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In this paper, we propose a framework for studying the properties of the Lefschetz thimbles
decomposition for lattice fermion models approaching the thermodynamic limit. The proposed set of
algorithms includes the Schur complement solver and the exact computation of the derivatives of the
fermion determinant. It allows us to solve the gradient flow equations taking into account the fermion
determinant exactly, with high performance. Being able to do so, we can find both real and complex saddle
points and describe the structure of the Lefschetz thimbles decomposition for large enough lattices which
allows us to extrapolate our results to the thermodynamic limit. We describe the algorithms for a general
lattice fermion model, with emphasis on two widely used types of lattice discretizations for relativistic
fermions (staggered and Wilson fermions), as well as on interacting tight-binding models for condensed
matter systems. As an example, we apply these algorithms to the Hubbard model on a hexagonal lattice.
Several technical improvements allow us to deal with lattice volumes as large as 12 × 12 with Nτ ¼ 256

steps in Euclidean time, in order to capture the properties of the thimbles decomposition as the
thermodynamic, low-temperature, and continuum limits are approached. Different versions of the
Hubbard-Stratonovich (HS) transformation were studied, and we show that the complexity of the thimbles
decomposition is very dependent on its specific form. In particular, we provide evidence for the existence of
an optimal regime for the hexagonal lattice Hubbard model, with a reduced number of thimbles becoming
important in the overall sum. In order to check these findings, we have performed quantum Monte Carlo
(QMC) simulations using the gradient flow to deform the integration contour into the complex plane. These
calculations were made on small volumes (Ns ¼ 8 sites in space), albeit still at low temperatures and
with the chemical potential tuned to the van Hove singularity, thus entering into a regime where standard
QMC techniques exhibit an exponential decay of the average sign. The results are compared versus exact
diagonalization, and we demonstrate the importance of choosing an optimal form for the HS transformation
for the Hubbard model to avoid issues associated with ergodicity. We compare the residual sign problem
with the state-of-the-art BSS (Blankenbecler, Scalapino, and Sugar)-QMC and show that the average sign
can be kept substantially higher using the Lefschetz thimbles approach.
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I. INTRODUCTION

One of the most widely used paths to study, nonperturba-
tively, the physics of strongly coupled quantum systems, in
a fully ab-initiomanner is through Monte Carlo simulations
of the Feynman path integral. For many systems, the
Euclidean formulation of the functional integral yields a
real, positive-definite action whose evaluation can be per-
formed using importance sampling. It often occurs, however,

that the action is complex. Relevant examples of such
systems abound in disparate branches of physics. The theory
of the strong interactions, quantumchromodynamics (QCD),
exhibits a complex action at finite baryon density [1,2]. The
study of the QCD phase diagram is essential to the under-
standing of the quark-gluon plasma, a strongly coupled fluid
which exists above the deconfinement transition, as well
addressing deep questions in astrophysics and cosmology.
Currently, these phases of matter are actively studied
experimentally at several collider facilities, including
RHIC and LHC. Additional examples from high-energy
physics which are well known to exhibit a complex action
include gauge theories with the addition of a theta term,
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Chern-Simons theories, and matrix models which provide a
nonperturbative definition of string theories. The sign prob-
lem also impedes ab-initio studies of many-body systems.
The physics of Feshbach resonances in cold atomic Fermi
gases, frequently realized in the laboratory and modeled
with the unitary Fermi gas is one prominent example [3–5].
A well-studied example from condensed matter physics is
the Hubbard model. Despite its simplicity, the Hubbard
model captures the physics of the Mott metal-insulator
transition, and probably, high-temperature superconductors
[6,7]. On a bipartite lattice at half-filling, the Hubbard model
is free from the sign problem due to particle-hole symmetry.
However, as soon as frustration or nonzero chemical poten-
tial appears in the Hamiltonian, one is faced with the sign
problem. In fact, it could be argued that the majority of
interesting systems are plagued by the sign problem. A key
result, due to Troyer and Wiese [8], states that the sign
problem is an NP-hard problem in a generic, Ising spin-glass
system. It follows that a general solution to all sign problems
is an unlikely proposition.
There are several approaches one can take to dealing with

the problem. The most naive approach to deal with a system
exhibiting a complex action is to absorb the imaginary part
of the action in the observable and sample according to the
real part of the action. This method is known as reweighting
and is based on the following identity:

hOi ¼ 1

Z

Z
DΦO½Φ�e−S½Φ� ¼

R
DΦO½Φ�e−S½Φ�R

DΦe−S½Φ�

¼
1

Zpq

R
DΦO½Φ� e−S½Φ�

e−SR ½Φ� e−SR½Φ�

1
Zpq

R
DΦ e−S½Φ�

e−SR ½Φ� e−SR½Φ� ¼ hOe−iSIiSR
he−iSIiSR

; ð1Þ

where S ¼ SR þ iSI, the ratio e−S½Φ�=e−SR½Φ� is the reweight-
ing factor, and

Zpq ¼
Z

DΦe−SR½Φ� ð2Þ

is the phase quenched partition function. The angular
brackets in (1) denote an ensemble average with respect to
themeasureDΦe−SR . Although this sequence of expressions
is nothing more than a rewriting of the standard thermal
ensemble average, the practical calculation of observables
using reweighting is exponentially difficult due to the sign
problem. The last ratio in (1) is not well defined, since both
the numerator and the denominator vanish exponentially as
the spacetime volume is increased. This is a manifestation
of what is coined as the overlap problem, i.e., the phase-
quenched theory is different from the full theory which
renders sampling from the former a highly ineffective
approach to mimic sampling from the full theory. The
technical issue at hand is the overlap of the ensemble sampled
according to SR and the original ensemble that involves the

entire action. A physical meaning can be attached to this
difficulty by considering the average sign, he−iSI iSR , which
can be understood as a ratio of two partition functions

Z
Zpq

¼ e−βVΔf: ð3Þ

In (3), we have introduced the spatial volume V, inverse
temperature β, and Δf, which is the free energy density
difference between the two ensembles. Although Δf is
formulation dependent, one cannot cure the exponential
scaling using naive reweighting. In any Monte Carlo calcu-
lation, the error on the mean scales with the computational
time, TCPU, as 1=

ffiffiffiffiffiffiffiffiffiffi
TCPU

p
. Thus, in order to have the error on

the average sign less than the value of the average sign itself,
we must require that TCPU ≫ e2βVΔf. We refer the interested
reader to [2] for a pedagogical and detailed presentation of
the sign and overlap problems.
Recently, much progress has been made by complex-

ifying the fields of systems suffering from the sign
problem. This idea, which can easily be demonstrated in
simple, one-dimensional integrals, has already been applied
to a number of models, which we list below. Furthermore,
in many of these cases, the initial severe sign problem was
eliminated or substantially weakened. One successful
approach along the previously mentioned lines is complex
Langevin dynamics [9–16]. Another method, which we use
in this study is the method of Lefschetz thimbles. Originally
introduced in [17,18], it was not long after that lattice gauge
theory practitioners sought to apply these methods to QCD
at finite baryon density [19]. Pioneering studies using
Lefschetz thimbles were performed on the relativistic
Bose gas for lattices volumes up to V ¼ 84, showing good
agreement with complex Langevin simulations [20–22].
Several other studies have investigated a variety of other
systems displaying a sign problem including OðnÞ sigma
models [23], chiral random matrix ensembles [24], and the
Uð1Þ one-link model using techniques borrowed from
reweighting [25]. A significant hurdle was overcome as
several groups extended the method of Lefschetz thimbles
to interacting fermions in 0þ 1 dimensions as well as at a
single site [26–31]. The successful application of these
methods was then subsequently extended to field theories
of strongly interacting fermions in both 1þ 1 and 2þ 1
dimensions [32–35]. A short description of the results
presented in this paper and related to the Hubbard model
originally appeared in our previous paper [36]. In a
subsequent preprint [37], an alternative approach to deal
with ergodicity issues was applied to Hubbard model
simulations within the thimbles formalism. Albeit, there
is a big difference in the regimes studied by the two groups.
In [36] and in this paper, the low temperature limit of the
Hubbard model was studied, while the authors of [37]
reported results for significantly higher temperatures and
thus of milder sign problem for which BSS-QMC has an
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average sign greater than 0.6 in the whole range of
parameters studied in their paper. On the other hand, both
in [36] and in this paper, we are addressing the region of
strong sign problem where BSS-QMC, even with an
optimal setup, experiences an exponential decay of the
average sign.
One of the main concerns about the efficacy of the

Lefschetz thimbles method is the scaling of the number of
thimbles with the system size and temperature. One might
argue that the amount of important thimbles can grow
exponentially once we approach the thermodynamic or low
temperature limit. In this case, by construction, the method
is unable to improve the sign problem. The problem is
especially hard for fermionic models, since it is usually
quite difficult to find the exact saddle points if the logarithm
of the fermionic determinant is included in the action.
Here, we propose a set of algorithms to address this issue
and to elucidate, clearly and systematically, the nontrivial
saddle point structure of the theory. Due to a more efficient
calculation of the exact derivatives of the fermionic
determinant, we are now able to reveal the construction
of the Lefschetz thimble decomposition on large lattices
and extrapolate our results to the thermodynamic limit. This
also represents the main difference of our paper from earlier
attempts to apply the Lefschetz thimbles decomposition to
the Hubbard model [38], where the thimbles decomposition
was not optimized and only one thimble, out of many
important ones, was taken into account. As a result, those
simulations actually did not represent a full calculation of
the functional integral, but rather represented only correc-
tions to dynamical mean field theory results. Using a
complete study of the saddle point structure of the
Hubbard model, and identifying the advantageous regions
in parameter space, one can safely proceed to address the
sign problem using Lefschetz thimbles.
We start with a short introduction to the formalism and

proceed with the description of the method to solve the
gradient flow equations for Wilson and staggered fermions.
After this, we describe the application of the technique to
the Hubbard model on the hexagonal lattice. First, we make
a detailed study of the saddle points, which is an essential
ingredient of the Lefschetz thimbles method. In particular,
we explore the dependence of saddles on volume, the
Hubbard coupling U, and chemical potential. Among other
things, we discuss at length the algorithms used to search
for saddle point configurations away from half-filling,
when saddle points are shifted into complex space CN .
Finally, in order to support our conclusions concerning the
role of different saddle points, we perform Monte Carlo
calculations over manifolds in complex space and compare
results with exact diagonalization. In addition to that, we
show that the average sign can be substantially increased
even in comparisonwith BSS-QMC. This fact means that we
can potentially construct a superior algorithm for dealing
with the sign problem, if the additional computational costs

associated with the gradient flow and integration over curved
manifolds in complex space are improved upon.

II. LEFSCHETZ THIMBLES FORMALISM

Let us first consider the complexification of the fields
appearing in the functional integral (1), Φ ∈ CN . This
amounts to a shift of the contour of integration into
complex space. We are allowed to do so, as Cauchy’s
theorem tells us that one can choose any appropriate
contour in complex space as long as the integral still
converges and no poles of the integrand are crossed during
this shift. As we will demonstrate, both of these conditions
are satisfied. We now introduce one particularly useful
representation, known as the Lefschetz thimble decom-
position of the partition function [17,18],

Z ¼
Z
RN

DΦe−S½Φ� ¼
X
σ

kσZσ;

where Zσ ¼
Z
Iσ

DΦe−S½Φ�; ð4Þ

and σ labels all complex saddle points zσ ∈ CN of the
action, which are determined by the condition

∂S
∂Φ

����
Φ¼zσ

¼ 0: ð5Þ

The integer-valued coefficients kσ are the intersection
numbers and Iσ are the Lefschetz thimble manifolds
attached to the saddle points zσ. These manifolds, defined
below, are the generalization of the contours of steepest
descent in the theory of asymptotic expansions. We stress
that if the saddle points are nondegenerate (det ∂2S=
∂Φ0∂ΦjΦ¼zσ ≠ 0) and isolated, the relation (4) holds (for
a generalization to the case of gauge theory, see [18]).
The Lefschetz thimble manifold associated with a given

saddle point is the union of all solutions of the following
differential equation:

dΦ
dt

¼ ∂S
∂Φ; ð6Þ

known as the gradient flow (GF) equations, which satisfy the
following boundary condition: Φ ∈ Iσ∶Φðt → −∞Þ → zσ.
Just as we made an analogy between the thimble and the
contour of steepest descent, there is a second manifold
associated with each saddle point which is analogous to
the contour of steepest ascent. This manifold is known as the
antithimble, Kσ, and consists of all possible solutions of
the GF equations (6) which end up at a given saddle point
zσ:Φ ∈ Kσ∶ΦðtÞ ¼ Φ;Φðt → þ∞Þ → zσ . The intersection
number kσ is defined by counting the number of intersec-
tions of Kσ with the original integration domain RN ,
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kσ ¼ hKσ;RNi. An example scheme of thimbles and antith-
imbles is drawn in Fig. 1.
It is worth noting that thimbles and antithimbles are both

real, N-dimensional manifolds embedded in CN . We now
state two key properties of the thimbles, which follow from
(6) coupled with the fact that the action, S, is regarded as a
holomorphic function of the complex fields. These proper-
ties are that the real part of the action, Re S, monotonically
increases along the thimble, starting from the saddle point
and the imaginary part of the action, Im S, stays constant
along it. The first property is essential in guaranteeing the
convergence of the individual integrals in (4), while the
second one obviously makes the method attractive with
regard to the weakening of the sign problem. Using these
crucial properties, it follows that neither thimbles nor
antithimbles can intersect each other, no two saddle points
can, in general, be connected by a thimble (with the very
important exception which is discussed below), and all
integrals on the rhs of (4) are convergent.
As a result of the above discussion, it follows that (4)

can be written as

Z ¼
X
σ

kσe−iImSðzσÞ
Z
Iσ

DΦe−ReSðΦÞ; ð7Þ

where we have explicitly written out the complex factors
associated with different saddle points. Usually, thimbles
can be classified as being either “relevant” or “irrelevant”
using the intersection number. Relevant ones have their
intersection number, kσ , being nonzero, and thus participate
in the sum in (7). Conversely, a thimble is irrelevant if it
has a zero intersection number. However, this classification
can fail if the so-called Stokes phenomenon occurs for
saddle points lying within RN . By definition, the Stokes
phenomenon means that the saddle points are connected
by a thimble. In this case, kσ is not well defined and
we need other tools in order to classify the saddle points.
An example of such a situation will be demonstrated later
on when we will study the actual saddle points for the
Hubbard model.

As one can see, the initial sign problem has been split
into two parts. The first part of the residual sign problem
concerns the constant phase factors, e−i ImSðzσÞ. The number
of relevant thimbles, their weight, and the distribution of
the imaginary part of the action at corresponding saddles
define the remaining severity of the first part of the sign
problem. An ideal situation arises when this sum only
contains one dominant term. The second part of the residual
sign problem relates to the fluctuations of the complex
measure, DΦ, in the integration over the thimble.
Potentially, there is the third source of the residual sign
problem: residual fluctuations of ImS, which appear if we
are not following the thimble exactly. All these issues will
be addressed below in our test calculations for the Hubbard
model, where we perform a thorough classification of
saddle points and then give an estimate for the fluctuations
of the complex measure and the residual fluctuations of
ImS. We now present a description of our numerical
methods.

III. ALGORITHMS

The GF equations (6) are the basis of the whole
formalism. Here we present the set of algorithms, which
allows us to solve them efficiently at least for lattices of
moderate size. The main difficulty in implementing GF is
the presence of the fermionic determinant in the action for a
typical lattice field theory (or model—for the case of
condensed matter systems) with fermions

S ¼ Sb þ ln detM; ð8Þ

where Sb is the bosonic part and the fermionic operator M
is more or less a sparse matrix with dimensionality ∼NτNs
(ignoring for the moment color and flavor indices). Here,
Nτ is the Euclidean time extent of the lattice and Ns is the
number of degrees of freedom (d.o.f.) in space. The latter
typically includes the number of sites in space (in the
context of QCD one should also take into account the
number of colors and flavors). The construction (8) is
the same for both lattice field theories and interacting tight-
binding models in condensed matter physics. The key
element of our algorithms is the efficient calculation of
the derivatives of the fermionic determinant with respect
to the bosonic fields, which is essential for the solution of
the GF equations. The derivatives of the logarithm of the
fermionic determinant can be computed directly using the
simple relation

∂ ln detM
∂Φ ¼ Tr

�
M−1 ∂M

∂Φ
�
: ð9Þ

It turns out that this requires the knowledge of only a few
elements of the fermion propagator M−1, since the bosonic
fields Φ enter the fermionic operator M locally.

FIG. 1. Typical scheme of thimbles and antithimbles; arrows
show the directions of the flows, which define these manifolds.
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In the following considerations, we rely on the special
band structure of the fermionic operator. We start with
unimproved staggered fermions, whose fermionic operator
can be written as

Mst
i;j ¼ 2amδi;j

þ ðηi;1eμaUi;1δiþ1̂;j − ηj;1U
†
j;1e

−μaδi−1̂;jÞ

þ
X4
ν¼2

ðηi;νUi;νδiþν̂;j − ηj;νU
†
j;νδi−ν̂;jÞ ð10Þ

with the usual staggered phases ηi;ν ¼ ð−1Þi1þ���þiν−1 and
gauge fields Ui;ν. Here μ is the chemical potential and m is
the mass of fermions, and both are multiplied by the lattice
spacing a. The four-dimensional index i ¼ ðt; xÞ consists
of both the temporal t and the three-dimensional spatial
part x. It is convenient to introduce the spatial part of the
fermionic operator Bt, which contains all elements of the
matrix (10), diagonal in Euclidean time direction for a
given time slice t. After doing so, (10) can be rewritten as a
block matrix consisting of blocks Ns × Ns,

MstðUÞ ¼

0
BBBBBBBBBBBBBBBBBB@

B1 eμa½Uð1;xÞ;1� 0 0 0 … e−μa½U†
ðNτ;xÞ;1�

−e−μa½U†
ð1;xÞ;1� B2 eμa½Uð2;xÞ;1� 0 0 … 0

0 −e−μa½U†
ð2;xÞ;1� B3

. .
.

0 … 0

0 0 . .
. . .

. . .
.

… 0

..

. . .
. . .

. . .
. ..

.

0 0 … 0 −e−μa½U†
ðNτ−2;xÞ;1� BNτ−1 eμa½UðNτ−1;xÞ;1�

−eμa½UðNτ ;xÞ;1� 0 … 0 0 −e−μa½U†
ðNτ−1;xÞ;1� BNτ

1
CCCCCCCCCCCCCCCCCCA

:

ð11Þ

½Uðt;xÞ;1� is a diagonal matrix which contains on the main
diagonal all gauge field exponents in the Euclidean time
direction for a given time slice t. Following [39], the
determinant of (11) is equivalent to the determinant of the
following matrix:

M̄stðUÞ ¼

0
BBBBBBBBBB@

1 D1 0 0 0 …

0 1 D2 0 0 …

0 0 1 D3 0 …

0 0 0 1 D4 …

..

. . .
.

−D2Nτ
0 0 … 1

1
CCCCCCCCCCA
: ð12Þ

Now all blocks are of the size 2Ns × 2Ns,

D2k ¼
� eμa½Uðk;xÞ;1� 0

0 eμa½Uðk;xÞ;1�
�
;

D2k−1 ¼
�
Bk I

I 0

�
; k ¼ 1.::Nτ: ð13Þ

The same general form of the fermionic operator is also
common for interacting tight-binding models in condensed
matter physics. See [40] and references therein for more

details. The only difference is that the blocks would be of
the size Ns × Ns in the case of an interacting tight-binding
model, and their internal construction is also different.
However, these details are not important for the present
discussion.
The inverse fermionic matrix can also be written in terms

of spatial 2Ns × 2Ns blocks,

M̄st−1ðUÞ ¼

0
BBBBBBBBBB@

g1 … … … … ḡ2Nτ

ḡ1 g2 … … … …

… ḡ2 g3 … … …

… … ḡ3 g4 … …

..

. . .
.

… … … … g2Nτ

1
CCCCCCCCCCA
: ð14Þ

The matrix M̄st−1ðUÞ is dense, but here we explicitly show
only those blocks which are needed for our calculations.
In fact, in the trace in (9), only the off-diagonal blocks,
ḡn; n ¼ 1.::Nτ, will contribute to the exact derivatives.
Following [40], an iterative procedure can be used to
compute all needed elements of the fermionic propagator,

ḡiþ1 ¼ D−1
iþ1ḡiDi: ð15Þ
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Once we know one off-diagonal block ḡn for some n, we
can, in principle, reconstruct all of them. Of course, we
need to invert the Di blocks after each update of the gauge
fields, but taking into account their sparsity (13), it costs no
more than N3

s operations for each block. In practice, these
iterations typically cannot last for more than NSchur ∼ 10
time slices due to accumulation of round-off errors. Thus,
we compute the Green’s functions ḡn from scratch for each
n ¼ kNSchur, k ¼ 0; 1; 2…. and use iterations (15) only in
between for intermediate time slices. The Schur comple-
ment solver [41] is used for finding ḡn from scratch, with
additional simplifications described in [40]. The solver,
including the iterations (15), scales as N3

sNτ. However,
despite the scaling being worse than that of iterative
solvers, the method still gives substantial speedup in
comparison with the calculation of fermionic determinant
using stochastic estimators. The reason is twofold: (i) there
is a very small prefactor in the scaling relation, which
compensates for the N3

s term at least for lattices up to
Ns ∼ 103; (ii) there is no need to repeatedly find solutions
for multiple stochastic estimators, since we get all exact
derivatives after one application of the Schur solver
accompanied with the propagation through the entire
Euclidean time extent of the lattice according to (15). A
more careful analysis of the performance of the Schur
solver and some benchmarks against an iterative solver
were done in [41].
The situation is a bit more complicated for Wilson

fermions. In this case, we used the derivation of the com-
pressed form of the Wilson fermionic operator from [42].
Disregarding the constant determinant of the permutation
matrix, the determinant of the Wilson fermionic operator is
equivalent to the determinant of the following matrix:

M̄W ¼

0
BBBBBBBBBB@

A1 C1 0 0 … 0

0 A2 C2 0 … 0

0 0 A3
. .
.

… 0

..

. . .
. ..

.

0 0 … ANτ−1 CNτ−1

−CNτ
0 … 0 ANτ

1
CCCCCCCCCCA
: ð16Þ

A and C are blocks of size 4Ns × 4Ns. A factor of 4
appeared due to theDirac index ofWilson fermions, andNs
includes both the number of sites in space and color d.o.f. as
in the case of staggered fermions. We refer to [42] for the
derivation of this relation and for the exact form of the
blocks A andC. The gauge fields enter in both the diagonal
and off-diagonal blocks, although the diagonal blocks Ai
include only spatial links, while the off-diagonal blocks Ci
include both spatial links and the links in Euclidean
time direction. The determinant of the operator (16) can
be simplified further as

det M̄W ¼ detQW
Y
i

detAi; ð17Þ

where

QW ¼

0
BBBBBBBBBB@

I A1
−1 0 0 … 0

0 I C1 0 … 0

0 0 I A2
−1 … 0

..

. . .
. . .

. ..
.

0 0 … I A−1
Nτ

−CNτ
0 … 0 I

1
CCCCCCCCCCA
: ð18Þ

QW has exactly the form needed for the Schur solver (12);
thus, the blocks of ðQWÞ−1 essential for the derivatives can
be computed with exactly the same algorithm as described
above with only one substitution,

D2k ¼ Ck; D2k−1 ¼ Ak
−1; k ¼ 1…Nτ: ð19Þ

Equation (9) is alsomodified. For spatial links ν ¼ 2, 3, 4, it
can be written as

∂ ln det M̄W

∂Uðt;xÞ;ν
¼ Tr

�
ḡ2t

∂Ct

∂Uðt;xÞ;ν

�

− Tr

�
ḡ2t−1At

−1 ∂At

∂Uðt;xÞ;ν
At

−1
�

þ Tr

�
At

−1 ∂At

∂Uðt;xÞ;ν

�
: ð20Þ

For the links in the Euclidean time direction, the expression
is a bit simpler, since they do not enter into the Ai blocks,

∂ ln det M̄W

∂Uðt;xÞ;1
¼ Tr

�
ḡ2t

∂Ct

∂Uðt;xÞ;1

�
: ð21Þ

In both expressions above, ḡi are the off-diagonal blocks
of ðQWÞ−1, enumerated according to the convention in (14).
Despite the slightly more complicated expressions for
Wilson fermions, one needs only to invert the spatial
blocks and apply the Schur complement solver to compute
all exact derivatives of the fermionic determinant. Thus, the
scaling of the method is also N3

sNτ.

IV. THE MODEL

In order to demonstrate the performance of the described
algorithms, we consider the Hubbard model on the hex-
agonal lattice at finite chemical potential. At half-filling,
this model is known to exhibit a semimetal-to-insulator
transition [43,44], which gives us an appropriate scale
for the interaction strength. Furthermore, the particle-hole
symmetry at half-filling helps to identify and characterize
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the thimbles and saddle points before we increase the
chemical potential. We start from the form of the
Hamiltonian written in the particle-hole basis in order to
have a manifestly positive-definite weight for the Hubbard
field configurations at half-filling,

Ĥ ¼ −κ
X
hx;yi

ðâ†xây þ b̂†xb̂y þ H:c:Þ þ U
2

X
x

q̂2x þ μ
X
x

q̂x;

ð22Þ
where â†x and b̂†x are creation operators for electrons and
holes, q̂x ¼ n̂x;el: − n̂x;h: ¼ â†xâx − b̂†xb̂x is the charge oper-
ator, κ is the hopping parameter, U > 0 is the Hubbard
interaction, and μ is the chemical potential. Due to the van
Hove singularity present in the density of states, one can
clearly identify the scale where new physics is expected:
μ ¼ κ (see [45,46] and references therein). Special attention
will be paid to this value of μ in the calculations that follow,
since it is also the region with the most severe sign problem
[47], as can be seen from the test calculations made with
BSS-QMC (see Fig. 2). Interaction strength is chosen in
order to probe both sides of the antiferromagnetic (AFM)
phase transition, which happens at U ≈ 3.8κ [43,48] on
hexagonal lattice. Thus, we usually take tree values of U:
U ¼ 2κ of U ¼ 3κ in semimetallic phase, U ¼ 3.8κ at the
phase transition, and U ¼ 5κ in AFM phase. Temperature
is chosen to be below the Neel temperature for U ¼ 5κ,
so that we indeed are in ordered phase at that value of
interaction strength [48]. Also, in this region of temper-
atures (βκ ¼ 20…30), the BSS-QMC method experiences
the exponential decay of the average sign, reaching as small
values as 10−2…10−3 even on small 2 × 2 lattices, as it is
shown in Fig. 2. The last argument why we think this
temperature is small enough stems from comparison
with other recent papers dealing with QMC calculations
for doped Hubbard model βκ ¼ 5 for BSS-QMC calcu-
lations in [49] and βκ ¼ 3 in tempered Lefschetz thimbles

method [37]. This comparison shows that in our saddle
point analysis we could reach temperatures well below
those achieved in the state-of-the-art QMC computations.
The next step in constructing the path integral formulation

of the model is to introduce the Trotter decomposition

e−βĤ ≈…e−δK̂e−δĤUe−δK̂e−δĤU…þOðδ2Þ; ð23Þ

where K̂ is the collection of all bilinear fermionic terms in Ĥ,
and ĤU is the interaction part of the full Hamiltonian. Here
we have introduced δ, which specifies the discretization of
Euclidean time,Nτδ ¼ β, whereNτ constitutes theEuclidean
time extent of the lattice. Below, wewill refer to β in the units
of inverse hopping.
One can obtain an additional, nonphysical, d.o.f. in the

Hamiltonian, by applying the following identity to the
interaction term:

U
2
q̂2x ¼

αU
2

q̂2x −
ð1 − αÞU

2
ŝ2x þ ð1 − αÞUŝx; ð24Þ

where ŝx ¼ n̂x;el: þ n̂x;h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich transfor-
mations to each four-fermion term in (24)

e−
δ
2

P
x;y
Ux;yn̂xn̂y ≅

Z
Dϕxe

− 1
2δ

P
x;y
ϕxU−1

xy ϕyei
P

x
ϕxn̂x ; ð25Þ

e
δ
2

P
x;y
Ux;yn̂xn̂y ≅

Z
Dϕxe

− 1
2δ

P
x;y
ϕxU−1

xy ϕye
P

x
ϕxn̂x : ð26Þ

The first four-fermionic term can be transformed into a
bilinear using (25) and the second using (26). This is not the
most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly used
in QMC algorithms with continuous auxiliary fields. This
representation was first proposed in [52] and was also used
in several recent papers [53,54]. The parameter α ∈ ½0; 1�
defines the balance between auxiliary fields coupled to the
charge (q̂x) and spin (ŝx) density. This particular repre-
sentation has an important advantage over discrete aux-
iliary fields in that it also works for nonlocal interactions, so
that we do not need to introduce a new auxiliary field for
every pair of interacting electrons.
The details of the construction of the path integral are

straightforward and can be found in [53,55,56]. Here we
simply state the explicit form of the partition function
which we have used in our calculations,

Z ¼
Z

Dϕx;τDχx;τe−Sα detMel: detMh:;

Sα½ϕx;τ; χx;τ� ¼
X
x;τ

�
ϕ2
x;τ

2αδU
þ ðχx;τ − ð1 − αÞδUÞ2

2ð1 − αÞδU
�
; ð27Þ
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FIG. 2. Average sign in BSS-QMC algorithm, taken from the
ALF (algorithm for lattice fermions) package [50,51]. The
calculations were performed on a hexagonal 4 × 4 lattice with
Nτ ¼ 256 and β ¼ 20.0; U ¼ 2.0κ. The discrete auxiliary field is
coupled to spin as this setup corresponds to the minimal sign
problem in BSS-QMC.
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where the fermionic operators are given by

Mel:;h: ¼ I þ
YNτ

τ¼1

½e−δðh�μÞdiagðe�iϕx;τþχx;τÞ�: ð28Þ

This fermionic operator can be rewritten in the form (12),
where

D2k ¼ diagðe�iϕx;τþχx;τÞ D2k−1 ¼ e−δðh�μÞ;

k ¼ 1…Nτ: ð29Þ

Thus, all algorithms for the fast solution of the GF
equations, described in Sec. III, are fully applicable. We
denote the field coupled to charge density as ϕx;τ and the
field coupled to spin density as χx;τ. The full action, which
is used in Monte Carlo sampling, involves both the bosonic
action of the auxiliary fields and the logarithm of the
fermionic determinants, S ¼ Sα − lnðdetMel: detMh:Þ. The
total number of auxiliary fields is equal to N ¼ 2NsNτ if
α ∈ ð0; 1Þ, so that both fields participate, and N ¼ NsNτ if
α ¼ 0, 1, where only one type of field remains.

V. SADDLE POINTS STUDY

A. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order to
get a quantitative idea of what the thimbles decomposition
(4) looks like as we approach both the thermodynamic limit
in spatial volume and the continuum limit in Euclidean
time. Unfortunately, at large lattice volumes, the fully
analytical approach for finding saddle points (as was done
in [54] on lattices with up to four sites) does not work.
Thus, in this study, we are using a completely different
approach which is based on importance sampling and fast
solutions of the GF equations, using the calculations of
the derivatives of the fermionic determinant described in
Sec. III.
At half-filling, this method starts with the generation of

lattice configurations using standard hybrid Monte Carlo
(HMC) techniques. After this, we numerically integrate the
GF equations for each field configuration for a finite flow
time, in order to reach the local minimum of the action.
At half-filling, when thimbles are bounded within RN , the
local minimum of the action always corresponds to a
relevant saddle point. At the end of this sequence of steps,
the distribution of lattice ensembles, taken after employing
the GF procedure, gives an accurate characterization of the
relevant saddle points at half-filling if the initial set of
configurations was ergodic. An example of such a process
is shown in Fig. 3. After generating configurations using
HMC, one can observe the approach to the saddle point in
our gradient flow routine. As noted, the real part of the
action should monotonically decrease and eventually, at a
certain flow time, converge to the value at the saddle.

In general, the method scales similar to the Schur comple-
ment solver as N3

sNτ.
A possible source of systematic error in our lattice setup

is the discretization in Euclidean time that results from the
Trotter decomposition. Thus, we first checked that we have
already effectively arrived at the continuum limit in
Euclidean time. In Fig. 4, the plot shows the histogram
of the distribution of the action for the field configurations
after GF. As the initial configurations were generated using
HMC, the height of each bar corresponds to the exact
weight of the thimble attached to the corresponding saddle
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FIG. 3. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to different
thimbles at half-filling. The plot shows the evolution of the action
with the flow time. The ensemble consists of a 6 × 6 lattice with
Nτ ¼ 256 and β ¼ 20.0, U ¼ 5.0κ, α ¼ 0.9. One can clearly see
how the configurations end up at three different saddle points
after completion of the flow.

FIG. 4. Distribution of the saddle points at half-filling for a
6 × 6 lattice in the strong coupling regime with U ¼ 5.0κ. Two
cases are compared: (lhs) Nτ ¼ 256 and (rhs) Nτ ¼ 512 for fixed
temperature β ¼ 20.0 and α ¼ 0.9. One can see that the dis-
tribution is almost identical and thus we can claim that we are
close enough to the continuum limit in the Euclidean time
direction.
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point whose value of the action is denoted by the position of
the bar. In Fig. 4, we display the histograms for two lattice
spacings at fixed β. The results are almost identical, and
thus we can claim that with Nτ ¼ 256 at β ¼ 20, we are
already close enough to the continuum limit in Euclidean
time. This gives us confidence that our study of the features
of the saddle points and thimbles is independent of the step
size in Euclidean time. We will use the same style of plots
to characterize the structure of the thimbles decomposi-
tion below.
We now proceed to study saddle points at different α.

One important thing to note is that at half-filling, we cannot
faithfully sample the path integral at the extreme values
α ¼ 1.0 and α ¼ 0.0. In both cases (see [53,54,57]), the
product of fermionic determinants is equal to the square of
some real-valued function

detMel: detMh:jα¼0;1;μ¼0 ¼ F2: ð30Þ

Thus, only one constraint, F ¼ 0, needs to be satisfied in
order to have both fermionic determinants equal to zero. It
follows that the dimensionality of the manifolds on which
the determinant vanishes is equal to N − 1 and therefore
they cut RN into disconnected regions. As a result, HMC
cannot penetrate through these domain walls [53,54,57],
and we cannot rely on it to generate an ergodic set of
configurations. However, as was shown in Fig. 5 (and one
more example will also be shown below), even a small shift
of α from these extreme values is enough to restore
ergodicity. We explicitly check the value of squared spin
per sublattice

hðSzÞ2i ¼
��X

i∈1st: sublat:Ŝ
i
z

�
2
	

ð31Þ

and compare the results from HMC with BSS-QMC, which
does not have ergodicity issues due to the formulation
in terms of discrete fields. We can thus safely use, e.g.,
α ¼ 0.01 and α ¼ 0.99 in order to gain an understanding
of the thimbles decomposition when we have either a
dominant spin-coupled field auxiliary field or a dominant
charge-coupled auxiliary field, respectively.
We first study saddle points at α ¼ 0.01, when the spin-

coupled field χx;τ is the most important and ϕx;τ is always
equal to zero at the saddle points. The results are shown in
Fig. 6 at different values of the interaction strength, which
correspond to the semimetal (SM) phase (U ¼ 3κ), the
region close to the phase transition (U ¼ 3.8κ), and the
antiferromagnetic (AFM) phase (U ¼ 5.0κ). In all cases,
there is a dominant saddle point corresponding to the
smallest value of the action, but its dominance becomes less
and less pronounced as we move toward the AFM phase.
A more detailed study of saddles is presented in Fig. 7 for
the case of large interaction strength, U ¼ 5κ. The lowest
saddle [Fig. 7(b)] is just a static solution which corresponds
to χx;τ ¼ �χ0, with the sign depending on the sublattice.
Both these saddles are just two identical mean field
solutions corresponding to antiferromagnetic ordering
(Néel state). They appear as a consequence of the bipartite
nature of the lattice. Since there are two stationary vacua,
“instanton” solutions, which represent tunneling events
between the two vacua, inevitably appear. We indeed
observe these instantons which correspond to saddle
points with larger actions, examples of which are shown
in Figs. 7(c)–7(e). In (c), one sees how, at a given site, one
can have virtually instantaneous tunneling of the value of χ
betweenþχ0 and −χ0 and back again, where χ0 is the same
value that appears in the mean-field configuration. In these
configurations, the tunneling occurs locally both in space
and in time. However, there are cases such as (d), where the
tunneling from �χ0 to ∓ χ0 occurs all across the lattice in
space at some Euclidean time τ0, and at a later time τ1, the
fields return to their original configuration. Thus, we have
two “global instantons.” Finally, we have observed cases
such as (e), where a similar pair of “global instantons”
exists, with the caveat that the tunneling structure is
violated locally in space. The identification of these
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FIG. 5. The dependence of the squared spin at one sublattice
[see Eq. (31)] on α. The observable is computed on 6 × 6 lattice
with Nτ ¼ 128 and β ¼ 20.0, U ¼ 3.8κ. The value from BSS-
QMC is shown with the dashed line which is representing the
mean value and the dotted lines are representing the error bars.

FIG. 6. The distribution of the action of saddle point configu-
rations at half-filling for α ¼ 0.01. The ensembles consist of a
6 × 6 lattice with Nτ ¼ 256 and β ¼ 20.0, and three different
values of interaction strength: (left) U¼3.0κ, (middle) U ¼ 3.8κ,
(right) U ¼ 5.0κ.
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examples with the action depicted in the histogram is
described in the caption to Fig. 7.
Next, in Fig. 8, we display the results at a larger value of

α where the auxiliary field which couples to charge-density
starts to dominate and all saddle points are located at
χx;τ ¼ 0. The latter fact automatically ensures that the
structure of the saddle points is completely different from
the one at small α. The histograms for the same three
couplings show that the situation improves and that the
construction of the saddle points is now more regular since
they are equally spaced in action. A comparison of the
6 × 6 and 12 × 12 lattices [Fig. 8 (upper panel and lower
panel)] shows that the number of saddles appearing in the
histogram increases with the increasing volume, particu-
larly at larger values of the coupling U. However, the
general structure of saddle points remains essentially the
same. This situation is demonstrated in Fig. 9. Here we
have taken a 6 × 6 lattice with Nτ ¼ 512 at U ¼ 5κ, as an
example (corresponding histogram is shown in Fig. 4).
However, the same field configurations were observed at
saddle points for other U, Nτ, and also at a volume of
12 × 12. For all histograms, shown here for α ¼ 0.9

(Fig. 8), the first bar corresponds to the vacuum saddle
ϕx;τ ¼ χx;τ ¼ 0. The next bar corresponds to the localized
field configurations shown in Fig. 9-1(a). These localized
features come in two types, differing only in the sign of the
ϕx;τ field ϕx;τ → −ϕx;τ. We will refer to these structures as
“blob” and “antiblob” in the subsequent discussion. The
third bar in the histograms for α ¼ 0.9 corresponds to the
three combinations one can construct out of two of these
localized objects: blob-blob, blob-antiblob, and two anti-
blobs, where the objects are located at some spatial
separation on the lattice. Two examples are shown in
Figs. 9-2(a) and 9-3(a). All further saddle points consist
of more complicated combinations of increasing number of
blobs/antiblobs that are localized somewhere within the
lattice. The single blob shown in Fig. 9-1(a) has an action
given by S1 ¼ S0 þ ΔS, where S0 is the action of the trivial
vacuum. Both configurations in Figs. 9-2(a) and 9-3 have
actions given by S2 ≈ S0 þ 2ΔS to a very high precision. It
follows that the actions of n-blob configurations should be
concentrated around Sn ¼ S0 þ nΔS, with the width of the
distribution slightly widening with increasing n. This is due
to that fact that as the density of blobs increases, they are no
longer well separated and start to interact with each other.
These single and multiblob configurations have conse-

quences for the fermions, as we attempt to illustrate in
Fig. 9. We first define the equal-time fermion Green’s
function in position-time representation

gðx; y; τÞ ¼ −hâxðτÞâ†yðτÞi; ð32Þ
where we have written the expression for particles and an
analogous expression exists for the holes. We compute this
expression on a given saddle point configuration, for fixed
spatial positions x and y as a function of τ. This quantity
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FIG. 7. Representative field configurations at saddle points for
mostly spin-coupled auxiliary field at half-filling (α ¼ 0.01). The
χ field is shown, while the ϕ field is always equal to zero at these
saddle points. (a) Distribution of action of saddle point configu-
rations for a 6 × 6 lattice with Nτ ¼ 256 at U ¼ 5.0κ and β ¼
20.0 (we repeat the histogram for U ¼ 5.0κ for reference).
(b) The AFM mean-field saddle, which corresponds to the bar
with the lowest value of the action in the histogram. (c) Local
instantons on the background of mean-field vacuum (peaks
between S ¼ −440 and S ¼ −400 in the histogram). (d) Global
mean-field instanton (peak at S ≈ −295 in the histogram).
(e) Saddle points with local violations of the structure of
mean-field instanton (S ≈ −280 in the histogram). In all cases,
the value of the χ field is represented by the color of the world
lines drawn in the Euclidean time direction emanating from each
site on the hexagonal lattice. In (b)–(e), we have only depicted the
part of the lattice where interesting features involving the χ field
are found for simplicity.

FIG. 8. The distribution of the action of saddle point configu-
rations at half-filling for an intermediate case, α ¼ 0.9. The
ensembles consist of the following: (upper panel) 6 × 6 and
(lower panel) 12 × 12 lattice with Nτ ¼ 256 and β ¼ 20.0, and
three different values of interaction strength: (upper and lower
left) U ¼ 3.0κ; (upper and lower middle) U ¼ 3.8κ; (upper and
lower right) U ¼ 5.0κ. The histograms reveal a much more
regular (in comparison with Fig. 6) system of saddle points. The
lowest saddle points correspond to the vacuum configuration (all
auxiliary fields are equal to zero).
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FIG. 9. Representative field configurations at saddle points for mostly charge-coupled auxiliary field at half-filling (α ¼ 0.9,
6 × 6 lattice with Nτ ¼ 512 at U ¼ 5.0κ and β ¼ 20.0, corresponds to the red histogram in Fig. 4). The χ field is always equal to
zero, while the modulus of the ϕ field is shown as the width of a blob at a given spatial lattice site and time step in Euclidean time.
For clarity, we only draw world lines if jϕj > ϵ, with ϵ some suitably small threshold. In order to make the position of the world
lines clear with respect to the spatial lattice, we also draw their projections on the τ ¼ 0 plane. The vacuum field configuration
corresponds to all fields equal to zero. This saddle corresponds to the bar at lowest action in the red histogram of Fig. 4. 1(a) The
lowest nontrivial saddle point corresponds to the bar at S ≈ −1891 in the histogram 4(b). This field configuration is clearly
localized and serves as an elementary quantum to construct further saddle points with higher actions. 2(a), 3(a) Two saddle points
which correspond to the third bar in the red histogram of Fig. 4 (located at S ≈ −1884, the bar cannot be seen due to the scale).
Plots [1(b), 1(c)] show the evolution with τ of the equal-time fermionic propagator gðx; y; τÞ for the one-blob saddle point shown in
[1(a)]. One of the end points x is located at the center of the blob (marked with blue square in the projection onto τ ¼ 0 plane). The
two other end points y are marked with a violet and a red triangle in the projection. They correspond to the plots 1(b) and 1(c)
(drawn in the same colors as the corresponding triangles). The same rule is applied to the plots 2(b)–2(d) and 3(b), 3(c): they
demonstrate the properties of equal-time fermionic propagators with respect to the saddle points shown in 2(a) and the blue
histogram of Fig. 4, respectively.
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forms a closed curve in the complex plane due to periodic
boundary conditions for the auxiliary fields. Furthermore,
for certain locations of the source and sink, this curve
exhibits a nontrivial winding around the origin in the
complex plane. We define the winding number of the
propagator for a given source and sink location as follows:

Wðx; yÞ≡ 1

2πi

I
γ

dz
z

¼ 1

2πi

Z
β

0

1

gðx; y; τÞ
∂gðx; y; τÞ

∂τ dτ; ð33Þ

where in the first equality we have used z≡ gðx; y; τÞ, and γ
refers to the closed curve swept out by the propagator in the
complex plane. For the one-blob configuration in Fig. 9, we
have plotted the Green’s function contour for two different
sinks, with the source fixed at the center of the blob. In
Fig. 9-1(b), the sink is located on the opposite sublattice of
the source and shows a nontrivial winding number of
þ1, while in Fig. 9-1(c) the sink is located on the same
sublattice of the source and shows a trivial winding of 0.
We thus see that there exists a correlation between fermion
winding number, saddle points, and sublattice symmetry.
We have observed that, for the multiblob configurations,

blobs with the same sign lie on the same sublattice while
blobs with opposite signs lie on opposite sublattices. The
latter is depicted in Fig. 9-2(a) where we have a configu-
ration containing a blob-antiblob pair, and in Figs. 9-2(b)
and 9-2(c) we observe the same correlation between
sublattice symmetry and fermion winding number that
was observed for the one-blob configuration. However,
in Fig. 9-2(d), we see a nontrivial winding number of þ2
where the sink and source were taken to be the centers of
the two blobs. A two-blob configuration is depicted in
Fig. 9-3(a), where again, the winding number is trivial for
source and sink on the same sublattice [Fig. 9-3(b)]. The
winding number is nontrivial and equal to −1 for source
and sink on different sublattices [Fig. 9-3(c)]. We note that
winding number �2 was not observed for the two-blob
configuration. We assume that a similar correlation exists
between the winding number and the construction of saddle
point configurations with a larger number of (anti-)blobs,
and thus the winding number can be used for the classi-
fication of saddle points. However, we have left the detailed
study of this point to future work.
One expects that the dependence of the thimbles decom-

position on the Hubbard coupling should reflect the
changing physics in the strongly coupled phase. The
dependence of the real part of the action of various saddles
on the coupling U at half-filling is shown in Fig. 10 for the
case where the charge-coupled Hubbard field dominates
(α ¼ 0.9). In order to track the location of the saddles in a
continuous manner, we have used the GF in the downward
direction after small shifts of the on-site interaction U.
This means that we start from saddle points at large U, then

slightly decrease U → U − δU and search for the new
locations of the local minima by starting GF from the old
saddles. This procedure is repeated to cover the desired
interval of U. We have found that sometimes the profiles
obtained in this way experience sharp decays into the
vacuum saddle. This behavior implies that the correspond-
ing saddle point becomes irrelevant.
Before we proceed further, the last point needs to be

clarified. Usually, a thimble and its corresponding saddle
point are classified as “relevant” if their intersection
number, kσ, is nonzero. However, things can be different
if the so-called Stokes phenomenon occurs. This situation
implies that several saddles are now connected by one
thimble. Here we consider this situation at half-filling,
when there is no sign problem and all relevant thimbles
and saddle points are confined within RN . In this case, all
eigenvectors of the Hessian matrices, Γσ, for saddles
located within RN have their components either purely
real or imaginary. At the local minimum of the action
within RN , which is a relevant saddle point, all real
eigenvectors of Γσ correspond to positive eigenvalues.
However, it can happen that some N σ > 0 real eigenvec-
tors correspond to negative eigenvalues of Γσ. This
situation is illustrated in Fig. 11. Because the thimbles
attached to local minima cover the entire RN , saddles
which have at least one real eigenvector corresponding
to a negative eigenvalue of Γσ , do not participate in the
sum (7), and thus are irrelevant. Simply counting the
intersection points is impossible in this case as dimðRN ∩
KσÞ ¼ N σ > 0 for such saddles. The decay of a saddle, if
we start from a slightly shifted field configuration, means
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FIG. 10. The dependence of the saddle points for mostly
charge-coupled auxiliary field on the interaction strength at
half-filling (α ¼ 0.9, 6 × 6 lattice with Nτ ¼ 256 at β ¼ 20.0).
Each subsequent point is obtained via GF from the previous one
(moving from larger U). If the saddle point becomes irrelevant,
the flow shows decays into the vacuum saddle. Due to the
localized structure of the field configurations at saddle points,
they remain equidistant in action. However, at small interaction
strength, nontrivial saddles decay into the vacuum one. This
illustrates the influence of nontrivial saddle points on the physics
in the strongly coupled regime.
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that a negative eigenvalue of Γσ with a corresponding real
eigenvector has appeared. It then follows that this sit-
uation indeed corresponds to the transition between
relevant and irrelevant status for the saddle point.
Using these ideas, we can interpret from Fig. 10 that at

small coupling, the trivial vacuum is the only relevant
saddle. As we move to larger coupling, multiple nontrivial
relevant saddles appear and above U ≈ 3.4κ; we see two
of them which are evenly spaced. Thus, we should expect
that, at fixed α and large U, more and more nontrivial
multiblob saddles become relevant once we approach
AFM phase. This interpretation is also supported by the
previous histograms cf. Fig. 8.
Finally, in Fig. 12(a), we show how the situation becomes

worse as we further increase the parameter α, thus suggesting
that there exists a “sweet spot” which possesses an advanta-
geous structure for the thimbles decomposition. This regime
is illustrated in Fig. 12(b), where even for large lattices

(12 × 12) at U ¼ 3.8κ (which corresponds to the AFM
phase transition), only the vacuum saddle contributes at
α ¼ 0.8. One can compare this situation with that depicted
in the lower panel middle plot of Fig. 8. A more detailed
study of this regime is made below, accompanied by the
study of saddles points away from half-filling.

B. Saddle points at nonzero chemical potential

Away from half-filling one cannot rely on the naive
application of the GF equations in order to find the saddle
points. This is due to the fact that the downward GF ends up
on a saddle point only if the initial configuration was
exactly on the corresponding thimble. Since we cannot
generate those configurations (at least without prior knowl-
edge about the saddle points), another method should be
employed. We use a procedure similar to Powell’s method
to search for local minima. The algorithm is illustrated
schematically in Fig. 13(a) for a single complex field. The
minimization procedure consists of alternating GF steps

FIG. 11. Example of the Stokes phenomenon at half-filling if
there are only two auxiliary fields. We display the isolines of the
action for the case when the relevant saddle point (local minima,
denoted by the star) is accompanied by the irrelevant one and the
zero of determinant (top part of the plot, denoted by the open
circle).

FIG. 12. (lhs) The distribution of the action of saddle point
configurations at half-filling for α ¼ 0.99. Results are shown
for 6 × 6 lattice with Nτ ¼ 256 and β ¼ 20.0, U ¼ 3.8κ. The
situation again becomes substantially worse: nonvacuum saddle
points play a significant role. (rhs) Quite the opposite situation is
observed at α ¼ 0.8. In this case, we see only one saddle point
even in the case of larger, 12 × 12 lattice with the same Nτ, β,
and U.

c c

cc

1 2

34

-15

-10

-5

0

5

10

15

0 2 4 6 8 10 12 14 16 18

Number of iteration

2x2, Nt=256

Re, saddle 1

-12
-10

-8
-6
-4
-2
0
2
4
6
8

10

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of iteration

6x6, Nt=256

Re
Im

(a)

(b) (c)

FIG. 13. (a) General schematic illustration of the algorithm
which searches for complex saddle points (one-dimensional
case): c1 is the initial position, segment c1 − c2 corresponds to
the downward flow, segment c2 − c3 corresponds to the upward
flow and so on. (b) Example of search processes for a 2 × 2 lattice
with Nτ ¼ 256, β ¼ 20.0, U ¼ 2.0κ, μ ¼ κ, and α ¼ 1.0: shorter
process converges to vacuum saddle point and longer one shows
convergence to nonvacuum localized saddle point. (c) Example
search process for a 6 × 6 lattice with Nτ ¼ 256, β ¼ 20.0,
U ¼ 2.0κ, μ ¼ κ, and α ¼ 0.9: it illustrates the case when the
process collides with a zero of the determinant on the way, seen in
the large spikes for both the real and imaginary parts. The y axis
in (b) and (c) labels the sum of the squares of the first derivatives
of ReS with respect to the real or imaginary parts of the fields at
each site.
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for constant imaginary and real parts of the field. The even
iterations consist of GF in the downward direction with
fixed ReΦj ¼ ΦðRÞ

j , where Φj ≡ΦðRÞ
j þ iΦðIÞ

j represents
both complex auxiliary fields. The flow stops when it
reaches the local minimum. The odd iterations consist of

upward GF with fixed ImΦj ¼ ΦðIÞ
j and terminate when a

local maximum or zero of determinant has been reached,
where ReS → ∞. The convergence can be controlled by

monitoring the quantity, ΣD;Re=Im ≡P
i j∂ReS=∂ΦðR=IÞ

i j2
(with the sum running over all sites in the spatial and
temporal directions) after each iteration, with ΣD;Re reach-
ing the level of numerical precision (typically 10−10) during
even iterations and ΣD;Im during odd iterations (assuming
the flow did not collide with a zero of determinant). Some
examples are shown in Figs. 13(b) and 13(c). In the former,
one can see two examples of the iterations on a 2 × 2
lattice. Here we see that one converges into the vacuum
saddle, which is uniformly shifted into the complex plane
(Reϕx;τ ¼ Reχx;τ ¼ Imχx;τ ¼ 0, Imϕx;τ ¼ ϕ0), while the
other converges into a nontrivial saddle, which is nonuni-
form both in space and Euclidean time. The latter figure
demonstrates an example for a 6 × 6 lattice, where the
iterations collided with a zero of the determinant on the
way, but nevertheless converged afterward.
Away from half-filling, the initial configurations were

generated using a phase quenched HMC, using the algo-
rithms already described in [40]. Thus, only the absolute
value of ln detðMel:Mh:Þ was taken into account during the
Monte Carlo procedure. Usually, the initial configurations
are generated along some contour in CN , uniformly shifted
from RN , in order to approach the thimble. This is not
surprising as we have found that this constant shift into
complex space applies to the vacuum saddle at μ ≠ 0.
The procedure of using a constant shift was performed at
α ¼ 0.8 and α ¼ 0.9, where the charge-coupled field
dominates. If α ¼ 0, the thimbles and saddles again lie
within RN , since both fermionic determinants are real.
However, as discussed previously, this property of the
fermionic determinants leads to a loss of ergodicity for
HMC. Thus, in order to explore the case when the spin-
coupled field dominates, we use small α ¼ 10−4 and
generate configurations without a shift into the complex
plane. Even such a small, nonzero value of α is enough to
restore ergodicity, as one can see in the inset in Fig. 14. This
inset shows the history of arg S during one trajectory in
HMC update. If α ¼ 0, all thimbles have cos arg S ¼ �1
again due to the fact that detðMel:Mh:Þ ∈ R. Thimbles with
different signs are separated by zeros of the determinants,
since they are branch points of the logarithm. Here we
have a small but nonzero α, and thus the cos arg S only
approaches �1. A sharp transition is observed in the inset
in Fig. 14 which shows us that the algorithm still can tunnel
between different thimbles. This tunneling was, in fact,
quite frequent and was observed in more than half of the

Monte Carlo updates. This is a further confirmation that
the HMC is ergodic.
Another concern regarding our GF procedure is the

question of convergence of the alternating iterations.
Unfortunately, the procedure we have used does not
converge for an arbitrary saddle. The criterion for the
convergence of the procedure can be derived from the fact
that the distance to the saddle point should decrease after a
full round of four iterations. The exact formulation can be
expressed in terms of the Hessian matrix Γ ¼ ðAC C

BÞ. The
Hessian is written in terms of 2NsNτ × 2NsNτ blocks

Ai;j ≡ ∂2ReS=∂ΦðRÞ
i ∂ΦðRÞ

j , Bi;j ≡ ∂2ReS=∂ΦðIÞ
i ∂ΦðIÞ

j , and

Ci;j ≡ ∂2ReS=∂ΦðRÞ
i ∂ΦðIÞ

j . Using these matrices, the min-
imization procedure is guaranteed to converge if both A and
−B are positive-definite, and each of the eigenvalues, λi, of
the matrix A−1CB−1C, which characterizes the update of
the fields after two subsequent iterations, satisfies

jλij < 1: ð34Þ

The latter is actually a constraint on j arg ∂i∂jSj. If all of the
second derivatives are real, C ¼ 0, and thus jλij ¼ 0. If
j arg ∂i∂jSj increases, with A and (−B) still remaining
positive-definite, the thimble in the vicinity of the saddle
point is no longer parallel to RN , but starts to “rotate” in
complex space. In the one-dimensional case illustrated in
Fig. 13(a), jλj < 1 simply means that j arg ∂2Sjzσ j < π=4.
We again start from small α, which corresponds to a

dominant spin-coupled field. In this case, all saddle points
are located at ϕx;τ ¼ 0 and Imχx;τ ¼ 0 with their phases
cos arg S ¼ �1. Results are shown in Fig. 14, separately
for positive and negative saddles. In general, we observed
a very large variety of saddles with nonuniform structures
both in space and time. It is almost impossible to characterize
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FIG. 14. The distribution of the action of saddle point con-
figurations at μ ¼ κ for α ¼ 1.0 × 10−4. Results are shown for a
6 × 6 lattice with Nτ ¼ 256 and β ¼ 20.0, U ¼ 3.8κ. Saddle
points with positive and negative signs are shown separately in
red and green, respectively. Inset: history of ImS during an HMC
update of the field configuration showing the tunneling between
thimbles.
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them, since their actions form a quasicontinuum distribution.
Furthermore, positive and negative saddles almost compen-
sate each other in this case (see histograms in [36]), and thus
the part of the residual sign problem stemming from the
phase factors in Eq. (4) is quite strong. The qualitative
explanation for such behavior can be derived from the
schematic illustrations in Fig. 15. At half-filling, the fer-
mionic determinants for electrons and holes are identical for
α ¼ 0.0; thus, the sign problem is absent, but, according to
the previously mentioned results (see Figs. 6 and 7), we have
many thimbles inRN , separated by zeros of the determinants.
Once the chemical potential shifts from zero, the two
determinants are no longer identical, the domain walls
between thimbles are split, and “negative” thimbles immedi-
ately appear along the borders between “positive” thimbles.
Sinceweobserve a largevariety of thimbles at half-filling, the
situation can only become worse at μ ≠ 0.
Results for large α are shown in Fig. 16. At α ¼ 0.9,

the distribution of both ReS and ImS shows the same
characteristic behavior as was observed at half-filling
(Fig. 8) with saddle points equidistantly spaced in action.
The difference is that the step in the action is now a
complex number. More precisely, the properties of the
saddle points can be understood from Fig. 17, which
shows the evolution of the saddle points as one goes away
from half-filling. We see a continuous evolution of the
same system of blobs and antiblobs. The difference
between them in ReS remains constant [Fig. 17(a)], while

ImS increases and blob and antiblob configurations
acquire opposite phases. As obvious from our previous
discussion, the general rule for the approximate action of
saddle point is now Sn1;n2 ¼ S0 þ n1ΔSþ n2ΔS, where n1
is number of blobs and n2 is the number of antiblobs in the
configuration. Thus, the actions of the saddle points form a
triangle in complex space as can be observed in Fig. 16(a).
Another interesting consequence is that not only the
vacuum, but also configurations with an equal number
of blobs and antiblobs have ImS ¼ 0, which effectively
decreases the complexity of the sign problem.

FIG. 15. Schematic diagrams which explain the appearance
of “negative” thimbles at nonzero chemical potential in the case
when only the spin-coupled field is present (α ¼ 0.0)

FIG. 16. The distribution of the action of saddle point con-
figurations at μ ¼ κ for α ¼ 0.9 (a) and α ¼ 0.8 (b). Results are
shown for a 6 × 6 lattice with Nτ ¼ 256 and β ¼ 20.0, U ¼ 3.8κ.
As the action is complex away from half-filling, the histogram is
plotted simultaneously both for real and imaginary parts of the
action. The set of saddle points is similar to the results at half-
filling at the same α (see Fig. 8). Plot (b) shows that again,
only one (shifted trivial vacuum) saddle point can be found for
α ¼ 0.8.
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As we go to finite chemical potential, we can also
attempt to visualize the saddle point configurations. Unlike
Fig. 9, where the field is real, we plot the configuration in
the complex plane with each point representing the value of
the field at a given lattice site for α ¼ 0.9 (Fig. 18). In these
plots, the vacuum configuration is the trivial vacuum ϕ ¼
χ ¼ 0 with an added constant, volume-independent shift of
the imaginary part. In Fig. 18(a), we plot the configuration
of a single antiblob. The collection of points which extends
furthest away from the vacuum all come from the localized
region of space and time surrounding the center of the
antiblob. In Fig. 18(a), where we display a blob-antiblob
pair, we see that we have two such collections of points
extending away from the vacuum in opposite directions.
Each collection comes from the region of space surround-
ing the centers of the blob and antiblob, respectively. An
illustration of the effect of finite volume on the nontrivial
saddles is depicted in Fig. 18(c) for a 2 × 2 lattice where,
for a single blob, the structure of the distribution of the field
values is distorted as compared to Fig. 18(a).
In the sweet spot regime at α ¼ 0.8, we detect again only

the vacuum saddle [Fig. 16(b)]. In principle, such situation
should be very beneficial for the thimbles decomposition,
since the fluctuations of ImS can be made arbitrarily small.
Also, it should improve the ergodicity of the Monte Carlo
process, since the integration manifold is no more divided
into disconnected domains. However, we should stress that
unlike the μ ¼ 0 case, the distributions away from half-
filling (Figs. 14 and 16) are exact only for α ¼ 10−4, since
we are quite close to the thimble in this case. For α ¼ 0.8
and α ¼ 0.9, the histograms are only approximate as the
initial configurations for the iterations approach the thim-
ble, but do not lie exactly on it. Furthermore, “vertically
oriented” saddles, which do not satisfy the convergence
condition (34), can be missed. However, subsequent QMC
calculations support the conclusion that the regime around
α ¼ 0.8 is indeed better for simulations than α → 1.0.
The optimal regime around α ¼ 0.8 is studied in Fig. 19.

We start from half-filling in Fig. 19(c). The lower boundary
of this region in α corresponds to the splitting of the

vacuum saddle into two mean-field saddles. This splitting is
observed by launching GF from a slightly perturbed
vacuum (Gaussian noise is added to ϕx;τ and χx;τ). If
χx;τ returns to zero, the vacuum is stable; otherwise, the
final value of χx;τ is nonzero, since the flow arrives at the
mean-field saddle point. This is what we see in the χ
profiles for the mean-field saddles in Fig. 19(c) both for
6 × 6 and 12 × 12 lattices. The jump upward corresponds
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FIG. 18. Field configurations at saddle points for mostly
charge-coupled auxiliary field at finite chemical potential. (a),
(b) 6 × 6 lattice with α ¼ 0.9, U ¼ 3.8κ (these plots correspond
to the histogram (a) in the Fig. 16); (c) 2 × 2 lattice with α ¼ 1.0
and U ¼ 2.0κ, displayed here to show how the nontrivial saddle
point looks like in the situation where we perform HMC with GF.
The other parameters are Nτ ¼ 256, μ ¼ κ, β ¼ 20.0. The χ field
is always equal to zero, and the complex values of all ϕ fields
are projected onto a single complex plane. The vacuum field
configuration corresponds to all ϕ fields uniformly shifted into
the complex plane along the imaginary axis. The saddle points,
which are separated in action from the vacuum, for the 6 × 6
lattice preserve generally the same localized structure shown in
Fig. 9, with the shifts of the imaginary parts of the fields from the
vacuum value following the shift of the real parts.
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with increasing μ. Results are shown for a 6 × 6 lattice with
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to the appearance of the mean-field saddle and marks the
lower boundary of the optimal regime. The upper boundary
is determined by the decay of the nontrivial saddles into
vacuum, analogous to what was observed in Fig. 10. We
use the symmetry, Sðϕx;τ; χx;τÞ ¼ Sðϕx;τ;−χx;τÞ, and the
fact that the saddles are located at χx;τ ¼ 0 for large α.
The Hessian matrix is block diagonal in this case as
∂2S=∂χx;τ∂ϕx;τ ¼ 0. Because it is enough to find at least
one instability (negative eigenvalue of Γ, with real eigen-
vector), we can study the relevance of saddles separately for
ϕ and χ directions. It can be done in two different ways,
which should lead to identical results. The first is the
calculation fully analogous to the one made for Fig. 10:
we start from large α, slightly decrease it, and launch GF
in downward direction for both fields ϕx;τ and χx;τ. At
sufficiently small α, we see the decay of the saddle into
vacuum [example of the flow history for the fields at one
particular site is shown in Fig. 19(b)]. Thus, we can plot the
dependence of ϕx;τ after the flow on α and a sharp drop to
zero will mark the transition of a nontrivial saddle into an
irrelevant one. This approach, however, does not allow us to
understand, in which block of the Hessian matrix does the
negative, “unstable” eigenvalue appear. Alternatively, one
can first use GF, restricted to the ϕ fields in order to find the
saddle after a small shift of α. No instability was found in
this case, and the nontrivial saddles can be found for all

values of α. Finally, we use these saddles, add noise to the
χ fields, and launch the GF, restricted to χ fields for these
configurations. In this case, the instability manifests itself
in a finite value of the χ fields after the flow is performed
(the configuration does not return to the initial saddle
located at χx;τ ¼ 0). Thus, we can plot χ field after the flow
and the sudden appearance of a nonzero value signal the
transition of the nontrivial, relevant saddle into an irrelevant
one. Both approaches are demonstrated in Fig. 19(c) for
6 × 6 and 12 × 12 lattice. At α ≈ 0.89, the final value of χ
after the flow for χ fields jumps upward. Simultaneously,
the final value of ϕ fields in the full flow goes down to
the level of numerical errors (typically around 10−10).
This signals an instability in the χ channel, and thus the
nontrivial saddle becomes irrelevant. Remarkably, the
results depend neither on the type of saddle point nor on
lattice size. We attribute this property to the localized nature
of nontrivial saddle points at large α. An important
observation is that the width of the “optimal regime” grows
with increasing system size, since the lower border shifts to
smaller α for the 12 × 12 lattice. This lends strong support
to the existence of this regime in the thermodynamic limit.
A similar set of calculations was performed for μ ¼ κ,

where we have used GF restricted to Reχ. The plot in
Fig. 19(a) demonstrates how the flow switches from the
stable regime to eventual decay. We essentially observe
the same behavior for the nonvacuum saddles at large α
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FIG. 19. Results of the study of α dependence of saddle points
are shown. (a) Example of the χ flow from the disturbed saddle
point in two cases: when the saddle point is relevant and when
it is irrelevant. (b) Example of a full flow (both fields vary)
originating from the disturbed nonvacuum saddle point when it is
irrelevant and the flow ends up in the trivial vacuum. (c) Summary
of results at half-filling. Fields at the end of the flow are shown.
The mean-field saddle point for the spin-coupled auxiliary field
appears only at α ¼ 0.7…0.8 while typical nonvacuum saddle
points for the charge-coupled field become relevant only at
α ≈ 0.9. (d) Decay of nonvacuum saddle points in the case of
μ ¼ κ. Results are shown for a 6 × 6 lattice with Nτ ¼ 256 and
β ¼ 20.0, U ¼ 3.8κ.

FIG. 20. Schematic diagrams which explain the evolution of
saddle points and thimbles in the case when both fields are
present in the path integral.
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[Fig. 19(d)]: all nontrivial field configurations are unstable
in the Reχ direction if α < 0.89. This suggests that at
α > 0.89, the nonvacuum saddles shift into complex space
with increasing μ, remaining relevant, while at α < 0.89
they begin from irrelevant ones at μ ¼ 0 and move into
complex space for μ ≠ 0, remaining irrelevant. These
situations are depicted in the schematic drawings in
Fig. 20, where both relevant and irrelevant saddle points
are shown at half-filling and at μ ≠ 0. Another possibility is
that the saddles acquire a more “vertical” orientation with
decreasing α [as shown in Fig. 21(a)]. It can happen that the
GF along Reχ can take us away from zero also in this case.
However, there are additional arguments against this based
on the results of our HMC over manifolds in complex space
at different α described in the next section.

VI. HMC WITH GRADIENT FLOW

In order to check the conclusions concerning the structure
of the thimbles decomposition, made in the previous section,
we performed several Monte Carlo calculations, with the
integration manifolds shifted in complex space towards the
thimbles. Following [32], the sequence of deformations of
the integration contour can be summarized by

Z ¼
Z
RN

DΦe−S½ΦþiΦ0� ¼
Z
RN

DΦe−S½Φ̃� det J: ð35Þ

The general idea behind these deformations is shown in the
schematic illustration of Fig. 21(b). First, we perform a
uniform shift into the complex space, but only for the charge-
coupled field ϕ → ϕþ iϕ0. We work at large α, and this
uniform shift moves onto the thimble attached to the vacuum
saddle (see Fig. 18) in the Gaussian approximation. Below
we will denote this shift as Φ → Φþ iΦ0. A further shift is
made using the GF equations. The quantity Φ̃ ∈ CN is the
result of the evolution of the field determined by (6), starting
from the Gaussian thimble Φþ iΦ0, Φ ∈ R with flow
time T . We should stress that this algorithm does not follow
thimble exactly; it only approaches it in the limit of infinitely
large flow time. Thus, the third source of the residual sign
problem, the residual fluctuations of ImS appear in calcu-
lations. The complex-valued Jacobian of the transformation,
J ¼ DΦ̃=DΦ, also appears in the integral at this stage. The
flow time plays a dual role in this transformation. First, it
defines, how close we can approach the thimble, and thus it
regulates the residual fluctuations of ImS. Second, if the
flow time is too large, the flow lines can reach zeros of the
determinant, which separate thimbles [see Fig. 21(b)]. In this
case, the integration domain for the Φ fields is again split
into separate regions and as a result the Monte Carlo process
can hardly be expected to be ergodic. And finally, another
contribution to the residual sign problem comes from the
Jacobian, especially in the case of “vertically” oriented
thimbles, as shown in Fig. 21(a).
We use the following strategy to sample the partition

function (35): (i) the Jacobian is not taken into account in
the Markov process employed to generate field configu-
rations Φ̃ and is left for the final reweighting; (ii) the fields
Φ are generated using HMC, according to the distribution
e−ReS½Φ̃ðΦþΦ0Þ�; (iii) the fields Φ̃ are computed through
the gradient flow evolution. Several examples from the
second stage of the process are shown in Fig. 22 for one
particular site of the lattice. The second stage requires
an additional comment. HMC employs global updates of
the fields, using molecular dynamics (MD) governed by
H ¼ 1

2

P
i p

2
i þ ReS½Φ̃ðΦÞ�, where an artificial momen-

tum, pi, is introduced for each Hubbard field Φi. In order
to solve Hamilton’s equations, we need to compute the
derivative ∂ReS½Φ̃ðΦþΦ0Þ�=∂Φi. We calculate this

(a)

(b)

FIG. 21. (a) Illustration of “vertically” oriented saddle points
and thimbles which are lost in the search for complex saddle
points. Results are shown for a 2 × 2 lattice with Nτ ¼ 256 and
β ¼ 20.0, U ¼ 2.0κ, μ ¼ κ. (b) Schematic illustration of HMC
with gradient flow.
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FIG. 22. An example of flow profiles for ϕ (a) and χ (b) fields at
a single lattice site is shown. The flow starts at the Gaussian
thimble attached to the shifted trivial vacuum.
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quantity by shifting the initial fields Φi → Φi þ ΔΦ
and solving the GF equations for each shift. Examples
of such calculations are shown in Fig. 23. These plots
show that we can compute these derivatives to sufficient
accuracy increasing the precision of the numerical inte-
gration for GF equations. These calculations also give us
immediate access to all elements of the Jacobian. In
practice, however, we need the det J only after the
accept-reject step of the HMC procedure, while the
trajectory typically consists of Oð102Þ steps. Thus,
the calculation of the Jacobian plays only a subdominant
role in computational efforts. The overall scaling of the
method is C1ÑMDÑGFN4

sN2
τ þ C2N3

sN3
τ , where the first

term corresponds to the HMC procedure used to generate
field configurations and the second term accounts for the
calculation of det J at the end of the trajectory. Here ÑMD
refers to the number of steps in a MD trajectory which is
typically Oð102Þ, ÑGF refers to the number of steps in the
integrator for GF equations which is typically Oð101Þ, and
C1 and C2 denote volume-independent constants. In what
follows, we will refer to this algorithm as HMC-GF.
Several examples of configurations of the Φ̃ fields,
generated with this algorithm, are shown in Fig. 24.
The Jacobian is left for the final reweighting, and thus the

observables are computed using the following expression:

hOi ¼ hOei Imð−Sþln det JÞþReðln det JÞi
hei Imð−Sþln det JÞþReðln det JÞi ; ð36Þ

where the residual fluctuations of ImS are also taken into
account. The brackets hi denote the averaging over con-
figurations generated with HMC-GF. We also take into

account symmetries of the action in order to further
improve the ergodicity of our set of field configurations,
generated with HMC-GF,

Sðϕx;τ; χx;τÞ ¼ S̄ð−ϕ̄x;τ;−χ̄x;τÞ;
Sðϕx;τ; χx;τÞ ¼ Sðϕx;τ;−χx;τÞ: ð37Þ

The following metrics are used to estimate the severity of
the sign problem hcosðImSÞi and hcosðIm ln det JÞi for
configurations and the Jacobian, respectively, and the joint
sign hΣGi ¼ hcosðImð−Sþ ln det JÞÞi. The first metric
characterizes the part of the residual sign problem which
stems from the fact that the sequence of shifts (35) does not
follow thimble exactly. The second metric characterizes the
part of the residual sign problem which stems from the
fluctuations of complex measure during integration over
curved manifold in complex space. The last metric char-
acterizes the entire residual sign problem. We also estimate
the strength of the fluctuations of the Jacobian by comput-
ing DJ, the dispersion of Reðln det JÞ.
The following choice is made for the parameters of the

simulations: 2 × 2 lattice (Ns ¼ 8), Nτ ¼ 256, U ¼ 2κ,
μ ¼ κ, β ¼ 20. This lattice is small enough to make a
comparison with finite-temperature ED possible, but large
enough to host nontrivial saddle points at large α [see
Fig. 18(c)]. Their form is only slightly different from the
ones appearing at larger lattice sizes. These saddles also
experience decay along the Reχ direction at α ≈ 0.8, similar
to the 6 × 6 and 12 × 12 lattices studied above. Thus, we
can say that such a small lattice can in fact model the
properties of the saddle points even at thermodynamic
limit. On the other hand, we find that Nτ ¼ 256 is large
enough to probe both the low-temperature regime and the
continuum limit in Euclidean time simultaneously. We
further note that the state-of-the-art QMC algorithm for
condensed matter systems, BSS-QMC, taken from the ALF
package [51], experiences exponential decay of the average
sign at these parameters, even in the optimal regime where
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FIG. 23. Technical plots demonstrating that the calculation of
derivatives through finite differences is indeed reliable. (a) The
difference of the real part of the action at the end of two flow
procedures where the initial field configurations differ at a single
site by a variable amount Δϕ0. (b) Dependence of the derivative
of the real part of the action computed after the flow on the
precision of the integrator for the GF equations. As in (a), one
starts from two initial field configurations differing at a single site
(Δϕ0 ¼ 3.0 × 10−5) and at the end of the flow one computes the
derivative as a finite difference, ΔReS=Δϕ0. Clearly, the deriva-
tive stabilizes once the precision is high enough. Usually, we need
around 20 steps in the GF procedure for typical flow lengths.
These examples are shown for exactly the same setup which we
are using in one of our HMC flow simulations: α ¼ 1.0, 2 × 2
lattice with Nτ ¼ 256 at U ¼ 2.0κ, μ ¼ κ, β ¼ 20.0.
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FIG. 24. Example of configurations, generated in HMC with
GF, for charge-coupled (a) and spin-coupled (b) auxiliary field. In
both cases, we show both the initial configuration located on the
Gaussian thimble attached to the trivial vacuum saddle point and
the configuration after GF. Parameters of the run α ¼ 0.8, 2 × 2
lattice with Nτ ¼ 256 at U ¼ 2.0κ, μ ¼ κ, β ¼ 20.0. Unfortu-
nately, one cannot deduce any simple relation which allows
for a fit of the result of the GF with some local function
Imϕi ¼ FðReϕiÞ.
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the discrete auxiliary field is coupled to spin. It is thus
apparent that the sign problem is already strong in this
regime. We have also probed two different values of α:
α ¼ 1.0, so that only the charge-coupled field ϕx;τ partic-
ipates in the integral, and α ¼ 0.8 in order to probe the
“optimal regime,” where only the vacuum saddle point was
detected.
Our results for the computed observables are displayed

in the Table I, while the study of the sign problem is
summarized in Table II. We compute the kinetic energy,
hK̂i, and the nearest-neighbor correlation function for the

first component of spin hŜð1Þx Ŝð1Þy i. Results at α ¼ 1.0
substantially deviate from ED, while at α ¼ 0.8 the results
of HMC calculation are in agreement with ED. This seems
to imply that at α ¼ 1.0 ergodicity issues indeed appear as
there are several relevant thimbles and thus GF collides
with zeros of the determinant. Unfortunately, HMC cannot
tunnel through the barrier separating two thimbles in such
situations. At α ¼ 0.8, however, ergodicity is restored.
Moreover, we do not observe the growth of the fluctuations
of the Jacobian, which should appear if GF approaches
“vertically” oriented thimbles [Fig. 21(a)]. This tells us that
the thimbles attached to the nonvacuum saddles indeed
become irrelevant or they are bypassed by the integration
manifold constructed by GF. In both cases, these non-
vacuum saddles are effectively unimportant at α ≈ 0.8.
Noting that there exists a striking resemblance between the
saddle point structure on the 2 × 2 lattice and on larger
lattices at large α, Table I lends very strong evidence that
at α ≈ 0.8, there exists an optimal regime with only one
important thimble surviving in the full decomposition even
for large spatial volumes.
We also collected smaller statistics for the same lattice,

but with β ¼ 30 with Nτ ¼ 384 (α ¼ 0.8). We increased
the flow time from T ¼ 0.05 for β ¼ 20 to T ¼ 0.08 for

β ¼ 30 to keep the residual sign problem roughly the same
(hΣGi ¼ 0.785� 0.021 for β ¼ 30 with T ¼ 0.08 in com-
parison with hΣGi ¼ 0.644� 0.028 for β ¼ 20 with
T ¼ 0.05). As we have already mentioned introducing
the Hubbard model, in this case, where only local inter-
actions are present, we have the special possibility to
perform calculations with BSS-QMC, using discrete aux-
iliary fields coupled with spin density. The sign problem
in such setup seems to be several orders of magnitude
smaller than in the approach with continuous auxiliary
fields. Thus, in the Lefschetz thimbles formalism, where
we can use only continuous fields, we start from a much
stronger sign problem. However, despite this fact we can
keep the average sign much higher than in BSS-QMC [see
Table II and Fig. 25(b)]. Moreover, our calculations
demonstrate another important property of the HMC-GF
algorithm: despite the increased difficulty of the initial sign
problem (average sign in BSS-QMC drops down in several
times between β ¼ 20 and β ¼ 30), we can maintain the
residual sign problem under control by increasing the
flow time and moving the integration contour closer to
the thimble: residual sign hΣGi even slightly increases for
β ¼ 30 in HMC-GF. We expect similar behavior for the
dependence on lattice size NS. The detailed study of the
dependence on NS is left for upcoming papers, because
we still need to improve our algorithms for constructions
of the integration manifold for reasons listed below, and
the estimates for the residual problem will likely change
for modified algorithm.
Unfortunately, larger average sign is still not enough to

beat the better scaling of BSS-QMC: its scaling is given
by N3

sNτ, which is substantially better than the dominant
term N4

sN2
τ in the scaling of the HMC-GF. Thus, at these

particular parameters, we can still use naive reweighting
(generating ∼105 configurations) to achieve error bars
which are smaller than the ones computed in HMC-GF
with ∼103 configurations. The dispersion of the Jacobian
is also noticeable but in general does not cause large
problems. We simply need larger statistics to compensate
for these additional fluctuations. We have determinedDJ ¼
1.157 for HMC-GF with α ¼ 1.0 and DJ ¼ 1.011 for
HMC-GF with α ¼ 0.8. We noticed that the properties
of the Jacobian become worse at β ¼ 30: DJ ¼ 1.68 and
hcos arg Ji ¼ 0.823� 0.018 in this case (compare it with
α ¼ 0.8 case in Table II). Thus, at very low temperatures
and, possibly, at larger system sizes, fluctuations of the

TABLE I. Comparison of observables for exact diagonaliza-
tion, BSS-QMC (ALF), and two variants of HMC with gradient
flow for a 2 × 2 lattice with Nτ ¼ 256, U ¼ 2.0κ, and μ ¼ κ.

hK̂i hŜð1Þx Ŝð1Þy i
ED 19.5781 −0.14624
BSS-QMC 19.587� 0.002 −0.1466� 0.0008
HMC, α ¼ 1.0 19.65� 0.31 −0.112� 0.0069
HMC, α ¼ 0.8 19.52� 0.17 −0.142� 0.0062

TABLE II. Comparison of the sign problem for BSS-QMC (ALF) and two variants of HMC with gradient flow for
a 2 × 2 lattice with Nτ ¼ 256, U ¼ 2.0κ, and μ ¼ κ.

hcos ImSi hcos arg Ji hΣGi
BSS-QMC 0.2363� 0.0032 0.2363� 0.0032
HMC, α ¼ 1.0 0.9627� 0.0038 0.427� 0.014 0.351� 0.015
HMC, α ¼ 0.8 0.797� 0.022 0.915� 0.008 0.644� 0.028
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Jacobian might become a problem. Right now we leave
these potential problems for further study.
As a final statement, we stress that from the point of view

of lattice gauge theories, we should compare only with
reweighting made with HMC running for continuous
auxiliary fields, since there are no such cheap alternatives
such as BSS-QMC for gauge theories or for the case of
condensed matter systems with long-range interactions
[58]. The results of these benchmarks are shown in the
Fig. 25(a). One can see that the improvement in comparison
with plain HMC for continuous fields running inside RN is
quite huge. In fact, the van Hove singularity cannot be
reached with that method at all, as the average sign decays
too quickly with increasing chemical potential. The plot
essentially shows that even the present algorithm would
allow us to go to the region completely inaccessible for
standard HMC; thus, it should already be the method of
choice if we are simulating, for instance, the Hubbard-
Coulomb model. Also, it suggests the feasibility of using the
Lefschetz thimbles method for lattice gauge theories which
suffer from the sign problem, since with HMC-GF in our
studies of the Hubbard model we could reach the ratio
μ=T ¼ 30, at least for small lattices, while the sign problem
typically becomes quite severe in lattice QCD at μ=T ∼ 1.
However, the possibility of reaching such values of the
parameters for QCD is at the moment purely speculative and
should be checked explicitly in future dedicated simulations.

VII. CONCLUSION

We proposed a set of new algorithms to study the
properties of the thimbles decomposition for a lattice
fermionic model approaching the thermodynamic limit.
The method was tested for the case of the Hubbard model
on the hexagonal lattice at various values of the interaction
strength and chemical potential. Using this method, we
could find the exact saddle points in the path integral
formulation of the Hubbard model with different forms
of the HS transformation, combining both the spin- and
charge-coupled auxiliary fields with different weights.
This represents the main physical result of the paper.
At half-filling, in the case where the spin-coupled field

dominates, we have observed a large number of different
saddle points with an instantonlike structure. Away from
half-filling, this regime develops a strong sign problem
due to a large amount of thimbles with opposite phases
which almost compensate each other. If the charge-coupled
field is dominant, the structure of the saddle points is more
regular, as they are built from two basic building blocks
(localized field configurations) both at zero chemical
potential and away from half-filling. We have also observed
an intermediate, “optimal” regime, where our method
detected only one relevant saddle, even for a volume of
12 × 12 × 256. These results show that the thimble decom-
position for the Hubbard model strongly depends on the
form of the HS transformation and that a solution to the
sign problem using Lefschetz thimbles must properly take
into account the saddle point structure. Consequently, the
residual sign problem also depends strongly on the afore-
mentioned decomposition of the fields.
In order to check these findings, we have performed

several benchmark HMC simulations for lattices with
Ns ¼ 8 and Nτ as large as 384. In the “optimal” regime,
wewere able to reach an agreement with ED, which suggests
that the ergodicity issues and the sign problem can be
simultaneously weakened. We were also able to obtain an
average sign which is much larger than that obtained with
conventional QMC techniques. At the moment, the thimbles
algorithms are still too costly (mainly due to the aforemen-
tioned N4

sN2
τ scaling with the system size), but the fact that

the average sign can be kept higher than that of BSS-QMC
gives us hope that we can construct a superior technique if
we manage to decrease the computational costs associated
with the integration over curved manifolds in complex space.
Furthermore, the proposed set of algorithms can be helpful
for the study of Lefshetz thimbles decomposition in strongly
interacting lattice models with fermions. The latter might be
important for the better understanding of the corresponding
physics through more accurate saddle point approximations
of the path integral.
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