the supergravity nonlinear
σ-model with SUð1; 1Þ=Uð1Þ target space. This coset
manifold, known as the Poincaré plane, describes hyper-
bolic Kähler geometry, and often arises in superstring-
derived effective SUGRA models where the corresponding
scalars are the compactification moduli. Our goal is to find
a Poincaré plane model that spontaneously breaks super-
symmetry in a de Sitter vacuum, i.e., allowing for a positive
(tunable) cosmological constant. It turns out, one such class
of models is available if we introduce linearly realized
gauged Uð1ÞR symmetry. This, of course, adds a gauge
(vector) multiplet with its D-term contribution to the scalar
potential and SUSY breaking.
This paper is organized as follows. InSec. IIwe recall basic

properties ofN ¼ 1 four-dimensional supergravity as well as
the SUð1; 1Þ=Uð1Þ nonlinear σ-model. We discuss the two
equivalent coordinate choices—one covering the whole
Poincaré plane (disk) while the other covering its upper half.
In Sec. III we use the fact that the two parametrizations of the
plane reveal two different types ofUð1Þ symmetries (linearly
and nonlinearly realized), to construct newmodels where the
Uð1Þ is linearly realized local R-symmetry. In Sec. IV we
show that for suitable parameter choices our models sponta-
neously break SUSYand R-symmetry, and generate tunable
cosmological constant. We find that in two particular cases
the scalar potential becomes flat with positive height
(de Sitter no-scale supergravity). Some generalizations of
the our models are discussed in Sec. V, while Sec. VI is
devoted for further discussion and conclusion.

II. N = 1 D= 4 SUPERGRAVITY AND THE
POINCARÉ PLANE

Let us briefly review the general features of the standard
four-dimensional N ¼ 1 supergravity. Its bosonic sector is
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described by the action (we use Planck units, κ ¼ 1, unless
otherwise stated)1

e−1L ¼ 1

2
R − Kij̄DmΦiDmΦj −

1

4
fRABF

A
mnFB;mn

−
i
4
fIABF̃

A
mnFB;mn − VF − VD; ð1Þ

whose the F- and D- type scalar potentials are given by

VF ¼ eK½Kij̄ðWi þ KiWÞðW̄j̄ þ Kj̄W̄Þ − 3jWj2�; ð2Þ

VD ¼ g2

2
fABR DADB; ð3Þ

where K ¼ KðΦi; Φ̄iÞ is a (real) Kähler potential de-
pending upon chiral scalar fields Φi, W ¼ WðΦiÞ is a
(holomorphic) superpotential, fAB ¼ fABðΦiÞ is a (holo-
morphic) gauge kinetic function with fRAB ≡ RefAB and
fIAB ≡ ImfAB; R is the spacetime scalar curvature, FA

mn ¼
∂mAA

n − ∂nAA
m þ gfABCAB

mAC
n is the field strength of a

vector (gauge) field AA
m, g is the gauge coupling, and

DA are Killing potentials of the gauged isometries of the
Kähler manifold. We use the notation Kij̄ ≡ K−1

ij̄ , where

Kij̄ ≡ ∂2K
∂Φi∂Φ̄j

, Wi ≡ ∂W
∂Φi

, and fAB ≡ f−1AB with A, B as the

gauge group indices. The gauge-covariant derivatives of the
charged scalars are

DmΦi ¼ ∂mΦi − gAA
mXi

A; ð4Þ

where Xi
A are the corresponding Killing vectors.

The action (1) is invariant under combined Kähler-Weyl
transformations

K → K þ Σþ Σ̄; W → We−Σ; ð5Þ

where Σ is an arbitrary chiral scalar field.
Killing potentials can be related to Killing vectors by the

expression

DA ¼ i

�
Ki þ

Wi

W

�
Xi
A; ð6Þ

where the superpotential-dependent term is present when-
ever R-symmetry is gauged, and is known as the Fayet-
Iliopoulos term (of gauged R-symmetry) in supergravity.
SUSY is spontaneously broken whenever auxiliary F

and/or D fields, satisfying

Fi ¼ −eK=2Kij̄ðW̄j̄ þ Kj̄W̄Þ; ð7Þ

DA ¼ −gDA; ð8Þ

acquire nonvanishing vacuum expectation values (VEVs).
When SUSY is broken gravitino becomes massive absorb-
ing the goldstino. In the Lagrangian the gravitino effective
mass appears as

m2
3=2 ¼ eKjWj2: ð9Þ

In Minkowski background the VEVof m3=2 is the physical
gravitino mass, however in more complicated backgrounds
physical mass differs from the “Lagrangian” mass given
by Eq. (9). Throughout the paper we will use the term
“gravitino mass” in the sense of Eq. (9).2 Then, hm3=2i can
be zero even when SUSY is broken.
As regards the Poincaré plane, it can be described by

the Kähler metric in terms of the half-plane coordinate T
(a complex scalar in spacetime) as

KTT̄ ¼ α

ðT þ T̄Þ2 ; ð10Þ

with some positive real number α that determines the
Kähler curvature, RK ¼ −2=α. Alternatively, the same
metric can be defined using the disk coordinate Z,

KZZ̄ ¼ α

ð1 − ZZ̄Þ2 : ð11Þ

The two metrics are related by the Cayley transformation

Z ¼ T − 1

T þ 1
: ð12Þ

From the string theory point-of-view, the Poincaré plane
models corresponding to compactification moduli have
(positive) integer values of α. In principle, the available
values are α ¼ 1; 2;…; 7 according to Refs. [9–11].
The metric (11) can be obtained from the Kähler

potential K ¼ −α logð1 − ZZ̄Þ. Under the transformation
(12) it becomes

K ¼ −α½logðT þ T̄Þ − logðT þ 1Þ − logðT̄ þ 1Þ�; ð13Þ

plus an irrelevant constant. The last two terms can be
absorbed into the superpotential by the Kähler-Weyl trans-
formation (5) with Σ ¼ −α logðT þ 1Þ. To summarize,
assuming the general superpotential W ¼ WðZÞ, the trans-
formation (12) followed by the Kähler-Weyl rescaling

1A derivation of this action can be found in Refs. [7,8].

2One can borrow the notion of the physical gravitino mass from
AdS supergravity asm2

3=2;phys ¼ hm3=2i2 þ V0=3 (see, e.g., [8] and
Refs. therein). In (pure) AdS supergravity the cosmological
constant is V0 ¼ −3hm2

3=2i and the physical mass vanishes.
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takes the Z-parametrization of the Poincaré plane to the
(equivalent) T-parametrization as follows

�
K ¼ −α logð1 − ZZ̄Þ
W ¼ WðZÞ ⇒

(
K ¼ −α logðT þ T̄Þ
W ¼ WðT−1Tþ1

ÞðT þ 1Þα:
ð14Þ

The Poincaré plane has a wide range of applications
in phenomenology. For example, the choice K ¼
−3 logðT þ T̄Þ and W ¼ W0 (W0 is a constant) corre-
sponds to the simplest no-scale supergravity [12–14].
Using the inverse transformation of Eq. (12) the no-scale
model can be expressed in terms of the disk coordinate Z as
K ¼ −3 logð1 − ZZ̄Þ and W ¼ W0ðZ − 1Þ3.
In the both coordinate choices (T and Z) the complex

scalars can be parametrized in such a way that one of their
two real components is canonical. T can be parametrized as

T ¼ 1

2
e−

ffiffi
2
α

p
φ þ it; ð15Þ

where the real scalar φ is canonical, while t (also real) is
not—its kinetic term is coupled to φ. The disk coordinate Z
can be parametrized e.g., in a polar form,

Z ¼ e−iζ tanh
ϕffiffiffiffiffiffi
2α

p ; ð16Þ

where ϕ is the canonical scalar controlling the absolute
value of Z, and ζ is the scalar controlling its angle.
This parametrization of Z will be useful in the following
sections.

III. GAUGED R-SYMMETRY
IN SU(1;1)=U(1) MODELS

Uð1Þ gauge theories in the context of SUð1; 1Þ=Uð1Þ
models are often considered as half-plane models with the
Kähler potential

K ¼ −α logðT þ T̄Þ; ð17Þ

where the symmetry under imaginary shifts of T is gauged.
The local shifts can be written as T → T þ iqTθ, where
θ ¼ θðxÞ is the gauge parameter and qT is the correspond-
ing Uð1Þ charge of T. The Killing vector must satisfy the
relation δT ¼ θXT , thus XT ¼ iqT .
If we want to promote this gauge transformation to a

local R-transformation, superpotential must transform as

W → We−iqθ; ð18Þ

where q is the Uð1ÞR charge of the superpotential. If there
are no other chiral fields in the model, the superpotential is
fixed asW ¼ μe−ξT with some real constant ξ and complex

constant μ. From the transformation property (18) we
obtain the relation ξ ¼ q=qT . Equation (6) in this case
yields

D ¼ qT

�
α

T þ T̄
þ ξ

�
; ð19Þ

which makes it clear that ξ is exactly the FI term of gauged
R-symmetry that we mentioned earlier.
If we switch to the Z-parametrization of the Poincaré

plane with

K ¼ −α logð1 − ZZ̄Þ; ð20Þ

the phase symmetry of Z becomes the simplest choice for
gauging. I.e., we can introduce the gauge transformation
Z → Ze−iqZθ, where qZ is the Uð1Þ charge of Z, with the
corresponding Killing vector XZ ¼ −iqZZ. Promoting this
transformation to an R-transformation, as usual, requires
that the superpotential transforms as in Eq. (18). This fixes
the superpotential as W ¼ μZn where n ¼ q=qZ. To avoid
negative powers of Z in the action n must be greater or
equal to one [unlike negative powers of T in the half-plane
case, negative powers of Z lead to singularities as can be
seen from parametrizations (15) and (16)]. The Killing
potential now takes the form

D ¼ qZ

�
αZZ̄

1 − ZZ̄
þ n

�
; ð21Þ

with n as the FI term. Let us investigate this setup in more
detail.

IV. PROPERTIES OF THE SCALAR POTENTIAL

Our model of interest is defined by3

K ¼ −α logð1 − ZZ̄Þ; ð22Þ

W ¼ μZn: ð23Þ

The superpotential is fixed by requiring R-symmetry, and
for simplicity we put n ¼ 1 and q ¼ qZ ¼ 1 (the notation is
the same as in the previous section). Also, without loss of
generality we can consider μ to be real. Upon gauging the
R-symmetry the Killing potential (21) is generated. After
choosing the simplest gauge kinetic function f ¼ 1, we
calculate the full scalar potential V ¼ VF þ VD,

VF ¼ μ2
ðα − 1Þ2z4 − ðαþ 2Þz2 þ 1

αð1 − z2Þα ; ð24Þ

3Similar setup was considered in Ref. [15] in the context of
SUSY breaking, but without gauging the R-symmetry.
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VD ¼ g2

2

�
αz2

1 − z2
þ 1

�
2

; ð25Þ

where for convenience we introduced the notation z≡ jZj. When using the parametrization (16) the angular mode ζ
conveniently drops out of the scalar potential, and z ¼ tanh ϕffiffiffiffi

2α
p .

We can find critical points of the potential by studying the equation

dV
dz

¼ 2z
½ðα − 1Þz2 þ 1�½α2g2ð1 − z2Þα þ μ2ð1 − z2Þ2ððα − 2Þðα − 1Þz2 − 2Þ�

αð1 − z2Þαþ3
¼ 0: ð26Þ

Regardless of the value of α there is always a critical point
at z ¼ 0, where the scalar potential reduces to

Vðz ¼ 0Þ ¼ μ2

α
þ g2

2
: ð27Þ

The equation for critical points other than z ¼ 0 can be
reduced from Eq. (26) to

α2g2ð1 − z2Þα þ μ2ð1 − z2Þ2ððα − 2Þðα − 1Þz2 − 2Þ ¼ 0;

ð28Þ

because the expression in the first square brackets of (26) is
nonvanishing even when α < 1, thanks to the canonical
normalization z2 ¼ tanh2ðϕ= ffiffiffiffiffiffi

2α
p Þ < 1.

The existence of consistent solutions to Eq. (28) depends
on the choice of α. First, let us consider the cases α ¼ 1, 2,
3, 4, as they can be studied analytically (we will comment
on more general α in the next section).

α ¼ 1. Here the solution for Eq. (28) is z2 ¼ 1 − g2

2μ2
.

This solution is valid if 2μ2 > g2 in which case it
corresponds to two minima (with Z2 symmetry) while z ¼
0 is a local maximum. Then the R-symmetry is sponta-
neously broken due to nonvanishing superpotential, while
SUSY is broken due to4

hFi ¼ g=
ffiffiffi
2

p
; hDi ¼ 2μ2=g; ð29Þ

hm3=2i2 ¼
2μ4

g2

�
1 −

g2

2μ2

�
; ð30Þ

and the following cosmological constant is generated,

V0 ¼
μ2

g2
ð3g2 − 2μ2Þ; ð31Þ

so that we have AdS minimum if 3g2 < 2μ2, Minkowski
minimum if 3g2 ¼ 2μ2, and dS minimum if 6μ2>3g2>2μ2

(the first inequality ensures z2 > 0). These conditions show
that if we want Minkowski or de Sitter vacuum, both F- and
D-term contributions (29) to SUSY breaking must be
comparable in magnitude. As Uð1ÞR is spontaneously
broken, the Killing vector XZ ¼ −iZ is nonvanishing at
the minimum. This generates a mass term for the gauge
boson proportional to g2hZi2, as can be seen from Eq. (4),
while the goldstone mode ζ can be gauged away. As for the
mass of the canonical scalar ϕ, after introducing its excitation
δϕ≡ ϕ − ϕ0 and expanding the potential around the mini-
mum, it reads

m2
δϕ ¼ 8μ4

g2

�
1 −

g2

2μ2

�
; ð32Þ

which is positive since 2μ2 > g2, and is twice the gravitino
mass, mδϕ ¼ 2hm3=2i.
In order to describe dark energy, V0 must be positive

and very small, namely V0 ∼ 10−120 in Planck units. From
Eq. (31) it is clear that this can be achieved in two
ways. The first option is to set μ2 ∼ 10−120, which will
also force g2 ∼ 10−120 as required by the dS condition
6μ2 > 3g2 > 2μ2. This is phenomenologically problematic,
as it means that SUSY breaking scale is of the same order
as the dark energy scale. A more viable option is the
fine tuning of the difference 3g2 − 2μ2 so that it almost
vanishes. This does not require the individual parameters g
and μ—and thus the SUSY breaking scale—to be small.
The relation 3g2 ≈ 2μ2 then simplifies the gravitino and
scalar masses as

hm3=2i2 ≈ 3g2; m2
δϕ ≈ 12g2: ð33Þ

When 2μ2 ≤ g2 the solution z2 ¼ 1 − g2=ð2μ2Þ does not
exist and the point z ¼ 0 is the global minimum (with no
other critical points). In such case SUSY is broken by
hFi ¼ μ and hDi ¼ g while R-symmetry is restored at the
minimum since the superpotential vanishes. This means
that the gravitino mass hm3=2i, as well as the masses of
the Uð1ÞR gauge boson and the ζ scalar, are zero.
This scenario is not viable from phenomenological point
of view because there is a massless scalar in the spectrum,

4For convenience we dropped the minus signs on the right-
hand side (RHS) in Eqs. (7) and (8).
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and the scales of SUSY breaking and the cosmological
constant are identified.
α ¼ 2. In this case z ¼ 0 is the only critical point: if

2g2 > μ2 it is a de Sitter minimum (with broken SUSYand
unbroken R-symmetry), if 2g2 < μ2 it is a maximum and
the potential is unbounded from below. When 2g2 ¼ μ2,
however, the potential is flat—we have a no-scale model in
de Sitter spacetime with the cosmological constant
V ¼ 3g2=2. The VEVs of F- and D-terms are

hFi ¼ gffiffiffi
2

p ð1þ z20Þ; hDi ¼ g
1þ z20
1 − z20

; ð34Þ

where z0 (the VEV of z) is arbitrary at the classical level.
Thus, SUSY and R-symmetry are broken (as long as
z0 ≠ 0). The fact that z2 ¼ tanh2 ðϕ= ffiffiffiffiffiffi

2α
p Þ has the range

0 ≤ z2 < 1 implies that

gffiffiffi
2

p ≤ hFi <
ffiffiffi
2

p
g; ð35Þ

g ≤ hDi < ∞: ð36Þ

Small cosmological constant requires proportionally small
g2. Then hFi must also be small because it is proportional
to g, but hDi can take large values if z20 is close to one. The
same is true for the gravitino mass,

hm3=2i2 ¼
2g2z20

ð1 − z20Þ2
: ð37Þ

α ¼ 3. Similarly to the α ¼ 2 case, when α ¼ 3 there is
only one critical point, z ¼ 0, and if 9g2 > 2μ2 it is a dS
minimum, whereas if 9g2 < 2μ2 it is a maximum. If
9g2 ¼ 2μ2 we once again arrive at a no-scale de Sitter
model, this time with the cosmological constant V ¼ 2g2.
The auxiliary fields and the gravitino mass at the
minimum are

hFi ¼ gffiffiffi
2

p 1þ 2z20ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z20

p ; hDi ¼ g
1þ 2z20
1 − z20

; ð38Þ

hm3=2i2 ¼
9g2z20

2ð1 − z20Þ3
; ð39Þ

and have the following range

gffiffiffi
2

p ≤ hFi < ∞; ð40Þ

g ≤ hDi < ∞; ð41Þ

while hm3=2i can take any value from zero (when z0 ¼ 0) to
infinity (when jz0j → 1). Unlike the previous case, here

both hFi and hDi can be large regardless of the value of g, if
z0 is close to one. However, in both α ¼ 2 and α ¼ 3 cases
the D-term VEV necessarily dominates, hDi≳ hFi.
α ¼ 4. In this case Eq. (28) is solved by

z2 ¼ 1

2A

�
2A − 3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8A

p �
; A≡ 8g2

μ2
: ð42Þ

This is complemented by the condition

0 < A < 1 ⇒ 0 < g2 < μ2=8; ð43Þ

that ensures that z2 > 0. The cosmological constant cor-
responding to this minimum reads

V0 ¼
g2

2μ2
ð9μ2 − 32g2Þ: ð44Þ

If we require V0 to be very small, the only choice is g ≪ 1,
because the cancellation 9μ2 − 32g2 ≈ 0 is incompatible
with the condition (43).
F-=D-terms and the gravitino mass are non-vanishing,

hFi ¼ μ

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8A

p
; hDi ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8A

p
; ð45Þ

hm3=2i2 ¼ 8μ2A3
2A − 3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 − 8A
p

ð−3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8A

p Þ4 : ð46Þ

Since A ranges from zero to one, we have

μ

4
< hFi < 3μ

4
; ð47Þ

g < hDi < 3g: ð48Þ

Also hFi > hDi= ffiffiffi
2

p
, due to the condition (43). If g ≪ 1, as

required to describe dark energy, hDi becomes small,
but there is still a freedom to control hFi and hm3=2i by
choosing the parameter μ. In particular, the gravitino mass
(45) can be expanded in the limit g → 0 (or A → 0) as

hm3=2i2 ≈
27

16
μ2: ð49Þ

As regards the scalar mass, it reads

m2
δϕ ¼ μ2

32
ð9 − 8AÞ

�
3 − 4Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8A

p �
; ð50Þ

where A is defined in Eq. (42). In the limit of vanishing g, it
becomes m2

δϕ ≈ hm3=2i2 ≈ 27μ2=16.
For illustration purposes we provide the plots of the

scalar potential for α ¼ 1, 2, 3, 4 in Fig. 1.
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(a) (b)

(c) (d)

FIG. 1. Scalar potential VðϕÞ, where ϕ is the canonical scalar, for α ¼ 1, 2, 3, 4 and different choices of the parameters μ and g.

(a) (b)

FIG. 2. Scalar potential for α ¼ 5, 6, 7 (a) and α ¼ 1=2; 3=2; 5=2 (b).
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V. GENERALIZATIONS

Let us generalize α, and recall the equation for critical
points (28),

α2g2ð1 − z2Þα þ μ2ð1 − z2Þ2ððα − 2Þðα − 1Þz2 − 2Þ ¼ 0:

ð51Þ

It is convenient to introduce the notation

1 − z2 ≡ Y;

ðα − 1Þðα − 2Þ − 2≡ B1;

ðα − 1Þðα − 2Þ≡ B2; ð52Þ

and rewrite Eq. (51) as

α2g2Yα þ μ2B1Y2 − μ2B2Y3 ¼ 0: ð53Þ

The no-scale structure can arise when (a) B1 (or B2)
vanishes and (b) the remaining powers of Y coincide,
namely α ¼ 3 (or α ¼ 2). Then, since Y cannot vanish
(because Y ¼ 1 − z2 and z ¼ tanhðϕ= ffiffiffiffiffiffi

2α
p Þ), Eq. (53)

reduces to a relation between the parameters μ and g, that,
if satisfied, leads to flatness of the potential. B1 vanishes for
α ¼ 0, 3, while B2 vanishes for α ¼ 1, 2. Thus, for α ¼ 2, 3
the both conditions (a) and (b) are satisfied, and no-scale
potential can be obtained. For other values of α flatness of
the potential cannot be achieved (as long as μ, g ≠ 0)
because all three powers of Y in Eq. (53) are present and
distinct. However, SUSY may still be broken by fixed
VEVs of z (or Y) as in the cases α ¼ 1, 4 that we studied.
In Fig. 2 we include plots of scalar potentials with three
critical points, obtained for α ¼ 5, 6, 7 [Fig. 2(a)] and also
fractional values α ¼ 1=2; 3=2; 5=2 [Fig. 2(b)]. As can be
seen, certain parameter values of μ and g allow for double-
well potentials (with tunable minimum V0) in all the above
cases except α ¼ 5=2 where the two z ≠ 0 critical points
become maxima rather than minima, and the potential is
unbounded from below.
As regards the generalization of n in the superpotential

(23), it leads to the following equation for critical points,

α2g2ð1− z2Þαþμ2ð1− z2Þ2z2n−4½nð1− z2Þðn−1− z2−nz2Þ
þαz2ð2n−2−z2−2nz2Þþα2z4� ¼ 0; ð54Þ

that is a generalization of Eq. (51). This introduces more
diversity to the vacuum structure of the models. For
example, taking α ¼ 1 and n ¼ 2 we demonstrate in
Fig. 3 the case with five critical points (i.e., with
Eq. (54) having four real solutions with 0 < z < 1). We
fix μ ¼ 0.35, and consider three values of g. When
g ¼ 0.171 (solid line in Fig. 3) we have two maxima,
one metastable minimum (false vacuum) at z ¼ ϕ ¼ 0 with
preserved SUSY and Uð1ÞR, and two stable minima (true

vacua) at z ≠ 0 with broken SUSY and Uð1ÞR. In such
scenario domain walls may form that divide the vacua with
broken and unbroken SUSY and Uð1ÞR, depending on
relative height of stable and metastable minima. The
domain wall “bubbles” would be metastable and eventually
decay,5 as the true vacuum with z ≠ 0 is energetically
favoured. For g ¼ 0.19 (dashed line in Fig. 3), on the other
hand, the z ¼ 0 minimum becomes stable while z ≠ 0
minima become metastable. In this case the decay of
the domain walls would restore SUSY and R-symmetry.
Finally, for g ¼ 0.213 (dotted line in Fig. 3) we have a
single stable minimum at z ¼ 0, and two inflection points.
When g > 0.213 Eq. (54) does not admit real solutions with
0 < z < 1, so the z ≠ 0 critical points disappear.

VI. DISCUSSION AND CONCLUSION

We constructed new models of spontaneous supersym-
metry and R-symmetry breaking, based on N ¼ 1 four-
dimensional supergravity coupled to a chiral multiplet with
SUð1; 1Þ=Uð1Þ (Poincaré plane) target space. The crucial
part of our construction is gauged Uð1ÞR symmetry that
acts linearly on the Poincaré disk variable Z. This allows
for SUSY breaking in de Sitter vacuum for appropriate
parameter ranges.
More specifically, we considered the Kähler potential

and superpotential

K ¼ −α logð1 − ZZ̄Þ; W ¼ μZ; ð55Þ

with integer values of α motivated by string theory
constructions. We found that when α ¼ 1, 4, SUSY and
R-symmetry are spontaneously broken provided that 2μ2 >
g2 (if α ¼ 1) and μ2 > 8g2 (if α ¼ 4). In both cases positive
cosmological constant can be generated. For α ¼ 2 and

FIG. 3. Scalar potential for α ¼ 1, n ¼ 2, and μ ¼ 0.35.
Solid line represents g ¼ 0.171, dashed line g ¼ 0.19, and
dotted line g ¼ 0.213.

5This can leave stable domain walls that divide true vacua with
z ¼ þjz0j and z ¼ −jz0j.
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α ¼ 3 the situation is different—for the specific choices
μ2 ¼ 2g2 and 2μ2 ¼ 9g2, respectively, we have flat poten-
tials with positive tunable height. Consequently, the VEVof
Z is classically undetermined (to be fixed by perturbative
corrections), and the SUSY breaking scale is arbitrary (with
some restrictions), i.e., these two cases are examples of de
Sitter no-scale supergravity. We also demonstrated that
other values of α (including fractional ones) may lead to
spontaneous SUSY and R-symmetry breaking as well, but
the no-scale structure remains unique to α ¼ 2, 3.
We discussed the generalization of n in the super-

potential W ¼ μZn, and showed that it can generate
potentials with more than two local minima, which can
lead to some interesting implications such as formation
of metastable domain wall bubbles that can decay into
true vacua with broken or unbroken supersymmetry and
R-symmetry, depending on the values of μ and g.
The tree-level spectrum of the models (after SUSY and

R-symmetry breaking) consists of a massive vector, mas-
sive spin-1=2 field, and a massive real scalar (except for the
no-scale cases where the potential is to be generated at one
loop). The spin-1=2 field is a linear combination of the
chiral fermion χ (superpartner of Z) and the gaugino λ,
orthogonal to the goldstino. The χ and λ have Uð1ÞR
charges qðχÞ ¼ qðλÞ ¼ 1=2, and therefore the pure model
contains anomalies that must be canceled after including
the supersymmetric Standard Model (SSM) and other
possible fields. Also, the Uð1ÞR gauge symmetry introdu-
ces a nontrivial task of assigning appropriate R-charges
to the fields. For example, if the full superpotential is
the sum μZ þWSSM, then the Standard Model R-charge
assignments can be done along the lines of Ref. [16].
Alternatively, WSSM can be coupled to some power of Z
and thus carry different R-charge, or even be neutral.
We also checked whether or not viable single-field

(hilltop) inflation can be realized with the models where
α ¼ 1 and α ¼ 4 (with n ¼ 1). Unfortunately, it does not
seem to be possible because the curvature of the potential
around its maximum is too large. To be specific, for α ¼ 1
the slow-roll parameter η� is

η� ≡ V 00ðϕ�Þ
Vðϕ�Þ

≈ −1; ð56Þ

taken at the initial value of ϕ which we assume to be ϕ� ≈ 0
(close to the maximum of the potential). Meanwhile the
parameter

ϵ� ≡ 1

2

�
V 0ðϕ�Þ
Vðϕ�Þ

�
2

ð57Þ

can be made small if the initial value of ϕ is close enough to
zero. This means that the spectral tilt ns ¼ 1þ 2η� − 6ϵ�
takes the value ns ≈ −1 that is incompatible with CMB
data, ns ≈ 0.965 (see e.g., PLANCK 2018 results [17]). On
the other hand, the α ¼ 4 case predicts smaller value of η�,
namely η� ≈ −0.5, but the tilt becomes ns ≈ 0 which is still
unsatisfactory.6

The situation is somewhat similar to the construction of
Refs. [18,19] where the Kähler potential is canonical (plus
a quartic term), while the superpotential is linear due to the
requirement of local R-symmetry. In this model viable
hilltop inflation becomes possible only after including
certain higher-order corrections to the Kähler potential.
It is therefore of interest to continue the investigation
of inflationary scenario in our models after including
corrections/modifications to the Kähler potential, compat-
ible with local R-symmetry.
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