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(Received 16 November 2019; published 7 January 2020)

No-scale supergravity provides a successful framework for Starobinsky-like inflation models. Two
classes of models can be distinguished depending on the identification of the inflaton with the volume
modulus, T (C models), or a matterlike field, ϕ (WZ models). When supersymmetry is broken, the
inflationary potential may be perturbed, placing restrictions on the form and scale of the supersymmetry
breaking sector. We consider both types of inflationary models in the context of high-scale supersymmetry.
We further distinguish between models in which the gravitino mass is below and above the inflationary
scale. We examine the mass spectra of the inflationary sector. We also consider, in detail, mechanisms for
leptogenesis for each model when a right-handed neutrino sector, used in the seesaw mechanism to
generate neutrino masses, is employed. In the case of C models, reheating occurs via an inflaton decay to
two Higgs bosons. However, there is a direct decay channel to the lightest right-handed neutrino which
leads to nonthermal leptogenesis. In the case of WZ models, in order to achieve reheating, we associate the
matterlike inflaton with one of the right-handed sneutrinos whose decay to the lightest right-handed
neutrino simultaneously reheats the Universe and generates the baryon asymmetry through leptogenesis.
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I. INTRODUCTION

There are many motivations for supersymmetry includ-
ing the solution to the hierarchy problem [1], gauge
coupling unification [2], the stability of the Higgs vacuum
[3], radiative electroweak symmetry breaking [4], and
viable dark matter candidates [5]. Supersymmetry also
aids in the construction of inflationary models [6], allowing
naturally for flat directions suitable for inflation and
keeping radiative corrections in check. Indeed, the natural
framework for formulating supersymmetric models of
inflation is that of supergravity [7]. However, generic
supergravity models often induce what is known as the
η problem [8], which is easily addressed in a no-scale
supergravity framework [9,10].
It is remarkable that the Starobinsky model based on

Rþ R2 gravity [11,12], which was one of the first models
of inflation, is in excellent agreement with the most recent
Planck measurements [13] of the tensor-to-scalar ratio r ¼
0.0035 and the tilt of the scalar perturbations ns ¼ 0.965.
The Starobinsky scalar potential for a canonically normal-
ized inflaton field, x, is given by

V ¼ 3

4
m2ð1 − e−

ffiffi
2
3

p
xÞ2 ð1Þ

and can be easily realized in no-scale supergravity [14–30].
These models must contain at least two chiral fields, which
we will denote as T, a volume modulus, and ϕ, a matterlike
field [15]. The nonminimal Kähler potential with two chiral
fields is expressed as

K ¼ −3 ln
�
T þ T̄ −

jϕj2
3

�
; ð2Þ

parametrizing a noncompact SUð2;1Þ
SUð2Þ×Uð1Þ coset manifold [14].

The inflationary models can be divided into two classes, in
which either the volume modulus T or the matterlike field ϕ
is identified as the inflaton [15,18]. Depending on the
specific model, an additional chiral multiplet may be
necessary to break supersymmetry [26,27].
The scale of supersymmetry breaking is usually assumed

to be near the weak scale. In that case, one easily resolves
the issues that motivate supersymmetry in the first place.
However, with the exception of the hierarchy problem, the
problems discussed in the beginning of this section can also
be resolved in the context of high-scale supersymmetry. For
example, gauge coupling unification in high-scale super-
symmetry has been shown to be effective in SO(10) models
of grand unification [31]. To be more precise, it is
known that gauge coupling unification also occurs in
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nonsupersymmetric models SO(10) models when the uni-
fied gauge symmetry is broken down to the StandardModel
(SM) gauge group through an intermediate scale gauge
group [32–36]. Similarly, the stability of the Higgs vacuum
can be maintained in both high-scale supersymmetry [31]
and nonsupersymmetric models [36], when an additional
scalar field below 1010 GeV is present (which can also
drive radiative electroweak symmetry breaking).
Among the best studied candidates for dark matter are

those arising in weak scale supersymmetric models [5]. In
this context, R-parity conservation renders the lightest
supersymmetric particle (LSP) stable. Most phenomeno-
logical studies favor neutralino dark matter models, but
models with a gravitino LSP have also been considered
[5,37–45]. However, both the detection of supersymmetric
particles at the LHC [46] and dark matter direct-detection
experiments searching for neutralino dark matter, such as
LUX [47], PandaX-II [48], and XENON1T [49], remain
elusive.
It is possible that the supersymmetry breaking scale is

beyond the reach of the LHC, and that the corresponding
scattering cross sections for multi-TeV neutralinos are
below the current detection limits, as is the case in some
variants of the constrained minimal supersymmetric stan-
dard model (CMSSM) [50]. Alternatively, supersymmetry
breaking may occur at the PeV scale as in models of pure
gravity mediation with a wino or Higgsino dark matter
candidate [51,52].
These considerations motivate us to explore models with

high-scale supersymmetry breaking [31,53]. Indeed, it is
possible to construct viable models with a significantly
higher supersymmetry breaking scale so that all the super-
partners, except for the gravitino, lie above the inflationary
scale [27,54–56]. In this case, the gravitino with a mass of
order m3=2 ≳ 0.1 EeV may play the role of dark matter. Its
production occurs through the reheating process after
inflation [5,38,57–62]. In weak-scale supersymmetry, sin-
gle gravitinos together with other supersymmetric particles
can be produced from scattering processes, e.g.,
gluonþ gluon → gravitinoþ gluino. However, in high-
scale supersymmetry models, gravitinos must be produced
in pairs [63], and this process is highly sensitive to the
maximum temperature. Therefore, to obtain the correct
gravitino relic density, we require a relatively high reheat-
ing temperature TRH ≳ 1010 GeV.1

It is also important to note that the existence of dark
matter in nonsupersymmetric SO(10) models is also pos-
sible when the intermediate scale gauge group is broken via
a 126-dimensional representation as a Z2 discrete sym-
metry (similar to R parity) is preserved [33–36,65,66].

In this paper, we consider high-scale supersymmetry
models in conjunction with no-scale Starobinsky-like
models of inflation [27]. We discuss inflationary models
based on a noncompact SUð2;1Þ

SUð2Þ×Uð1Þ Kähler potential (2),
where either the volume modulus T or a matterlike field ϕ
is driving inflation. The two types of models are distin-
guished by their couplings to the Standard Model (which
leads to different reheating mechanisms [26]) and the
supersymmetry breaking sector. Supersymmetry breaking
can perturb the inflationary potential, making it no longer
viable for inflation. This is particularly the case when
supersymmetry breaking is pushed to very high scales.
Supersymmetry breaking also affects particle mass spec-
trum in the inflationary/SUSY breaking sector. We explore
both of these effects in the models discussed below.
We extend our high-scale supersymmetry framework and

incorporate various models of leptogenesis [67,68]. This is
accomplished by introducing a right-handed neutrino
sector. The small left-handed neutrino masses are obtained
via the classical seesaw mechanism [69], which leads to
lepton number violation. Most importantly, the decay of the
heavy right-handed neutrinos into Higgs bosons and
leptons produce a lepton asymmetry, which is subsequently
converted to a baryon asymmetry by sphaleron transitions
[70,71]. In this paper, we focus on models of nonthermal
leptogenesis [67]. In this case, the inflaton decays directly
to a right-handed neutrino which is out-of-equilibrium if its
mass is larger than the reheating temperature TRH. The
subsequent out-of-equilibrium decay of the right-handed
neutrino then produces the lepton asymmetry.
The structure of this paper is as follows. We first review

how the Starobinsky-like inflation models arise in no-scale
supergravity. In Sec. III, we review the basics of lepto-
genesis as needed in our inflationary context. We then
consider separately the case where the inflaton is associated
with the T field (Sec. IV) or with ϕ (Sec. VI). Within each
case, we distinguish models in which the gravitino mass is
below and above the inflationary scale. We take into
account the effects of supersymmetry breaking on the
inflationary potential and the particle mass spectrum and
show that the production of inflatinos is not problematic.
Furthermore, in each case, we discuss the mechanism
for reheating, leptogenesis, and dark matter (in Secs. V
and VII). Our conclusions are given in Sec. VIII.

II. NO-SCALE STAROBINSKY
MODELS OF INFLATION

The Starobinsky model of inflation can be realized in a
no-scale supergravity framework by considering the Kähler
potential form, given by Eq. (2), and combining it with a
specific choice of a superpotential. If we consider the
Cecotti superpotential form [72],

WC ¼
ffiffiffi
3

p
mϕ

�
T −

1

2

�
; ð3Þ

1In fact, once noninstantaneous reheating is considered [64], it
is the maximum temperature attained that gives the largest
contribution to the dark matter abundance.
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where the inflaton is associated with the volume modulus
T. When the vacuum expectation value of a matterlike field
is fixed to hϕi ¼ 0 by introducing the higher-order stabili-
zation terms in the Kähler potential (2) [15,73], as discussed
later in this section, we obtain the Starobinsky inflationary
potential (1) in terms of the canonically normalized field x,

given by the field redefinition, T ¼ 1
2
e

ffiffiffiffiffiffi
2=3

p
x.

Similarly, if we consider the Wess-Zumino form for the
superpotential [14],

WWZ ¼ m

�
ϕ2

2
−

ϕ3

3
ffiffiffi
3

p
�
; ð4Þ

where the inflaton is associated with a matterlike field ϕ,
and we stabilize the volume modulus dynamically at its
vacuum expectation value of hTi ¼ 1

2
, the Starobinsky

inflationary potential is obtained by making the canonical
field redefinition, ϕ ¼ ffiffiffi

3
p

tanhðx= ffiffiffi
6

p Þ.
In both models, the scale of inflation is characterized by

a single mass scale m, which determines the amplitude of
density fluctuations, As ≃ 2 × 10−9, as measured by Planck
[13]. For N� ¼ 55, where N� is the number of e-foldings
before the end of inflation, the mass scale corresponds to
m ≃ 1.2 × 10−5 MP ≃ 3 × 1013 GeV [14], and we use this
value throughout this paper.2 If we combine the Kähler
potential (2) with either of the superpotential forms (3)
or (4), we find that the parameter m can be identified with
the mass of the canonically normalized inflaton field.
Therefore, in some models of leptogenesis, it seems natural
to identify the inflaton with one of the right-handed
sneutrinos [16], which then decays into right-handed
neutrinos responsible for leptogenesis.
In fact, the two models listed above are simply two

examples of a wide class of superpotential models, which
all generate the same scalar potential [15,18]. In the
absence of supersymmetry breaking, one can show that
these classes can be related by the underlying noncompact
SUð2;1Þ

SUð2Þ×Uð1Þ no-scale symmetry [18]. Once the theory is

coupled to matter and supersymmetry is broken, this
symmetry is broken and different models will have differ-
ent phenomenologies [26].
Neither of the superpotentials (3) nor (4) are responsible

for supersymmetry breaking. In the absence of supersym-
metry breaking, the minimum of the scalar potential is
located at hTi ¼ 1

2
and hϕi ¼ 0. Therefore, we need to

extend our models and incorporate supersymmetry break-
ing. In the Cecotti model (3), supersymmetry can be broken
by introducing a Polonyi field z [74] with a superpotential,

WP ¼ m̃ðzþ bÞ; ð5Þ

where b is a constant. It is important to note that the
presence of a Polonyi field will shift the minimum, and in
Sec. IV, we discuss this in more detail. If we consider
the combined superpotential, W ¼ WC þWP, we obtain
an upper limit m̃ < m=2 for viable solutions with a
Minkowski vacuum. The gravitino mass in this case is
given by m3=2 ¼ m̃=

ffiffiffi
3

p
and is lighter than the inflaton and

can be a good dark matter candidate.
In the Wess-Zumino model (4), the superpotential is a

function of a matterlike field ϕ only. In this case, one does
not need to introduce an additional Polonyi field, and
supersymmetry breaking occurs by introducing a constant
λ1 in the superpotential. More generally, we can add the
following superpotential term [19,20]:

WSSB ¼ λ1 − λ2

�
2T −

ϕ2

3

�
3

; ð6Þ

which generates supersymmetry breaking through an F
term, which is given by FT ¼ λ1 þ λ2. In this case, the
gravitino mass is given by m3=2 ¼ λ1 − λ2, and the vacuum
energy density is expressed as V0 ¼ 12λ1λ2 [75], which
vanishes if either λ1 or λ2 is set to zero. For simplicity, we
consider models with λ2 ¼ 0, and supersymmetry breaking
is achieved by a constant λ1, whose relative size is not
restricted by the inflaton mass,m. We note that it is possible
to add a linear term in the Wess-Zumino superpotential (4),
which behaves as a Polonyi-like field [21]. However, this
model has a strict upper bound on the gravitino mass of
m3=2 ≲ 106 GeV, and it is not valid for high-scale super-
symmetry models. Another possibility is to introduce a
Polonyi sector to the Wess-Zumino models [26]; however,
in that case, the inflationary potential is affected, and the
possibility for inflation becomes limited.
In both models, the phenomenological aspects for the

limits m3=2 > m and m3=2 < m are distinct; therefore, we
consider the four cases separately. The classification is
shown in Table I.
It is crucial to note that for both types of models,

stabilization of some fields is necessary and can be
achieved dynamically by introducing higher-order correc-
tion terms in the Kähler potential. We consider the
following general Kähler potential form:

K ¼ −3 ln
�
T þ T̄ þ fðT; T̄Þ − jϕj2 þ jzj2

3

þ gðϕ; ϕ̄Þ þ hðz; z̄Þ
�
; ð7Þ

TABLE I. The classification of the high-scale supersymmetry
models considered here.

WC WWZ

m3=2 < m C-1 WZ-1
m3=2 > m C-2 WZ-2

2In this paper, we work in units of the reduced Planck mass
MP ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
≃ 2.4 × 1018 GeV, unless explicitly noted.
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where

fðT; T̄Þ ¼ 0; mgðϕ; ϕ̄Þ ¼ jϕj4
Λ2
ϕ

; hðz; z̄Þ ¼ jzj4
Λ2
z
; ð8Þ

for the Cecotti models, and

fðT; T̄Þ ¼ ðT þ T̄ − 1Þ4
Λ2
T

þ dðT − T̄Þ4
Λ2
T

;

gðϕ; ϕ̄Þ ¼ 0; hðz; z̄Þ ¼ 0; ð9Þ

for the Wess-Zumino models. A more detailed discussion
related to stabilization can be found in [15,26,52,76–82].
For all correction terms, ΛT , Λϕ, and Λz are associated with
the corresponding field stabilization, and they are assumed
to be below the Planck scaleMP. As we discuss in the next
section, due to supersymmetry breaking in Cecotti-type
models, the vacuum expectation value (VEV) of a matter-
like field ϕ is no longer zero, and to avoid the uplifting of
Minkowski vacuum by strong stabilization effects, we
impose the constraint hϕi≲ Λϕ.
One of the features of all the models discussed here is a

high supersymmetry breaking scale. As noted earlier, we
require that all sparticle masses are larger than the infla-
tionary scale given by the inflaton mass with the possible
exception of the gravitino. More specifically, we must
(at least in some cases) generate a hierarchy between
gaugino masses and the gravitino mass. Gaugino masses
are given by

m1=2 ¼
���� 12 eG=2 f̄z

Ref
ðG−1ÞzzGz

���� ≃
���� 12m3=2

f̄z
Ref

����; ð10Þ

where G ¼ K þ log jWj2 is the Kähler function, fαβ ¼
fδαβ is the gauge kinetic function, fαβFα

μνFβμν. In the case
of a strongly stabilized Polonyi field, we can write
f ¼ f0 þ f1z=Λz, where f0 ∼ 1=g2 is related to the gauge
coupling, and the VEV of z is proportional to Λ2

z=MP ≪
MP (see below). Then f̄z=f ¼ fz=f ∼ g20f1=Λz, and the
gaugino mass is m1=2 ∼ g20f1m3=2MP=Λz ≫ m3=2. Scalar
masses may then receive contributions from gaugino loops
so that m2

0 ∝ m2
1=2=16π

2 [27].

III. MODELS OF LEPTOGENESIS

Before we discuss leptogenesis in the context of the two
inflationary paradigms, we first review some of the general
formalism for generating a baryon asymmetry from a
lepton asymmetry induced by the out-of-equilibrium decay
of a heavy right-handed neutrino. For the most part, we
concentrate on nonthermal leptogenesis [67]. We begin
with the introduction of right-handed neutrinos and their
role in the seesaw mechanism for generating neutrino
masses. Later, we will associate one of the right-handed

neutrinos with a fermionic partner of the inflaton [16]. We
then give the basic formulae for generating a lepton
asymmetry from the decays of right-handed neutrinos
and its subsequent conversion to a baryon asymmetry
through sphaleron interactions.

A. The seesaw mechanism

We begin our discussion by recalling the general features
of the seesaw mechanism [69,83]. We introduce three
generations of heavy right-handed neutrinos, that will
produce a lepton asymmetry and generate the masses of
the light neutrinos via the seesaw mechanism. In this case,
the new terms in the Lagrangian are given by

L ⊃ −yiαN̄iLαHu −
1

2
N̄c

iMiNi þ H:c:; ð11Þ

where α ¼ e; μ; τ, i ¼ 1; 2; 3, and the Yukawa couplings
are given by a 3 × 3 matrix y. For simplicity, we assume
that the right-handed neutrino mass matrix M is diagonal.3

To obtain the Dirac mass matrix via the seesaw mechanism,
we use the following expression [69]:

Mν ¼ mT
DM

−1mD; ð12Þ

where M−1 is the inverse of the diagonal right-handed
neutrino mass matrix, and mD ¼ yhHui, where hHui ¼
v sin β with v ¼ 174 GeV. The left-handed neutrino
masses are obtained by diagonalizing the mass matrix
Mν (12) with the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix U,

diagfmν1 ; mν2 ; mν3g ¼ UTMνU: ð13Þ

If we integrate out the heavy right-handed neutrinos, the
left-handed neutrino masses become

ðMνÞαβ ¼
X
i

yiαyiβ
hHui2
Mi

: ð14Þ

For the consideration of nonthermal leptogenesis, we
assume the following mass hierarchy: 2M1 ≲m ≪ M2;
M3, where m ≃ 3 × 1013 GeV is the inflaton mass, so that
lepton asymmetry will be primarily generated by the decays
of the lightest right-handed neutrino N1.

4

3Even if we do not assume that the right-handed neutrino
matrix M is diagonal, we can always diagonalize it by introduc-
ing a unitary matrix UR.

4Even if N2 and N3 are also lighter than the inflaton and can be
produced by inflaton decay, the following argument does not
change drastically, as they generate the asymmetry in the same
manner as N1. Therefore, in the following argument, we assume
that only N1 among the three can be produced by the inflaton
decay for the sake of simplicity.
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If we assume that the dominant contribution to the
Yukawa matrix y comes from the entry y3τ ≡ y3, the seesaw
formula (14) leads to the following mass eigenvalue:

mν3 ≃
jy3j2hHui2

M3

; ð15Þ

which corresponds to the heaviest left-handed neutrino in
the normal hierarchy. Thus, we have implicitly assumed
that the neutrino mass matrix is nearly block diagonal (the
flavor mixing terms are small) and that jy3j2=M3 is the
largest entry.
Analogously, we can consider the case when largest

entry in the Yukawa matrix y is y2μ ≡ y2, which leads to

mν2 ≃
jy2j2hHui2

M2

: ð16Þ

For a normal hierarchy (NH) of the left-handed neutrinos,
their masses are expressed as [84]

mν2 ≃ 0.0086 eV; mν3 ≃ 0.0506 eV; ð17Þ

and mν1 is very light. For inverted hierarchy (IH), the
neutrino masses are given by

mν1 ≃ 0.0497 eV; mν2 ≃ 0.0504 eV; ð18Þ

where mν3 is very light.

B. Lepton asymmetry from heavy
Majorana neutrino decays

When the heavy right-handed Majorana neutrinos decay
into leptons and Higgs bosons or their antiparticles, the
lepton number is violated. The lepton asymmetry ϵ is
generated by the interference between one-loop and tree
diagrams of the following out-of-equilibrium decays of the
lightest right-handed neutrino N1:

N1 → Lα þHu

N1 → L̄α þ H̄u: ð19Þ

For our models of nonthermal leptogenesis, we assume
2M1 ≲m ≪ M2;3, where m ≃ 3 × 1013 GeV is the mass of
the inflaton. The expression for the CP asymmetry is given
by [85,86]

ϵ≡ ΓN1→LαHu
− ΓN1→L̄αH̄u

ΓN1→LαHu
þ ΓN1→L̄αH̄u

≃
1

8π

1

ðyy†Þ11
X
j¼2;3

Imðyy†Þ21j · f
�
M2

j

M2
1

�
; ð20Þ

where

fðxÞ ¼ ffiffiffi
x

p �
1

1 − x
þ 1 − ð1þ xÞ ln

�
1þ x
x

��
: ð21Þ

For x ≫ 1, we use the approximation fðxÞ ≃ −3=2
ffiffiffi
x

p
, and

the CP asymmetry parameter (20) becomes

ϵ ≃ −
3

16π

1

ðyy†Þ11

�
Imðyy†Þ212

M1

M2

þ Imðyy†Þ213
M1

M3

�
: ð22Þ

If we consider the case when y3τ ¼ y3 is significantly larger
than other entries in the Yukawa matrix y and y1τ ≫ y1e,
y1μ, we may neglect the Imðyy†Þ212 entry in (22) and write
Imðyy†Þ213 ≃ jy1τj2jy3τj2 sin2ðθ − ϕÞ and ðyy†Þ11 ≃ jy1τj2,
where we have introduced the phases θ and ϕ as y1τ ¼
jy1τjeiθ and y3τ ¼ jy3τjeiϕ. Then, we define the effective
CP-violating phase δeff ≡ sin2ðθ − ϕÞ, where 0 ≤ δeff ≤ 1,
and express the CP asymmetry parameter (22) as

ϵ ≃ −
3δeff jy23j
16π

M1

M3

; ð23Þ

and the CP-violating phase is given by

δeff ¼
1

jy3j2
Imðyy†Þ213
ðyy†Þ11

: ð24Þ

Similarly, we can assume that y2μ ¼ y2 is the largest
entry in the Yukawa matrix y, and then CP asymmetry
parameter (22) becomes

ϵ ≃ −
3δeff jy22j
16π

M1

M2

: ð25Þ

If we then use the seesaw expression (15) or (16), we find

ϵ ≃ −
3δeff
16π

·
mνiM1

v2sin2β
; ð26Þ

where i ¼ 2; 3 for normal hierarchy, and analogously, we
can find the CP asymmetry parameter (26) for inverted
hierarchy, with i ¼ 1; 2.
Equation (26) can be used to calculate the lepton

asymmetry generated by the out-of-equilibrium decays
of lightest right-handed neutrino N1, and similar models
were discussed in [87–91]. In the next section, we discuss
how a lepton asymmetry is converted to a baryon asym-
metry by sphaleron transitions.

C. Production of baryon asymmetry

We briefly discuss the mechanism which converts a
lepton asymmetry into a baryon asymmetry via electroweak
sphaleron interactions [70]. At high temperatures, the
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combination of a baryon and lepton number Bþ L is
violated, while the anomaly free parameter B − L remains
conserved. Sphaleron interactions are in equilibrium in the
temperature range between 100 GeV and 1012 GeV, and
they convert a fraction of a nonzero B − L asymmetry into
a baryon asymmetry [71],

YB ≃ aYB−L; ð27Þ

where YB ¼ nB=s, YB−L ¼ nB−L=s, and

a ¼ 8NF þ 4NH

22NF þ 13NH
; ð28Þ

where NF is the number of fermion generations and NH is
the number of Higgs doublets. In our case, we have
NF ¼ 3, NH ¼ 1, and a ¼ 28=79. In leptogenesis, where
purely a lepton asymmetry is generated, B − L ¼ −L.
For models of nonthermal leptogenesis, we impose the

constraint M1 > TRH
5 (the right-handed neutrino N1 must

be heavier than the reheating temperature TRH), and lepton
asymmetry is produced through the out-of-equilibrium
decay of the lightest right-handed neutrino N1. In this
case, we acquire the following expression for lepton
asymmetry:

YL ≡ ϵ
nN1

s
; ð29Þ

and if we relate it to the baryon asymmetry number using
Eq. (27), we find

YB ≃ −aϵ
nN1

s
: ð30Þ

If we combine the expressions (26) and (28) with (30), and
assume that for high-scale supersymmetry models we have
tan β ≃ 1, we obtain the following expression for the
baryon asymmetry:

YB ≃ 7 × 10−5δeff
nN1

s

�
mνi

0.05 eV

��
M1

1012 GeV

�
;

where i ¼ 2; 3: ð31Þ

Finally, the baryon asymmetry of the Universe is given
by the most recent Planck data constraints [13],

ηB ¼
nB−nB̄

nγ
≃ 6.12× 10−10; YB≃ 8.7× 10−11: ð32Þ

IV. CECOTTI-TYPE MODELS OF INFLATION

We begin by considering the inflationary models where
the inflaton is associated with the volume modulus T. In
particular, we consider the superpotential form WC, given
by Eq. (3). However, for Cecotti-type models, one cannot
introduce a constant term in the superpotential, because it
shifts the original minimum to a new supersymmetry
preserving the anti–de Sitter (AdS) vacuum [20,26].
Therefore, we introduce a Polonyi sector and consider
the Kähler potential form (7) with the superpotential
WC þWP, where WP is given by Eq. (5).
The addition of a Polonyi sector shifts the scalar

potential minimum to a new vacuum with broken super-
symmetry. In the absence of superpotential WC, the
strongly stabilized Polonyi potential has a minimum at
hzi ≃ Λ2

z=2
ffiffiffi
3

p
, where we have omitted the higher-order

terms in Λz. If we choose a constant b ≃ 1=
ffiffiffi
3

p
, we obtain a

vanishing vacuum energy density V ¼ 0.
When we consider the superpotential combination

WC þWP, the VEVs of the fields T, ϕ, and z shift.
However, the VEVs of the shifted fields will depend on
whether the parameter Δ≡ m̃=m > 1=2 or Δ < 1=2. For
the latter case, the supersymmetry breaking Minkowski
minimum V ¼ 0 is located at

hTi ¼ 1

6
ð4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Δ2

p
Þ; ð33aÞ

hϕi ¼ �
�
1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Δ2

p �
1=2

; ð33bÞ

hzi ¼∓ Λ2
z

6
ffiffiffi
6

p
Δ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Δ2

p
Þ1=2; ð33cÞ

b¼�
ffiffiffi
6

p

18Δ

�
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4Δ2

p 	�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4Δ2

p 	
1=2

; ð33dÞ

where the higher-order terms in Λz have been omitted.
For small values of Δ, the VEVs (33a)–(33d) can be
expanded to

hTi ≃ 1

2
þ Δ2

3
; hϕi ≃�Δ;

hzi ≃� Λ2
z

6
ffiffiffi
3

p ; b ≃� 1ffiffiffi
3

p ∓ Δ2

6
ffiffiffi
3

p ; ð34Þ

which agrees with the previous results [26,27]. One can see
from Eqs. (33a)–(33d) that the largest possible value is
Δ ¼ 1=2, and larger values of the parameter Δ lead to a
positive vacuum energy density of order m̃2Λ2

z. However, if
we modify the Cecotti superpotential (3), it is possible to
accommodate the values Δ > 1=2, and we discuss this
possibility in Sec. IV B.

5To preserve the lepton asymmetry, we require that the lepton
number violating interaction, which is characterized by an
operator y2LLHuHu=M, remains out-of-equilibrium when spha-
leron transitions are in thermal equilibrium. It was shown in [92],
that for high-scale supersymmetry models, we must satisfy the
constraint M=jyj2 > 1013.5, or mν < 0.5 eV.
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Using the vacuum expectation values (33a)–(33d), we
consider two separate Cecotti-type models: C-1 models,
where the gravitino is lighter than the inflaton, m3=2 < m,
and C-2 models, where the gravitino is heavier than the
inflaton, m3=2 > m.

A. C-1 models

For C-1 models, the gravitino plays the role of the dark
matter candidate, and all other sparticles are taken to be
heavier than the inflaton field [27]. It was shown in the
previous section that C-1 models are valid when Δ ¼ffiffiffi
3

p
m3=2=m < 1=2, or m3=2 < m=2

ffiffiffi
3

p
, which shows that

the gravitino is lighter than the inflaton.
We begin by considering the relevant supergravity

Lagrangian for the scalar fields,

L ¼ −Gij̄∂μϕ
i∂μϕj̄ − V; ð35Þ

where V is the effective scalar potential generated by F-
term contributions, and we defined the Kähler function as
G ¼ K þ lnW þ ln W̄. From the Kähler potential form (7)
and the Lagrangian (35), we find that the canonically
normalized fields are expressed as

T ¼ 1

2

�
e

ffiffi
2
3

p
TR þ i

ffiffiffi
2

3

r
TI

�
; ð36Þ

ϕ ¼ 1ffiffiffi
2

p ðϕR þ iϕIÞ; ð37Þ

z ¼ 1ffiffiffi
2

p ðzR þ izIÞ; ð38Þ

where TR is the inflaton. Then, if we assume that Δ ≪ 1
and neglect the higher-order contributions, we obtain the
following masses for the canonically normalized fields:

m2
S1R

≃
�
1þ Δffiffiffi

3
p

�
m2; mS1R ≃

�
1þ Δ

2
ffiffiffi
3

p
�
m; ð39aÞ

m2
S2R

≃
�
1 −

Δffiffiffi
3

p
�
m2; mS2R ≃

�
1 −

Δ
2

ffiffiffi
3

p
�
m; ð39bÞ

m2
S1I

≃
�
1 −

Δffiffiffi
3

p
�
m2; mS1I ≃

�
1 −

Δ
2

ffiffiffi
3

p
�
m; ð39cÞ

m2
S2I

≃
�
1þ Δffiffiffi

3
p

�
m2; mS2I ≃

�
1þ Δ

2
ffiffiffi
3

p
�
m; ð39dÞ

m2
zR ≃ 12m2

Δ2

Λ2
z
; mzR ≃ 2

ffiffiffi
3

p
m

Δ
Λz

; ð39eÞ

m2
zI ≃ 12m2

Δ2

Λ2
z
; mzI ≃ 2

ffiffiffi
3

p
m

Δ
Λz

; ð39fÞ

m3=2 ≃m
Δffiffiffi
3

p ; ð39gÞ

where the eigenstates S1;2R correspond to equal mixtures of
the real states TR and ϕR, and the eigenstates S1;2I
correspond to equal mixtures of the imaginary states TI
and ϕI, given by

S1R ≃
1ffiffiffi
2

p ðTR − ϕRÞ; S2R ≃
1ffiffiffi
2

p ðTR þ ϕRÞ; ð40Þ

S1I ≃
1ffiffiffi
2

p ðTI − ϕIÞ; S2I ≃
1ffiffiffi
2

p ðTI þ ϕIÞ: ð41Þ

It is important to note that the Polonyi field mixing with
fields TR;I and ϕR;I was neglected. In order to ensure that
the entropy production from the Polonyi sector is suffi-
ciently small [82], and to avoid the production of the
particles zR;I from the inflaton decays, we assume that
2

ffiffiffi
3

p
Δ≲ Λz ≲ 10−2.

Next, we consider the Lagrangian terms for the left-
handed chiral fermions χL, given by

L ⊃ −gij̄χ̄iLDχ j̄L −
�
1

2
mijχ̄

i
Lχ

j
L þ H:c:

�
; ð42Þ

with

gij̄ ¼ Gij̄ −
1

3
GiGj̄; ð43Þ

mij ¼ Gij þ
1

3
GiGj − Γk

ijGk; ð44Þ

where we subtracted the Goldstino mode. Here, we defined,
Gi ¼ ∂G=∂ϕi and Gij ¼ ∂2G=∂ϕi∂ϕj, where ϕi is the
scalar partner of χiL, and Γk

ij are the Christoffel symbols (for
a more detailed discussion, see [93]). It should be noted that
in general gij̄ is not the identity matrix, and relevant fields
should be canonically normalized. In our case, the
Goldstino is identified with the fermionic partner of the
Polonyi field z, and the physical masses of the remaining
fermions are given by

mχ1 ≃
�
1þ ΔΛ2

z

18
ffiffiffi
3

p
�
m; ð45Þ

mχ2 ≃
�
1 −

ΔΛ2
z

18
ffiffiffi
3

p
�
m: ð46Þ

As in the scalar field case, the fermion mass eigenstates are
a mixture of eigenstates χT and χϕ, which are related to χ1
and χ2 by
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χ1 ≃
1ffiffiffi
2

p ðχT þ χϕÞ; χ2 ≃
1ffiffiffi
2

p ðχT − χϕÞ: ð47Þ

Although the states S1R and S2I are heavier than the
scalar states S2R and S1I or the fermion states χ1;2, the
decays to lighter states are kinematically forbidden. For
example, if we would consider the decay channel of the
state S1R into a fermion χ1;2 and a gravitino, the mass
splitting of the states is smaller than the gravitino mass,
i.e., mS1R −mχ1;2 ≃m3=2=2, and the decay is kinematically
forbidden [38,94]. Finally, we show the mass spectrum for
model C-1 in Fig. 1.

B. C-2 models

For C-2 models, the inflaton decay does not produce
gravitinos because the gravitino mass is heavier than the
inflaton, m3=2 > m, and we need to consider a different
dark matter candidate. In this paper, we mostly focus on
inflation and leptogenesis, and studies related to different
dark matter candidates are left for future work.
If we look at the VEVs of fields T, ϕ, and z, given

by Eqs. (33a)–(33d), we see that viable models with
Minkowski vacua impose the constraint Δ < 1=2.
However, this constraint can be avoided if we modify
the superpotential (3). For example, consider the super-
potential,

WC ¼
ffiffiffi
3

p
mϕ

�
T −

1

2
þ gϕ2

�
; ð48Þ

where we introduced the term gϕ2. Because we dynami-
cally stabilize a matterlike field to ϕ ¼ 0 during inflation,
the additional term in (48) does not affect the inflationary
potential. The introduction of a new term alters the
solutions for the field VEVs, which become

hTi ¼ 4 − 63gþ ð9g − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Δ2ð1 − 18gÞ

p
6 − 108g

; ð49aÞ

hϕi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Δ2ð1 − 18gÞ

p
2ð1 − 18gÞ

s
; ð49bÞ

hzi ¼ �
Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Δ2ð1 − 18gÞ

pq
6

ffiffiffi
6

p
Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 18g

p ; ð49cÞ

b¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4Δ2ð1−18gÞ

pq
ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4Δ2ð1−18gÞ

p
Þ

3
ffiffiffi
6

p
Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−18g

p :

ð49dÞ

In the limit, g → 0, we recover the solutions (33a)–(33d),
given for the model C-1. However, when Δ > 1=2, we see
from Eqs. (49a)–(49d), that in order to maintain the real
values for the shifted VEVs, we must satisfy the following
constraints on g:

1 − 18g ≥ 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Δ2ð1 − 18gÞ

q
≥ 0: ð50Þ

We find the following inequality for the constant g:

g ≥
1

18
−

1

72Δ2
; ð51Þ

which for large values of Δ can be approximated to
g ≃ 1=18. In most cases to obtain a viable solution with
a Minkowski vacuum at the minimum, we will need to
choose a value of g, which is very close to the upper bound
g ≃ 1=18; otherwise, the potential is uplifted resulting in a
positive vacuum energy density.
To obtain a viable model with Δ > 1=2, we need to

introduce a shift in the stability correction in the Kähler
potential,

K ¼ −3 ln
�
T þ T̄ −

jϕj2
3

−
jzj2
3

þ jzj4
Λ2
z
þ jϕ − Δj4

Λ2
ϕ

�
; ð52Þ

where the dynamical stabilization now occurs around the
shifted VEV of hϕi ¼ Δ rather than about hϕi ¼ 0.
However, due to complexity of the model, it cannot be
solved analytically, and we analyze it numerically. We
consider a concrete example with Δ ¼ 2, and choose the
following parameters for our numerical study:

g ¼ 0.05315 ≃
1

18
; Λ2

z ¼ Λ2
ϕ ¼ 0.1: ð53Þ

If we use Eqs. (49a)–(49d) with (53), we find

hTi≃1.20; hϕi≃2; hzi≃0.11; b≃0.56: ð54Þ

FIG. 1. Mass spectrum of model C-1.
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To find the canonically normalized field TR, which drives
inflation, we use Eq. (36), and we find that the VEV of
canonically normalized field is given by hTRi ≃ 1.07. In
Figs. 2 and 3, we plot the Starobinsky-like inflationary
potential for a case corresponding to C-2 with Δ ¼ 2.
Figure 2 shows the effective scalar potential V as a function
of fields TR and ϕ. The Starobinsky-like inflationary plot
with fixed value of hϕi ≃ 2 is shown in Fig. 3.
Next, we find the relevant scalar and fermion masses for

our particular example. The scalar masses are given by

mTR
≃m; ð55aÞ

mTI
≃m; ð55bÞ

mϕR
≃ 22.59m; ð55cÞ

mϕI
≃ 21.84m; ð55dÞ

mzR ≃ 49.21m; ð55eÞ

mzI ≃ 49.23m; ð55fÞ

where, in this case, we no longer have maximal mixing
between the fields TR and ϕR or TI and ϕI . If we eliminate
the Goldstino mode from the spectrum, which, in this case,
is a mixture of the fermion fields χT , χϕ, and χz, given by

η ≃ −2.03χT þ 2.43χϕ þ 0.48χz; ð56Þ

we find the following fermion masses:

mχ1 ¼ 2.82m; ð57Þ

mχ2 ¼ 1.39m: ð58Þ

Because of the substantial shifts in the VEVs given in
Eqs. (49a)–(49d) due to large Δ, we can no longer simply
approximatem3=2 ¼ mΔ=

ffiffiffi
3

p
. Instead, we find numerically

that the gravitino mass is given by

m3=2 ≃ 3.94m; ð59Þ

where as expected for C-2 models, we have m3=2 > m.
Finally, we show the mass spectrum for this particular

example of the model C-2 in Fig. 4.

FIG. 2. Realization of the Starobinsky-like inflationary poten-
tial in the model C-2 for Δ ¼ 2. The minimum of the potential is
located at hTRi ≃ 1.07 and hϕi ≃ 2.

FIG. 3. Realization of the Starobinsky-like inflationary poten-
tial in the model C-2 for Δ ¼ 2 when a matterlike field is fixed
to hϕi ≃ 2.

FIG. 4. Mass spectrum of the model C-2. In this scenario, TR is
identified as the inflaton, and mTR

≃m < m3=2.

INFLATION AND LEPTOGENESIS IN HIGH-SCALE … PHYS. REV. D 101, 015002 (2020)

015002-9



V. LEPTOGENESIS IN CECOTTI-TYPE MODELS

In this section, we study Cecotti-type models of non-
thermal leptogenesis for high-scale supersymmetry.
Despite the differences in their spectra, leptogenesis in
both types of models, C-1 and C-2, is the same. Of course,
in C-1, the gravitino may be the dark matter produced
during reheating or direct decays, while in C-2, an addi-
tional dark matter candidate must be introduced.
For Cecotti-type models, reheating proceeds via the

gravitational coupling of the inflaton TR to Higgs bosons,
and its decay rate is given by [26,27,55,56]

Γ2h ¼
μ4

12πmM2
P
≡ λ2

8π
m; ð60Þ

where we define a Yukawa-like coupling λ≡
ffiffi
2
3

q
μ2

mMP
. We

also took into account the fact that for high-scale super-
symmetry models, the Higgs boson has 4 degrees of
freedom. The reheating temperature is expressed as [27]

TRH ≃
�

40

g�π2

��
Γ2hMP

c

�
1=2

; ð61Þ

where g� ¼ 427=4 is the effective degrees of freedom
of the Standard model, and c ≃ 1.2. We can also
express the reheating temperature (61) in terms of the
coupling λ as TRH ≃ 0.5ðλ=2πÞ ffiffiffiffiffiffiffiffiffiffiffi

mMP
p

, and the maximal
temperature attained during reheating is given by
Tmax ≃ 0.5ð8π=λ2Þ1=4TRH.
It was shown in [27,56] that to obtain the correct dark

matter relic density, we require the μ term to be in the range
of m≲ μ ≃ 3 × 1013–1015 GeV, which we also expect
from the fact the Higgsino mass parameter should lie
above the inflaton mass in high-scale supersymmetry
models. We then express the reheating temperature (61) as

TRH≃7.73×1010GeV

�
μ

1014GeV

�
2
�

m
3×1013GeV

�
−1=2

:

ð62Þ

The relic density of gravitinos is dependent on the reheat
temperature and, through Eq. (62), on μ. As noted earlier,
there are two contributions to the gravitino relic density. It
is produced thermally by the annihilations of Standard
Model particles and directly through inflaton decays. The
annihilations depend on T7

RH [27,54–56,63] and hence, on
μ14. Inflaton decays may also produce a sizeable contri-
bution to the gravitino density. Tree level decays are
suppressed for small Λz, but decays through Higgs loops
are always present and in fact, dominate over the annihi-
lations when m3=2 ≲ 0.1m [56]. The gravitino abundance
through decays depends linearly on TRH ∝ μ2, which has

also a weak (logarithmic) dependence of the branching
ratio on μ [56].
In the case of nonthermal leptogenesis, we must satisfy

the constraint TRH ≲M1, and if we assume the lower bound
of the μ term, given by μ ≃m ≃ 3 × 1013 GeV, we obtain

M1 ≳ 7 × 109 GeV: ð63Þ

We begin our analysis by considering the following
addition to the superpotential, which characterizes the see-
saw mechanism and leptogenesis in Cecotti-type models:

W ⊃ yiαNiLαHu þ
1

2
NiMiNi; ð64Þ

where i ¼ 1; 2; 3, α ¼ e; μ; τ, and y is the Yukawa coupling
matrix, where for simplicity, we have assumed that the right-
handed neutrino mass matrixM is diagonal. We assume the
mass hierarchy 2M1 < m ≪ M2;M3, and in all cases thatwe
consider, the decays of the lightest right-handed neutrinoN1

will be responsible for the dominant contribution to the
generation of the lepton asymmetry.
Next, we also consider the two-body decay channel of

the inflaton to the lightest of the right-handed neutrinos,
which can be calculated from the superpotential (64), and is
given by [26]

Γ2N1
¼ M2

1m
192πM2

p

�
1 −

4M2
1

m2

�
3=2

; ð65Þ

where we included the kinetic factor ð1 − 4M2
1=m

2Þ3=2 to
account for cases when 2M1 ≲m. Most importantly, this
decay channel will be responsible for the nonthermal
production of the lightest right-handed neutrinos, which
then decay into leptons and Higgs bosons, and produce a
lepton asymmetry. Because our inflaton mass is m ≃ 3 ×
1013 GeV and μ≳m, the decay channel to Higgs bosons is
the dominant channel, and Γ2h ≫ Γ2N1

. The branching ratio
of the two decay channels is given by

BR ¼ Γ2N1

Γ2h
≃
M2

1m
2

16μ4

�
1 −

4M2
1

m2

�
3=2

≲ 10−3: ð66Þ

It is important to note that we assume that the lightest right-
handed neutrino N1 decays instantaneously to leptons and
Higgs bosons. As such, we must require ΓLαh > Γ2N1

,
which will be justified at the end of this section.
In order to obtain the number density of the lightest

right-handed neutrinos nN1
, we assume noninstantaneous

reheating. In this case, we find [56]

nN1
ðTRHÞ ¼

g�π2

18m
T4
RHNBR; ð67Þ

where N is the number of the lightest right-handed
neutrinos N1 produced by the inflaton TR decay, which

KANETA, MAMBRINI, OLIVE, and VERNER PHYS. REV. D 101, 015002 (2020)

015002-10



is N ¼ 2 in our case, and BR is the branching ratio of the
inflaton to right-handed neutrino decay, given by (66). The
ratio of the number density of N1 to entropy is

nN1

s
≃
5mM2

1TRH

32μ4

�
1 −

4M2
1

m2

�
3=2

; ð68Þ

where the entropy density is s ¼ 2π2

45
g�T3.

To obtain the baryon asymmetry, we can use Eqs. (68)
and (31) and find

YB ≃ 2.5× 10−13δeff

�
μ

1014 GeV

�
−2
�

mνi

0.05 eV

�

×

�
M1

1012 GeV

�
3
�

m
3× 1013 GeV

�
1=2

�
1−

4M2
1

m2

�
3=2

;

ð69Þ

where i ¼ 2; 3 for the normal hierarchy given by Eq. (17),
and i ¼ 1; 2 for the inverse hierarchy given by Eq. (18).
Therefore, if we use the observationally determined value
for the baryon asymmetry YB ≃ 8.7 × 10−11, we obtain the
following constraint:

δ1=3eff

�
μ

1014 GeV

�
−2=3

�
mνi

0.05 eV

�
1=3

�
M1

1012 GeV

�

×

�
m

3 × 1013 GeV

�
1=6

�
1 −

4M2
1

m2

�
1=2

≃ 7: ð70Þ

This constraint is used in Fig. 5 to find the allowed values μ,
M1, and δeff , that can accommodate the observed value of
baryon asymmetry YB for fixed m ¼ 3 × 1013 GeV and
mν3 ≃ 0.05 eV. For each pair of points (M1; μ), the shading
corresponds to the required value of δeff to obtain the
correct baryon asymmetry. An analogous plot using mν2 ≃
0.0086 eV is shown in Fig. 6.
We see from these figures that there is a maximum value

of μ ≲ 1.1 × 1014 GeV (4.6 × 1013 GeV) using mν3 (mν2)
in Eq. (70). It is rather amazing that the range of μ required
to obtain the correct baryon asymmetry coincides with the
value of μ needed to obtain the correct relic density of
gravitino dark matter in C-1 type models (recall, there is no
gravitino dark matter in C-2 models).
In the case of the inverted hierarchy of the left-handed

neutrinos, using Eq. (18), the limits in the (M1; μ; δeff )
parameter space are very similar to the results shown in
Fig. 5 because IH neutrino masses are very close to mν3 ≃
0.05 eV in the NH.

FIG. 5. Range of right-handed neutrino masses M1 and the μ term satisfying the baryon asymmetry YB ≃ 8.7 × 10−11, with mν3 ≃
0.05 eV in the models C-1 or C-2. The red-dashed line corresponds to limit of maximal CP-violating phase δeff .
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In order to ensure that the lightest right-handed neutrino
decays immediately out-of-equilibrium, we need to satisfy
the constraint ΓLαh > Γ2N1

. The decay rate of the lightest
right-handed neutrino N1 is given by

ΓLαh ¼
ðyy†Þ11
4π

M1 ≡ jy1j2
4π

M1 ¼
mν1M

2
1

4πv2sin2β
; ð71Þ

where we have included decays to Lαh and L̄αh̄ and we
denoted the dominant contribution of ðyy†Þ11 ≃ jy1j2. If we
now compare the decay rate (71) to the inflaton decay rate
into the right-handed neutrinos (65), we find

mν1 ≳ 1.6 × 10−12 eV; ð72Þ

which is clearly easily satisfied.

VI. WESS-ZUMINO-TYPE MODELS
OF INFLATION

In this section, we consider models based on the Wess-
Zumino superpotential (4); supersymmetry breaking is
most easily attained by simply adding a constant, m̃, to

the superpotential, giving m3=2 ¼ m̃. Indeed if the constant
is promoted to a Polonyi term in W, then the inflationary
potential is affected, and it becomes difficult to maintain a
flat potential at large field values [21,26,27] with high-scale
supersymmetry breaking.
In the absence of a Polonyi term, using only a constant

term in W, supersymmetry breaking is generated by an F
term for T. Gaugino masses are given by Eq. (10) upon
replacing z → T. However, in this case, because the VEVof
T is of the order of the Planck scale MP, even if we write
f ¼ f0 þ f1T=ΛT , if ΛT ≪ hTi, we are inevitably led to
m1=2 ∼m3=2 since we must require f1hTi=ΛT≲ð1=g2Þ.
Thus, there is no simple way to realize a high-scale super-
symmetry model with m1=2 ∼m0 > m > m3=2. Therefore,
we no longer consider WZ-1 models with m3=2 < m.
For WZ-2 models with m3=2 > m, the above problems

are no longer present, as we can again break super-
symmetry with a constant superpotential term, with m1=2∼
m0 ∼m3=2 > m. The constant term m̃, which breaks
supersymmetry, does not shift the minimum, and at the
end of inflation, we are left with hTRi ¼ 1=2, hTIi ¼ 0, and
hϕRi ¼ hϕIi ¼ 0. As in the case of the C-2 models, we can
no longer consider the gravitino as a dark matter candidate.

FIG. 6. Range of right-handed neutrino masses M1 and the μ term satisfying the baryon asymmetry YB ≃ 8.7 × 10−11, with mν2 ≃
0.0086 eV in the models C-1 or C-2. The red-dashed line corresponds to limit of maximal CP-violating phase δeff .
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The mass spectrum for the Wess-Zumino type models is
relatively simple. Both the real and imaginary parts of the
inflaton have a common mass,

m2
ϕR;I

≃m2: ð73Þ

In order to ensure the stability of the potential during
inflation, the T field is dynamically stabilized with the
higher-order terms in Eq. (7). As in the case of the strongly
stabilized Polonyi field, the stabilization of the volume
modulus T results in a mass, which is hierarchically higher
than the gravitino mass,

m2
TR

≃
48m2

3=2

Λ2
T

; m2
TI
≃
48d2m2

3=2

Λ2
T

; ð74Þ

where the constant d was define in Eq. (9). As we start with
only two superfields in this case, and supersymmetry is
broken, there is only one chiral fermion which is associated
with the inflaton. Namely, the inflatino mass is simply

mχϕ ≃m: ð75Þ

The fermion associated with T is the Goldstino and
becomes the longitudinal component of the gravitino and
m3=2 ¼ m̃. The mass spectrum for WZ-2 is illustrated
in Fig. 7.

VII. LEPTOGENESIS IN WESS-ZUMINO-TYPE
MODELS

A key difference between the Cecotti and Wess-Zumino
models of inflation in no-scale supergravity is the manner
in which the Universe reheats [26]. In models where the

inflaton is associated the volume modulus, T, the inflaton
couples to StandardModel fields (and their supersymmetric
partners). Thus, there are many open decay channels
leading to reheating. In high-scale supersymmetry, as
discussed earlier, the dominant decay mode is the two-
body decay to two Higgs bosons. However, in Wess-
Zumino models, where the inflaton is associated with a
matterlike field ϕ, in the absence of a direct coupling of the
inflaton to Standard Model fields, there are no decay
channels available [26,95]. Reheating in this case typically
relies on a coupling of the inflaton in the gauge kinetic
function which then allows for decays to gauge bosons
(and in the case of low scale supersymmetry, to gauginos)
[26,78,95].
In Wess-Zumino-like models, it is, however, possible to

associate the inflaton with a right-handed sneutrino [16].6

For example, starting with the Wess-Zumino superpotential
(4), we can equate ϕ with N2 (or N3, however, we still
require 2M1 ≲m for leptogenesis, so ϕ can not be N1).
Thus, we consider the superpotential,

W ⊃ −m
�

N3
2

3
ffiffiffi
3

p
�
þ yiαNiLαHu þ

1

2
NiMiNi; ð76Þ

where i ¼ 1; 2; 3. From Eq. (76), we see that there is a
direct coupling of the inflaton to Lα and Hu with Yukawa
coupling y2α. To preserve the form of the Starobinsky
potential, we must require M2 ¼ m. For leptogenesis, we
require a decay of the inflaton to N1 and assume the mass
hierarchy 2M1 ≲m < M3.
In models of weak scale supersymmetry, the Yukawa

coupling of the inflaton to LαHu leads to efficient reheating
after inflation [16]. However, in high-scale supersymmetry
with m̃ > m, the two possible tree level decays
(sleptonþ Higgs, or leptonþ Higgsino) are both kinemat-
ically forbidden. One loop decays to Standard Model fields
are possible, but these are suppressed. It is, however,
possible to introduce a superpotential coupling,

W ⊃ −
1

2
κN2N1N1; ð77Þ

which leads to the following trilinear term in the
Lagrangian:

L ⊃ −κÑ2N1N1 þ H:c:; ð78Þ

FIG. 7. Mass spectrum of the model WZ-2. In this scenario, ϕR
is identified as the inflaton, and mϕR

≃m < m3=2.

6The association of the matterlike field ϕwithN is not possible
in Cecotti-like models. When supersymmetry is broken, ϕ gets a
VEV given by Eq. (33b), which approaches the Planck scale in
high-scale supersymmetric models. This VEV induces a bilinear
R-parity violating term, which induces gravitino decay and is
strongly constrained in order for the gravitino lifetime to remain
sufficiently long [55,92]. This bound translates into yν ≲ 10−21,
thus preventing it in generating a neutrino mass and lepton
asymmetry.
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which leads to the following decay rate for the inflaton to
two lighter right-handed neutrinos:

Γ2N1
¼ κ2m

8π

�
1 −

4M2
1

m2

�
3=2

: ð79Þ

This decay to two right-handed neutrinos, N1, dominates
and is responsible for generating reheating and lepto-
genesis. The reheat temperature is given by Eq. (61) with
the substitution Γ2h → Γ2N1

. We can express the reheating
temperature as

TRH≃6.8×1014 κGeV

�
m

3×1013 GeV

�
1=2

�
1−

4M2
1

m2

�
3=4

:

ð80Þ
Assuming noninstantaneous reheating, the number density
of nN1 is again given by Eq. (67) with N ¼ 2. We find that
the number density to entropy ratio is

nN1

s
¼ 5TRH

2m
≃ 57κ

�
m

3 × 1013 GeV

�
−1=2

�
1 −

4M2
1

m2

�
3=4

;

ð81Þ

and we can express the baryon asymmetry (31) as

YB ≃ 4 × 10−3δeffκ

�
mνi

0.05 eV

��
M1

1012 GeV

�

×

�
m

3 × 1013 GeV

�
−1=2

�
1 −

4M2
1

m2

�
3=4

: ð82Þ

If we connect it to the observed baryon asymmetry of
the Universe, YB ≃ 8.7 × 10−11, we obtain the following
constraint:

δeffκ

�
mνi

0.05 eV

��
M1

1012 GeV

��
m

3 × 1013 GeV

�
−1=2

×

�
1 −

4M2
1

m2

�
3=4

≃ 2.2 × 10−8: ð83Þ

For fixed mν and m, the constraint in Eq. (83) on the
(κ;M1; δeff ) parameter space is plotted in Figs. 8 and 9. For
each pair (M1; κ), the shading determines the required value
of δeff needed to obtain the correct baryon asymmetry. Also
plotted is the boundary for which TRH ¼ M1. For values
of κ above this line, TRH > M1, and one must consider

FIG. 8. CP-violating effective phase δeff as a function of the lightest right-handed neutrino mass M1 and the trilinear coupling κ for
mν3 ≃ 0.05 eV for the model WZ-2. The area below the red-dashed line shows the region when TRH ≲M1, which is necessary for
nonthermal leptogenesis.

KANETA, MAMBRINI, OLIVE, and VERNER PHYS. REV. D 101, 015002 (2020)

015002-14



thermal leptogenesis [96]. As one can see from the figures,
this is a relatively efficient mechanism for generating the
baryon asymmetry, though it does not require particularly
small couplings or phases.
Finally, we compare the decay rate of the lightest right-

handed neutrino N1 with the inflaton decay rate as a check
on its out-of-equilibrium decay. The decay rate for N1

is again given by Eq. (71) and must be compared with
the inflaton decay rate in Eq. (79). Requiring ΓLαh ≳ Γ2N1

,
we find

mν1M
2
1

hHui2
≳ 1

2
κ2m

�
1 −

4M2
1

m2

�
3=2

; ð84Þ

or

mν1 ≳ 230 κ2 eV

�
M1

1012 GeV

�
−2
�
1 −

4M2
1

m2

�
3=2

: ð85Þ

The strongest bound on mν1 is found when κ is set at its
maximum value, which occurs when TRH ¼ M1 or when
M1 ¼ 6.8 × 1014κ GeV. In this case, mν1 ≳ 5 × 10−4 eV.
For fixed M1, values of κ lower than the value needed for

TRH ¼ M1 reduce this lower bound on mν1 . This limit is
always satisfied for the inverted neutrino hierarchy.

VIII. CONCLUSIONS

Viable models of the very early Universe must account
for both inflation and the generation of net baryon
asymmetry. In the models presented here, although both
of these mechanisms were operative near the scale of grand
unification, neither are explicitly dependent on a specific
model of grand unification. Furthermore, while these
models are inherently supersymmetric, supersymmetry is
broken at a scale above the inflationary scale of m ¼
3 × 1013 GeV and aside from the possible role of the
gravitino (if m3=2 < m), supersymmetry does not affect the
low energy behavior of the theory.
The models of inflation we consider are based on no-

scale supergravity. The inflationary sector requires two
chiral superfields [15], which parametrizes a noncompact
SUð2;1Þ

SUð2Þ×Uð1Þ coset manifold. In a particular basis, one of the

fields may be associated with the volume modulus while
the second appears as a matterlike field. Due to the
underlying symmetry of the theory, either of the fields

FIG. 9. CP-violating effective phase δeff as a function of the lightest right-handed neutrino mass M1 and the Yukawa coupling κ for
mν2 ≃ 0.0086 eV for the model WZ-2. The area below the red-dashed line shows the region when TRH ≲M1, which is necessary for
nonthermal leptogenesis.
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can play the role of the inflaton [14,15,18] whose potential
can take the form of the Starobinsky potential [11].
However, once supersymmetry is broken, and couplings
to the Standard Model are introduced, these two classes of
inflationary models appear quite different.
Supersymmetry breaking can be achieved by simply

adding a constant term to the superpotential [26,75], by
introducing a Polonyi sector [74], or in the case of a
matterlike inflaton, by adding a linear term to the super-
potential [21]. We have derived the conditions for which the
inflationary potential allows for inflation in the presence of
high-scale supersymmetry breaking. For modulus-driven
inflation, adding a constant to the superpotential perturbs
the potential in such a way so as to always lead to an AdS
vacuum [26]. Adding a Polonyi sector, preserves the form
of the potential suitable for inflation. This is true indepen-
dent of the scale of supersymmetry breaking m̃, although as
we have shown, for m̃ > m, additional superpotential
couplings are needed. In the case of a matterlike inflaton,
a linear term or a Polonyi sector severely perturbs the
inflationary potential for high-scale supersymmetry break-
ing. In contrast, in this case, adding a constant term allows
an arbitrarily high supersymmetry breaking scale. We have
also derived the mass spectrum in the inflationary/susy
breaking sector when the supersymmetry breaking scale
approaches and exceeds the inflaton mass. We have shown
that there is no inflatino problem in these models.
Reheating in the two classes of inflationary models is

also quite different. The volume modulus couples to all
sectors of the theory, and in the case of high-scale
supersymmetry breaking, final state Higgs bosons are
the dominant decay mode [26,27,55,56]. In contrast, with-
out an explicit superpotential coupling to the Standard
Model, reheating for a matterlike inflaton occurs only if
inflaton couples to the gauge sector through the gauge
kinetic function [26,78,95]. As a consequence, we have
here associated the inflaton with one of the right-handed
sneutrinos.
Subsequent to reheating, we have considered, in detail,

mechanisms for leptogenesis [67]. Assuming the existence
of a right-handed neutrino sector, we have assumed that one
of the Majorana right-handed neutrinos are lighter than the
inflationary scale, M1 ≲m. In the case of modulus-driven
inflation, we have derived the branching ratios for the
production of right-handed neutrinos from inflaton decay
during reheating. Once produced during reheating, the
right-handed neutrinos decay quickly (their decay rate is
faster than their production rate so long as the lightest
left-handed neutrino has mν1 > 3.3 × 10−12 eV) and decay

out-of-equilibrium if TRH < M1. The resulting lepton
asymmetry is then converted to a baryon asymmetry via
sphaleron interactions.
In the case of a matterlike inflaton, we have found that

we must associate one of heavier two right-handed sneu-
trinos with the inflaton. A coupling of the inflaton leads to
decays predominantly into the lightest right-handed neu-
trino, and its out-of-equilibrium decay simultaneously
reheats the Universe and produces the lepton asymmetry.
In this case, the departure from thermal equilibrium
requires mν1 > 10−3 eV.
In both cases of a moduluslike and matterlike inflaton,

we distinguish between a supersymmetry breaking scale in
which the gravitino mass is above or below the inflationary
scale. In both cases, we have derived the mass spectra of
the inflationary/SUSY breaking sectors. When m3=2 < m,
the gravitino may be the dark matter [54]. A hierarchy
between the gravitino mass and the supersymmetry break-
ing scale is possible with the aid of a strongly stabilized
Polonyi sector [76]. Thus it is only possible for modulus-
driven inflation. When m3=2 > m, both types of infla-
tionary models are viable, but a new dark matter candidate
is needed. Integrating such a candidate will be the subject
of future work.
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