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Searches for new astrophysical phenomena often involve several sources of nonrandom uncertainties
that can lead to highly misleading results. Among these, model uncertainty arising from background
mismodeling can dramatically compromise the sensitivity of the experiment under study. Specifically,
overestimating the background distribution in the signal region increases the chances of missing new
physics. Conversely, underestimating the background outside the signal region leads to an artificially
enhanced sensitivity and a higher likelihood of claiming false discoveries. The aim of this work is to
provide a unified statistical strategy to perform modeling, estimation, inference, and signal characterization
under background mismodeling. The method proposed allows one to incorporate the (partial) scientific
knowledge available on the background distribution and provides a data-updated version of it in a purely
nonparametric fashion without requiring the specification of prior distributions on the unknown
parameters. Applications in the context of dark matter searches and radio surveys show how the tools
presented in this article can be used to incorporate nonstochastic uncertainty due to instrumental noise and
to overcome violations of classical distributional assumptions in stacking experiments.
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I. INTRODUCTION

When searching for new physics, a discovery claim is
made if the data collected by the experiment provide
sufficient statistical evidence in favor of the new phenome-
non. If the background and signal distributions are speci-
fied correctly, this can be done by means of statistical tests
of the hypothesis, upper limits, and confidence intervals.
The problem. In practice, even if a reliable description of

the signal distribution is available, providing accurate
background models may be challenging, as the behavior
of the sources that contribute to it is often poorly under-
stood. Some examples include searches for nuclear recoils
of weakly interacting massive particles over electron recoils
backgrounds [1,2], searches for gravitational-wave signals
over non-Gaussian backgrounds from stellar-mass binary
black holes [3], and searches for a standard model-like
Higgs boson over prompt diphoton production [4].
Unfortunately, model uncertainty due to background

mismodeling can significantly compromise the sensitivity
of the experiment under study. Specifically, overestimating
the background distribution in the signal region increases
the chances of missing new physics. Conversely, under-
estimating the background outside the signal region leads
to an artificially enhanced sensitivity, which can easily
result in false discovery claims. Several methods have been
proposed in literature to address this problem (see, e.g.,
[5–7]). However, to the best of the author’s knowledge,

none of the methods available provides a unified strategy to
(i) assess the validity of existing models for the back-
ground, (ii) fully characterize the background distribution,
(iii) perform signal detection even if the signal distribution
is not available, (iv) characterize the signal distribution, and
(v) detect additional signals of new unexpected sources.
Goal. The aim of this work is to integrate modeling,

estimation, and inference under background mismodeling
and provide a general statistical methodology to perform
(i)–(v). As a brief overview, given a source-free sample and
the (partial) scientific knowledge available on the back-
ground distribution, a data-updated version of it is obtained
in a purely nonparametric fashion without requiring the
specification of prior distributions on the unknown param-
eters. At this stage, a graphical tool is provided in order to
assess if and where significant deviations between the true
and the postulated background distributions occur. The
“updated” background distribution is then used to assess if
the distribution of the data collected by the experiment
deviates significantly from the background model. Also in
this case, it is possible to assess graphically how the data
distribution deviates from the expected background model.
If a source-free sample is available, or if control regions can
be identified, the solution proposed does not require the
specification of a model for the signal; however, if the
signal distribution is known (up to some free parameters),
the latter can be used to further improve the accuracy of the
analysis and to detect the signals of unexpected new
sources. Finally, the method can easily be adjusted to
cover situations in which a source-free sample or control*salgeri@umn.edu
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regions are not available, the background is unknown, or
incorrectly specified, but a functional form of the signal
distribution is known.
The key of the solution. The statistical methodologies

involved rely on the novel LP approach to statistical
modeling first introduced by Mukhopadhyay and Parzen
in 2014 [8]. As it will become clearer later on in the paper,
the letter L typically denotes robust nonparametric methods
based on quantiles, whereas P stands for polynomials [[9],
Suppl. S1]. This approach allows the unification of many of
the standard results of classical statistics by expressing
them in terms of quantiles and comparison distributions and
provides a simple and powerful framework for statistical
learning and data analysis. The interested reader is directed
to [10–14] and references therein, for recent advancements
in mode detection, nonparametric time series, goodness-of-
fit on prior distributions, and large-scale inference using an
LP approach.
Organization. Section II is dedicated to a review of the

main constructs of LP modeling. Section III highlights the
practical advantages offered by modeling background
distributions using an LP approach. Section IV introduces
a novel LP-based framework for statistical inference.
Section V outlines the main steps of a data-scientific
approach for signal detection and characterization. In
Sec. VI, the methods proposed are applied in the context
of dark matter searches where the goal is to distinguish
γ-ray emissions due to dark matter from those due to
pulsars. In Sec. VII, the tools discussed are applied to a
simulation of the Fermi Large Area Telescope γ-ray tele-
scope, and it is shown how upper limits and Brazil plots can
be constructed by means of comparison distributions.
Section VIII is dedicated to model denoising. Section IX
presents an application to data from the NRAO VLA Sky
astronomical survey and discusses a simple approach to
assess the validity of distributional assumptions on the
polarized intensity in stacking experiments. A discussion of
the main results and extensions is proposed in Sec. X.

II. LP APPROACH TO STATISTICAL MODELING

The LP approach to statistical modeling [8] is a novel
statistical approach that provides an ideal framework to
simultaneously assess the validity of the scientific knowl-
edge available and fill the gap between the initial scientific
belief and the evidence provided by the data. Sections II A–
II C below introduce the LP modeling framework, whereas
Sec. III discusses how the problem of background mis-
modeling can be formulated under this paradigm.

A. The skew-G density model

Let X be a continuous random variable with cumulative
distribution function (CDF) and probability density func-
tion (PDF) FðxÞ. Since F is the true distribution of the data,
it is typically unknown. However, suppose a suitable CDF

GðxÞ is available, and let gðxÞ be the respective PDF. In
order to understand if G is a good candidate for F, it is
convenient to express the relationship among the two in a
concise manner.
The skew-G density model [8,10] is a universal repre-

sentation scheme that allows one to express any PDF
fðxÞ as

fðxÞ ¼ gðxÞdðGðxÞ;G;FÞ; ð1Þ

where dðu;G;FÞ is called comparison density [15] and it is
such that

dðu;G;FÞ ¼ fðG−1ðuÞÞ
gðG−1ðuÞÞ with 0 ≤ u ≤ 1; ð2Þ

with u ¼ GðxÞ and G−1ðuÞ ¼ inffx∶GðxÞ ≥ ug denoting
the “postulated” quantile function of X. The comparison
density is the PDF of the random variable U ¼ GðXÞ;
whereas its CDF is given by

DðuÞ ¼ FðG−1ðuÞÞ ¼
Z

u

0

dðv;G;FÞ∂v; ð3Þ

and it is called comparison distribution.
Practical remarks. Equations (2) and (3) are of funda-

mental importance to understand the power of a statistical
modeling approach based on the comparison density.
Specifically, dðu;G;FÞ allows one to “connect” any given
PDF g to the true PDF f through the quantile trans-
formation G−1 of u. Furthermore, g≡ f if and only if
dðu;G;FÞ ¼ 1 for all u ∈ ½0; 1�; i.e., U is uniformly
distributed over the interval [0, 1]. Whereas, if g ≢ f,
dðu;G;FÞ models the departure of the true density fðxÞ
from the postulated model gðxÞ. Consequently, an adequate
estimate of dðu;G;FÞ not only leads to an estimate of the
true fðxÞ based on (1) but it also allows one to identify the
regions where fðxÞ deviates substantially from gðxÞ.

B. LP skew-G series representation

Denote with L2½0; 1� the Hilbert space of square inte-
grable functions on the unit interval with respect to the
measure G. A complete, orthonormal basis of functions in
L2½0; 1� can be constructed considering powers of GðxÞ,
i.e., GðxÞ; G2ðxÞ; G3ðxÞ;…, and adequately orthonormal-
ized via the Gram-Schmidt procedure [10]. The resulting
bases can equivalently be expressed as normalized shifted
Legendre polynomials,1 namely LegjðuÞ, with u ¼ GðxÞ.

1Classical Legendre polynomials are defined over ½−1; 1�;
here, their “shifted” counterpart over the range [0, 1] is con-
sidered. The first three normalized shifted Legendre polynomials
are Leg0ðuÞ ¼ 1, Leg1ðuÞ ¼ ffiffiffiffiffi

12
p ðu − 0.5Þ, and Leg2ðuÞ ¼ffiffiffi

5
p ð6u2 − 6u þ 1Þ.
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Under the assumption that (2) is a square integrable
function on [0, 1], i.e., d ∈ L2½0; 1�, we can then represent
dðu;G;FÞ via a series of fLegjðuÞgj≥0 polynomials, i.e.,

dðu;G;FÞ ¼ 1þ
X
j>0

LPjLegjðuÞ ð4Þ

with coefficients LPj ¼
R
1
0 LegjðuÞdðu;G;FÞ∂u. The

representation in (4) is called LP skew-G series represen-
tation [10].

C. LP density estimate

Let x1;…; xn be a sample of independent and identically
distributed (i.i.d.) observations from X. Observations from
U are given by u1 ¼ Gðx1Þ;…; un ¼ GðxnÞ. The LPj

coefficients in (4) can then be estimated via

cLPj ¼
1

n

Xn
i¼1

LegjðuiÞ: ð5Þ

Aternatively, in virtue of (3), the estimates cLPj can also be
specified as

cLPj ¼
Z

1

0

LegjðuÞ∂D̃ðuÞ¼
Z

1

0

LegjðuÞ∂F̃ðG−1ðuÞÞ; ð6Þ

where F̃ and D̃ denote the empirical distribution of the
samples x1;…; xn and u1;…; un, respectively.
The moments of the cLPj are

E½cLPj� ¼ LPj; VðcLPjÞ ¼
σ2j
n
;

and CovðcLPj; cLPkÞ ¼
σjk
n

; ð7Þ

where σ2j ¼
R
1
0 ðLegjðuÞ − LPjÞ2dðu;G;FÞ∂u and σ2jk ¼R

1
0 ðLegjðuÞ − LPjÞðLegkðuÞ − LPkÞdðu;G;FÞ∂u. When
f ≡ g, the equalities in (7) reduce to

E½cLPj� ¼ 0; VðcLPjÞ ¼
1

n
; and CovðcLPj; cLPkÞ ¼ 0

ð8Þ

for all j ≠ k. Derivations of (7) and (8) are discussed in the
Appendix A.
If (4) is approximated by the first M þ 1 terms,2 an

estimate of the comparison density is given by

d̂ðu;G;FÞ ¼ 1þ
XM
j¼1

cLPjLegjðuÞ; ð9Þ

with variance

V½d̂ðu;G;FÞ� ¼
XM
j¼1

σ2j
n
Leg2jðuÞþ2

X
j<k

σjk
n
LegjðuÞLegkðuÞ:

ð10Þ
See Appendix B for more details on the derivation of (10).
Finally, the standard error of d̂ðu;G;FÞ corresponds to the
square root of (10), with σ2j and σjk estimated by their
sample counterpart, i.e.,

σ̂2j ¼
1

n

Xn
i¼1

ðLegjðuiÞ − cLPjÞ2;

σ̂jk ¼
1

n

Xn
i¼1

LegjðuiÞLegkðuiÞ − cLPj
cLPk:

Finally, in virtue of the skew-G density model in (1) we
can estimate fðxÞ as

f̂ðxÞ ¼ gðxÞd̂ðGðxÞ;G;FÞ: ð11Þ
Since each LegjðuÞ is a polynomial function of the random

variable U, each cLPj estimate can be expressed as a linear
combination of the first j sample moments of U, e.g.,

cLP2 ¼
1

n

Xn
i¼1

Leg2ðuiÞ ¼
ffiffiffi
5

p
ð6μ̂2 − 6μ̂1 þ 1Þ;

where μ̂2 ¼ 1
n

P
n
i¼1 u

2
i , μ̂1 ¼ 1

n

P
n
i¼1 ui. Therefore, the

truncation point M can be interpreted as the order of the
highest moment considered to characterize the distribution
of U. (The reader is directed to Sec. IV C for a discussion
on the choice of M.)

D. The bias variance trade-off

In order to understand how good (9) is in estimating
dðu;G;FÞ we consider the mean integrated squared error
(MISE) of d̂ðu;G;FÞ, i.e.,

MISE ¼ E

�Z
1

0

ðd̂ðu;G;FÞ − dðu;G;FÞÞ2∂u
�

ð12Þ

¼
XM
j¼1

σ2j
n
þ
X
j>M

LP2
j ; ð13Þ

where the first term in (13) corresponds to the integral of
the (10) over [0, 1]; whereas the second term corresponds to
the integrated squared bias (IBS), i.e.,

2Recall that the first normalized shifted Legendre polynomial
is Leg0ðuÞ ¼ 1.

DETECTING NEW SIGNALS UNDER BACKGROUND … PHYS. REV. D 101, 015003 (2020)

015003-3



IBS ¼
Z

1

0

ðE½d̂ðu;G;FÞ� − dðu;G;FÞÞ2∂u: ð14Þ

Interestingly, the latter can also be specified as

IBS ¼
Z

1

0

�
fðxÞ − gðxÞ

gðxÞ
�

2∂u −
XM
j¼1

LP2
j ð15Þ

(see derivations in Appendix B). The first term on the right-
hand side of (15) is particularly important in understanding
the role played by g in obtaining a reliable estimate of f.
Specifically, the closer g is to f the lower the bias of
d̂ðGðxÞ;G;FÞ and f̂ðxÞ in (11).
Practical remarks. Equation (13) implies that larger

values of M do not necessarily lead to better estimates
of dðu;G;FÞ. Specifically, when n → ∞, the first term in
(13) tends to zero. However, for large values of M, more
and more terms to contribute to it and thus increasing M
may lead to a substantial inflation of the variance in (10).
Conversely, the bias is not affected by sample size, and it
can be controlled by either choosing g sufficiently close to
f [see (15)] and/or increasing M while preserving a good
bias-variance trade-off.
Further remarks. Equation (6) implies that the estimator

in (9) relies on the empirical distribution of the sample
observed by means of the cLPj estimates. Therefore, an
estimator of the comparison density based entirely on the
empirical CDF can be expressed by setting M ¼ n − 1 in
(9). However, as discussed in this section, while this would
reduce the bias, it would also increase the variance
drastically. Therefore, for M < n − 1, the estimator in
(9) not only leads to a reduction of the variance but, in
virtue of (15), its bias is mitigated when the postulated
model g is sufficiently close to the true PDF of the data f.

III. DATA-DRIVEN CORRECTIONS FOR
MISSPECIFIED BACKGROUND MODELS

Let xB ¼ ðx1;…; xNÞ be a sample of observations from
control regions or the result of Monte Carlo simulations,
where we expect no signal to be present. Hereafter, we refer
to xB as the source-free sample. Therefore, xB can be used
to “learn” the unknown PDF of the background, namely
fbðxÞ, and obtain an estimate for it via (11).
Despite the true background model being unknown,

suppose that a candidate PDF, namely gbðxÞ, is available.
The candidate model gbðxÞ can be specified from previous
experiments or theoretical results or can be obtained by fitting
specific functions (e.g., polynomial or exponential) to xB. If
gbðxÞ does not provide an accurate description of fbðxÞ, the
sensitivity of the experiment can be strongly affected.
Consider, for instance, a source-free sample of N ¼

5000 observations whose true (unknown) distribution
corresponds to the tail of a Gaussian with mean 55 and
width 15 over the range [0, 50], i.e.,

fbðxÞ ¼
e−

1
2
ðx−55

15
Þ2

kfb
ð16Þ

with kfb ¼
R
50
0 e−

1
2
ðx−55

15
Þ2∂x. Suppose that a candidate model

for the background is obtained by fitting a second-degree
polynomial on the source-free sample and adequately
normalizing it in order to obtain a proper PDF, i.e.,

gbðxÞ ¼
9.52 − 2.22xþ 0.15x2

kgb
ð17Þ

with kgb ¼
R
50
0 ½9.52 − 2.22xþ 0.15x2�∂x. For illustrative

purposes, assume that the distribution of the signal is a
Gaussian centered at 25, with width 4.5 and PDF

fsðxÞ ¼
e−

1
2
ðx−25
4.5 Þ2

kfs
ð18Þ

with kfs ¼
R
50
0 e−

1
2
ðx−25
4.5 Þ2∂x. The histogram of the source-

free sample along with (16)–(18) is shown in Fig. 1. At the
higher end of the spectrum, the postulated background (red
dashed line) underestimates the true background distribu-
tion (green solid line). As a result, using (17) as the
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FIG. 1. Upper panel: histogram of a source-free sample
simulated from the tail of a Gaussian with mean 55 and width
15 (green solid line). The candidate background distribution is
given by the best fit of a second-degree polynomial (red dashed
line), and it is updated using the source-free data by means of (19)
(purple dot-dashed line). The Kernel density estimator of fb is
also displayed for comparison (orange dot-dashed line). Bottom
panel: comparison density estimate (blue solid line) plotted on the
x scale and respective standard errors (light blue area).
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background model increases the chance of false discoveries
in this region. Conversely, at the lower end of the spectrum,
gbðxÞ underestimates fbðxÞ, reducing the sensitivity of the
analysis. For the sake of comparison, a Kernel density
estimate (orange dot-dashed line) has been computed by
selecting the bandwidth parameter as recommended in [16].
The latter exhibits substantial bias at the boundary and
appears to overfit the data sample.
It is important to point out that the discrepancy of fbðxÞ

from gbðxÞ is typically due to the fact that the specific
functional form imposed (in our example, a second-degree
polynomial) is not adequate for the data. Thus, changing the
values of the fitted parameters (or assigning priors to them) is
unlikely to solve the problem. However, it is possible to
“repair” gbðxÞ and obtain a suitable estimate of fbðxÞ by
means of (11). Specifically, fbðxÞ can be estimated via

f̂bðxÞ ¼ gbðxÞd̂ðGbðxÞ;Gb; FbÞ; ð19Þ

where d̂ðGbðxÞ;Gb; FbÞ is the comparison density estimated
via (9) on the sample Gbðx1Þ;…; GbðxNÞ, whereas Fb and
Gb are the true and the postulated background distributions,
with PDFs as in (16) and (17), respectively.
In our example, choosing M ¼ 2 (see Sec. IV C), we

obtain

d̂ðGbðxÞ;Gb; FbÞ ¼ 1þ 0.063Leg1½GbðxÞ�
− 0.082Leg2½GbðxÞ�; ð20Þ

where Leg1½GbðxÞ� and Leg2½GbðxÞ� are the first and
second normalized shifted Legendre polynomials evaluated
at GbðxÞ. Notice that, by combining (19) and (20), we can
easily write the background model using a series of shifted
Legendre polynomials. This may be especially useful when
dealing with complicated likelihoods and for which a
functional form is difficult to specify.
The upper panel of Fig. 1 shows that the “calibrated”

background model in (19) as a purple dot-dashed line
matches almost exactly the true background density in (16)
(green solid line). The plot of d̂ðGbðxÞ;Gb; FbÞ in the
bottom panel of Fig. 1 provides important insights on the
deficiencies of (17) as a candidate background model.
Specifically, the magnitude and the direction of the depar-
ture of d̂ðGbðxÞ;Gb; FbÞ from one corresponds to the
estimated departure of fbðxÞ from gbðxÞ for each value
of x. Therefore, if d̂ðGbðxÞ;Gb; FbÞ is below one in the
region where we expect the signal to occur, using f̂bðxÞ in
place of gbðxÞ increases the sensitivity of the analysis.
Conversely, if d̂ðGbðxÞ;Gb; FbÞ is above one outside the
signal region, the use of f̂bðxÞ instead of gbðxÞ prevents
false discoveries.
Notice that in this article we only consider continuous

data. In this respect, the goal is to learn the model of the
background considered as a continuum and no binning is

applied. Therefore, the histograms presented here are only a
graphical tool used to display the data distribution and are
not intended to represent an actually binning of the data.

IV. LP-BASED INFERENCE

When discussing the skew-G density model in (1),
we have witnessed that f ≡ g if dðu;G;FÞ ¼ 1 for all
u ∈ ½0; 1�. Additionally, the graph of d̂ðu;G;FÞ provides an
exploratory tool to understand the nature of the deviation of
fðxÞ from gðxÞ. This section introduces a novel inferential
framework to test the significance of the departure of fðxÞ
from gðxÞ. Specifically, our goal is to test the hypotheses

H0∶ dðu;G;FÞ ¼ 1 for all u ∈ ½0; 1�
vs

H1∶ dðu;G;FÞ ≠ 1 for some u ∈ ½0; 1�: ð21Þ

First, an overall test, namely the deviance test, is presented.
The deviance test assesses if fðxÞ deviates significantly
from gðxÞ anywhere over the range of x considered.
Second, adequate confidence bands are constructed in
order to assess where significant departures occur.

A. The deviance test

Recall that the LPj coefficients in (4) specify as
LPj ¼

R
1
0 LeguðdÞdðu;G;FÞ∂u. Consequently, by ortho-

gonality of the fLegjðuÞgj > 0 polynomials and
Leg0ðuÞ ¼ 1, when H0 in (21) is true, all the LPj

coefficients are equal to zero, including the first M of
them. We can then quantify the departure of d̂ðu;G;FÞ
from one by means of the deviance statistics [13] which
specifies as

P
M
j¼1

cLP2
j . If the deviance is equal to zero, we

may expect that g is approximately equivalent to f; hence,
we test

H0∶
XM
j¼1

LP2
j ¼ 0 vs H1∶

XM
j¼1

LP2
j > 0 ð22Þ

by means of the test statistic

DM ¼ n
XM
j¼1

cLP2
j : ð23Þ

It can be shown [10] that, as n → ∞,

ffiffiffi
n

p cLPj →
d
Nð0; 1Þ; ð24Þ

where →
d

denotes convergence in distribution, and thus,
under H0, DM is asymptotically χ2M distributed. Hence, an
asymptotic p-value for (22) is given by
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PðDM > dMÞ⟶
n→∞

Pð χ2M > dMÞ; ð25Þ

where dM is the value of DM observed on the data.
Practical remarks. Notice that H1 in (22) implies H1 in

(21). Similarly, H0 in (21) implies H0 in (22); however, the
opposite is not true in general since there may be some
nonzero LPj coefficients for j > M. Therefore, even when
choosingM small may lead to a conservative, but yet valid,
inference.

B. Confidence bands

The estimator in (9) only accounts for the first M þ 1

terms of the polynomial series in (4). Therefore, d̂ðu;G;FÞ
is a biased estimator of dðu;G;FÞ. Specifically, as discussed
in Sec. II D, the integrated bias is given by

P
j>M LP2

j,
whereas, as shown in Appendix B, the bias at a given point u
is given by

P
j>M LPjLegðuÞ. It follows that, when the bias

is large, confidence bands based on d̂ðu;G;FÞ are shifted
away from the true density dðu;G;FÞ.
Despite the bias not being easily quantified in the general

setting, it follows from (8) that, when H0 in (21) [and
consequently H0 in (22)] is true, both the bias at a point u
and the integrated bias are equal to zero. Thus, we can
exploit this property to construct reliable confidence bands
under the null. Specifically, the goal is to identify cα, such
that

1−α¼Pð−cα ≤ d̂ðu;G;FÞ−1≤ cα; for all u∈ ½0;1�jH0Þ
¼Pðmax

u
jd̂ðu;G;FÞ−1j≤ cαjH0Þ; ð26Þ

where α is the desired significance level.3

If the bias determines where the confidence bands are
centered, the distribution and the variance of d̂ðu;G;FÞ
determine their width. As discussed in Sec. II C [see (8)],
under H0 in (21), the cLPj estimates have mean zero, have
variance 1

n, and are uncorrelated with one another.
Therefore, when f ≡ g, the standard error of d̂ðu;G;FÞ
corresponds to the square root of (10) with σ2j ¼ 1 and
σ2jk ¼ 0, i.e.,

SE½d̂ðu;G;FÞjH0� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
j¼1

1

n
Leg2jðuÞ

vuut : ð27Þ

Additionally, Eq. (24) implies that d̂ðu;G;FÞ is asymp-
totically normally distributed, hence

d̂ðu;G;FÞ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
M
j¼1

1
n Leg

2
jðuÞ

q →
d
Nð0; 1Þ ð28Þ

as n → ∞, for all u ∈ ½0; 1�, under H0.
We can then construct approximate confidence bands

under H0 that satisfy (26) by means of tube formulas (see
[[17], Chap. 5] and [18]), i.e.,2
641 − cα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
j¼1

1

n
Leg2jðuÞ

vuut ; 1þ cα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
j¼1

1

n
Leg2jðuÞ

vuut
3
75; ð29Þ

where cα is the solution of

2ð1 −ΦðcαÞÞ þ
k0
π
e−0.5c

2
α ¼ α; ð30Þ

with k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

M
j¼1½ ∂∂u LegjðuÞ�2

q
. If d̂ðu;G;FÞ is within the

bands in (29) over the entire range [0, 1], we conclude that
there is no evidence that f deviates significantly from g
anywhere over the range considered and at confidence level
1 − α. Conversely, we expect significant departures to
occur in regions where d̂ðu;G;FÞ lies outside the con-
fidence bands.
Practical remarks. Notice that, under H0 in (22), the

d̂ðu;G;FÞ is an unbiased estimator of dðu;G;FÞ, regard-
less of the choice of M. This implies that the confidence
bands in (29) are only affected by the variance and
asymptotic distribution of d̂ðu;G;FÞ under H0.

C. Choice of M

The number of cLPj estimates considered determines the
level of “smoothness”4 of d̂ðu;G;FÞ, with smaller values of
M leading to smoother estimates. The deviance test can be
used to select the valueM, which maximizes the sensitivity
of the analysis according to the following scheme:

(i) Choose a sufficiently large value Mmax.
(ii) Obtain the estimates cLP1;…; cLPMmax

as in (5).
(iii) For m ¼ 1;…;Mmax:

calculate the deviance test p-value as in (25), i.e.,

pðmÞ ¼ Pð χ2m > dmÞ ð31Þ

with dm ¼ n
P

m
j¼1

cLP2
j .

3In astrophysics, the statistical significance α is often ex-
pressed in terms of the number of σ deviations from the mean of a
standard normal, namely σ. For instance, a 2σ significance
corresponds to α ¼ 1 −Φð2Þ ¼ 0.0227, where Φð·Þ denotes
the CDF of a standard normal.

4As an anonymous referee correctly pointed out, d̂ðu;G;FÞ is
always smooth as it is constructed as a series of infinitely differ-
entiable functions. In statistics, however, the word “smoothness” is
often used to indicate the flexibility of the estimator considered or,
in other words, its degrees of freedom. Often, this is quantified in
terms of magnitude of the second derivative of the function
considered. Despite the abuse of terminology, throughout the
manuscript we will refer to the latter definition of smoothness.
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(iv) Choose M such that

M ¼ argmin
m

fpðmÞg: ð32Þ

1. Adjusting for postselection

As any data-driven selection process, the scheme pre-
sented above affects the distribution of (9) and can yield to
overly optimistic inference [19,20]. Despite this aspect
often being ignored in practical applications, the correct
coverage can be guaranteed only if adequate corrections are
implemented.
The issues arising in the context of postselection inference

can be interpreted in terms of the looks-elsewhere effect
[21,22]where one has to adjust the inference for the fact that,
in practice, many different models have been considered
and, consequently,many different tests have been conducted
for the sake of assessing the goodness of fit.
In our setting, the number of models under comparison is

typically small (Mmax ≤ 20); therefore, postselection infer-
ence can be easily adjusted by means of Bonferroni’s
correction [23]. Specifically, the adjusted deviance p-value
is given by

Mmax · Pð χ2M > dMÞ; ð33Þ

whereM is the value selected via (32), whereas confidence
bands can be adjusted by substituting cα in (29), with
cα;Mmax

satisfying

2ð1 −Φðcα;Mmax
ÞÞ þ k0

π
e−0.5c

2
α;Mmax ¼ α

Mmax
: ð34Þ

Practical remarks. As noted in Sec. II, the estimate (9)
involves the first M sample moments of U; therefore,Mmax
can be interpreted as the order of the highest moment that we
expect to contribute in discriminating the distribution of U
fromuniformity.Notice that, in addition to the inflation of the
variance of (9), when M is large, the computation of
normalized shifted Legendre of higher order may face
numerical instability (see Sec. VIII B). Therefore, as a rule
of thumb,Mmax is typically chosen ≤ 20. Finally, Steps i–iv
aim to select the approximant based on the first most
significant M moments, while excluding powers of higher
order.A further note onmodel denoising is given inSec.VIII.

V. A DATA-SCIENTIFIC APPROACH
TO SIGNAL SEARCHES

The tools presented in Secs. II and IV provide a natural
framework to simultaneously
(a) assess the validity of the postulated background model

and, if necessary, update it using the data (Sec. III);
(b) perform signal detection on the physics sample;
(c) characterize the signal when a model for it is not

available.

Furthermore, if the model for the signal is known (up to
some free parameters), it is possible to
(d) further refine the background or signal distribution;
(e) detect hidden signals from new unexpected sources.
Notice that, since Bonferroni’s correction leads to

an upper bound for the overall significance, the resulting
coverage will be higher than the nominal one. Alternatively,
approximate postselection confidence bands and inference
can be constructed using Monte Carlo and/or resampling
methods and repeating the selection process at each replicate.
Tasks (a)–(e) can be tackled in two main phases. In the

first phase, the postulated background model is “calibrated”
on a source-free sample in order to improve the sensitivity
of the analysis and reduce the risk of false discoveries. The
second phase focuses on searching for the signal of interest
and involves both a nonparametric signal detection stage
and a semiparametric stage for signal characterization. Both
phases and respective steps are described in detail below
and summarized in Algorithm 1.

Algorithm 1. A data-scientific signal search

INPUTS: source-free sample xB;
postulated background distribution gbðxÞ;
physics sample x.
If available: signal distribution, fsðx; θsÞ.

PHASE A: background calibration
Step 1: Estimate d̂ðu;Gb; FbÞ on uB ¼ GbðxBÞ and test (21) via

deviance test and comparison density (CD) plot.

Step 2: if Fb ≢ Gb, set f̂bðxÞ ¼ gbðxÞd̂ðu;Gb; FbÞ;
else set f̂bðxÞ ¼ gbðxÞ.

PHASE B: signal search

Stage 1: nonparametric signal detection

Step 3: set gðxÞ ¼ f̂bðxÞ.
Step 4: estimate d̂ðu;G;FÞ on u ¼ GðxÞ and test (21) via

deviance test and CD plot.

Step 5: if G ≢ F, claim evidence in favor of the signal and go to
Step 6;
else set f̂ðxÞ ¼ gðxÞ, claim that no signal is present and
stop.

Stage 2: semiparametric signal characterization

Step 6: if fsðx; θsÞ given, fit gbsðxÞ in (38);
else use the CD plot of d̂ðu;G;FÞ and the theory available
to specify/fit a suitable model for fsðx; θsÞ and fit gbsðxÞ
in (38).

Step 7: estimate d̂ðu;Gbs; FÞ on u ¼ GbsðxÞ and test (21) via
deviance test and CD plot.

Step 8: if Gbs ≢ F, claim evidence of unexpected signal and use
the CD plot of d̂ðu;Gbs; FÞ and the theory available to
further investigate the nature of the deviation from Gbs;
else go to Step 9.

Step 9: compute ˆ̂dðu;G;FÞ as in (39) and use it to refine f̂bðxÞ or
fsðx; θ̂sÞ as in (40). Go back to Step 3.
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A. Background calibration

As discussed in Sec. III, deviations of d̂ðGbðxÞ;Gb; FbÞ
from one suggest that a further refinement of the candidate
background model gb is needed. However, as M increases,
the deviations of d̂ðGbðxÞ;Gb; FbÞ from one may become
more and more prominent while the variance inflates. Thus,
it is important to assess if such deviations are indeed
significant. In order to address this task, the analysis of
Sec. III can be further refined in light of the inferential tools
introduced in Sec. IV.
For the toy example discussed in Sec. III, we have seen

that gb overestimates fb in the signal region and under-
estimates it at the higher end of the range considered
(Fig. 1). We can now assess if any of these deviations are
significant by implementing the deviance test in (23)–(25),
whereas, to identify where the most significant departures
occur, we construct confidence bands under the null model
as in (29), i.e., assuming that no “update” of gb is necessary.
The results are collected in the comparison density plot

or CD plot presented in Fig. 2. First, a value M ¼ 2 has
been selected as in (32), and the respective deviance
test (adequately adjusted via Bonferroni) indicates that
the deviation of fb from gb is significant at a 6.430σ
significance level (adjusted p-value of 6.397 × 10−11).
Additionally, the estimated comparison density in (20) lies
outside the 2σ confidence bands in the region [0, 50] where
the signal specified in (18) is expected to occur. Hence,
using (19) instead of (17) is recommended in order to
improve the sensibility of the analysis in the signal region.
Important remarks on the CD plot. When comparing

different models for the background or when assessing if
the data distribution deviates from the model expected
when no signal is present, it is common practice to visualize
the results of the analysis by superimposing the models

under comparison to the histogram of the data observed on
the original scale (e.g., upper panel of Fig. 1). This
corresponds to a data visualization in the density domain.
Conversely, the CD plot (e.g., Fig. 2) provides a repre-
sentation of the data in the quantile domain, which offers
the advantage of connecting the true density of the data
with the quantiles of the postulated model [see (2) and (3)].
Consequently, the most substantial departures of the data
distribution from the expected model are magnified, and
those due to random fluctuations are smoothed out (see also
Sec. VII B). Furthermore, the deviance tests and the CD
plot together provide a powerful goodness-of-fit tool and
exploratory that, conversely from classical methods such as
Anderson-Darling [24] and Kolmogorov-Smirnov [25], not
only allow one to test if the distributions under comparison
differ, but they also allow one to assess how and where they
differ. As a result, the CD plot can be used to characterize
the unknown signal distribution (see Sec. V B 2) and to
identify exclusion regions (e.g., Case I in Sec. V B 1).
As an additional advantage, the deviance test appears to

enjoy a higher detection power than classical approaches.
This aspect is highlighted in Table I where several methods
for goodness of fit or two-samples comparisons are
implemented, along with the deviance test, for all the cases
discussed in Sec. V.
Reliability of the calibrated background model. The

sizeN of the source-free sample plays a fundamental role in
the validity of f̂bðxÞ as a reliable background model.
Specifically, the randomness involved in (19) only depends
on the cLPj estimates. IfN is sufficiently large, by the strong
law of large numbers,

Pð lim
N→∞

cLPj ¼ LPjÞ ¼ 1:

Therefore, despite the variance of f̂bðxÞ becoming negli-
gible as N → ∞, one has to account for the fact that f̂bðxÞ
leads to a biased estimate of fbðxÞ when fb ≢ gb
(see Sec. II D). For sufficiently smooth densities, a visual
inspection is often sufficient to assess if d̂ðu;Gb; FbÞ [and,
consequently, f̂bðxÞ] provides a satisfactory fit for the data,
whereas for more complex distributions the effect of the
bias can be mitigated considering larger values of M and
model denoising (see Sec. VIII A).

B. Signal search

1. Nonparametric signal detection

The background calibration phase allows the specifica-
tion of a well tailored model for the background, namely
f̂bðxÞ, which simultaneously integrates the initial guess, gb,
and the information carried by the source-free data sample.
Hereafter, we disregard the source-free data sample and
focus on analyzing the physics sample.
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FIG. 2. Deviance test and CD plot for the source-free sample.
The comparison density is estimated via (20) (solid blue line),
whereas its standard error (light blue area) is computed as the
squared root of the estimate of the variance in (10). Finally,
confidence bands have been constructed around one (grey areas)
via (29) with cα replaced by cα;Mmax

in (34). The notation ≥ 2σ is
used to highlight that Bonferroni’s correction has been applied to
adjust for postselection inference, leading to an increase of the
nominal coverage.
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Under the assumption that the source-free sample has no
significant source contamination, we expect that, if the
signal is absent, both the source-free and the physics
samples follow the same distribution. Therefore, the
calibrated background model, f̂bðxÞ, plays the role of
the postulated distribution for the physics sample, i.e.,
the model that we expect the data to follow when no signal
is present; hence, we set gðxÞ ¼ f̂bðxÞ.
Let fðxÞ be the (unknown) true PDF of the physics

sample that may or may not carry evidence in favor of the
source of interest. When no model for the signal is
specified, it is reasonable to consider any significant
deviation of f from g as an indication that a signal of
unknown nature may be present. In this setting, similar to
the background calibration phase, we can construct devi-
ance tests and CD plots to assess if and where significant
departures of f from g occur. Two possible scenarios are
considered—a physics sample that collects only back-
ground data (Case I) and a physics sample of observations
from both background and signal (Case II).

Case I: Background only.—Let x be a physics sample of
n ¼ 1300 observations whose true (unknown) PDF fðxÞ is
equivalent to fbðxÞ in (16). We set

gðxÞ ¼ f̂bðxÞ ¼ gbðxÞd̂ðGbðxÞ;Gb; FbÞ; ð35Þ

where gbðxÞ and d̂ðGbðxÞ;Gb; FbÞ are defined as in (17)
and (20), respectively. The resulting CD plot and deviance
test are reported in the left panel of Fig. 3.
When applying the scheme in Sec. IV C with

Mmax ¼ 20, none of the values of M considered leads to
significant results; therefore, for the sake of comparison
with Case II below, we chooseM ¼ 4. Not surprisingly, the
estimated comparison density approaches one over the
entire range and lies entirely within the confidence bands.
This suggests that the true distribution of the data does not
differ significantly from the model which accounts only
for the background. Similarly, the deviance test leads to
very low significance (adjusted p-value > 1); hence, we
conclude that our physics sample does not provide evi-
dence in favor of the new source.

Case II: Backgroundþ signal.—Let x be a physics sample
of n ¼ 1300 observations whose true (unknown) PDF fðxÞ
is equal to fbsðxÞ in (36),

fbsðxÞ ¼ ð1 − ηÞfbðxÞ þ ηfsðxÞ ð36Þ

TABLE I. Comparison of deviance test and classical inferential tools. The first two columns report the p-values of Anderson-Darling
[24] and Cramer–von Mises [25] goodness-of-fit tests obtained assuming as theoretical distribution the same G indicated in Secs. VA
and V B for the calibration phase, cases I, II, and III, respectively. The raw deviance p-values and their postselection adjusted
counterparts are reported in the third columns. Finally, the fourth and fifth columns report, respectively, the Kolmogorov-Smirnov [25]
and Wilcoxon rank sum [26] tests used to compare directly the physics samples in Cases I, II, and III with the source-free sample used in
Sec. VA.

Goodness-of-fit test p-values Two-samples test p-values

Sample Anderson-Darling Cramer-von Mises Deviance (adjusted) Kolmogorov-Smirnov Wilcoxon Rank Sum

Calibration 1.2 × 10−7 4.2 × 10−7 3.2 × 10−12 (6.4 × 10−11) � � � � � �
Case I 0.7776 0.7711 0.2657ð>1Þ 0.9248 0.5487
Case II 4.6 × 10−7 8.2 × 10−11 9.0 × 10−33 (1.8 × 10−31) 1.9 × 10−13 4.5 × 10−12

Case III 4.6 × 10−7 2.6 × 10−10 2.6 × 10−28 (5.2 × 10−27) 2.1 × 10−15 2.2 × 10−16
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FIG. 3. Deviance test and CD plots for Case I where no signal is present (left panel) and Case II where the signal is present (right
panel). In both cases, the postulated distribution G corresponds to the CDF of the calibrated background model in (35). For the sake of
comparison, dðu;G;FÞ has been estimated via (9) with M ¼ 4 for both samples.
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with fbðxÞ and fsðxÞ defined as in (16) and (18), respec-
tively, and η ¼ 0.15. The histogram of the data and the
graph of fbsðxÞ are plotted in Fig. 4. As in Case I, we set
gðxÞ as in (35).
The CD plot and deviance test in the right panel of Fig. 3

show a significant departure of the data distribution from
the background-only model in (35). The maximum sig-
nificance of the deviance is achieved atM ¼ 4, leading to a
rejection of the null hypothesis at a 11.611σ significance
level (adjusted p-value ¼ 1.799 × 10−31). The CD plot
shows a prominent peak at the lower end of the spectrum;
hence, we conclude that there is evidence in favor of the
signal, and we proceed to characterize its distribution as
described in Sec. V B 2.

2. Semiparametric signal characterization

The signal detection strategy proposed in Sec. V B 1
does not require the specification of a distribution for
the signal. However, if a model for the signal is known
(up to some free parameters), the analysis can be further
refined by providing a parametric estimate of the compari-
son density and assessing if additional signals from new
unexpected sources are present.

Case IIa: Backgroundþ ðknownÞ signal.—Assume that a
model for the signal, fsðx; θsÞ, is given, with θs being a
vector of unknown parameters. Since the CD plot in the
right panel of Fig. 3 provides evidence in favor of the
signal, we expect the data to be distributed according to
the PDF,

f̂bsðxÞ ¼ ð1 − ηÞf̂bðxÞ þ ηfsðx; θsÞ; 0 ≤ η ≤ 1; ð37Þ

where f̂bðxÞ is the calibrated background distribution in
(35) and η and θs can be estimated via maximum likelihood
(ML). Letting η̂ and θ̂s be the ML estimates of η and θs,
respectively, we specify

gbsðxÞ ¼ ð1 − η̂Þf̂bðxÞ þ η̂fsðx; θ̂sÞ ð38Þ

as a postulated model. For simplicity, let fs be fully
specified as in (18); we construct the deviance test and
the CD plot to assess if (38) deviates significantly from the
true distribution of the data. The scheme in Sec. IV C has
been implemented withMmax ¼ 20, and none of the values
ofM considered led to significant results. The CD plot and
deviance test forM ¼ 4 are reported in the upper left panel
of Fig. 5. Both the large p-value of the deviance test
(adjusted p-value > 1) and the CD plot suggest that no
significant deviations occur; thus, Eq. (38) is a reliable
model for the physics sample.
Moreover, we can use (38) to further refine our f̂bðxÞ or

fsðx; θ̂sÞ distributions. Specifically, we first construct a
semiparametric estimate of dðGðxÞ;G;FÞ, i.e.,

ˆ̂dGðxÞ;G;FÞ ¼ ð1 − η̂Þ f̂bðxÞ
fsðx; θ̂sÞ

þ η̂; ð39Þ

and rewrite

ˆ̂fbðxÞ ¼
f̂bðxÞ ˆ̂dðGðxÞ;G;FÞ − η̂fsðx; θ̂sÞ

ð1 − η̂Þ ;

ˆ̂fsðxÞ ¼
f̂bðxÞ ˆ̂dðGðxÞ;G;FÞ − ð1 − η̂Þf̂bðxÞ

η̂
: ð40Þ

In the upper right panel of Fig. 5, the true comparison
density (grey dashed line) of our physics sample is
compared with its semiparametric estimate computed as
in (39) (pink dashed line) with fsðx; θ̂sÞ ¼ fsðxÞ in (18).
The graphs of two nonparametric estimates of dðu;G;FÞ
computed via (9) with M ¼ 4 and M ¼ 9 (blue dot-dashed
line and black dotted line), respectively, are added to the
same plot. Not surprisingly, incorporating the information
available on the signal distribution drastically improves the
accuracy of the analysis. The semiparametric estimate
matches dðu;G;FÞ almost exactly, whereas both nonpara-
metric estimates show some discrepancies from the true
comparison density. All the estimates suggest that there is
only one prominent peak in correspondence of the signal
region.
When moving from the comparison density domain to

the density domain in Fig. 4, the discrepancies between
the nonparametric estimates and the true density fðxÞ are
substantially magnified. Specifically, when computing (9)

x
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FIG. 4. Histogram of a physics sample of n ¼ 1300 observa-
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(36) (grey solid line). The true density has been estimated
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nonparametric estimates of fðxÞ have been computed as in (11),
by plugging in the d̂ðGðxÞ;G;FÞ estimates obtained with M ¼ 4
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and (11) with M ¼ 4 (blue dot-dashed line), the height
signal peak is underestimated,whereas, when choosing
M ¼ 9, the f̂ðxÞ exhibits high bias at the boundaries5

(dotted black line).

Case IIb: Backgroundþ ðunknownÞ signal.—When the
signal distribution is unknown, the CD plot of d̂ðu;G;FÞ
can be used to guide the scientist in navigating across the
different theories on the astrophysical phenomenon under
study and specify a suitable model for the signal, i.e., fs. The
model proposed can then be validated, as in Case IIa, by
fitting (38) and constructing deviance tests and CD plots.
At this stage, the scientist has the possibility to iteratively

query the data and explore the distribution of the signal by
assuming different models. A viable signal characterization
is achieved when no significant deviations of d̂ðu;Gbs; FÞ
from one are observed (e.g., see upper left panel of Fig. 5).
Notice that a similar approach can be followed also in
the background calibration stage (Sec. VA) to provide a
parametric characterization of the background distribution.

Case III: Backgroundþ ðknownÞ signalþ unexpected
source.—The tools proposed so far can also be used to
detect signals from unexpected sources whose PDFs are, by
design, unknown.
Suppose that the physics sample x contains n ¼ 1300

observations whose true (unknown) PDF fðxÞ is equal to
fbshðxÞ,

fbshðxÞ ¼ ð1 − η1 − η2ÞfbðxÞ þ η1fsðxÞ þ η2fhðxÞ; ð41Þ

where fhðxÞ is the PDF of the unexpected signal and we
assume its distribution to be normal with the center at 37
and width 1.8. Let fbðxÞ and fsðxÞ be defined as in (16) and
(18), respectively, and let η1 ¼ 0.15 and η2 ¼ 0.1.
We can start with a nonparametric signal detection stage

by setting gðxÞ ¼ ĝbsðxÞ in (35), with fs defined as in (18)
and η̂ estimated via maximum likelihood estimate (MLE).
The respective CD plot and deviance tests are reported in
the bottom left panel of Fig. 5.
Choosing M ¼ 9, as in (32), both the CD plot and

deviance test indicate a significant departure from the
expected background-only model and a prominent peak
is observed in correspondence of the signal of interest
centered around 25. A second but weaker peak appears to
be right on the edge of our confidence bands, suggesting
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FIG. 5. Upper panels: Deviance test and CD plots for Case IIa where the signal is present (right panel), and the postulated distribution
Gbs corresponds to the CDF of the estimated backgroundþ signal model in (38) with η̂ ¼ 0.146. The comparison density estimate has
been obtained consideringM ¼ 3. Bottom panels: Deviance test and CD plots for Case III where, in addition to the signal of interest, an
additional resonance is present. The data are first analyzed considering the background-only PDF in (17) as the postulated model (left
panel). The analysis is then repeated by assuming the fitted backgroundþ signal model in (38) as the postulated distribution (right
panel). Both estimates of the comparison density in the left and right panels have been computed as in (9) with M ¼ 9.

5Boundary bias is a common problem among nonparametric
density estimation procedures (e.g., [[17], Chap. 5, Chap. 8]).
When aiming for a nonparametric estimate of the data density
fðxÞ, solutions exist to mitigate this problem (e.g., [27]).
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the possibility of an additional source. At this stage, if fs
was unknown, we could proceed with a semiparametric
signal characterization as in Case IIb. Whereas assuming
that the distribution of the signal of interest is known and
given by (18), we fit (38), aiming to capture a significant
deviation in correspondence of the second bump. This is
precisely what we observe in the bottom right panel of
Fig. 5. Here the estimated comparison density deviates
from (35) around 35, providing evidence in favor of an
additional signal in this region. We can then proceed as in
Case IIb by exploring the theories available and/or collect-
ing more data to further investigate the nature and the cause
of the unanticipated bump.

VI. SIGNAL DETECTION WITHOUT
CALIBRATION SAMPLE AND

MODEL SELECTION

There are situations where a source-free sample is simply
not available and thus the calibration phase in Sec. VA
cannot be implemented. The tools described in Secs. II and
IV can, however, still be applied in order to perform signal
detection and goodness of fit when a model for the signal is
known, up to some free parameters. In this framework, we
expect the data to either come only from the signal (with at
most some negligible background contamination) or only
from the background.
In order to illustrate how to proceed in this setting,

we consider a dark matter search where the postulated
model for dark matter γ-ray emissions is the one of [[28],
Eq. (29)], i.e.,

gDMðyÞ ¼
0.73M1.5

χ

ykM χ

exp

�
−7.8

y
M χ

�
ð42Þ

with y ∈ ½0.5; 5� teraelectronvolt (TeV),M χ ∈ ½0.5; 5� TeV,
and kM χ

is a normalizing constant. The goal is to show that,
when considering a background-only sample, the method
proposed correctly rejects (42) as a suitable model for the
data; whereas, when considering a dark matter sample, the
dark matter model in (42) is “accepted.”
To further increase the complexity of the problem, we

consider a situation where the background sample corre-
sponds to γ-ray emissions due to a pulsar, with distribution

gPSðyÞ ¼
1

ykτ
exp

�
−
�
y
y0

�
τ
�
; ð43Þ

with y0 ¼ 0.5, y ∈ ½0.5; 5� TeV, τ > 0, and kτ is a normal-
izing constant. Notice that, as discussed in [29], distin-
guishing γ-ray emissions due to pulsars from those due to
dark matter is a particularly challenging task. The histo-
grams of the two datasets considered are shown in Fig. 6;
the overlapping curves correspond to the best fit of the
models in (42) and (43) on each sample. Interestingly, for
both samples, Eqs. (42) and (43) provide a very similar fit
to the data; hence the importance of correctly selecting the
most adequate model or excluding the dark matter hypoth-
esis when observing emissions due to pulsars.
The upper panels of Fig. 7 display the CD plots obtained

by setting g ¼ gDM in (42) as a postulated model and
comparing it with the distribution of the dark matter sample
(upper left panel) and of the background pulsar sample
(upper right panel). Remarkably, the CD plots and the
adjusted deviance tests correctly lead to the conclusion that
the distribution of the dark matter sample does not deviate
significantly from (42), whereas the distribution of the
pulsar sample does deviate substantially from (42) and
the deviance test (adequately adjusted for postselection
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FIG. 6. Dark matter and pulsar samples. The left panel corresponds to the histogram of a sample of 2000 observations simulated from
the model in (42) with M χ ¼ 2.5. The right panel corresponds to the histogram of a sample of 2000 observations simulated from the
model in (43) with τ ¼ 2. The best fit of (42) and (43) are also reported as blue solid line and black dashed lines, respectively, on top of
each histogram.
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inference) rejects the dark matter model with 3.897σ
significance (adjusted p-value of 4.870 × 10−5). Notice
that, in both cases, we are ignoring the information
regarding the pulsar distribution and the only inputs
considered are the data and the signal model in (42).
Finally, when incorporating the knowledge of the pulsar

distribution in (43) into the analysis, one can select between
the models in (42) and (43) by constructing additional CD
plots and deviance tests for both samples and setting g ¼
gPS in (43). The results are shown in lower panels of Fig. 7.
As expected, the dark matter model is rejected (lower left
panel) with 2.297σ significance (adjusted p-value of
0.0108), whereas the pulsar model is accepted (lower right
panel).

VII. BACKGROUND MISMODELING DUE
TO INSTRUMENTAL NOISE AND UPPER

LIMITS CONSTRUCTIONS

When conducting real data analyses one has to take into
account that the data generating process is affected by both
statistical and nonrandom uncertainty due to the instru-
mental noise. As a result, even when a model for the
background is known, the data distribution may substan-
tially deviate from it due to the smearing introduced by the
detector (e.g., [30]). In order to account for the instrumental

error affecting the data, it is common practice to consider
folded distributions where the errors due to the detector are
often modeled assuming a normal distribution or estimated
via nonparametric methods (e.g., [31,32]). In Sec. VII A, it
is shown how the same approach described in Secs. VA
and V B 1 can be used to assess if the instrumental error is
negligible and, when not, how to update the postulated
background model in order to incorporate the instrumental
noise. Section VII B discusses upper limit constructions by
means of comparison distributions.

A. Modeling the instrumental error

The data considered come from a simulated observation
by the Fermi Large Area Telescope [33] with realistic
representations of the effects of the detector and present
backgrounds [21,34]. The Fermi-LAT is a pair-conversion
γ-ray telescope on board the earth-orbiting Fermi satellite.
It measures energies and images γ rays between about a
100 MeV and several TeV. The goal of the analysis is to
assess if the data could result from the self-annihilation of a
dark matter particle. Let the distribution of the astrophysi-
cal background be a power law, i.e.,

gbðxÞ ¼
1

kϕxϕþ1
; ð44Þ
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FIG. 7. CD plots and deviance tests for dark matter and pulsar samples. The upper left panel displays the CD plot and deviance test for
the dark matter sample with g ¼ gDM in (42). The upper right panel compares the distribution of the pulsar sample with the model in
(42). The lower left panel displays the CD plot and deviance test for the dark matter sample with g ¼ gPS in (43). The lower right panel
displays the CD plot and deviance test for the pulsar sample with g ¼ gPS in (43). For the plots on the left, the size of the basis selected is
M ¼ 6, whereas, for the plots on the right, M ¼ 5.
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where kϕ is a normalizing constant and x ∈ ½1; 35� giga
electron volt (GeV). Equation (44) corresponds to the
distribution we would expect the background to follow
if there was no smearing of the detector. The left panel of
Fig. 8 shows the histogram of a source-free sample of
35,157 i.i.d. observations from a power-law distributed
background source with index 2.4 [i.e., ϕ ¼ 1.4 in (44)]
and contaminated by instrumental errors of unknown
distribution.
In order to assess if (44) is a suitable distribution for

these data, we proceed by fitting (44) via maximum
likelihood and setting it as a postulated background
distribution. The best fit of (44) is displayed on the left
panel of Fig. 8 as a black dashed line.
We proceed estimating dðGbðxÞ;Gb; FbÞ and fb as

in (9) and (19), respectively, with M ¼ 4 (chosen as in
Sec. IV C). The deviance test and CD plot are reported in
the left panel of Fig. 9 and suggest that significant
departures from the fitted power-law model occur. This

implies that the instrumental error is not negligible, and
thus, in order to account for it, we consider (45) as
“calibrated” background density the model

f̂bðxÞ¼
1

kϕ̂x
ϕ̂þ1

ð1þ0.027Leg1½GbðxÞ�−0.067Leg2½GbðxÞ�

þ0.026Leg3½GbðxÞ�−0.045Leg4½GbðxÞ�Þ; ð45Þ

where GbðxÞ is the CDF of (44) and ϕ̂ ¼ 1.359 is the ML
estimate of ϕ in (44).
For the sake of comparison, the same analysis has been

repeated considering 35,157 i.i.d. observations from a
power-law background source with index 2.4, without
instrumental error. The respective CD plot and deviance
test are shown on the right panel of Fig. 9 and indicate that
the power-law model in (44), with ϕ replaced by its MLE
(i.e., ϕ̂ ¼ 1.391), provides a good fit for the data; i.e., the
instrumental error is, in this case, absent or negligible.
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B. Signal detection and upper limit construction

Once a calibrated background distribution is obtained,
we proceed with the signal detection phase by setting
gðxÞ ¼ f̂bðxÞ in (45). Similar to Sec. V B 1, two physics
samples are given; one containing 200 observations from
the background source distributed, as in (44), and the other
containing 200 observations from a dark matter emission.
The signal distribution from which the data have been
simulated is the PDF of γ-ray dark matter energies in [[28],
Eq. (28)] withM χ ¼ 3.5. Both physics samples include the
contamination due to the instrumental noise with unknown
distribution. The respective histograms are shown in the
right panel of Fig. 8.
The selection scheme in Sec. IV C suggests that no

significant departure from (45) occurs on the background-
only physics sample, whereas, for the signal sample, the
strongest significance is observed at M ¼ 3; therefore, for
the sake of comparison, we choose M ¼ 3 in both cases.
The respective deviance tests and CD plots are reported in
Fig. 10. As expected, the upper left panel of Fig. 10 shows a
flat estimate of the comparison density on the background-
only sample. Conversely, the upper right panel of Fig. 10
suggests that an extra bump is present over the [2, 3.5]
region with 3.318σ significance (adjusted p-value ¼
4.552 × 10−4). As in (39), it is possible to proceed with

the signal characterization stage (see Sec. V B 2); however,
in this setting, one has to account for the fact that also the
signal distribution must include the smearing effect of the
detector.
As an anonymous referee pointed out, it is important to

discuss how the upper limits and Brazil plot can be
constructed via LP modeling and how they relate to the
constructs discussed so far in this manuscript. Indeed, the
confidence bands reported in the CD plots are themselves
upper limits. Specifically, in the signal detection framework
of Sec. V B 1, the confidence bands in (29) are constructed
assuming that there is no signal in the data. Specifically,
they correspond to the regions where the comparison
density estimator is expected to lie, at 1 − α confidence
level, if the data include background-only events.
Conversely, any deviation from the confidence bands
characterizes the quantiles of the distribution where the
data distribution does not conform with the one postulated
under the assumption that no signal is present.
When the interest is in identifying areas of the search

region where deviations from the background model occur,
one can exploit the fact that u ¼ GðxÞ, and thus upper
limits and classical “Brazil plots” based on the comparison
density can be obtained by plotting (20) and the respective
confidence bands in (29) as a function of x. This is shown
for our Fermi-LATexample in the bottom panels of Fig. 10.
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FIG. 10. Deviance test, CD plots, and Brazil plots for the simulated Fermi-LAT background-only sample of size 200 (left panels) and
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Indeed, the upper and bottom panels in Fig. 10 carry
essentially the same information in two different domains.
Specifically, the CD plots display the departure of f from g
in the quantile domain, whereas the Brazil plots show the
same differences in the frequency domain. For signal
detection purposes, the bottom panels may be preferred
to identify the location where substantial deviations among
the background and signal model occur, whereas the CD
plots are more suitable for goodness-of-fit purposes as they
provide a simultaneous visualization of the differences
occurring at each quantile of the distribution.

VIII. MODEL DENOISING

As discussed in Sec. II D, the choice of M affects the
resulting estimator of dðu;G;FÞ in terms of both bias and
variance. When dealing with complex background distri-
butions, a large value of M may be necessary to reduce the
bias of the estimated comparison density. At the same
times, however, a large value of M leads to an inflation of
the variance. In other words, considering a basis of M
shifted Legendre polynomials may lead to overfitting.
Practically speaking, overfitting leads to wiggly (i.e.,

nonsmooth) estimates, and thus one may overcome this
limitation by attempting to denoise the estimator in (9).
Section VIII A reviews the model-denoising approach
proposed by [8,10], whereas Sec. VIII B briefly discusses
inference and model selection in this setting. Finally,
Sec. VIII C compares the results obtained with a full and
a denoised solution on the examples of Sec. V.

A. Denoising

Let cLP1;…; cLPM be the estimate of the first M coef-
ficients of the expansion in (4). The most “significant” LPj

coefficients are selected by sorting the respective cLPj

estimates so that

cLP2
ð1Þ ≥ cLP2

ð2Þ ≥ … ≥ cLP2
ðMÞ

and choosing the value k ¼ 1;…;M for which the AICðkÞ
index in (46) is maximum,

AICðkÞ ¼
Xk
j¼1

cLP2
ðjÞ −

2k
n
: ð46Þ

The AIC-denoised estimator of dðu;G;FÞ is given by

d̂�ðu;G;FÞ ¼ 1þ
Xk�M
j¼1

cLPðjÞLegðjÞðuÞ; ð47Þ

where cLPðjÞ is the estimate whose square is the jth largest

among cLP2
1;…; cLP2

M, LegðjÞðuÞ is the respective shifted
Legendre polynomial and

k�M ¼ argmax
k

fAICð1Þ;…;AICðMÞg: ð48Þ

Practical remarks. Recall that the first M coefficients
LPj can be expressed as a linear combination of the firstM
moments of U. Thus, the AIC-denoising approach selects
the LPj coefficients that carry all the “sufficient” informa-
tion on the first M moments of the distribution.

B. Inference after denoising

The deviance test can be used, as in Sec. IV C, to choose
the size of the initial basis of M polynomials among Mmax
possible models. Finally, the k⋆M largest coefficients are
chosen by maximizing (46). This two-step procedure

selects d̂�ðu;G;FÞ in (47) from a pool of Mtot ¼ Mmax þ
MðM−1Þ

2
possible estimators. Therefore, the Bonferroni-

adjusted p-value of the deviance test is given by

Mtot · Pð χ2k�M > dk�MÞ ð49Þ

with dk�M ¼ Pk�M
j¼1

cLP2
ðjÞ. Similarly, confidence bands can

be constructed as2
641 − cα;Mtot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk�M
j¼1

1

n
Leg2ðjÞðuÞ

vuut ; 1þ cα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk�M
j¼1

1

n
Leg2ðjÞðuÞ

vuut
3
75;
ð50Þ

where cα;Mtot
is the solution of

2ð1 −Φðcα;Mtot
ÞÞ þ k0

π
e−0.5c

2
α;Mtot ¼ α

Mtot
: ð51Þ

Practical remarks.Given the possibility of denoising our
solution, one may legitimately wonder why not to consider
a large value of Mmax, e.g., Mmax ¼ 100, and then select
k⋆Mmax

directly. In other words, why should we first imple-
ment the procedure in Sec. IV C and, only after, refine our
estimator as in Sec. VIII A and not vice versa? There are
two main reasons why such an approach is discouraged.
First of all, one has to take into account that ignoring the

selection stage proposed in Sec. IV C, there is no guarantee
that the resulting k⋆Mmax

would include all the cLPj terms that
provide the strongest evidence in favor of H1 in (22).
Therefore, the resulting p-value can in principle be lower
than the one in (49). Indeed, the AIC criterion in (46), aims
to improve the fit of the estimator to the data, whereas the
deviance selection criteria in (32) aim to maximize the
power of the inferential procedure.
Second, choosingMmax ¼ 100 is computationally unfea-

sible with most of the standard programming languages
such as R and PYTHON, and the numerical computation of
(9) may easily lead to divergent or inaccurate results.
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C. Comparing full and denoised solutions

Figure 11 compares the fit of the estimators d̂ðu;G;FÞ
and d̂�ðu;G;FÞ for the examples in Sec. V. For all the cases
considered, M and k�M have been selected as in (32) and
(48) (see second column of Table II). When no significance
was achieved for any of the values ofM considered, a small
basis of M ¼ 3 or M ¼ 4 polynomials was chosen for the
full estimator d̂ðu;G;FÞ, which was then further denoised
in order to obtain d̂�ðu;G;FÞ. Table II shows the results of
the deviance tests of the full and the denoised solution for
the examples in Sec. V. The unadjusted p-values and the
Bonferroni-adjusted p-values are reported in the second
and third columns, respectively. In half of the cases, k�M ¼
M and the estimators d̂ðu;G;FÞ and d̂�ðu;G;FÞ overlap
over the entire range [0, 1]. The inferential results were also
approximately equivalent in the majority of the situations
considered.
The main differences are observed in the analysis of the

background-only physics sample (Case I). In this case, the
deviance-selection procedure leads to nonsignificant results
for all the values of M considered; the minimum p-value is
observed at M ¼ 18 (unadjusted p-value ¼ 0.2657). In this

setting, the denoising process leads to k�18 ¼ 2 and the
respective unadjusted p-value is 5.096 × 10−4. This further
emphasizes the importance of adjusting for model selection in
order to avoid false discoveries. Formodelingpurposes and for
the sake of comparisonwith the casewhere a signal is present,
a basis of M ¼ 4 was selected. Since the true distribution of
the data is the same as the postulated one, the denoising
process sets all the coefficients equal to zero (k�M ¼ 0).
For Case III, only k�M ¼ 6 out of M ¼ 9 coefficients are

selectedwhen denoising (seeTable II).Despite the right panel
of Fig. 11 showing that the full and the denoised solutions are
almost overlapping, the latter leads to an increased sensitivity
(adjusted p-value ¼ 2.496 × 10−28) compared to the full
solution (adjusted p-value ¼ 5.181 × 10−27).
These results suggest that the denoising approach can

easily adapt to situations where a sparse solution is
preferable (i.e., when only a few of the M coefficients
LPj are nonzero) without enforcing sparsity when many of
the M coefficients considered are needed to adequately fit
the data (e.g., bottom right panel of Fig. 11). From an
inferential perspective, denoising can improve the sensi-
tivity of the analysis; however, in order to avoid false
discoveries, extra care needs to be taken when the deviance
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TABLE II. Model selection and inference for the toy example in Sec. V. The second column reports theM and k�M values selected as in
(32) and (48), respectively. The third column collects the unadjusted deviance p-values for the full and denoised solutions. The
Bonferroni-adjusted p-values, computed as in (33) and (49), are reported in the fourth column. The correction terms applied correspond

to Mmax ¼ 20 for the full solution and Mtot ¼ Mmax þ MðM−1Þ
2

for the denoised solution.

M; k�M selected Method Deviance p-values Adjusted p-values

Toy example M ¼ 2 Full pð2Þ ¼ 3.199 × 10−12 20 × pð2Þ ¼ 6.397 × 10−11

Calibration k�2 ¼ 2 Denoised pð2Þ ¼ 3.199 × 10−12 21 × pð2Þ ¼ 6.717 × 10−11

Toy example M ¼ 18 Full pð18Þ ¼ 0.2657 20 × pð18Þ > 1
Case I k�18 ¼ 2 Denoised pð2Þ ¼ 5.096 × 10−4 21 × pð2Þ ¼ 0.0882

Toy example M ¼ 4 Full pð4Þ ¼ 8.994 × 10−33 20 × pð4Þ ¼ 1.799 × 10−31

Case II k�4 ¼ 4 Denoised pð4Þ ¼ 8.994 × 10−33 21 × pð4Þ ¼ 2.338 × 10−31

Toy example M ¼ 9 Full pð9Þ ¼ 2.590 × 10−28 20 × pð9Þ ¼ 5.181 × 10−27

Case III k�9 ¼ 6 Denoised pð6Þ ¼ 4.457 × 10−30 35 × pð1Þ ¼ 2.496 × 10−28
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selection procedure leads to large p-values for all theMmax
models considered.

IX. AN APPLICATION TO
STACKING EXPERIMENTS

In radio astronomical surveys, stacking techniques are
often used to combine noisy images or “stacks” in order to
increase the signal-to-noise ratio and improve the sensitivity
of the analysis in detecting faint sources (e.g., [35–37]). In
polarized signal searches, for instance, a faint population of
sources is considered when the median polarized intensity
observed over control regions differs significantly from the
median of the region where the sources are expected to be
present. In this context, under simplifying assumptions, the
distribution of the intensity of the source polarization is often
assumed to have Rice distribution, i.e.,

fðxÞ ¼ xe−
x2þν2

2σ2

kνσ2
Bessel

�
xν
σ2

�
; ð52Þ

where Besselð·Þ denotes the Bessel function of the first kind
of order zero and kνσ2 is a normalizing constant.
Furthermore, Eq. (52) reduces to a Rayleigh PDF when
no signal is present [38], i.e., when ν ¼ 0. Below, it is shown
how the methods described in Secs. VA and V B 1 can be
used to assess whether the Rayleigh distribution is a reliable
model for the background and, when too simplistic, inves-
tigate the impact of incorrectly assuming a Rayleigh dis-
tribution on the reliability of the analysis.
The data considered come from the NRAO VLA Sky

Survey (NVSS) [39]. The NVSS is an astronomical survey
of the Northern hemisphere carried out by the Very Large

Array of the National Radio Astronomy Observatory. The
NVSS has detected 1.8 × 106 sources in total intensity, but
only 14% of these have reported a polarized signal peak
greater than 3σ [37]. The original source-free sample
contained 29 915 observations collected from four different
control regions for each source with a brightness in total
intensity between 0 and 0.0093 Jy=beam (see upper panel of
Fig. 12). However, such a sample appears to contain several
outliers that affect the data distribution, making it far from
Rayleigh. A better Rayleigh fit is obtained when removing
the outliers6 (see bottom left panel of Fig. 12). Since
understanding the cause of these anomalous observations
is beyond the scope of this manuscript, we proceed exclud-
ing them from the analysis, and we focus on assessing the
validity of the Rayleigh assumption on the remaining 28 739
observations on the region ½0; 0.0009� Jy=beam. It has to be
noted that the nominal noise in NVSS polarization is
0.00029 Jy=beam and we may expect as a reasonable
threshold for the detection of one individual source to be
3 times the noise. Hence, a source sample of 6,220
observations has been selected from positions where com-
pact radio sources with a brightness in total intensity
between 0 and 0.0009 Jy=beam are known to be present.
Both source-free and source samples are assumed to be i.i.d.
The histograms of the source-free and signal samples
considered are shown in the right panel of Fig. 12.
As first step, we fit a Rayleigh distribution (adequately

truncated over the range [0, 0.0009]) on the source-free
sample, i.e.,
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FIG. 12. Histograms of the NVSS samples. The left panels show the source-free sample with and without outliers (upper left and lower
left panels, respectively). In both cases, the best fit of the Rayleigh model in (53) is displayed as a black curve. The right panel compares
the source-free sample without outliers (grey histogram) with the source sample (blue histogram) truncated over the search area
considered.

6In statistics, an observation xi is considered an outlier if
xi<Q0.25−1.5½Q0.75−Q0.25� or xi > Q0.75 þ 1.5½Q0.75 −Q0.25�
where Q0.25 and Q0.75 are the first and the third sample quartiles.
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gbðxÞ ¼
xe− x2

2σ̂2

kσ̂2
; ð53Þ

where kσ̂2 is a normalizing constant, σ̂ ¼ 0.0003 is
the ML estimate of the unknown parameter σ, and x ∈
½0; 0.0009� Jy=beam. In order to assess if (53) provides a
good fit for the data, we estimate the comparison density
dðGbðxÞ;Gb; FbÞ by, first, selecting M as in (32) and then
applying the AIC-based denoising approach described in
Sec. VIII A. In this case, the denoised solution selects
k� ¼ 9 out of M ¼ 10 polynomial terms. The deviance
tests and the CD plot in Fig. 13 suggest that, despite the fact
that the median of the data coincides with the one of the
Rayleigh model, overall, the latter does not provide a good
fit for the distribution of the source-free sample.
Specifically, the data distribution shows a higher right tail
than one expected under the Rayleigh assumption, whereas
the first quantiles are overestimated by the Rayleigh.
Therefore, the researcher can either decide to use a more
refined parametric model for the background or consider
the calibrated background distribution of the form in (19),
which in our setting specifies as

f̂bðxÞ¼
xe− x2

2σ̂2

kσ̂2
ð1−0.018Leg1½GbðxÞ�þ0.012Leg2½GbðxÞ�

þ0.052Leg3½GbðxÞ�−0.014Leg4½GbðxÞ�
þ0.047Leg5½GbðxÞ�−0.018Leg6½GbðxÞ�
þ0.031Leg7½GbðxÞ�þ0.016Leg9½GbðxÞ�
−0.015Leg10½GbðxÞ�Þ; ð54Þ

where GbðxÞ is the CDF of (53).
The strategy described in Sec. V B 1 allows us to identify

where significant differences between the control and
source sample occur. In order to assess the effect of
incorrectly assuming a Rayleigh background, we compare
the distribution of the physics sample with both the
Rayleigh and the calibrated background distribution in
(54). Figure 14 reports deviance tests and CD plots
obtained on the physics sample when setting gðxÞ ¼
f̂bðxÞ in (53) (left panel) and gðxÞ ¼ f̂bðxÞ in (54) (right
panel). Both analyses provide strong evidence that the
distribution of the physics sample differs significantly from
the postulated models f̂bðxÞ and gbðxÞ, and the most
substantial discrepancies occur on the right tail of the
distribution. However, since the Rayleigh model under-
estimates the right tail of the background distribution (see
Fig. 13), it leads to an artificially enhanced sensitivity in
this region. The differences between the two CD plots are
less prominent around the median expected under f̂bðxÞ
and gbðxÞ (i.e., in correspondence with u ¼ 0.5 in
both plots).
Figure 14 suggests that, for these data, assuming a

background Rayleigh distribution would not substantially
affect the results of a comparison between the source-free
and signal sample based on the median. However, focusing
solely on the median can strongly limit the overall
sensitivity of the analysis since the major differences occur
at the higher quantiles of the distribution. On the other
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FIG. 13. Deviance test and CD plot for the NVSS source-free
sample of size 28 739 compared to the Rayleigh distribution in (53).

D
en

si
ty

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5 d̂(u, G, F)

≥ 2σ confidence bands
Standard error

Deviance test

adjusted p.value= 2.949 × 10−91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G(5e−05) G(2e−04) G(3.4e−04) G(5e−04) G(8e−04)

u

G(x)

D
en

si
ty

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5 d̂(u, G, F)

≥ 2σ confidence bands
Standard error

Deviance test

adjusted p.value= 5.178 × 10−124

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G(5e−05) G(2e−04) G(3.4e−04) G(5e−04) G(8e−04)

u

G(x)

FIG. 14. Deviance tests and CD plots for the NVSS source sample assuming gðxÞ to be the calibrated background model in (54) (left
panel) and when letting gðxÞ be the PDF of the truncated Rayleigh distribution in (53). In both cases the estimator of the comparison
density has been denoised as described in Sec. VIII A. The values of M and k� considered are M ¼ k� ¼ 6 and M ¼ 9, k� ¼ 8 for the
estimators on the left and right panels, respectively.
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hand, assuming a Rayleigh distribution for the background
would artificially inflate the evidence in favor of the source.
Specifically, the sigma significance of the deviance test
obtained under the Rayleigh background assumption is
23.655σ (adjusted p-value ¼ 5.178 × 10−124), whereas the
one obtained using (54) is 20.225σ (adjusted p-value ¼
2.948 × 10−91).
Conversely, the calibrated background model in (54)

allows us to safely compare the entire distribution of the
polarized intensity in the source and control regions via CD
plots and deviance tests without affecting the sensitivity of
the analysis.

X. DISCUSSION

This article proposes a unified framework for signal
detection and characterization under background mismodel-
ing. From a methodological perspective, the methods pre-
sented here extend LP modeling to the inferential setting.
The solution discussed is articulated in two main phases:

a calibration phase where the background model is
“trained” on a source-free sample and a signal search
phase conducted on the physics sample collected by the
experiment. If a model for the signal is given, the method
proposed allows the identification of hidden signals from
new unexpected sources and/or the refining of the postu-
lated background or signal distributions. Furthermore, the
tools presented in this manuscript can easily be extended to
situations where a source-free sample is not available and
the background is unknown (up to some free parameters).
As discussed in Sec. VI, however, in this setting the signal
distribution is required to be known, and the physics
sample is expected to contain only signal-like events;
i.e., the background is almost completely reduced.
The theory of Sec. II D and the analyses in Sec. V have

highlighted that, despite a fully nonparametric approach
providing reliable inference, it may lead to unsatisfactory
estimates when the postulated PDF g is substantially
different from the true density f. In this setting, a semi-
parametric stage can be performed in order to provide a
reliable model for the data.
Each individual step in both the nonparametric and the

semiparametric stages of Secs. V B 2 and VA provides
useful scientific insights on the signal and background
distribution. Hence, an automatized implementation of the
steps of Algorithm 1 based solely on the p-values of the
deviance tests is discouraged as it would lead to a substantial
loss of scientific knowledge on the phenomena under study.
Finally, it is important to point out that, despite this

article’s focus on the one-dimensional searches on con-
tinuous data, all the constructs presented in Secs. II and the
deviance test in IVA also apply to the discrete case when
considering i.i.d. events. More work is needed to extend
these results and those of Sec. IV B to searches in multiple
dimensions and when considering Poisson events with a
functional mean. In the first case the difficulty mainly lies

in generalizing the constructs of Sec. IV to account for the
dependence structure occurring across multiple dimen-
sions. In the second case, the main challenge lies in
identifying the equivalent of (1) to model the mean of
the distribution, while incorporating the Poisson error.

A. Code availability

The LPBkg PYTHON package [40] and the LPBkg R
package [41] allow the implementation of the methods
proposed in this manuscript. Detailed tutorials on how to
use the functions provided are also available at http://salgeri
.umn.edu/my-research.
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APPENDIX A: MOMENTS OF
THE cLPj ESTIMATES

Consider the general setting where f ≢ g and thus
dðu;G;FÞ ≠ 1 over [0, 1]. It follows that each ui is
independently and identically distributed with PDF
dðu;G;FÞ; hence, all the expectations in E½cLPj�; VðcLPjÞ
and CovðcLPj; cLPkÞ are taken with respect to dðu;G;FÞ.
Specifically,

E½cLPj� ¼ E

�
1

n

Xn
i¼1

LegjðUiÞ
�

¼ E½LegjðUÞ�

¼
Z

1

0

LegjðuÞdðu;G;FÞ∂u ¼ LPj;

where the second equality follows from the fact that each
observed value ui is a realization of a random variable Ui
and each U1;…; Un is identically distributed as the
random variable U, whose PDF is given by the comparison
density dðu;G;FÞ. Notice that dðu;G;FÞ ¼ 1 implies
that

R
1
0 LegjðuÞdðu;G;FÞ∂u ¼ R

1
0 LegjðuÞ∂u ¼ 0, from

which the first equivalence in (8) follows. Moreover,

VðcLPjÞ ¼
1

n2
V

�Xn
i¼1

LegjðUiÞ
�

¼ 1

n
VðLegjðUÞÞ ¼ σ2j

n
;
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where VðLegjðUÞÞ¼R
1
0 ðLegjðuÞ−LPjÞ2dðu;G;FÞ∂u¼σ2j .

The second equality holds because of independence
and identical distribution of each ui. Notice that if
dðu;G;FÞ ¼ 1, σ2j ¼ 1 in virtue of the orthonormality of
the LegjðuÞ polynomials. Hence the second equivalence in
(8) holds. Finally,

CovðcLPj; cLPkÞ ¼ Cov

�
1

n

Xn
i¼1

LegjðUiÞ;
1

n

Xn
i¼1

LegkðUiÞ
�

¼ 1

n
CovðLegjðUÞ; LegkðUÞÞ ¼ σjk

n
;

also in this case, the second equality follows by independ-
ence and identical distribution of each ui and

CovðLegjðUÞ; LegkðUÞÞ

¼
Z

1

0

ðLegjðuÞ − LPjÞðLegkðuÞ − LPkÞdðu;G;FÞ∂u

¼
Z

1

0

LegjðuÞLegkðuÞdðu;G;FÞ∂u − LPjLPk

¼ σjk: ðA1Þ
Because of the orthogonality of the LegjðuÞ, σjk ¼ 0 when
dðu;G;FÞ ¼ 1, hence the third equivalence in (8).

APPENDIX B: BIAS, VARIANCE,
AND MISE OF d̂ðu;G;FÞ

Given a point u over [0, 1], the bias of (9) at u is

Bias½d̂ðu;G;FÞ� ¼ E½d̂ðu;G;FÞ� − dðu;G;FÞ ðB1Þ

¼
XM
j¼1

E½cLPj�LegjðuÞ−
X
j>0

LPjLegjðuÞ

ðB2Þ
¼

X
j>M

LPjLegjðuÞ; ðB3Þ

here (B2) follows from (4) and (9), whereas the integrated
squared bias is

IBS ¼
Z

1

0

�X
j>M

LPjLegjðuÞ
�

2∂u ðB4Þ

¼
X
j>M

LP2
j

Z
1

0

Leg2jðuÞ∂u ðB5Þ

þ2
X

M<j<k

LPjLPk

Z
1

0

LegjðuÞLegkðuÞ∂u ðB6Þ

¼
X
j>M

LP2
j ; ðB7Þ

where (B7) holds because of orthonormality of the LegjðuÞ
polynomials. Notice that

IBS ¼
X
j>M

LP2
j ¼

X
j>0

LP2 −
XM
j¼1

LP2 ðB8Þ

¼
Z

1

0

ðdðu;G;FÞ − 1Þ2∂u −
XM
j¼1

LP2 ðB9Þ

Z
1

0

�
fðG−1ðuÞÞ−gðG−1ðuÞÞ

gðG−1ðuÞÞ
�

2∂u−XM
j¼1

LP2
j ; ðB10Þ

where (B9) follows by Parseval’s identity, whereas (B10)
follows from (2).
The variance of (9) at a given point u is given by

V½d̂ðu;G;FÞ� ¼ V

�XM
j¼1

cLPjLegjðuÞ
�

ðB11Þ

¼
XM
j¼1

Leg2jðuÞVðcLPjÞ ðB12Þ

þ2
X
j<k

LegjðuÞLegkðuÞCovðcLPj;cLPkÞ

ðB13Þ

¼
XM
j¼1

σ2j
n
Leg2jðuÞþ2

X
j<k

σjk
n
LegjðuÞLegkðuÞ:

ðB14Þ
By orthonormality of the polynomials LegjðuÞ, the integral
of (B14) over [0, 1] isZ

1

0

V½d̂ðu;G;FÞ�∂u ¼
XM
j¼1

σ2j
n
; ðB15Þ

also in this case, equality follows by orthonormality of the
LegjðuÞ. Finally, the MISE is

MISE½d̂ðu;G;FÞ� ¼ E

�Z
1

0

ðd̂ðu;G;FÞ − dðu;G;FÞÞ2∂u
�

ðB16Þ

¼
Z

1

0

E½ðd̂ðu;G;FÞ − dðu;G;FÞÞ2�∂u
ðB17Þ

¼
Z

1

0

V½d̂ðu;G;FÞ� ðB18Þ

þ ðE½d̂ðu;G;FÞ� − dðu;G;FÞÞ2∂u
ðB19Þ

¼
XM
j¼1

σ2j
n
þ
X
j>M

LP2
j ; ðB20Þ

where (B17) holds because of the Fubini-Tonelli theorem,
whereas the last equality follows by (B7) and (B15).
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