
 

Trimaximal TM1 mixing with two modular S4 groups

Stephen F. King* and Ye-Ling Zhou †

School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

(Received 20 September 2019; published 6 January 2020)

We discuss a minimal flavor model with twin modular symmetries, leading to trimaximal TM1 lepton
mixing in which the first column of the tri-bimaximal lepton mixing matrix is preserved. The model
involves two modular S4 groups, one acting in the neutrino sector, associated with a modulus field value
τSU with residual ZSU

2 symmetry, and one acting in the charged lepton sector, associated with a modulus
field value τT with residual ZT

3 symmetry. Apart from the predictions of TM1 mixing, the model leads to a
new neutrino mass sum rule which implies lower bounds on neutrino masses close to current limits from
neutrinoless double beta decay experiments and cosmology.
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I. INTRODUCTION

The discovery of neutrino masses and lepton mixing
opened up a new direction in physics beyond Standard
Model (SM) focused on understanding their theoretical
origin. An elegant possibility remains the classical type-Ia
seesaw mechanism [1–7] involving right-handed neutrinos,
which, after being integrated out, yield the Weinberg
operators HuHuLiLj with Hu ¼ H being the SM Higgs
doublet and Li a lepton doublet of the ith flavour.1 To
explain the observed approximate tri-bimaximal (TBM)
lepton mixing, one has to go beyond the seesaw mechanism
and consider to impose a non-Abelian discrete flavor
symmetry [9,10]. For example, S4 can be used to account
for trimaximal TM1 mixing [11,12], which is imposed by a
residual ZSU

2 symmetry in the neutrino sector and a residual
ZT
3 symmetry in the charged lepton sector.2 However, all

existing realistic models typically involve several flavon
fields with nontrivial vacuum alignments.
Non-Abelian discrete flavor symmetries have been

widely used in models of lepton flavor mixing for decades,
but the nature of non-Abelian discrete flavor symmetry is

still unclear. It might be an effective remnant symmetry
after a continuous non-Abelian symmetry breaking [13–20],
or a fundamental symmetry of spacetime in extra dimen-
sions [21–32]. In the latter case, a non-Abelian discrete
symmetry could either arise as an accidental symmetry of
orbifolding (see [29,33–35] for recent discussion with two
extra dimensions) or as a subgroup of the so-called modular
symmetry. The modular symmetry [36] is an infinite
symmetry of the extradimensional lattice arising from
superstring theory [37,38].3 Indeed, it has been suggested
that a finite subgroup of the modular group, when inter-
preted as a flavor symmetry, might be helpful for an
explanation for lepton mixing [41–43].
Recently, such a finite modular symmetry has been pro-

posed as the direct origin of flavor mixing. In this approach,
Yukawa and mass textures arise not from flavon fields, but
modular forms with even modular weights which are
holomorphic functions of a modulus field [44].4 The com-
plex modulus field τ acquires a vacuum expectation value
(VEV) and eventually determines the flavor structure. The
finite modular groups Γ2 ≃ S3 [46,47], Γ3 ≃ A4 [44,47–52],
Γ4 ≃ S4 [53,54], and Γ5 ≃ A5 [55,56] have been considered,
in which special Yukawa textures are consequences of the
modular forms. Compared with the framework of traditional
flavor model constructions, only a minimal set of flavons (or
no flavons at all) need to be introduced in this framework,5

making such an approach very attractive.
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1An alternative type-Ib seesaw mechanism, yielding the
new Weinberg operators HuH̃dLiLj with H̃d being a charge
conjugated second Higgs doublet with opposite hypercharge,
was proposed in [8] recently.

2We apply the standard convention of the S4 generators S, T,
and U where S2 ¼ T3 ¼ U2 ¼ ðSTÞ3 ¼ ðSUÞ2 ¼ ðTUÞ2 ¼ I [9]
hold.

3Recently, the geometric connection between the origin of the
flavor symmetry due to modular symmetry and that due to
orbifolding with two extra dimensions has been discussed, e.g., in
[39,40].

4Very recently, this approach has been extended to include odd
weight modular forms [45].

5Extensions to flavor mixing in the quark sector are given in
[47,50,57,58].
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For flavor models with finite modular symmetry outlined
above, only one single modulus field τ is usually included,
corresponding to a single finite modular group symmetry
ΓN . It has been pointed out that particular modular forms
at some special values of the modulus VEV preserve a
residual subgroup of the finite modular symmetry. Such an
idea was discussed in [51] where residual symmetries are
considered as subgroups of the modular A4 symmetry.
Making use of two moduli fields with VEVs preserving
different residual symmetries, i.e., Z3 in the charged lepton
sector and Z2 in the neutrino sector, it was shown how
trimaximal TM2 mixing might be realized [51]. A brief
discussion of residual symmetry after the breaking of
modular S4 symmetry has also been given in [54].
In a recent paper [59], two of us extended the formalism

of finite modular symmetry to the case of multiple moduli
fields τJ (J ¼ 1;…M) associated with the finite modular
symmetry Γ1

N1
× Γ2

N2
× � � � × ΓM

NM
. This is motivated by

superstring theory which involves six compact extra
dimensions, suggesting the introduction of three modular
symmetries associated with three different factorized tori in
the simplest compactifications. As an example, we pre-
sented the first consistent example of a flavor model of
leptons with multiple modular S4 symmetries interpreted as
a flavor symmetry. The considered model involved three
finite modular symmetries SA4 , S

B
4 , and SC4 , associated with

two right-handed neutrinos and the charged lepton sector,
respectively, broken by two bi-triplet scalars to their
diagonal subgroup. The low energy effective theory con-
sisted of a single S4 modular symmetry with three inde-
pendent modular fields τA, τB, and τC, which preserve the
residual modular subgroups ZA

3 , ZB
2 , and ZC

3 , in their
respective sectors leading to trimaximal TM1 lepton mix-
ing, in which the first column of the tri-bimaximal mixing
matrix is achieved, in excellent agreement with current
data, without requiring any flavons.
In the present paper, we discuss a simpler model of TM1

lepton mixing via two modular S4 groups, one Sν4 acting in
the neutrino sector, associated with a modulus field value
τSU with residual ZSU

2 symmetry, and one Sl4 acting in the
charged lepton sector, associated with a modulus field
value τT with residual ZT

3 symmetry. The two moduli fields
are assumed to be “stabilized” at these symmetric points,
and there are no other flavons, making the model very
economical and predictive. In particular, it leads to a new
neutrino mass sum rule which implies sizeable neutrino
masses sensitive to neutrinoless double beta decay and
cosmological probes. The main difference between the
present model and the one in [59], is that here we assume
that there are three right-handed neutrinos in a triplet of an
S4, whereas the previous model assumed two right-handed
neutrinos which were S4 singlets. The resulting model here
is very similar to the “semidirect” models of traditional
flavor symmetry. However, the predictions are different due

to the smaller number of parameters, leading to a new and
testable neutrino mass sum rule.
The rest of the paper is organized as follows. In Sec. II,

we first focus on the case of the single finite modular S4
symmetry, with residual symmetry arising from the moduli
stabilizers. We then generalize the results to the case of two
modular S4 groups. In Sec. III, we propose a model based
on Sν4 × Sl4 with two moduli fields, which is broken to a
single diagonal S4 with two independent moduli fields at
low energies, whose stabilizers lead to different remnant
symmetry in the different sectors, which may be used to
enforce trimaximal TM1 mixing with the new neutrino
mass sum rule. Section IV concludes the paper.

II. S4 MODULAR SYMMETRIES

A. A single S4 modular group

The modular group Γ acting on the modulus field τ as
linear fractional transformations

γ∶ τ → γτ ¼ aτ þ b
cτ þ d

; ð1Þ

where the modulus field τ is defined on the upper complex
plane ImðτÞ > 0, a, b, c, and d are integers and satisfy
ad − bc ¼ 1. It is convenient to represent each element of
Γ by a two by two matrix.6 In this way, Γ is expressed as

Γ ¼
��

a b

c d

�
=ð�1Þ; a; b; c; d ∈ Z; ad − bc ¼ 1

�
:

ð2Þ
The modular group is isomorphic to the projective spatial
linear group PSLð2;ZÞ ¼ SLð2;ZÞ=Z2. It has two gen-
erators, Sτ and Tτ, satisfying S2τ ¼ ðSτTτÞ3 ¼ 1. These
generators act on the modulus τ in the following way:

Sτ∶ τ → −
1

τ
; Tτ∶ τ → τ þ 1; ð3Þ

respectively. Representing them by two by two matrices,
we obtain

Sτ ¼
�

0 1

−1 0

�
; Tτ ¼

�
1 1

0 1

�
: ð4Þ

Γ is a discrete but infinite group. By requiring a, d ¼ 1
(mod 4) and b, c ¼ 0 (mod 4), i.e.,

a ¼ 4ka þ 1; d ¼ 4kd þ 1; b ¼ 4kb; c ¼ 4kc;

ð5Þ
where ka, kb, kc, and kd are all integers; we obtain a subset
of Γ labeled as

6Note that it may not be a unitary matrix.
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Γ̄ð4Þ ¼
��

a b

c d

�
∈ PSLð2;ZÞ;

�
a b

c d

�

¼
�
1 0

0 1

�
ðmod 4Þ

�
: ð6Þ

It is also an infinite group. The quotient group Γ4 ¼ Γ=Γð4Þ
is a finite modular group. It is equivalently obtained by
imposing T4

τ ¼ 1. As Γ4 is a subgroup of Γ, its elements can
also be represented as two by two matrices, but the
representation matrices are not unique. Since S4 is the
quotient group Γ=Γð4Þ, with the help of Eq. (5), we know
that any element γ of S4 which can be written as�

a b

c d

�
ð7Þ

is identical to be represented in the form

η

�
4ka þ a 4kb þ b

4kc þ c 4kd þ d

�
; ð8Þ

where the integers ka, kb, kc, and kd satisfy 4kakd þ akd þ
dka ¼ 4kbkc þ bkc þ ckb and η ¼ �1. This is just a
mathematical redundancy. Selecting a different two by
two representation matrix gives no physical difference.
The finite modular group Γ4 is isomorphic to S4, the

permutation group of four objects. In other word, Sτ and Tτ,
which satisfy S2τ ¼ ðSτTτÞ3 ¼ T4

τ ¼ 1, can be used as gen-
erators of S4. In the literature of flavor symmetry studies, it
is more popular to use a different set of generators, S, T,
and U, which satisfy S2 ¼ T3 ¼ U2 ¼ ðSTÞ3 ¼ ðSUÞ2 ¼
ðTUÞ2 ¼ 1, to generate S4. These generators can be
represented by Sτ and Tτ as

T ¼ SτTτ; S ¼ T2
τ ; U ¼ TτSτT2

τSτ: ð9Þ
With the requirement τ ¼ τ þ 4, S, T, and U can be
represented by two by two matrices such as

T ¼
�

0 1

−1 −1

�
; S ¼

�
1 2

0 1

�
; U ¼

�
1 −1
2 −1

�
:

ð10Þ
Again, we mention that representation matrices of these
elements are not unique. Different representation matrices
are obtained by considering the correlation between
Eqs. (7) and (8). We also list a two by two matrix for
SU ¼ SτTτSτT−1

τ Sτ,
7

SU ¼
�−1 −1

2 1

�
: ð11Þ

This generator is important for the trimaximal TM1 mixing
in the classical flavor model building (see, e.g., [12]) and
will also be used for our model construction in the next
section.
In the framework of N ¼ 1 supersymmetry with the S4

modular symmetry, the superpotential Wðϕi; τÞ is in gen-
eral a function of the modulus field τ and superfields ϕi.
Under the modular transformation, the superpotential
should be invariant [37]. Expanding the superpotential
Wðϕi; τÞ in powers of the superfields ϕi, we obtain

Wðϕi; τÞ ¼
X
n

X
fi1;…;ing

X
IY

ðYIYϕi1 � � �ϕinÞ1; ð12Þ

where YIY represents a collection of coefficients of the
couplings. The chiral superfield ϕi, as a function of τ (but
does not need to be a modular form), transforms as [37]

ϕiðτÞ → ϕiðγτÞ ¼ ðcτ þ dÞ−2kiρIiðγÞϕiðτÞ; ð13Þ

where −2ki (with ki being an integer) is the modular weight
of ϕi, Ii denotes the representation of ϕi, and ρIiðγÞ is a
unitary representation matrix of γ with γ ∈ S4. The coef-
ficients YIY transform as a multiplet modular form of
weight 2kY and with the representation IY ,

YIY ðτÞ → YIY ðγτÞ ¼ ðcτ þ dÞ2kYρIY ðγÞYIY ðτÞ; ð14Þ

where kY ¼ ki1 þ � � � þ kin is required to be a non-negative
integer. The representation and weight of YIY are con-
strained due to the invariance of the operator under the S4
modular transformation. For kY ¼ 1, there are five modular
forms YiðτÞ for i ¼ 1, 2, 3, 4, 5, which form a doublet 2 and
a triplet 30 of S4,

Yð2Þ
2 ðτÞ ¼

�
Y1ðτÞ
Y2ðτÞ

�
; Yð2Þ

30 ðτÞ ¼

0
B@

Y3ðτÞ
Y4ðτÞ
Y5ðτÞ

1
CA: ð15Þ

Specifically, an algebra between Y3, Y4, and Y5,

ðY2
3 þ 2Y4Y5Þ2 ¼ ðY2

4 þ 2Y3Y5ÞðY2
5 þ 2Y3Y4Þ ð16Þ

is satisfied [53]. This constraint is independent of the value
of τ and essential to cover the modular space of Γ4.
Contracting these modular forms gives rise to modular
forms with weights 2kY ¼ 4,

7The product SU gives

�
5 −3
2 −1

�
¼ ð−1Þ

�
4 × ð−1Þ − 1 4 × 1 − 1

4 × ð−1Þ þ 2 4 × 0þ 1

�
:

Applying Eq. (8), we arrive at Eq. (11).
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Yð4Þ
1 ðτÞ ¼ Y1Y2;

Yð4Þ
2 ðτÞ ¼

�
Y2
2

Y2
1

�
;

Yð4Þ
3 ðτÞ ¼

0
B@

Y1Y4 − Y2Y5

Y1Y5 − Y2Y4

Y1Y3 − Y2Y4

1
CA;

Yð4Þ
30 ðτÞ ¼

0
B@

Y1Y4 þ Y2Y5

Y1Y5 þ Y2Y4

Y1Y3 þ Y2Y4

1
CA: ð17Þ

Modular forms with higher weights can all be constructed
from Yi. We refer to [53] for detailed discussions.
It is helpful to summarize the special properties of

stabilizers and their relations with residual modular sym-
metries. We gave a thorough discussion on this issue in
[59]. Here we will mention four stabilizers which are
relevant to the current work,

τT ¼ ω ¼ −
1

2
þ i

ffiffiffi
3

p

2
; τS ¼ i∞;

τU ¼ 1

2
þ i
2
; τSU ¼ −

1

2
þ i
2
: ð18Þ

Given any element γ in a modular group, a stabilizer
of γ is a special value of the modulus field, denoted as τγ ,
which satisfies γτγ ¼ τγ . If the modulus τ gains a VEV
at the stabilizer, hτi ¼ τγ, an Abelian residual modular
symmetry generated by γ is preserved. Specifically, for
hτi ¼ τT; τS; τU; τSU, residual symmetries ZT

3 , Z
S
2 , Z

U
2 , and

ZSU
2 are preserved, respectively.8

A modular form at a stabilizer takes an interesting
weight-dependent direction. Starting from YIðγτγÞ ¼
YIðτγÞ and following the standard transformation property
in Eq. (14), one arrives at

ρIðγÞYIðτγÞ ¼ ðcτγ þ dÞ−2kYIðτγÞ: ð19Þ
Therefore, a modular form at a stabilizer YIðτγÞ is an
eigenvector of the representationmatrixρIðγÞwith respective
eigenvalue ðcτγ þ dÞ−2k. If ðcτγ þ dÞ−2k ¼ 1 is satisfied,
ρIðγÞYIðτγÞ ¼ YIðτγÞ, the residual modular symmetry is
reduced to the residual flavor symmetry. Otherwise, the
residualmodular symmetry is different from a residual flavor
symmetry.
We consider triplet modular forms Yð2kÞ

3ð0γ Þ
ðτÞ at τγ ¼ τS,

τT , τU, and τSU. The eigenvalue ðcτγ þ dÞ−2k at these
stabilizers is, respectively, given by

ðcτγ þ dÞ−2k ¼

8>>>>><
>>>>>:

ð0τS þ 1Þ−2k ≡ 1 for γ ¼ S and τγ ¼ τS

ð−τT − 1Þ−2k ¼ ω2k for γ ¼ T and τγ ¼ τT

ð2τU − 1Þ−2k ¼ ð−1Þk for γ ¼ U and τγ ¼ τU

ð2τSU þ 1Þ−2k ¼ ð−1Þk for γ ¼ SU and τγ ¼ τSU

; ð20Þ

where values of c and d for γ ¼ S; T;U; SU are obtained from Eq. (10). Given triplet (3, 30) representation matrices for S, T,
and U in Table II, it is straightforward to obtain

Yð6jþ2Þ
3ð0Þ ðτTÞ ∝

0
B@

0

1

0

1
CA; Yð6jþ4ÞÞ

3ð0Þ ðτTÞ ∝

0
B@

0

0

1

1
CA; Yð6jþ6ÞÞ

3ð0Þ ðτTÞ ∝

0
B@

1

0

0

1
CA;

Yð2kÞ
3ð0Þ ðτSÞ ∝

0
B@

1

1

1

1
CA;

Yð4jþ2Þ
3 ðτUÞ ∝ Yð4jþ4Þ

30 ðτUÞ ∝

0
B@

0

1

−1

1
CA;

Yð4jþ2Þ
3 ðτSUÞ ∝ Yð4jþ4Þ

30 ðτSUÞ ∝

0
B@

2

−1
−1

1
CA; ð21Þ

8The stabilizer of an element γ may not be unique. We will not discuss other stabilizers that preserve ZT
3 , Z

S
2 , Z

U
2 , or Z

SU
2 .
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where j is a non-negative integer.9 These results are
obtained without knowing explicit expressions of modular
forms. However, there are some exceptions of modular
forms whose directions cannot be directly determined

by the above argument, Yð4jþ4Þ
3 ðτUÞ, Yð4jþ2Þ

30 ðτUÞ and

Yð4jþ4Þ
3 ðτSUÞ, Yð4jþ2Þ

30 ðτSUÞ. These modular forms corre-
spond to eigenvectors of degenerate eigenvalues. For

instance, Yð2Þ
30 ðτSUÞ is the eigenvalue of ρ30 ðSUÞ with

respect to the degenerate eigenvalue 1. To fully determine
the direction of these modular forms, we can apply the

algebra in Eq. (16). Take Yð2Þ
30 ðτSUÞ again as an example. It

corresponds to the eigenvalue 1 of ρ30 ðSUÞ. The latter has
two linearly independent eigenvectors ð1; 1; 1ÞT and

ð0; 1;−1ÞT , and Yð2Þ
30 ðτSUÞ should be a linear combination

of them,

Yð2Þ
30 ðτSUÞ ¼ a

0
B@

1

1

1

1
CAþ b

0
B@

0

1

−1

1
CA: ð22Þ

Taking it to Eq. (16),10 we obtain the identity, ½a2þ2ðaþ
bÞða−bÞ�2 ¼ ½ðaþbÞ2þ2aða−bÞ�½ða−bÞ2þ2aðaþbÞ�,
which leads to the ratio b ¼ � ffiffiffi

6
p

a. The sign difference,
which cannot be determined by the above algebra, is
determined by calculating the exact modular functions.
Taking the value τSU ¼ −1=2þ i=2 into the formula of
modular forms, we obtain numerically Y3ðτSUÞ ¼
−1.09422i, Y4ðτSUÞ ¼ −3.7745i, and Y5ðτSUÞ ¼
1.58606i, i.e., a ¼ −1.09422i and b ¼ 2.68028i. There-

fore, we arrive at b ¼ −
ffiffiffi
6

p
a. Here, together with Yð2Þ

30 ðτSUÞ,
we list some interesting modular forms respecting to
degenerate eigenvalues with modular weights ≤ 4,

Yð2Þ
30 ðτSUÞ ∝

0
B@

1

1 −
ffiffiffi
6

p

1þ ffiffiffi
6

p

1
CA; Yð4Þ

3 ðτUÞ ∝

0
B@

ffiffiffi
2

p þ 2iffiffiffi
2

p
− iffiffiffi

2
p

− i

1
CA;

Yð4Þ
3 ðτSUÞ ∝

0
B@

ffiffiffi
2

p
ffiffiffi
2

p
−

ffiffiffi
3

p
ffiffiffi
2

p þ ffiffiffi
3

p

1
CA: ð23Þ

In addition, we list double modular forms Yð2kÞ
2 ðτSÞ,

Yð2kÞ
2 ðτUÞ, and Yð2kÞ

2 ðτSUÞ,

Yð4jþ2Þ
2 ðτUÞ ∝ Yð4jþ2Þ

2 ðτSUÞ ∝
�

1

−1

�
;

Yð2kÞ
2 ðτSÞ ∝ Yð4jþ4Þ

2 ðτUÞ ∝ Yð4jþ4Þ
2 ðτSUÞ ∝

�
1

1

�
: ð24Þ

B. Two S4 modular groups

In our recent paper [59], we discussed how to generalize
the discussion from a single S4 to multiple S4 modular
symmetries. Here we will give a brief review, limiting the
discussion to the case of two S4 modular groups relevant to
the model discussed later.
Given two infinite modular groups Γ̄l and Γ̄ν, where the

moduli fields are denoted as τl and τν, respectively.
Following Eq. (1), any two modular transformations
γl × γν in Γl × Γν take forms as

γl × γν∶ ðτl; τνÞ → ðγlτl; γντνÞ ¼
�
alτl þ bl
clτl þ dl

;
aντν þ bν
cντν þ dν

�
:

ð25Þ

Two finite modular groups Sl4 and Sν4 can be obtained by
imposing T4

τl ¼ T4
τν ¼ 1 following the discussion in the

former section. Their generators (S, T, U) are denoted by
(Sl, Tl, Ul) and (Sν, Tν, Uν), respectively, where the
subscripts are only used to distinguish groups.
The superpotentialWðϕi; τl; τνÞ, which is invariant under

any modular transformations, is in general a holomorphic
function of the moduli fields τl, τν and superfields ϕi. It is
expressed in powers of ϕi as

Wðϕi; τl; τνÞ ¼
X
n

X
fiI ;…;ing

ðYðIY;l;IY;νÞϕi1 � � �ϕinÞð1;1Þ; ð26Þ

the weights of YðIY;l;IY;νÞ are given by kY;l ¼ k1;l þ � � � kn;l
and kY;ν ¼ k1;ν þ � � � kn;ν. The chiral field ϕi and the
modular form YðIY;l;IY;νÞ, respectively, transform as

ϕiðτl; τνÞ → ϕiðγlτl; γντνÞ
¼ ðclτl þ dlÞ−2ki;lðcντν þ dνÞ−2ki;νρIi;lðγlÞ
× ϕiðτl; τνÞρTIi;νðγνÞ;

YðIY;l;IY;νÞðτl; τνÞ → YðIY;l;IY;νÞðγlτl; γντνÞ
¼ ðclτl þ dlÞ2kY;lðcντν þ dνÞ2kY;ν
× ρIY;lðγlÞYðIY;l;IY;νÞðτl; τνÞρTIY;νðγνÞ: ð27Þ

Here, we have arranged ϕi and YðIY;l;IY;νÞ as matrices, and let
γl act on them vertically and γν act on them horizontally.
Including two modular symmetries allows us to break

modular symmetries into different subgroups in charged

9Note that for j ¼ 0, Yð2Þ
3 should be considered since it does

not exist.
10Although the modular symmetry is broken by VEV of the

modular field, this identity, which is independent of the value of
the modular field, is always satisfied.
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lepton sector and neutrino sector, respectively. For exam-
ple, hτli ¼ τT and hτνi ¼ τS or hτνi ¼ τU. We will discuss
phenomenological consequences of these different break-
ing chains in the next section in the model building.

III. A MINIMAL MODEL WITH Sl4 × Sν4
MODULAR SYMMETRIES

The extension from one single modulus field to multiple
moduli fields [59] opens the door to new directions in
modular model building. Following the approach of multi-
ple modular symmetries, we will construct a flavor model
with two modular symmetries, Sl4 and Sν4, with moduli
fields labeled by τl and τν, respectively. After moduli fields
gain different VEVs, different textures of mass matrices are
realized in charged lepton and neutrino sectors.
The transformation properties of leptons are given in

Table I. Leptons, including right-handed neutrinos νc

are arranged in the following way: (1) the right-handed
leptons ec, μc, and τc are singlets 10 of Sl4 and trivial singlets
1 of Sν4, and have different weights 2kl ¼ −6;−4;−2,
respectively, and the same weight 2kν ¼ −2; (2) the lepton
doublets L form a triplet of Sl4 with zero weight, but a
singlet of Sν4 with weight 2kν ¼ þ2; (3) we introduce three
right-handed neutrinos νc which form a triplet of Sν4 with
weight 2kν ¼ −2.
Superpotential terms for generating charged lepton and

neutrino mass matrices are, respectively, given by

w ¼ ½LYeðτlÞec þ LYμðτlÞμc þ LYτðτlÞτc�Hd

þ yν
Λ
LΦνcHu þ

1

2
M1ðτνÞðνcνcÞ1

þ 1

2
M2ðτνÞðνcνcÞ2 þ

1

2
M3ðτνÞðνcνcÞ3: ð28Þ

To be invariant under the modular transformation, Ye;μ;τ are
30-plet modular forms of Sl4 with weights 2kl ¼ 6, 4, 2,
respectively, yν can only be a modulus-independent coef-
ficient in this model instead of a modular form. Masses for
right-handed neutrinos all take the same modular weight
2kν ¼ þ4. M1ðτνÞ, M2ðτνÞ, and M3ðτνÞ represent 1-, 2-,
and 3-plets modular forms appearing in right-handed neu-
trino mass terms. The dimension-five operator LΦνcHu is
understood as an effective operator after integrating out
heavy particles. A typical example is including a pair of
electroweak-neutral superfields, F, Fc, with couplings
LFcHu þMFFFc þ FΦνc, where F;Fc ∼ ð3; 1Þ of
ðSl4; Sν4Þ and ð2kl; 2kνÞ ¼ ð0;�2Þ. Decoupling of these
fields introduces no additional relevant dimension-five
operator but the one in Eq. (28).

A. Sl4 × Sν4 → S4
In order to achieve this breaking, we have introduced a

scalarΦ, which is arranged as a bi-triplet, i.e.,Φ ∼ ð3; 3Þ of
Sl4 × Sν4, and its modular weights 2kl and 2kν are arranged
at zero. This scalar is not supposed to generate special
Yukawa textures for leptons. Instead, it is used for the
connection between two S4’s and its VEV is the key to
break two S4’s to a single S4. This idea and relevant
technique for how to obtain the required the VEV was
introduced and developed in [59]. We will not repeat them
in this article. Without loss of generality, we can fix the
VEV of Φ at hΦiαi ¼ vΦðP23Þαi with

P23 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð29Þ

Here, α ¼ 1, 2, 3 corresponds the entries of the triplet of Sl4,
while i ¼ 1, 2, 3 corresponds to those of Sν4. With this VEV,
we can realize the breaking Sl4 × Sν4 → S4.
As mentioned, Sl4 × Sν4 is broken after Φ gains the above

VEV. The scalar Φ connects Sl4 with Sν4 via the effective
dimension-five operator yν

Λ LΦνcHu, responsible for Dirac
neutrino Yukawa couplings. This operator is explicitly
expanded as

yν
Λ
ðL1; L2; L3ÞP23

0
B@

Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

Φ31 Φ32 Φ33

1
CAP23

0
B@

νc1
νc2
νc3

1
CAHu:

ð30Þ

Given the VEV hΦi ¼ P23vΦ, this term is not invariant
under transformations γl and γν of Sl4 and Sν4 and thus the
modular symmetry Sl4 × Sν4 is broken. However, given any
γl of Sl4, we can perform the same transformation γν ¼ γl of
Sν4, such that the VEV of Φ keeps invariant, namely,

TABLE I. Transformation properties of leptons, Yukawa cou-
plings, and right-handed neutrino masses in Sl4 × Sν4.

Fields Sl4 Sν4 2kl 2kν

ec 10 1 −6 −2
μc 10 1 −4 −2
τc 10 1 −2 −2
L 3 1 0 þ2
νc 1 3 0 −2
Φ 3 3 0 0
Hu;d 1 1 0 0

Yukawas=masses Sl4 Sν4 2kl 2kν

YeðτlÞ 30 1 þ6 0
YμðτlÞ 30 1 þ4 0
YτðτlÞ 30 1 þ2 0
M1ðτνÞ 1 1 0 þ4
M2ðτνÞ 1 2 0 þ4
M3ðτνÞ 1 3 0 þ4
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hΦi → ρ3ðγlÞhΦiρT3 ðγνÞ ¼ hΦi ð31Þ

for γl ¼ γν. This equation is simply proven after we write it
in the following matrix form:

ρ3ðγlÞhΦiρT3 ðγνÞ ¼ ρ3ðγlÞP23ρ
T
3 ðγνÞvΦ ¼ ρ3ðγlγ−1ν ÞP23vΦ

¼ ρ3ðγlγ−1ν ÞhΦi; ð32Þ

where P23ρ
T
3 ðγÞ ¼ ρ3ðγ−1ÞP23 has been used. It is obvious

that hΦi is invariant if γl ¼ γν. Therefore, the diagonal part
of Sl4 × Sν4 is preserved in the vacuum. yν

Λ LΦνcHu is the
only term which breaks Sl4 × Sν4 to a single S4. Fix Φ at its
VEV, this term is left with yDðL1ν

c
1 þ L2ν

c
3 þ L3ν

c
2ÞHu,

where we have denoted yD ¼ yνvΦ=Λ. It appears as a
renormalizable Dirac neutrino Yukawa interaction at low
energy, which is proportional to P23. Therefore, all neutrino
mixing arises from the heavy Majorana neutrino mass
matrix.
To summarize, afterΦ gains the VEV, superpotentialw is

effectively given by

weff ¼ ½LYeðτlÞec þ LYμðτlÞμc þ LYτðτlÞτc�Hd

þ yDLνcHu þ
1

2
M1ðτνÞðνcνcÞ1 þ

1

2
M2ðτνÞðνcνcÞ2

þ 1

2
M3ðτνÞðνcνcÞ3: ð33Þ

The full effective superpotential involves two moduli fields.
It is not invariant in Sl4 × Sν4 but their diagonal subgroup S4.
Under this symmetry, a modular transformation appears

to be

γ∶ ðτl; τνÞ → ðγτl; γτνÞ ¼
�
aτl þ b
cτl þ d

;
aτν þ b
cτν þ d

�
ð34Þ

for any γ ∈ S4. We also write out transformation properties
of leptons

LðτνÞ → LðγτνÞ ¼ ðcτν þ dÞ2ρ3ðγÞLðτνÞ;
αcðτl; τνÞ → αcðγτl; γτνÞ

¼ ðcτl þ dÞ−2kαðcτν þ dÞ−2αcðτl; τνÞ;
νcðτνÞ → νcðγτνÞ ¼ ðcτν þ dÞ−2ρ3ðγÞνcðτνÞ ð35Þ

and those for modular forms

YαðτlÞ → YαðγτlÞ ¼ ðcτl þ dÞ2kαρ3ðγÞYαðτlÞ;
MrðτνÞ → MrðγτνÞ ¼ ðcτν þ dÞ4ρrðγÞMrðτνÞ; ð36Þ

where α ¼ e, μ, τ, ke;μ;τ ¼ 3, 2, 1 and r ¼ 1, 2, 3. Note that
in the residual S4 symmetry, we have not induced any
correlation between the moduli fields τl and τν. Namely, τl
and τν can gain independent VEVs. Furthermore, there is
no flavon fields involved in the effective superpotential.
Geometrically, we represent the idea of Sl4 × Sν4 → S4 in

the sketch shown in Fig. 1.

B. Flavor structure after S4 breaking

In the charged lepton sector, we assume the VEV of τl
fixed at hτli ¼ τT ¼ ω, which is a stabilizer of T. At this
stabilizer, a residual modular ZT

3 symmetry is preserved in
the charged lepton sector. It has been proven in [59] that
Ye;μ;τðτTÞ are eigenvectors of the 3 × 3 representation
matrix of T for eigenvalues 1, ω, and ω2, respectively.
Namely, the Yukawa coupling vectors are

YeðτTÞ ∝

0
B@

1

0

0

1
CA; YμðτTÞ ∝

0
B@

0

0

1

1
CA; YτðτTÞ ∝

0
B@

0

1

0

1
CA
ð37Þ

for weights 2kl ¼ 6, 4, 2, respectively. These modular
forms will lead to diagonal Yukawa couplings for the
charged leptons. We have also seen that the Dirac neutrino
Yukawa matrix is proportional to P23. Therefore, all lepton
mixing arises from the heavy Majorana neutrino mass
matrix, to which we now turn.
In the neutrino sector, the right-handed neutrino mass

matrix is explicitly written to be

MR ¼

0
B@

M1 0 0

0 0 M1

0 M1 0

1
CAþ

0
B@

0 M2;1 M2;2

M2;1 M2;2 0

M2;2 0 M2;1

1
CA

þ

0
B@

2M3;1 −M3;3 −M3;2

−M3;3 2M3;2 −M3;1

−M3;2 −M3;1 2M3;3

1
CA; ð38Þ

where Mr;i is the ith component of MrðτÞ, i ¼ 1, 2 for
r ¼ 2 and i ¼ 1, 2, 3 for r ¼ 3. The Dirac mass matrix is
trivially given by

FIG. 1. Diagram of the breaking of Sl4 × Sν4 → S4, their
diagonal subgroup, through the VEV of Φ.

TRIMAXIMAL TM1 MIXING WITH TWO MODULAR S4 … PHYS. REV. D 101, 015001 (2020)

015001-7



MD ¼ yDP23vu: ð39Þ

The active neutrino mass matrix is obtained by applying the
seesaw formula

Mν ¼ −MDM−1
R MT

D ¼ −y2Dv2uP23M−1
R P23: ð40Þ

Specifically, the mass eigenvalues of Mν, mi for i ¼ 1, 2, 3
are given by mi ¼ y2Dv

2
u=Mi. The (1,1) entry of Mν gives

rise to the effective mass parameter in neutrinoless double
beta decay mee ≡ jðMνÞð1;1Þj ¼ y2Dv

2
ujðM−1

R Þð1;1Þj.
Since the charged lepton mass matrix is diagonal, the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is
determined by the structure of neutrino mass matrix which
is governed by the VEVof τν. We assume the stabilizer in
the neutrino sector,11 hτνi ¼ τSU ¼ − 1

2
þ i

2
. At this stabi-

lizer, we are left with a residual ZSU
2 symmetry. In former

discussion in the framework of flavor symmetry, the ZSU
2

residual symmetry is crucial to realize the TM1 mixing
[59]. M2 and M3 take directions M2 ∝ ð1; 1ÞT and
M3 ∝ ð ffiffiffi

2
p

;
ffiffiffi
2

p
−

ffiffiffi
3

p
;
ffiffiffi
2

p þ ffiffiffi
3

p ÞT , respectively. Together
with M1, we write them in the following way:

M1ðτSUÞ ¼ a; M2ðτSUÞ ¼ b

�
1

1

�
;

M3ðτSUÞ ¼ c

0
B@

ffiffiffi
2

p
ffiffiffi
2

p
−

ffiffiffi
3

p
ffiffiffi
2

p þ ffiffiffi
3

p

1
CA: ð41Þ

Thus, the Majorana mass matrix for right-handed neutrinos
is written in the form

MR ¼ a

0
B@

1 0 0

0 0 1

0 1 0

1
CAþ b

0
B@

0 1 1

1 1 0

1 0 1

1
CA

þ c
ffiffiffi
2

p
0
B@

2 −1 −1
−1 2 −1
−1 −1 2

1
CA − c

ffiffiffi
3

p
0
B@

0 1 −1
1 2 0

−1 0 −2

1
CA;

ð42Þ
where a, b, and c are complex parameters. As discussed in
the next subsection, the above heavy Majorana neutrino
mass matrix, together with a Dirac neutrino Yukawa matrix
proportional to P23, and a diagonal charged lepton mass

matrix, will lead to trimaximal TM1 lepton mixing which
preserves the first column on the tri-bimaximal mixing
matrix,

UTM1
¼

0
BBB@

2ffiffi
6

p − −

− 1ffiffi
6

p − −

− 1ffiffi
6

p − −

1
CCCA: ð43Þ

It is worth mentioning that in classical flavor models
without modular symmetry, such as [12], coefficients for
the third and fourth terms on the right-hand side of Eq. (42)
are fully arbitrary, but here they are constrained by a fixed
ratio −

ffiffiffiffiffiffiffiffi
2=3

p
. Thus, in the modular symmetry model here,

MR depends on three complex parameters, while in the
classical (nonmodular symmetry) model in [12] MR
depends on four complex parameters. We will show that
having fewer parameters leads to a new neutrino mass sum
rule, not present in the previous flavon models of TM1

mixing which do not rely on modular symmetry.

C. Results for neutrino mass and mixing

The heavy Majorana mass matrix MR in Eq. (42) can be
put into block diagonal form by applying the TBM mixing
matrix,

UT
TBMMRUTBM ¼

0
B@

−β − 2γ 0 0

0 α γ

0 γ β

1
CA; ð44Þ

where α ¼ aþ 2b, β ¼ b − aþ 3
ffiffiffi
2

p
c, and γ ¼ −3

ffiffiffi
2

p
c.

Since the remaining (2,3) rotations required to diagonalize
MR leave the first column of the TBM matrix unchanged,
this implies that MR is diagonalized by the TM1 matrix in
Eq. (43). Then, since the Dirac neutrino Yukawa matrix
proportional to P23, the seesaw mass matrixMν in Eq. (40)
will also be diagonalized by UTM1

. Hence, as claimed, we
have trimaximal TM1 lepton mixing, given that the charged
lepton mass matrix is diagonal.
Returning to Eq. (44), the reparametrized mass param-

eters α, β, and γ are independent complex parameters.
Namely, the bottom right 2 × 2 submatrix in Eq. (44) is an
arbitrary complex symmetric matrix. Thus, it can be
diagonalized by a 2 × 2 unitary matrix

V ¼ eiα3
�
cos θRe−iα1 sin θReiα2

sin θRe−iα2 − cos θReiα1

�
ð45Þ

with two real eigenvaluesM2 andM3. Here,M2,M3, and V
are arbitrary. However, the first eigenvalue of MR, i.e., M1,
is not arbitrary, but determined by M2, M3, and the mixing
parameters in V via

11Note that if we had selected hτνi ¼ τS ¼ i∞, we would have
obtainedM2ðτSÞ ∝ ð1; 1ÞT andM3ðτSÞ ∝ ð1; 1; 1ÞT ,with a residual
ZS
2 flavor symmetry preserved in the neutrino sector [59], leading to

tri-bimaximalmixing.Alternatively, the choice hτνi by τU ¼ 1=2þ
i=2would preserve a residualZU

2 flavor symmetry corresponding to
a mu-tau permutation symmetry in the neutrino sector. Since both
patterns are excluded, due to the prediction of vanishing θ13, wewill
not discuss them any further here.
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M1 ¼ jβ þ 2γj ¼ jM2ðsin2θRei2α2 þ sin 2θReiðα1þα2ÞÞ
þM3ðcos2θRe−i2α1 − e−iðα1þα2ÞÞj: ð46Þ

According to the above discussion, the model predicts
lepton mixing to be of the TM1 form, UPMNS ¼ UTM1

, with
the general form of TM1 mixing in Eq. (43) parametrized as

UTM1
¼ UTBM

0
B@

eα
0
3 0 0

0 cos θReiα1 sin θRe−iα2

0 − sin θReiα2 cos θRe−iα1

1
CA; ð47Þ

where α03 ¼ 1
2
argð−β − 2γÞ. The mixing angles and Dirac-

type CP-violating phase are determined to be [12]

sin θ13 ¼
sin θRffiffiffi

3
p ;

tan θ12 ¼
cos θRffiffiffi

2
p ;

tan θ23 ¼
���� cos θR þ

ffiffi
2
3

q
eiðα1−α2Þ sin θR

cos θR −
ffiffi
2
3

q
eiðα1−α2Þ sin θR

����;
δ ¼ arg½ð5 cos 2θR þ 1Þ cosðα1 − α2Þ

− iðcos 2θR þ 5Þ sinðα1 − α2Þ�: ð48Þ
The above TM1 mixing implies three equivalent rela-

tions,

tan θ12 ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3s213

q
or sin θ12 ¼

1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3s213

p
c13

or cos θ12 ¼
ffiffiffi
2

3

r
1

c13
; ð49Þ

leading to a prediction θ12 ≈ 34°, in excellent agreement
with current global fits, assuming θ13 ≈ 8.5°. By contrast,
the corresponding TM2 relations imply θ12 ≈ 36° [60],
which is on the edge of the three sigma region, and hence
disfavored by current data. TM1 mixing also leads to an
exact sum rule relation for cos δ in terms of the other lepton
mixing angles [60],

cos δ ¼ −
cot 2θ23ð1 − 5s213Þ
2
ffiffiffi
2

p
s13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3s213

p ; ð50Þ

which, for approximately maximal atmospheric mixing,
predicts cos δ ≈ 0, δ ≈�90°. Such atmospheric mixing sum
rules may be tested in future experiments [61].
Apart from predicting TM1 lepton mixing, the model

also predicts a neutrino mass sum rule [62] between the
light physical effective Majorana neutrino mass eigenval-
ues mi (i.e., the active neutrino masses relevant for low
energy experiments). Using the correlation of M1 and M2;3

in Eq. (46) andMi ¼ −y2Dv2u=mi for i ¼ 1, 2, 3, we obtain a
new neutrino mass sum rule for the active neutrino masses
(beyond those reported in [62]),

1

m1

¼
���� 1

m2

ðsin2θRe−i2α2 þ sin 2θRe−iðα1þα2ÞÞ

þ 1

m3

ðcos2θRei2α1 − sin 2θReiðα1þα2ÞÞ
����: ð51Þ

Furthermore, we can predict the effective neutrino mass
parameter mee in neutrinoless double beta decay experi-
ments. It is effectively represented as

mee ¼ y2Dv
2
ujðM−1

R Þð1;1Þj ¼ y2Dv
2
u

���� 2

3ðβ þ 2γÞ −
β

3ðαβ − γ2Þ
����

¼
���� 2m2m3

3ðm2ðcos2θRei2α1 − sin 2θReiðα1þα2ÞÞ þm3ðsin2θRe−i2α2 þ sin 2θRe−iðα1þα2ÞÞÞ

þ 1

3
ðm2cos2θRe2iα1 þm3sin2θRe−2iα2Þ

����: ð52Þ

In Fig. 2, we display the prediction of mlightest vs mee,
where mlightest ¼ m1 for neutrino masses with normal
ordering (NO) and mlightest ¼ m3 for inverted ordering
(IO). 1σ and 3σ ranges of oscillation parameters from
[63,64] have been taken as inputs in the left and right
panels, respectively. In this plot, we also show the upper
limit from KamLAND-Zen experiment, ðmeeÞupper limit ¼
0.061–0.165 eV, which is the current best experi-
mental constraint for mee, and cosmological constraints

from Planck 2018 [65], for comparison. The latter set
limits on

P
i mi. Depending on data inputs, different

limits are obtained. In the figure, we consider two limitsP
i mi < 0.12 eV (95%, Planck TT;TE;EEþ lowEþ

lensingþ BAOþ θMC) and
P

i mi < 0.60 eV (95%,
Planck lensingþ BAOþ θMC), which we refer to “disfa-
vored” and “very disfavored” regimes, respectively. The
first limit was obtained earlier in [66]. In the 1σ range, the
model has no points compatible with data in the NO case.
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In the IO case, the minimum values of bothmlightest andmee

are around 0.03 eV. Given the 3σ ranges, both mass
orderings are compatible with data. The minimum values
of mlightest and mee compatible with data are given by

ðmlightestÞNOmin ≈ 0.025 eV; ðmeeÞNOmin ≈ 0.021 eV;

ðmlightestÞIOmin ≈ 0.026 eV; ðmeeÞIOmin ≈ 0.029 eV; ð53Þ

respectively. Making use of the best cosmological con-
straint,

P
mi < 0.12 eV, we arrive at mlightest < 0.31 eV

for NO and < 0.17 eV for IO. Most points in NO and all
points in IO lie in this “disfavored” region. On the other
hand, few points lie in the “very disfavored” region.

IV. CONCLUSION

In this paper, we have discussed a minimal model of
trimaximal mixing in which the first column of the tri-
bimaximal lepton mixing matrix is achieved via two
modular S4 groups, namely Sl4 × Sν4. The associated moduli
fields are assumed to be “stabilized” at these two different
symmetric points, where the misalignment leads to the
lepton mixing. To be precise, one of these factors, Sν4, acts
in the heavy Majorana neutrino sector, under which the
right-handed neutrinos transform as triplets, and is asso-
ciated with a modulus field value τSU with residual ZSU

2

symmetry. The other factor Sl4 acts in the Dirac charged
lepton sector and is associated with a modulus field value
τT with residual ZT

3 symmetry.
In addition, there is a Higgs scalar Φ introduced to break

the Sl4 × Sν4 down to a diagonal S4 subgroup, yielding a
Dirac neutrino Yukawa matrix proportional to P23 at low
energy (but above the seesaw scale). The model here
represents a simpler example of multiple modular sym-
metries than a previous model based on three modular
symmetries, in which two Higgs scalars were required to

break the three modular symmetries down to their diagonal
subgroup.
In our chosen basis, the model leads to a diagonal

charged lepton mass matrix, together with a heavy
Majorana neutrino mass matrix which depends on three
complex parameters, one fewer than previous flavon
models of TM1 mixing which do not use modular sym-
metry at all. Together with the Dirac neutrino Yukawa
matrix proportional to P23, this implies that the light
effective left-handed neutrino Majorana mass matrix and
the heavy Majorana mass matrix are diagonalized by the
same unitary matrix, namely the TM1 lepton mixing
matrix. The model therefore is subject to the usual TM1

lepton mixing sum rules.
Apart from the usual predictions of TM1 lepton mixing,

the model also leads to a new neutrino mass sum rule,
which implies sizeable, quite degenerate, neutrino masses,
with a marked preference for IO over NO. Much of the
parameter space for the IO region falls well inside the
cosmologically disfavored region. By contrast, some of the
parameter space for the NO case falls outside the cosmo-
logically disfavored region, with most points being not very
disfavored at the moment, although this conclusion could
change with modest improvements in the cosmological
limits. In both IO and NO cases, the entire parameter space
of the model can be probed by the planned neutrinoless
double beta decay experiments.
In conclusion, we have proposed a minimal model of

TM1 lepton mixing based on having an independent
modular S4 symmetry acting in each of the charged lepton
and neutrino sectors, respectively, where the two associated
moduli respect different residual symmetries. The model, at
the intermediate scale where only a single S4 symmetry is
conserved, does not involve any flavons but it does reply on
a Higgs field breaking the two S4 symmetries down to their
diagonal subgroup. The combination of the TM1 lepton
mixing sum rules and the new neutrino mass sum rule

FIG. 2. Predictions of mlightest vs mee for both normal ordering (NO, left panel) and inverted ordering (IO, right panel) of neutrino
masses, allowed by the model, where mlightest ¼ m1 for NO and mlightest ¼ m3 for IO. 1σ and 3σ range data of oscillation parameters
from [63,64] are taken as inputs. The general parameter space of mee allowed by oscillation data and current upper limit from
KamLAND-Zen and cosmological constraints from PLANCK 2018 [65] (disfavored region 0.12 eV <

P
mi < 0.60 eV and very

disfavored region
P

mi > 0.60 eV) are shown for comparison.
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makes the proposed model highly testable in the near
future.
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APPENDIX: GROUP THEORY OF S4

S4 is the permutation group of four objects; see, e.g.,
[67,68]. The Kronecker products between different irre-
ducible representations can be easily obtained,

10 ⊗ 10 ¼ 1; 10 ⊗ 2 ¼ 2; 10 ⊗ 3 ¼ 30; 10 ⊗ 30 ¼ 3; 2 ⊗ 2 ¼ 1 ⊕ 10 ⊕ 2;

2 ⊗ 3 ¼ 2 ⊗ 30 ¼ 3 ⊕ 30; 3 ⊗ 3 ¼ 30 ⊗ 30 ¼ 1 ⊕ 2 ⊕ 3 ⊕ 30; 3 ⊗ 30 ¼ 10 ⊕ 2 ⊕ 3 ⊕ 30: ðA1Þ

The generators of S4 on the basis we used in the main text in different irreducible representations are listed in Table II.
This basis is widely used in the literature since the charged lepton mass matrix invariant under T is diagonal on this basis.
The products of a ∼ b ∼ 3 (or a ∼ b ∼ 30) are expressed as

ðabÞ1 ¼ a1b1 þ a2b3 þ a3b2;

ðabÞ2 ¼ ða2b2 þ a1b3 þ a3b1; a3b3 þ a1b2 þ a2b1ÞT;
ðabÞ3 ¼ ð2a1b1 − a2b3 − a3b2; 2a3b3 − a1b2 − a2b1; 2a2b2 − a3b1 − a1b3ÞT;
ðabÞ30 ¼ ða2b3 − a3b2; a1b2 − a2b1; a3b1 − a1b3ÞT: ðA2Þ

Here, 3 and 30 represent the symmetric and antisymmetric triplet contractions, respectively.12 For a ∼ 3 and b ∼ 30, the
contractions are given by

ðabÞ10 ¼ a1b1 þ a2b3 þ a3b2;

ðabÞ2 ¼ ða2b2 þ a1b3 þ a3b1;−ða3b3 þ a1b2 þ a2b1ÞÞT;
ðabÞ30 ¼ ð2a1b1 − a2b3 − a3b2; 2a3b3 − a1b2 − a2b1; 2a2b2 − a3b1 − a1b3ÞT;
ðabÞ3 ¼ ða2b3 − a3b2; a1b2 − a2b1; a3b1 − a1b3ÞT: ðA3Þ

The products of two doublets a ¼ ða1; a2ÞT and b ¼ ðb1; b2ÞT are divided into

ðabÞ1 ¼ a1b2 þ a2b1; ðabÞ10 ¼ a1b2 − a2b1; ðabÞ2 ¼ ða2b2; a1b1ÞT: ðA4Þ

TABLE II. The representation matrices for the S4 generators T,
S, and U used in the main text, where ω is the cube root of unit
ω ¼ e2πi=3.

ρðTÞ ρðSÞ ρðUÞ
1 1 1 1
10 1 1 −1
2

�
ω 0

0 ω2

� �
1 0

0 1

� �
0 1

1 0

�
3  

1 0 0

0 ω2 0

0 0 ω

!
1
3

 −1 2 2

2 −1 2

2 2 −1

!  
1 0 0

0 0 1

0 1 0

!

30  
1 0 0

0 ω2 0

0 0 ω

!
1
3

 −1 2 2

2 −1 2

2 2 −1

�
−

 
1 0 0

0 0 1

0 1 0

!

12Note that the difference of conventions for 3 and 30 in this paper from those in e.g., [69,12], where 3 represents the antisymmetric
triplet contraction for two 3 (or two 30) and 30 represents the symmetric triplet contraction.
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