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We discuss G-parity lattice boundary conditions as a means to impose momentum on the pion ground
state without breaking isospin symmetry. This technique is expected to be critical for the precision
measurement of K → ðππÞI¼0 matrix elements where physical kinematics demands moving pions in the
final state and the statistical noise caused by disconnected contributions will make it difficult to use
multiexponential fits to isolate this as an excited state. We present a formalism for computing hadronic
Green’s functions with G-parity boundary conditions, derive the discretized action and its symmetries,
discuss how the strange quark can be introduced and detail techniques for the numerical implementation of
these boundary conditions. We demonstrate and test these methods using several 163 × 32 dynamical
domain wall ensembles with a 420 MeV pion mass and G-parity boundary conditions in one and two
spatial directions.
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I. INTRODUCTION

Important theoretical advances [1,2] have opened a path
for the determination of physical decay amplitudes com-
prising multiparticle final states using lattice QCD. In
particular, calculations of the magnitude of direct CP
violation in the decays of kaons into two pions are now
possible [3–5], which offers a novel and exciting test of the
Standard Model. The study of such decays with physical
kinematics invariably requires moving final-state particles,
for which it may be difficult to isolate the signal over the
typically much larger contribution involving stationary
particles. This can be avoided by modifying the lattice
boundary conditions to remove the state with stationary
pions from the particle spectrum. For charged pions this can
be achieved by imposing antiperiodic boundary conditions
on just the down or up quark propagators, which results in
pion momenta that are odd-integer multiples of π=L. This
technique has been used successfully in the calculation of
theΔI ¼ 3=2K → ππ amplitude [3,4], but is limited by the
fact that it applies only to charged pions and also explicitly
breaks the isospin symmetry. These issues were avoided in
the aforementioned case by utilizing the Wigner-Eckart
theorem to relate the desired Kþ → πþπ0 decay to the

unphysical decay Kþ → πþπþ, for which the final state
contains only charged pions and is protected from mixing
with other isospin states by virtue of being the only
charge-2 state with those quantum numbers. This is not
the case for the calculation of the ΔI ¼ 1=2 K → ππ
amplitude, where the final state necessarily contains neutral
pions and the isospin breaking cannot be circumvented.
G-parity boundary conditions (GPBC) [6–8] provide an
alternative approach that results in antiperiodic charged and
neutral pions, and also preserves isospin symmetry.
The RBC and UKQCD collaborations have successfully

employed GPBC to compute the ΔI ¼ 1=2 K → ππ
amplitude [5]. This document is intended as a partner to
that work in which we lay theoretical groundwork for
employing G-parity boundary conditions in zero temper-
ature lattice simulations and perform thorough numerical
investigations of a number of its key features and diffi-
culties using three 163 × 32 × 16, 2þ 1 flavor dynamical
domain wall ensembles with GPBC in 0, 1 and 2 directions,
respectively.
We begin in Sec. II by outlining the transformation of

the pion and quark fields under G-parity, and introduce
notation for later use. In Sec. III we derive the appropriate
discretized action in our notation that makes explicit the
boundary field mixing. We also discuss the numerical
implementation of GPBC. The symmetries of the lattice
action are investigated in Sec. IV, and we detail the
appropriate operators for light and heavy meson states in
Secs. Vand VI. In the latter we also discuss how the strange
quark can be introduced into this framework. In Secs. VII
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and VIII we present numerical demonstrations of the
G-parity technique on the aforementioned ensembles.
Our conclusions are presented in Sec. IX.
A related development of charge conjugation boundary

conditions, introduced for a different purpose, has been
carried out by Lucini, Patella, Ramos and Tantalo [9].

II. G-PARITY BOUNDARY CONDITIONS

G-parity is conventionally defined as a product of charge
conjugation and an isospin rotation by π radians around the
y axis:

Ĝ ¼ Ĉe−iπÎy ¼ e−iπÎy Ĉ ð1Þ

where the hat symbol is used to denote operators. Here the
choice of the y axis is dictated by the convention that the
representation matrices for Ix and Iz are real while those for
Iy are imaginary and implies Ĝ commutes with isospin
rotations. The charged and neutral pions are G-parity odd;
therefore, if imposed as a spatial boundary condition, the
pions become antiperiodic and have discretized momenta
that are odd-integer multiples of π=L, where L is the lattice
spatial extent.
For QCD we are concerned with the action of G-parity

upon the quarks. In this section we derive the appropriate
transformation and introduce a convenient notation for
studying its implications that we will use throughout the
remainder of this document.

A. Action upon quark fields

The isospin rotation around the y axis transforms the
flavor doublet of light-quark annihilation operators as
follows:

e−iπÎy
�
u

d

�
eiπÎy ¼ e−iπσ2

�
u

d

�
¼

�−d
u

�
: ð2Þ

To describe charge conjugation we recall the action of Ĉ on
the fermion fields q and q̄ [10]:

ĈqĈ−1 ¼ Cq̄T and Ĉ q̄ Ĉ−1 ¼ −qTC−1 ð3Þ

where C is the 4 × 4 charge conjugation matrix (not to be
confused with the operator Ĉ) which obeys

C−1γμC ¼ −γTμ : ð4Þ

The usual requirement that Ĉ2 ¼ 1 implies that CT ¼ −C
as well as the important property that when acting on states
with isospin I: Ĝ2 ¼ ð−1ÞI .
While we will not adopt specific conventions for the

Euclidean γ matrices used in this paper, we find it
convenient to choose a chiral basis where γ5 is real and
diagonal which, together with Eq. (3), implies that

½C; γ5� ¼ 1. In addition we will assume that the matrix C
is unitary and real, conditions consistent with the con-
ventions, for example, of Ref. [10]. We summarize the
properties of the matrix C:

C ¼ −CT; C−1 ¼ C† and C� ¼ C: ð5Þ

Combining the two operations we find that G-parity has
the following action on the quark flavor doublet:

Ĝ

�
u

d

�
Ĝ−1 ¼

�
−Cd̄T

CūT

�
and

Ĝðū; d̄ÞĜ−1 ¼ ðdTC−1;−uTC−1Þ: ð6Þ
Notice that this involves an explicit mixing of the flavors
and also of the spinors and conjugate spinors. We will see
that this leads to a number of complications.

B. Notation

For this document we adopt a convenient notation in
which we place the field operators u, d and their conjugates
into two-component vectors,

ψ ¼
�

d

CūT

�
and ψ̄ ¼ ðd̄; uTCÞ: ð7Þ

We will refer to the indices of these vectors as “flavor”
indices. Note that ψ and ψ transform in the same way as the
quark fields under charge conjugation [Eq. (3)]. The benefit
of this notation is that the action of the G-parity operator
upon ψ takes on a simple form:

ĜψĜ−1 ¼ iσ2ψ and Ĝ ψ̄ Ĝ−1 ¼ ψ̄ð−iσ2Þ; ð8Þ

where σ2 is the second Pauli matrix.
Using Eq. (7) we can write

q ¼
�
u

d

�
¼ F12Cψ̄T þ F21ψ ; ð9Þ

q̄ ¼ ðū; d̄Þ ¼ ψTCF21 þ ψ̄F12; ð10Þ
and the inverse transformations,

ψ ¼ F12qþ F21Cq̄T; ð11Þ

ψ̄ ¼ q̄F21 þ qTCF12; ð12Þ

where

F12 ≡
�
0 1

0 0

�
¼ 1

2
ðσ1 þ iσ2Þ;

F21 ≡
�
0 0

1 0

�
¼ 1

2
ðσ1 − iσ2Þ: ð13Þ
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These relations allow us to transform back and forth
between the two notations. For later use we also define

F11 ≡
�
1 0

0 0

�
¼ 1

2
ð1þ σ3Þ;

F22 ≡
�
0 0

0 1

�
¼ 1

2
ð1 − σ3Þ: ð14Þ

C. Translations of fermion fields

In this document we define our coordinates on a torus
(i.e., modulo the lattice size), such that xμ ¼ Lμ is equiv-
alent to xμ ¼ 0; xμ ¼ −1 is equivalent to xμ ¼ Lμ − 1; and
so on. The corresponding field variables are treated in the
same way: ψðxμ ¼ LμÞ≡ ψðxμ ¼ 0Þ; ψðxμ ¼ −1Þ≡
ψðxμ ¼ Lμ − 1Þ; etc. We will assume that the spatial box
dimensions are all equal to L for convenience. The action of
the boundary condition upon the field is treated explicitly in
the context of a spatial translation via the introduction
of a coordinate-dependent coefficient given below. In the
following section we will rewrite the usual covariant
derivative of the fermion action in terms of the translation
operator such that the symmetry of the action under these
modified translations can be imposed.
The boundary condition implies that as we move from

site to site along a G-parity direction from the origin we
encounter the fermion fields in the following order:

kψð0Þ;…;ψðL − 1Þkiσ2ψð0Þ;…; iσ2ψðL − 1Þk
− ψð0Þ;…;−ψðL − 1Þk
− iσ2ψð0Þ;…;−iσ2ψðL − 1Þkψð0Þ…; ð15Þ

where k indicates the location of the lattice boundary, and
we have suppressed the coordinates along the other three
directions for clarity. This implies the action of the trans-
lation operator T̂μ on the fermion field in a G-parity
direction μ is as follows:

T̂μψðxμÞT̂−1
μ ¼

�ψðxμ þ 1Þ 0 ≤ xμ < L − 1

ðiσ2Þψð0Þ xμ ¼ L − 1 ð16Þ

and

T̂−1
μ ψðxμÞT̂μ ¼

�ψðxμ − 1Þ 0 < xμ ≤ L − 1

ð−iσ2ÞψðL − 1Þ xμ ¼ 0

ð17Þ

where we have again suppressed coordinates along the
other three directions. These equations can be neatly
summarized by introducing unitary flavor matrices

Bþ
μ ðxμÞ ¼ exp ðiδxμ;L−1Gμπσ2=2Þ; ð18aÞ

B−
μ ðxμÞ ¼ exp ð−iδxμ;0Gμπσ2=2Þ; ð18bÞ

for which Gμ is unity in directions with GPBC and zero
otherwise. These objects are related as follows:

½Bþ
μ ðxμÞ�T ¼ ½Bþ

μ ðxμÞ�† ¼ exp ð−iδxμþ1;LGμπσ2=2Þ
¼ B−

μ ðxμ þ 1Þ; ð19aÞ

½B−
μ ðxμÞ�T ¼ ½B−

μ ðxμÞ�† ¼ exp ðiδxμ−1;L−1Gμπσ2=2Þ
¼ Bþ

μ ðxμ − 1Þ: ð19bÞ
The translations then become

T̂μψðxÞT̂−1
μ ¼ Bþ

μ ðxμÞψðxþ μ̂Þ; ð20aÞ
T̂−1
μ ψðxÞT̂μ ¼ B−

μ ðxμÞψðx − μ̂Þ: ð20bÞ
Note the four operators T̂μ obey the commutation relations
required for elements of the group of translations,
½T̂μ; T̂ν� ¼ 0.

III. DISCRETIZED ACTION

In this section we derive the appropriate discretized
action for two light quark flavors with G-parity boundary
conditions.

A. Lattice QCD action with periodic boundary
conditions in our notation

1. Fermion action

We begin with the usual four-dimensional Euclidean
lattice fermion action for two-flavor QCD with periodic
boundary conditions in the spatial directions,

S ¼
X
x

�X
μ

½q̄ðxÞUμðxÞΓþ
μ qðxþ μ̂Þ

þ q̄ðxÞU†
μðx − μ̂ÞΓ−

μqðx − μ̂Þ� þmq̄ðxÞqðxÞ
�
; ð21Þ

where the spin matrices Γ�
μ ¼ 1

2
ð1 ∓ γμÞ for the Wilson/

domain wall actions or Γ�
μ ¼ � 1

2
γμ for the naïve action.

Here and below the sum over each of the four components
of the coordinate x runs from xμ ¼ 0 to xμ ¼ Lμ − 1 where
xμ and Lμ are expressed in lattice units. As mentioned
previously we will assume the spatial dimensions are all
equal in extent: Lx ¼ Ly ¼ Lz ¼ L for convenience.
Note that in these expressions we interpret the quantities

q and q̄ as Grassmann variables that would appear in a path
integral. We will use these operators and Grassmann
interpretations interchangeably and specify a particular
choice only when it is necessary.
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The above can be rewritten in terms of the quark field
vectors ψ and ψ defined in Eq. (7) using Eqs. (9) and (10):

S ¼
X
x

�X
μ

½ψ̄ðxÞΓþ
μ F11UμðxÞψðxþ μÞ

þ ψ̄ðxÞΓþ
μ F22U�

μðxÞψðxþ μÞ
þ ψ̄ðxÞΓ−

μF11U
†
μðx − μÞψðx − μÞ

þ ψ̄ðxÞΓ−
μF22UT

μ ðx − μÞψðx − μÞ�

þmψ̄ðxÞψðxÞ
�
: ð22Þ

This expression can be simplified by introducing the matrix

ŨμðxÞ ¼
�
UμðxÞ 0

0 U�
μðxÞ

�
¼ F11UμðxÞ þ F22U�

μðxÞ;

ð23Þ

which has both flavor and color indices, and with which the
action becomes

S ¼
X
x

�X
μ

½ψ̄ðxÞŨμðxÞΓþ
μ ψðxþ μ̂Þ

þ ψ̄ðxÞŨ†
μðx − μ̂ÞΓ−

μ ψðx − μ̂Þ� þmψ̄ðxÞψðxÞ
�
: ð24Þ

For use below it is convenient to rewrite the covariant
derivative in terms of the translation operators:

∇μψðxÞ ¼
1

2
½ŨμðxÞψðxþ μ̂Þ − Ũ†

μðx − μ̂Þψðx − μ̂Þ�

¼ 1

2
½ŨμðxÞT̂μψðxÞT̂−1

μ − T̂−1
μ Ũ†

μðxÞψðxÞT̂μ�: ð25Þ

2. Gauge action

As the fermion action is expressed in terms of the flavor-
matrix gauge links, it is convenient to do the same for the
gauge action. We assume the Wilson action, although it
straightforward to generalize this result. The action is

SW ¼ −
β

3

X
x

X
μ;ν>μ

ReTrUμνðxÞ; ð26Þ

where

UμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ ð27Þ

is the usual plaquette. We can construct a similar
“plaquette” from the flavored gauge links Ũμ:

ŨμνðxÞ ¼ ŨμðxÞŨνðxþ μ̂ÞŨ†
μðxþ ν̂ÞŨ†

νðxÞ;

¼
�UμνðxÞ 0

0 U�
μνðxÞ

�
; ð28Þ

for which

ReTrUμν ¼
1

2
TrŨμν ð29Þ

where it is understood that the trace on the right-hand side
includes the flavor indices. The Wilson action then becomes

SW ¼ −
β

6

X
x

X
μ;ν>μ

TrŨμνðxÞ: ð30Þ

As with the covariant derivative, it is useful to express
the plaquette in terms of translation operators:

ŨμνðxÞ ¼ ŨμðxÞT̂μŨνðxÞT̂−1
μ T̂νŨ

†
μðxÞT̂−1

ν Ũ†
νðxÞ: ð31Þ

B. Lattice QCD action with G-parity boundary
conditions

1. Fermion action

The covariant derivative for G-parity boundary condi-
tions (BCs) can be obtained by inserting Eqs. (20a) and
(20b) into Eq. (25):

∇μψðxÞ ¼
1

2
½ŨμðxÞBþ

μ ðxμÞψðxþ μ̂Þ
− fT̂−1

μ Ũ†
μðxÞT̂μgB−

μ ðxμÞψðx − μ̂Þ�: ð32Þ

The translational properties of the flavor-matrix gauge links
can be found by imposing gauge invariance upon the
derivative term of the action, S∇ ¼ P

x;μ ψðxÞγμ∇μψðxÞ.
Under a gauge transformation V the field ψ and its

conjugate transform as

ψðxÞ ¼
�

dðxÞ
CūðxÞT

�
→ ṼðxÞψðxÞ; ð33aÞ

ψ̄ðxÞ ¼ ðd̄ðxÞ; uTðxÞCÞ → ψ̄ðxÞṼ†ðxÞ; ð33bÞ
where

Ṽ ¼
�
V 0

0 V�

�
¼ F11V þ F22V�: ð34Þ

The forwards component of S∇ then transforms asX
x;μ

ψ̄ðxÞŨμðxÞBþ
μ ðxμÞγμψðxþ μ̂Þ

⟶
X
x;μ

ψ̄ðxÞṼ†ðxÞŨ0
μðxÞBþ

μ ðxμÞṼðxþ μ̂Þγμψðxþ μ̂Þ

ð35Þ

N. H. CHRIST, C. KELLY, and D. ZHANG PHYS. REV. D 101, 014506 (2020)

014506-4



where Ũ0
μ is the gauge transformation of Ũμ. Invariance of

this term under the gauge transformation then implies

Ũ0
μðxÞ ¼ ṼðxÞŨμðxÞBþ

μ ðxμÞṼ†ðxþ μ̂Þ½Bþ
μ ðxμÞ�†: ð36Þ

For the backwards component of S∇ the term T̂−1
μ Ũ†

μðxÞT̂μ

enters. If we assume that

T̂−1
μ Ũ†

μðxÞT̂μ ¼ αŨ†
μðx − μ̂Þβ ð37Þ

with α and β flavor matrices, the backwards component of
S∇ transforms under a gauge transformation as follows:X
x;μ

ψ̄ðxÞαŨ†
μðx − μ̂ÞβB−

μ ðxμÞγμψðx − μ̂Þ

⟶
X
x;μ

ψ̄ðxÞṼ†ðxÞαfBþ
μ ðxμ − 1ÞṼðxÞ½Bþ

μ ðxμ − 1Þ�†Ũ†
μ

× ðx − μ̂ÞṼ†ðx − μ̂ÞgβB−
μ ðxμÞṼðx − μ̂Þγμψðx − μ̂Þ

ð38Þ

from which gauge invariance implies α ¼ ½Bþ
μ ðxμ − 1Þ�† ¼

B−
μ ðxμÞ and β ¼ ½B−

μ ðxμÞ�†. Thus we find

T̂−1
μ Ũ†

μðxÞT̂μ ¼ B−
μ ðxμÞŨ†

μðx − μ̂Þ½B−
μ ðxμÞ�†: ð39Þ

We can now write down the covariant derivative with
G-parity BCs:

∇μψðxÞ ¼
1

2
½ŨμðxÞBþ

μ ðxμÞψðxþ μ̂Þ
− fB−

μ ðxμÞŨ†
μðx− μ̂Þ½B−

μ ðxμÞ�†gB−
μ ðxμÞψðx− μ̂Þ�

¼ 1

2
½ŨμðxÞBþ

μ ðxμÞψðxþ μ̂Þ
−B−

μ ðxμÞŨ†
μðx− μ̂Þψðx− μ̂Þ�; ð40Þ

the corresponding (complete) fermion action

S ¼
X
x

�X
μ

½ψ̄ðxÞŨμðxÞΓþ
μ Bþ

μ ðxμÞψðxþ μ̂Þ

þ ψ̄ðxÞB−
μ ðxμÞŨ†

μðx − μ̂ÞΓ−
μ ψðx − μ̂Þ�

þmψ̄ðxÞψðxÞ
�
; ð41Þ

and the Dirac matrix,

ℳðx; yÞ ¼
X
μ

½ŨμðxÞΓþ
μ Bþ

μ ðxμÞδxþμ̂;y

þ B−
μ ðxμÞŨ†

μðyÞΓ−
μ δx−μ̂;y� þmδx;y: ð42Þ

Note that throughout this document we consistently
ignore the fact that domain wall fermions have an

additional discrete index associated with their coordinate
in the fifth dimension, and instead treat them identically to
Wilson fermions. In the Appendix we demonstrate that in
our (suitably extended) ψ -field notation the G-parity
boundary condition does not affect the fifth dimensional
coordinate despite the reflection in this dimension induced
by charge conjugation, further evidencing the power of this
notation and justifying us dropping this index.
It is important to recognize that the introduction of

G-parity boundary conditions does not alter the usual
γ5-hermiticity of the Dirac propagator,

Gðx; yÞ ¼ γ5G†ðy; xÞγ5: ð43Þ
This can be seen from the expression given in Eq. (42) for
the Dirac operator, which has the structure of the usual
Euclidean lattice Dirac operator with the exception of the
appearance of the 2 × 2 matrices B�

μ . We can then deduce
γ5-hermiticity following the usual steps using Eqs. (19a)
and (19b) and ½γ5; B�

μ � ¼ 0.
The quark propagators obtained by inverting this Dirac

matrix are 2 × 2 matrices in flavor space as well as being
matrices in spin and color space. In practice this leads to
additional diagrams that must be evaluated when comput-
ing hadronic observables. In addition, we must typically
compute the inverse with separate sources for each flavor,
doubling the number of matrix inversions required to
compute the full propagator. However in many cases this
requirement can be circumvented by taking advantage of
the isospin symmetry, as we demonstrate in Sec. IVA.

2. Gauge action

Expressing the Wilson gauge action Eq. (30) in terms of
translation operators acting on the gauge links via Eq. (31),
we have

SW ¼ −
β

6

X
x

X
μ;ν>μ

TrŨμðxÞT̂μŨνðxÞT̂−1
μ T̂νŨ

†
μðxÞT̂−1

ν Ũ†
νðxÞ:

ð44Þ
The action of the translation operator upon the links has
thus far been derived only for links in the same direction
as the translation [Eq. (39)]. The corresponding relation
for links that are orthogonal to the translation can be
derived by imposing gauge invariance on SW . Assuming
T̂μŨνðxÞT̂−1

μ ¼ αŨνðxþ μ̂Þβ and T̂νŨ
†
μðxÞT̂−1

ν ¼ γŨ†
μðxþ

ν̂Þδ where α − δ are flavor matrices, and then applying
Eq. (36) it is straightforward to show that the following
action is gauge invariant:

SW ¼ −
β

6

X
x

X
μ;ν>μ

TrŨμðxÞBþ
μ ðxμÞŨνðxþ μ̂Þ

× ½Bþ
μ ðxμÞ�†Bþ

ν ðxνÞŨ†
μðxþ ν̂Þ½Bþ

ν ðxνÞ�†Ũ†
νðxÞ; ð45Þ

for which α ¼ β† ¼ Bþ
μ ðxμÞ and γ ¼ δ† ¼ Bþ

ν ðxνÞ.
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Combining the above results for α − δ with Eq. (39) we
obtain the general action of translations on the flavored
gauge links:

T̂μŨνðxÞT̂−1
μ ¼ Bþ

μ ðxμÞŨνðxþ μ̂Þ½Bþ
μ ðxμÞ�†; ð46aÞ

T̂−1
μ ŨνðxÞT̂μ ¼ B−

μ ðxμÞŨνðx − μ̂Þ½B−
μ ðxμÞ�†: ð46bÞ

Note that using T̂μŨνðxÞŨ†
νðxÞT̂−1

μ ¼ 1 it is easy to see that
the translation operators act on Ũ†

ν in the same way as they
do on Ũν.
Equation (46a) implies that as we again move from site

to site along a G-parity direction μ from the origin, the
gauge fields are encountered in the following order:

kŨμð0Þ;…; ŨμðL − 1Þkðiσ2ÞŨμð0Þð−iσ2Þ;…; ðiσ2Þ
× ŨμðL − 1Þð−iσ2ÞkŨμð0Þ…: ð47Þ

This implies the links transform as Ũμ → ðiσ2ÞŨμð−iσ2Þ ¼
Ũ�

μ under the action of the boundary, i.e., the links must
obey complex conjugate (or equivalently, charge conjuga-
tion) boundary conditions. This of course requires new
gauge configurations to be generated for GPBC.

C. One-flavor equivalence

Consider the upper component of the flavor doublet
field ψ for G-parity boundary conditions in one direction.

As we move from site to site in the G-parity direction we
encounter the fields in the following order:

kdð0Þ;…; dðL − 1ÞkCūTð0Þ;…; CūTðL − 1Þk
− dð0Þ;…;−dðL − 1Þk
− CūTð0Þ;…;−CūTðL − 1Þkdð0Þ;…; ð48Þ

where k again indicates the position of the lattice boundary
and we suppress coordinates other than in the G-parity
direction. This infinite series is antiperiodic in 2L, and the
subset between 0 and 2L contains all of the fermionic
degrees of freedom (d.o.f.) in the G-parity setup. We can
therefore define a field Ψ on a lattice of size 2L (denoting
the corresponding coordinates with capital letters) with the
following mapping:

ΨðXÞ ¼
�
dðXÞ for 0 ≤ X < L

CūTðX − LÞ for L ≤ X < 2L
; ð49Þ

which contains all the fermionic d.o.f. and obeys antipe-
riodic boundary conditions in 2L. Similarly, the gauge links
Uν defined on this doubled lattice are mapped as follows:

UνðXÞ ¼
�
UνðXÞ for 0 ≤ X < L

U�
νðX − LÞ for L ≤ X < 2L

: ð50Þ

Consider the forwards component of the action, Eq. (41), in
theG-parity direction μ, and suppress the coordinates in the
other directions:

X
xμ

ψ̄ðxμÞŨμðxμÞΓþ
μ Bþ

μ ðxμÞψðxμ þ 1Þ

¼
X

xμ<L−1
½d̄ðxμÞUμðxμÞΓþ

μ dðxμ þ 1Þ þ uTðxμÞCU�
μðxμÞΓþ

μ CūTðxμ þ 1Þ�

þ d̄ðL − 1ÞUμðL − 1ÞΓþ
μ CūTð0Þ − uTðL − 1ÞCU�

μðL − 1ÞΓþ
μ dð0Þ

¼
X

Xμ<L−1
½Ψ̄ðXμÞUμðXμÞΓþ

μ ΨðXμ þ 1Þ þ Ψ̄ðXμ þ LÞUμðXμ þ LÞΓþ
μ ΨðXμ þ Lþ 1Þ�

þ Ψ̄ðL − 1ÞUμðL − 1ÞΓþ
μ ΨðLÞ − Ψ̄ð2L − 1ÞUμð2L − 1ÞΓþ

μ Ψð0Þ
¼

X
Xμ

½Ψ̄ðXμÞUμðXμÞΓþ
μ Bþ

μ ðXμÞΨðXμ þ 1Þ�; ð51Þ

where Bþ
μ ðXμÞ ¼ expðiπδXμ;2L−1Þ imposes the appropriate

sign for the term crossing the boundary in 2L. For the
backwards component we likewise obtainX

xμ

ψ̄ðxÞB−
μ ðxμÞŨ†

μðxμ − 1ÞΓ−
μ ψðxμ − 1Þ

¼
X
Xμ

½Ψ̄ðXμÞB−
μ ðXμÞU†

μðXμ − 1ÞΓ−
μΨðXμ − 1Þ�; ð52Þ

where B−
μ ðXμÞ ¼ expðiπδXμ;0Þ.

The two terms together comprise the action for a single
flavor quark field residing on a lattice of size 2L with
antiperiodic boundary conditions in the G-parity direction
μ, with the only additional condition being that the gauge
links on the second half of the lattice are the complex
conjugates of those on the first.
This establishes a direct equivalence between the two-

flavor theory and a one-flavor theory on a doubled lattice
that proves very useful when it comes to implementing
these boundary conditions on a computer.
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Let us consider extending this formalism to GPBC in a
second direction, y (with the original doubling in the x
direction). This can be achieved by doubling the lattice
again in the y direction and imposing antiperiodic boundary
conditions (APBC) in this second direction. However in
this approach some care is required to recognize that the
fermion fields on the four quadrants of the resulting lattice
are not independent but are related according to Fig. 1. This
has implications for example in the construction of propa-
gator sources: a down-quark source on timeslice τ with
spatial smearing function Θ centered at position x⃗0 in the
two flavor setup

ηfðx⃗; tÞ ¼ δf;0δt;τΘðx⃗ − x⃗0Þ ð53Þ

corresponds to the following in the twice-doubled single-
flavor setup:

ηðX⃗; tÞ ¼ δt;τðDLLðX⃗ÞΘðX⃗ − x⃗0Þ
−DURðX⃗ÞΘðX⃗ − x⃗0 − Lx̂ − LŷÞÞ ð54Þ

where DLLðX⃗Þ and DURðX⃗Þ are functions that are unity on
the lower-left and upper-right quadrants, respectively, and
zero elsewhere (referring to Fig. 1). Here the minus sign
between the terms arises because the fermion field in the
upper-right quadrant has the opposite sign to that of the
lower-left quadrant. Note also that this second doubling of
the lattice doubles the cost of performing the Dirac matrix
inversion relative to the two-flavor approach, and therefore
the twice-doubled one-flavor approach is of limited prac-
tical use for GPBCs in multiple directions.
An alternative treatment for GPBC in two directions,

easily generalized to three, is to modify the boundary
conditions in the y direction such that passing through the
boundary is accompanied by a translation by L in the
x direction; this is illustrated in Fig. 2. This approach avoids

further doubling for GPBC in more than one direction and
therefore has the same computational cost as the two-flavor
approach, but is somewhat complicated to implement
numerically, and the non-nearest neighbor communications
pattern in the y direction is suboptimal for most parallel
machines.
We therefore conclude that this one-flavor mapping,

while a useful cross-check, is not practical for high
precision lattice calculations with GPBC in more than
one direction. The alternative, which we employ in prac-
tice, is to implement the full two-flavor theory with the
appropriate mixing of the flavors at the boundary directly.

IV. LATTICE SYMMETRIES

The use ofG-parity boundary conditions has a number of
symmetry implications that we detail in this section.
Given that the action away from the boundary is simply a

rewrite of the usual lattice action, we need only consider the
effects of global symmetry operations upon the boundary
terms. To do so it is convenient to rewrite the matrices
B� defined in Eqs. (18a) and (18b) as

Bþ
μ ðxμÞ ¼ 1 −Gμδxμ;L−1ð1 − iσ2Þ; ð55aÞ

B−
μ ðxμÞ ¼ 1 −Gμδxμ;0ð1þ iσ2Þ; ð55bÞ

such that the contribution to action from the G-parity
boundary conditions is contained in the following
expression:

SGPBC

¼ −
X
x

X
μ

Gμ½δxμ;L−1ψ̄ðxÞŨμðxÞð1 − iσ2ÞΓþ
μ ψðxþ μ̂Þ

þ δxμ;0ψ̄ðxÞð1þ iσ2ÞŨ†
μðx − μ̂ÞΓ−

μ ψðx − μ̂Þ�: ð56Þ

The total action then becomes

S ¼ Sstd þ SGPBC; ð57Þ

FIG. 2. The mapping of the upper boundary to the lower
boundary in the y direction of the two halves of a one-flavor
theory with APBC in the x direction. Here the arrows indicate the
position of the next site encountered when moving through the
upper boundary. Note that a minus sign must be applied when
crossing (in either direction) between the lower-left and upper-
right boundary segments. This setup reproduces the effect of
imposing GPBC in two directions.

FIG. 1. The mapping of the quadrants of a one-flavor theory
with APBC in two directions that reproduces the effect of
imposing GPBC in two directions. The assignment of the quark
and gauge fields are shown within the quadrants. Here the minus
sign on the upper-right quadrant is related to the fact that the
fields are antiperiodic under passing through a G-parity boundary
twice.
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where Sstd is the “standard” action

Sstd¼
X
x

�X
μ

½ψ̄ðxÞŨμðxÞΓþ
μ ψðxþ μ̂Þ

þ ψ̄ðxÞŨ†
μðx− μ̂ÞΓ−

μ ψðx− μ̂Þ�þmψ̄ðxÞψðxÞ
�

ð58Þ

for a periodic field. Here we see that SGPBC acts to subtract
the boundary term of the standard action and add the
correct G-parity flavor “twist.”
We can simplify Eq. (56) somewhat by noting that for

coordinates defined on a torus (in one dimension here),

XL−1
x¼0

ψ̄ðxÞδx;0ψðx − 1Þ ¼ ψ̄ð0Þψð−1Þ ¼ ψ̄ðLÞψðL − 1Þ

¼
XL−1
x¼0

ψ̄ðxþ 1Þδx;L−1ψðxÞ: ð59Þ

We can then write

SGPBC

¼ −
X
x

X
μ

Gμδxμ;L−1½ψ̄ðxÞŨμðxÞð1 − iσ2ÞΓþ
μ ψðxþ μ̂Þ

þ ψTðxÞCŨ�
μðxÞð1 − iσ2ÞΓþ

μ Cψ̄Tðxþ μ̂Þ�; ð60Þ

where for the second term we have transposed the
Grassman variables and used the following identity:

C½Γ�
μ �TC ¼ −Γ∓

μ : ð61Þ

In terms of the usual flavor doublets we can rewrite
Eq. (60) as

SGPBC ¼ −
X
x

X
μ

Gμδxμ;L−1½q̄ðxÞΓþ
μ UμðxÞðiσ2ÞCq̄Tðxþ μ̂Þ

þ q̄ðxÞΓþ
μ UμðxÞqðxþ μ̂Þ

þ qTðxÞCΓþ
μ U�

μðxÞCq̄Tðxþ μ̂Þ
þ qTðxÞCΓþ

μ U�
μðxÞðiσ2Þqðxþ μ̂Þ�; ð62Þ

which proves convenient in some cases.

A. Isospin

G-parity commutes with isospin rotations around the
y axis by construction. This leads to a very useful identity
for the quark propagators: The action of such a rotation
by π radians on the quark fields is given in Eq. (2). In our
G-parity notation the fields ψ and ψ therefore transform as

e−ÎyπψeÎyπ ¼ ðiσ2ÞCψ̄T; ð63aÞ

e−Îyπψ̄eÎyπ ¼ ψTCð−iσ2Þ: ð63bÞ

Wewrite the path integral in which we have integrated over
only the fermion fields on a fixed gauge background as

h·iψ ¼
Z

½dψ �½dψ̄ �ð·Þ expð−S½ψ ; ψ̄ ; Ũ�Þ; ð64Þ

with which the propagator—the inverse of the Dirac matrix
on a given configuration—can be written as

½Gðx; yÞ�αβ ¼ hψαðxÞψ̄βðyÞiψ ; ð65Þ

where α,β are combined spin/color/flavor indices.
As the action is invariant under isospin rotation we can

write

½Gðx; yÞ�αβ ¼ hψαðxÞψ̄βðyÞiψ
¼ he−ÎyπψαðxÞψ̄βðyÞeÎyπiψ
¼ hðiσ2ÞCψ̄αðxÞψβðyÞCð−iσ2Þiψ
¼ ðiσ2ÞC½Gðy; xÞ�βαC−1ð−iσ2Þ ð66Þ

where we have absorbed the sign from commuting the
fields using C−1 ¼ −C.
γ5-hermiticity then implies

G�ðx; yÞ ¼ γ5C−1ðiσ2ÞGðx; yÞð−iσ2ÞCγ5: ð67Þ

Examining the flavor structure explicitly we find

�
G00ðy; zÞ G01ðy; zÞ
G10ðy; zÞ G11ðy; zÞ

�

¼ γ5C−1
�

G�
11ðy; zÞ −G�

10ðy; zÞ
−G�

01ðy; zÞ G�
00ðy; zÞ

�
Cγ5: ð68Þ

Notice that this implies the second column of the flavor-
matrix propagator (source flavor index 1) can be obtained
entirely from the first column (source flavor index 0);
hence, we can calculate the full propagator using only the
matrix computed from sites of a single flavor. We will
exploit this property in Sec. VIII.

B. Baryon number

Since our G-parity boundary conditions change
quarks to antiquarks, baryon number symmetry is violated.
This is dramatically illustrated by the transformation of a
proton ðuudÞ, with baryon number B ¼ 1, which becomes
an antineutron ðd̄ d̄ ūÞ with baryon number −1 at the
boundary.
The baryon number violation has an additional mani-

festation at the quark level: The mixing of quark flavor at
the G-parity boundary allows for the Wick contraction of
up and down field operators:
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ð69Þ

As a result there are typically additional diagrams involving
propagators that cross the boundary. In the first of the above
contractions, quark flavor flows towards the boundary on
both sides. Likewise, quark flavor flows away from the
boundary in the second contraction. We may interpret this
as the boundary respectively destroying and creating flavor.
Other than the mixing of the quark flavors at the

boundary which we handle explicitly in our two-flavor
formulation, the breaking of the baryon number symmetry
is not important for calculations involving only mesonic
states.

C. Flavor nonsinglet axial vector transformations

The action is invariant under the flavor nonsinglet vector
(isospin) transformations by construction. However for an
axial transformation A ¼ expðiθjAγ5σjÞ, we have

q → Aq and q̄ → q̄A: ð70Þ

For Wilson/domain wall fermions, the Wilson term in
Eq. (62) explicitly breaks the axial symmetry; therefore,
to separate the effects of G-parity we consider naïve
fermions, for which Γ�

μ ¼ �γμ. For the second and third
terms of Eq. (62), we have Aγμ ¼ γμA†, such that the terms
are invariant. For the other two terms we note

AT ¼ expðiθjAγ5σTj Þ ¼ σ2A†σ2; ð71aÞ

A� ¼ expð−iθjAγ5σ�jÞ ¼ σ2Aσ2: ð71bÞ

Therefore if we write SGPBC → SGPBC þ ΔSGPBC (where
ΔSGPBC ¼ 0 would imply invariance of the action), we find

ΔSGPBC ¼ −
X
x

X
μ

Gμδxμ;L−1½q̄ðxÞ

× Γþ
μ UμðxÞð½A†�2 − 1Þðiσ2ÞCq̄Tðxþ μ̂Þ

þ qTðxÞCΓþ
μ U�

μðxÞðiσ2ÞðA2 − 1Þqðxþ μ̂Þ�:
ð72Þ

The action is therefore not invariant under the flavor
nonsinglet axial transformations.
This explicit breaking of chiral symmetry gives rise to a

nonzero chiral condensate even for zero quark mass. This
may provide a useful tool when studying finite temperature
QCD and was one of the original motivations for the study
of G-parity boundary conditions by Wiese [6].
For our purposes we are interested only in the low-

temperature behavior of the massive theory, where the
chiral symmetry is also broken spontaneously by the
dynamics and explicitly by the lattice fermion formulation.

In this regime the effects of the G-parity boundary con-
ditions enter in two ways: The first are due simply to the
different sets of allowed momenta for G-parity even
(integer multiples of 2π=L) and odd (odd-integer multiples
of π=L) states. Such effects are straightforward to take into
account in our measurements. There are also more subtle
effects which, in the context of the low-energy theory of
interactive massive pions, enter as a change in the momen-
tum discretization of pion loop diagrams. These effects are
exponentially suppressed in mπL according to the Poisson
summation formula and are therefore comparable in size to
other, more conventional finite volume effects. As a result
we need not be concerned that this boundary-induced chiral
symmetry breaking will have a significant effect upon our
measurements.

D. Parity

It is convenient to define the parity transformation P
acting on the points in our finite lattice thus: xi → xPi ¼
L − 1 − xi for i in spatial directions, such that the lattice
coordinates are inverted: 0; 1; 2…ðL − 1Þ → ðL − 1Þ…
2; 1; 0. This is equivalent to reflecting about the midpoint
ðL − 1Þ=2 of each spatial direction.
Under parity, the gauge links on a standard periodic

lattice transform as

P̂UμðxÞP̂−1 ¼ UPðμÞðxPÞ ð73Þ

where PðiÞ ¼ −i for spatial directions i ¼ 1; 2; 3 and
Pð4Þ ¼ 4 for the time direction, and

U−μðxÞ ¼ U†
μðx − μ̂Þ: ð74Þ

The flavor-matrix gauge links Ũμ ¼ diagðUμ; U�
μÞ there-

fore transform as

P̂ŨμðxÞP̂−1 ¼ ŨPðμÞðxPÞ; ð75Þ

where the analog to the right-hand side of Eq. (74) should
take into account the nontrivial boundary condition on the
links. To determine the appropriate form it is convenient to
rewrite this equation in terms of the translation operators,
then use Eq. (46b):

Ũ−μðxÞ ¼ T̂−1
μ Ũ†

μðxÞT̂μ ¼ B−
μ ðxμÞŨ†

μðx − μ̂Þ½B−
μ ðxμÞ�†:

ð76Þ

We will also require the corresponding action of parity
on Ũiðx − îÞ for a spatial direction i, which can be found
using P̂ŨμðxÞŨ†

μðxÞP̂−1 ¼ 1 and Eq. (75), resulting in

P̂ŨiðxÞP̂−1 ¼ B−
i ðxPi ÞŨiðxP − îÞ½B−

i ðxPi Þ�† ð77Þ

and thus
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P̂Ũiðx − îÞP̂−1 ¼ B−
i ðxPi þ 1ÞŨiðxPÞ½B−

i ðxPi þ 1Þ�†
¼ ½Bþ

i ðxPi Þ�†ŨiðxPÞBþ
i ðxPi Þ: ð78Þ

The action of parity on the down quark field d ¼ ψ0 is

P̂dðxÞP̂−1 ¼ γ4dðxPÞ and P̂ d̄ðxÞP̂−1 ¼ d̄ðxPÞγ4:
ð79Þ

For the second component, ψ1 ¼ CūT , we have

P̂CūTðxÞP̂−1 ¼ C½P̂ ū P̂−1�T ¼ −γ4CūTðxPÞ: ð80Þ

The action of parity upon the full G-parity fermion doublet
is therefore

P̂ψðxÞP̂−1 ¼ γ4σ3ψðxPÞ: ð81Þ

For determining the transformation properties of the
action under parity it is more convenient to return to the full
action, Eq. (41). Applying the parity transformation the first
term of the action in the spatial direction i:

P̂ ψ̄ðxÞŨiðxÞΓþ
i B

þ
i ðxiÞψðxþ îÞP̂−1

¼ ψ̄ðxPÞγ4σ3Ũ−iðxPÞΓþ
i B

þ
i ðxiÞγ4σ3ψð½xþ î�PÞ

¼ ψ̄ðxPÞB−
i ðxPÞŨ†

i ðxP − îÞΓ−
i ψðxP − îÞ: ð82Þ

Similarly, the second term transforms as

P̂ ψ̄ðxÞB−
i ðxiÞŨ†

i ðx − îÞΓ−
i ψðx − îÞP̂−1

¼ ψ̄ðxPÞŨ†
i ðxPÞΓþ

i B
þ
i ðxPi ÞψðxP þ îÞ: ð83Þ

These match the second and first terms of Eq. (41)
respectively, written in terms of the transformed coordi-
nates. The temporal components are trivially invariant
because Γ�

4 commutes with γ4 and B�
4 ≡ 1. We therefore

see that the action is invariant under the parity
transformation.
In the above we have used

σ3B�
μ ðxμÞσ3 ¼ ½B�

μ ðxμÞ�† ð84Þ

and

B�
μ ðxμÞ ¼ ½B∓

μ ðxPμ Þ�† ð85Þ

which can be seen from δxi;L−1 ¼ δ0;L−xi−1 ¼ δxPi ;0 and
δxi;0 ¼ δ−xi;0 ¼ δL−xi−1;L−1 ¼ δxPi ;L−1 for spatial i. (For

μ ¼ 4, B�
4 are unit matrices hence this relation is trivially

applicable.) We also recognize that for any flavor matrix F,

½B�
i ðxiÞ�†F½B�

i ðxiÞ�2 ¼ ½B�
i ðxiÞ�†½B�

i ðxiÞ�2F
¼ B�

i ðxiÞF; ð86Þ

which follows from the fact that B�
μ are unitary and are

either 1 or �iσ2 depending on the coordinate, and that
ð�iσ2Þ2 ¼ −1.

E. Translational symmetry

Because the gauge and fermion actions are constructed
as a sum of local terms containing differences between
neighboring sites which are obtained using the translation
operators T̂μ, we can write the complete action as the sum:

Sþ SW ¼
XL−1

n1…n4¼0

Y
ν

½T̂nν
ν �½sð0Þ þ sWð0Þ�

Y
ρ

½T̂−nρ
ρ � ð87Þ

where sð0Þ and sWð0Þ are the terms in the fermion and
gauge actions corresponding to the point x ¼ 0. Since the
operator T̂μ

L is a symmetry of both the fermion and gauge
actions, the summand in Eq. (87) depends on the integer
summation variables nμ only through (nμ mod L). This
implies that if we conjugate Sþ SW with a translation
operator T̂κ we will increase the summation variable nκ by
one which simply permutes the terms in the sum and leaves
the complete action unchanged.

F. Translational covariance of field operators

In Eqs. (20a) and (20b) we observe that the naïve
translational covariance of the quark field is broken at
the boundary, where it picks up an additional matrix
structure �iσ2. This implies that the quantity

ψðp⃗; tÞ ¼
X
x⃗

e−ip⃗·x⃗ψðx⃗; tÞ ð88Þ

is not an eigenstate of translation, i.e.,

T̂μψðp⃗; tÞT̂−1
μ ≠ eipμψðp⃗; tÞ ð89Þ

for a G-parity direction μ. This is problematic as we
ultimately wish to construct states of definite momentum.
We can easily form eigenstates of iσ2 that simply pick up

coefficients at the boundaries:

ψ� ¼ 1

2
ð1� σ2Þψ ; ð90Þ

for which

ðiσ2Þψ� ¼ �iψ�: ð91Þ

The factor of 1
2
in Eq. (90) is arbitrary; we choose it such

that ψ can be interpreted as the sum of the two eigenvectors.
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The fields ψ� have the following boundary conditions:

T̂μψ�ðxμ ¼ L − 1ÞT̂−1
μ ¼ �iψ�ðxμ ¼ 0Þ; ð92aÞ

T̂−1
μ ψ�ðxμ ¼ 0ÞT̂μ ¼∓ iψ�ðxμ ¼ L − 1Þ; ð92bÞ

where μ is a G-parity direction.
The allowed discretized momenta for ψ� can be found

by translating the momentum-space field (here we use a
theory with one spatial dimension for convenience):

T̂ψ�ðp; tÞT̂−1 ¼ T̂

�X
x

e−ip·xψ�ðx; tÞ
�
T̂−1

¼
� X

x≠L−1
e−ip·xψ�ðxþ 1; tÞ

�
� ie−ip·ðL−1Þψ�ð0Þ

¼ eip
�X

x0≠0

e−ip·x
0
ψ�ðx0; tÞ

�
� ieipe−ip·Lψ�ð0Þ ð93Þ

where x0 ¼ xþ 1. These fields are therefore translationally
covariant if

ie−ipL ¼ 1 ⇒ p ¼ π

2L
ð1þ 4nÞ for ψþ

−ie−ipL ¼ 1 ⇒ p ¼ −
π

2L
ð1þ 4nÞ for ψ− ð94Þ

where n is an arbitrary integer. The eigenvectors therefore
have disjoint sets of allowed discretized momenta: For ψþ
the allowed momenta are p ¼ ð… − 7;−3; 1; 5; 9…Þπ=
ð2LÞ, whereas for ψ− they are p ¼ ð… − 9;−5;−1;
3; 7…Þπ=ð2LÞ.
For later use it is convenient to combine the eigenvectors

into a single field operator whose projection is a function of
momentum:

ψ̃ðp⃗; tÞ ¼
X
x⃗

e−ip⃗·x⃗
Y
j∈G

�
1

2
ð1þ einpjπσ2Þ

�
ψðx⃗; tÞ; ð95Þ

and

ψ̃ðp⃗; tÞ ¼
X
x⃗

e−ip⃗·x⃗ψðx⃗; tÞ
Y
j∈G

�
1

2
ð1 − einpjπσ2Þ

�
; ð96Þ

where G is the set of directions with GPBC and npj
is an

integer defined via

pj ¼
π

2L
ð1þ 2npj

Þ: ð97Þ

The allowed momenta for the combined field ψ̃ are now
all odd-integer multiples of π=ð2LÞ (below we discuss a
further constraint on the momenta). Note that the minus
sign in the flavor projection of the conjugate field is
required because ψ → ψð−iσ2Þ when passing through

the upper boundary, and hence ψ� ¼ 1
2
ψð1� σ2Þ →

∓ iψ�. The conjugate field eigenvectors ψ� therefore
have the opposite momentum eigenvalues to ψ�: For ψþ
the allowed momenta are p ¼ ð… − 9;−5;−1; 3; 7…Þπ=
ð2LÞ, whereas for ψ− they are p ¼ ð… − 7;−3; 1;
5; 9…Þπ=ð2LÞ.

G. Rotational symmetry

Examining Eq. (95) more closely, we observe that a
nonzero field operator with a definite momentum can only
be created if the flavor projection operators for each
momentum direction have the same sign, i.e., einpiπ is
the same for all G-parity directions. With GPBC in two
directions for example, this then implies

np1
¼ np2

þ 2m ⇒ p1 ¼ p2 þ
2mπ

L
; ð98Þ

where m is an integer. In other words, the momentum
components are constrained to differ only by integer
multiples of 2π=L. We can therefore simplify the expres-
sion for the translationally covariant field in Eq. (95) to

ψ̃ðp⃗; tÞ ¼
X
x⃗

e−ip⃗·x⃗
1

2
ð1þ einpπσ2Þψðx⃗; tÞ; ð99Þ

where

np ¼ npi
¼ Lpi

π
−
1

2
ð100Þ

for each i ∈ G.
The implications of this observation can be seen by

considering the two momenta 2π
L ð1

4
; 1
4
; 0Þ and 2π

L ð1
4
;− 1

4
; 0Þ,

which are related by a cubic rotation. In the former the
momentum components are identical, hence this is an
allowed momentum. However, in the latter the two
momentum components in the G-parity directions differ
only by π=L, and therefore this is not an allowed quark
momentum. This implies that the rotational symmetry has
been broken at the quark level by GPBC in multiple
directions. For example if we imposed GPBC in all three
spatial directions in a cubic box, the naïve cubic symmetry
of this choice is broken by this fixed relation between the
three components of the allowed quark momenta.
The breaking of the rotational symmetry can be shown in

a different manner by considering the structure of the
Brillouin lattice: In Sec. III C we demonstrated that the two-
flavor theory with GPBC in one direction of size L is
equivalent to a single-flavor theory on a lattice of size 2L
with the quarks obeying antiperiodic boundary conditions.
In Fig. 3(a) we plot the allowed momenta for this doubled-
lattice setup. In Fig. 3(b) we plot those obtained if we
double the lattice again and impose antiperiodic BCs in the
second direction. In each case the number of points
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corresponds to the number of fermionic d.o.f., which is
double in the latter compared to the former and is therefore
not equivalent to GPBC in two directions, for which the
number of d.o.f. is independent of the number of G-parity
directions. (In Sec. III C this binding of field variables
between the quadrants required us to carefully construct
propagator sources in order to correctly reproduce the two-
flavor theory.) We must therefore eliminate half of these
points to reproduce the two-flavor theory.
Given that parity symmetry demands the Brillouin lattice

be symmetric about the diagonals, and that the sites are
equally spaced along both axes, there are only two possible
configurations for the remaining Brillouin lattice sites: The
first has all of the momentum points distributed along the
positive diagonal as we plot in Fig. 3(c), and matches
the allowed momenta we identified above. The second is
that in which the momentum sites reside in the center of the
currently unoccupied grid squares of this figure such that
they lie instead along the negative diagonal. Note that the
diagram is not invariant under 90° rotations, thus showing
that the cubic symmetry is broken.
It is interesting to consider why the allowed momenta lie

along the positive and not the negative diagonal. The reason
is due to our conventions: As mentioned in Sec. II A, the
direction around the y axis that we perform the isospin
rotation is arbitrary. We choose to perform the rotation in
the anticlockwise direction at every upper boundary of the
lattice, which results in the favored direction being along
the positive diagonal; we could just as easily have chosen to
perform the rotation in the opposite direction at one or more
boundaries, resulting in a change in the favored direction.
It is important to recognize that the choice of convention

does not affect the boundary conditions on the pion
wavefunction, which obeys antiperiodic boundary condi-
tions in all cases. As a result, the pion energy remains
invariant under cubic rotations, as we will demonstrate
numerically in Sec. VIII C. We do however find that the

rotational symmetry breaking has a measurable impact on
the amplitudes Aπðp⃗Þ ¼ jhπðp⃗ÞjOπðp⃗Þj0ij2 of two-point
functions of pions moving in orthogonal directions, where
Oπðp⃗Þ is a bilinear operator. Such an operator can be
constructed as

O�
π ðp⃗Þ ¼ ψ̄∓ðp⃗1Þ � � �ψ�ðp⃗2Þ ð101Þ

where p⃗1 þ p⃗2 ¼ p⃗ and the ellipses denote spin and flavor
structure that will be elaborated in the coming section. Note
that both the ψ−ψþ and ψþψ− forms can be used providing
p⃗1 and p⃗2 are chosen from the appropriate set of allowed
momenta. In the aforementioned section we determine that
the discrepancy in amplitudes can be substantially reduced
by averaging the Oþ

π ðp⃗Þ andO−
π ðp⃗Þ forms. This observation

is vital to constructing s-wave ππ states in our K → ππ
calculation.

V. LIGHT HADRONIC OBSERVABLES

A. Local light-quark bilinear operators

As a result of the flavor mixing, many typical hadronic
states (for example the proton) are no longer eigenstates of
the Hamiltonian. For this work and in the measurement of
the K → ðππÞI¼0 amplitude we are only concerned with
meson states. On the lattice we form bilinear operators in
the quark fields that, when applied to the vaccuum state,
create a linear combination of all mesonic states with the
quantum numbers specified by the operator. In this section
we consider bilinear operators in which both quark fields
act at the same space-time point, and in Sec. V B we
consider operators involving quark fields operating at
different positions, for which the forms are further
restricted by the requirement that the operators project
onto eigenstates of the translation operator (and hence have
definite momentum) in the context in which either of the

FIG. 3. Allowed momenta for several two-dimensional lattice configurations. The grid spacing is π=L and the origin is at the center
of each figure. For each figure, the pair of labels in parentheses gives the lattice size in units of L and the quark boundary condition
for the x and y directions, respectively: A for antiperiodic, P for periodic and G for G-parity.
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quarks can independently cross the boundary, and hence
change flavor.
In anticipation of including the strange quark, we

henceforth refer to the fermion doublet comprising the
light fields with subscript l.
There are three generic forms for a point bilinear

operator involving only the light quark fields:

O1
ll ¼

X
i

aiψ̄ lΓσiψ l;

O2
ll ¼

X
i

biψ̄ lΓσiψ̄T
l ;

O3
ll ¼

X
i

ciψT
l Γσiψ l; ð102Þ

where Γ is a generic spin-color matrix, a–c are c-number
coefficients indexed with i ∈ f0..3g, and we have exploited
the fact that any 2 × 2 complex matrix can be written as a
linear combination of the Pauli matrices and the unit matrix
(written here as σ0).
From the color structure of the operators in Eq. (102) one

can recognize that local, gauge-invariant operators of the
O1
ll form can be obtained only if the flavor matrices σ0 or σ3

appear, while for O2
ll and O3

ll the matrices σ1 or σ2 must
be used.
Using Eq. (8) we can easily see that the G-parity odd

operators are those for which the flavor structure anti-
commutes with σ2, i.e., σ1 and σ3. Similarly, G-parity even
operators are those that contain σ2 or the unit matrix. In
Table I we have compiled a list of local bilinear operators
that are invariant under the above transformations and
project onto states of definiteG-parity eigenvalue. From the
table we can easily read off the operators that create states
with the quantum numbers of the pion:

πþ ¼ iūγ5d ¼ i
2
ψT
l γ

5Cσ1ψ l;

π− ¼ −id̄γ5u ¼ −
i
2
ψ̄ lγ

5Cσ1ψ̄T
l ;

π0 ¼ iffiffiffi
2

p ðūγ5u − d̄γ5dÞ ¼ −
iffiffiffi
2

p ψ̄ lγ
5σ3ψ l: ð103Þ

It is illustrative to consider here the Wick contractions of
the π0 two-point correlation function hπ0ðxÞπ0ðyÞi. In
addition to the usual connected diagram, this will also
contain a diagram comprising two disconnected quark
loops each of the form

trðGðx; xÞγ5σ3Þ: ð104Þ

In the limit of isospin symmetry such diagrams must
vanish, which becomes clear if we return to standard
notation but is not so obvious in this form. We can see
that it vanishes in the notation of Eq. (104) as follows:

trðGðx; xÞγ5σ3Þ ¼ trðσT3 ðγ5ÞTGTðx; xÞÞ
¼ trðσ3γ5½γ5G�ðx; xÞγ5�Þ
¼ −trðGðx; xÞγ5σ3Þ; ð105Þ

where on the second line we have used the γ5 Hermiticity,
Eq. (43), of the Euclidean propagator and on the third line
we have used Eq. (67).

B. Nonlocal bilinear operators

In this section we restrict our attention to operators of the
form O1

ll, although the concepts can be easily generalized to
the other forms.
In practice we typically achieve better overlap with a

chosen state of a particular momentum p⃗þ q⃗ using
spatially smeared operators of the form

Oðp⃗þ q⃗; tÞ ¼
X
x⃗;y⃗

e−iðp⃗·x⃗þq⃗·y⃗Þϕðjx⃗ − y⃗jÞψðx⃗; tÞΓΣψðy⃗; tÞ;

ð106Þ

where ϕ is some smearing function and Γ and Σ are
arbitrary spin and flavor matrices respectively. Here and
below it is assumed that the spatial links at the time t are
gauge-fixed such that this operator is gauge invariant.
To be useful, an operator Oðp⃗þ q⃗; tÞ specified by

Eq. (106) must add the momentum p⃗þ q⃗ to the state to
which it is applied. That is, it must be an eigenstate of the
translation operator T̂j in the spatial jth direction defined in
Eq. (20):

T̂jOðp⃗þ q⃗; tÞT̂−1
j ¼ eiðpjþqjÞOðp⃗þ q⃗; tÞ: ð107Þ

We will discuss how this can be done in the next two
subsections.

1. Point operator

Let us first consider the special case of a local operator:
ϕðjx⃗ − y⃗jÞ ¼ δx⃗;y⃗. Under a spatial translation this becomes

TABLE I. The nonzero local gauge-invariant light-quark bi-
linear operators and their G-parity eigenvalues written is the two-
flavor formalism as well as the standard form. Here Γ is a generic
spin-color matrix.

Operator Standard form G-parity e-val

ψ lΓσ0ψ l d̄Γd − ūCΓTCu þ1

ψ lΓσ3ψ l d̄Γdþ ūCΓTCu −1
ψ lΓσ1ψT

l −d̄ðΓ − ΓTÞCu −1
ψ lΓσ2ψT

l id̄ðΓþ ΓTÞCu þ1

ψT
l Γσ1ψ l −ūCðΓ − ΓTÞd −1

ψT
l Γσ2ψ l −iūCðΓþ ΓTÞd þ1
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T̂jOðp⃗þ q⃗; tÞT̂−1
j

¼
X
x⃗

e−iðp⃗þq⃗Þ·x⃗ψðx⃗þ ĵ; tÞ½Bþ
j ðxjÞ�†ΓΣBþ

j ðxjÞψðx⃗þ ĵ; tÞ

¼ eiðpjþqjÞ
X
x⃗0
e−iðp⃗þq⃗Þ·x⃗0e

−iðpjþqjÞLδx0
j
;0ψðx⃗0; tÞ

× ½Bþ
j ðx0j − 1Þ�†ΓΣBþ

j ðx0j − 1Þψðx⃗0; tÞ; ð108Þ

where x⃗0 ¼ x⃗þ ĵ modulo the lattice size. We see that
for Σ ¼ σ0, B

þ
j commutes with Σ and the above is trans-

lationally covariant providing pj þ qj ¼ n 2π
L for integer n;

this is just the operator we identified as being a G-parity
even eigenstate in the previous section. Similarly for
Σ ¼ σ3, Bþ

μ anticommutes and we require pj þ qj ¼
ðnþ 1

2
Þ 2πL ; this corresponds to the G-parity odd operator.

As a result, providing the correct momenta are chosen, the
local operator is an eigenstate of the translation operator.

2. Nonlocal operator

For a nonlocal operator, there are additional terms where
only one quark crosses the boundary that render the
operator nontranslationally covariant: the boundary term
enters for one quark but not the other. In Sec. IV F we
identified quark field operators, ψ̃ðp⃗; tÞ, that are explicitly
translationally covariant by virtue of their flavor-projector
structure. Inserting these into Eq. (106), we obtain an
operator that has a well-defined momentum:

Õðp⃗þ q⃗; tÞ ¼
X
x⃗;y⃗

e−iðp⃗·x⃗þq⃗·y⃗Þϕðjx⃗ − y⃗jÞψ̃ðx⃗; tÞΓΣψ̃ðy⃗; tÞ

¼
X
x⃗;y⃗

e−iðp⃗·x⃗þq⃗·y⃗Þϕðjx⃗ − y⃗jÞψðx⃗; tÞ

×
1

2
ð1 − einpπσ2ÞΓΣ

1

2
ð1þ einqπσ2Þψðy⃗; tÞ

ð109Þ

where the integers np and nq are associated with the
momenta p⃗ and q⃗ respectively, via Eq. (100).
As B�

j commute with σ2, the restrictions on the allowed
momenta for different choices of Σ are the same as for the
local operator. The 1

2
ð1� σ2Þ projection operators enforce

these same restrictions: For Σ ¼ σ3, on commuting the first
projector through Σ we find the projectors will cancel
unless einpπ ¼ einqπ and thus nq ¼ np þ 2m for integer m.
This implies pi ¼ qi þ 2mπ=L in G-parity directions, and
thus

pi þ qi ¼ 2qi þ
2mπ

L

¼ π

L
þ ðnq þmÞ 2π

L
; ð110Þ

i.e., this just restricts the total momentum to odd integer
multiples of π=L, the allowed momenta of G-parity odd
states. The corresponding condition for Σ ¼ σ0 requires
−einpπ ¼ einqπ and so nq ¼ np þ ð2mþ 1Þ, which in turn
implies pi þ qi ¼ 2π

L ðnp þmþ 1Þ, the allowed momenta
of G-parity even states.

3. Nonlocal neutral pion operator

For a neutral pion the local pseudoscalar operator is
ψγ5σ3ψ and the corresponding nonlocal operator has the
form:

Õπðp⃗þ q⃗; tÞ ¼
X
x⃗;y⃗

e−iðp⃗·x⃗þq⃗·y⃗Þϕðjx⃗− y⃗jÞψðx⃗; tÞ

×
1

2
ð1− einpπσ2Þγ5σ3

1

2
ð1þ einqπσ2Þψðy⃗; tÞ:

ð111Þ
where translational covariance and the projection operators
restrict the total momentum in each G-parity direction
j ∈ G to pj þ qj ¼ ð2mþ 1Þ π

L for integer m as desired.
Let us examine the quark content of this operator more

carefully: Expanding the parentheses in Eq. (111) we find
two independent flavor structures,

ψðx⃗; tÞð1þ einpπeinqπÞγ5σ3ψðy⃗; tÞ ¼ 2ψðx⃗; tÞγ5σ3ψðy⃗; tÞ;
ð112Þ

and

− iψðx⃗; tÞðeinpπ þ einqπÞγ5σ1ψðy⃗; tÞ
¼ −2ieinpπψðx⃗; tÞγ5σ1ψðy⃗; tÞ: ð113Þ

The second has unphysical flavor structure, ψγ5σ1ψ ¼
d̄γ5CūT þ uTCγ5d, and arises in cases where one of the
quark fields crosses the boundary when the other does not.
Naïvely this looks incorrect, but the form of the second
term is, in a sense, artificial; given the translational
invariance of the action, we are free to shift the boundary
such that, for example, in one dimension,

hψðxÞγ5σ1ψð0Þi ¼ hψðx − 1Þγ5σ1ð−iσ2ÞψðL − 1Þi
¼ hψðx − 1Þγ5σ3ψðL − 1Þi; ð114Þ

where hi stands for the ensemble average. Thus the
apparently unphysical form of the second term is merely
an artifact of our arbitrary choice as to where to place the
boundary.

VI. THE STRANGE QUARK

We wish to simulate with a single strange quark whose
discretized action is consistent with the charge conjugation
boundary conditions on the gauge fields. The most obvious
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choice is to also impose charge conjugation boundary
conditions on the strange quark, i.e., on crossing the
boundary

s → Cs̄T and s̄ → sTC: ð115Þ

Unfortunately, with this choice of strange quark boundary
condition it is impossible to form a pseudoscalar operator
that projects onto the K0 state and that is invariant under
translations such that it will create a K meson at rest. To see
this, consider the two operators, s̄γ5d and ūγ5s, that
transform into each other under the boundary conditions:

s̄γ5d → ðsTCÞγ5ðCūTÞ ¼ ūγ5s; ð116aÞ

ūγ5s → ð−dTCÞγ5ðCs̄TÞ ¼ −s̄γ5d: ð116bÞ

A linear combination of these operators cannot be chosen
that is invariant under translation as, under G-parity,

αs̄γ5dþ βūγ5s → αūγ5s − βs̄γ5d; ð117Þ

which would simultaneously require α ¼ β and α ¼ −β. As
a result we cannot create a kaonlike state of zero momen-
tum. This is ultimately related to the fact that the strange
quark with charge conjugation BCs is periodic in 2L,
whereas the up/down quarks with GPBCs are antiperiodic
in 2L and periodic in 4L.
A solution is to introduce a fictional degenerate partner

to the strange quark, which we refer to as the s0 quark, and
to impose GPBC within that pair:

Ĝ

�
s0

s

�
Ĝ−1 ¼

�
−Cs̄T

Cs̄0T

�
: ð118Þ

Then

s̄γ5d → ðs0TCÞγ5ðCūTÞ ¼ ūγ5s0; ð119aÞ

ūγ5s0 → ð−dTCÞγ5ð−Cs̄TÞ ¼ s̄γ5d; ð119bÞ

and we can form eigenstates,

s̄γ5d� ūγ5s0; ð120Þ

with eigenvalue �1, i.e., that obey either periodic or
antiperiodic BCs. The former can be used to produce a
stationary state whose physical component projects onto
the neutral kaon and is therefore suitable for a K → ππ
calculation.

A. Local heavy-light bilinear operators

In this section we consider local bilinear operators
containing the strange quark and its fictional partner, s0.
As with the light quarks, we write

ψh ¼
�

s

Cs̄0T

�
; ð121Þ

which is distinguished from the light-quark flavor doublet
by the subscript h.
Below we use the following conventions for operators

that create states with the quantum numbers of the kaon:

Kþ ¼ iūγ5s;

K− ¼ −is̄γ5u;

K0 ¼ id̄γ5s;

K̄0 ¼ −is̄γ5d: ð122Þ

These transform under G-parity as follows:

ĜKþĜ−1 ¼ ið−dTCÞγ5ðCs̄0TÞ ¼ −is̄0γ5d≡ K0þ;

ĜK−Ĝ−1 ¼ −iðs0TCÞγ5ð−Cd̄TÞ ¼ þid̄γ5s0 ≡ K0−;

ĜK0Ĝ−1 ¼ iðuTCÞγ5ðCs̄0TÞ ¼ þis̄0γ5u≡ K00;

ĜK̄0Ĝ−1 ¼ −iðs0TCÞγ5ðCūTÞ ¼ −iūγ5s0 ≡ K̄00; ð123Þ

where we have denoted the fictionalG-parity partners to the
physical kaons with a prime ( 0) superscript.
For operators comprising only the heavy quark fields,

the results obtained in Sec. VA also apply. For heavy-light
bilinears we have four operator forms:

O1
hl ¼

X
i

diψhΓσiψ l;

O2
hl ¼

X
i

eiψhΓσiψT
l ;

O3
hl ¼

X
i

fiψT
hΓσiψ l;

O4
hl ¼

X
i

giψ lΓσiψh: ð124Þ

As before, gauge invariance restricts O1
hl and O4

hl to the
choices σ0 and σ3, and likewise O2

hl and O3
hl are restricted

to σ1 and σ2. However, here the lack of symmetry under
interchange of the fields implies that there is no restriction
on the spin-color matrices Γ. We have again compiled the
operators along with their standard forms and G-parity
eigenvalues in Table II.
Consider the first line of Table II with Γ ¼ γ5. We have

ψhΓσ0ψ l ¼ ðs̄γ5dþ ūγ5s0Þ
¼ iðK̄0 þ K̄00Þ: ð125Þ

This operator creates a stationary state whose physical
component corresponds to the K̄0. Similarly the equivalent
operator for the Kþ can be obtained from the sixth line of
the table with Γ ¼ Cγ5:
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ψT
hCγ

5σ2ψ l ¼ ðis̄0γ5d − iūγ5sÞ
¼ −ðK0þ þ KþÞ: ð126Þ

From the table we can therefore read off the operators that
project onto stationary states whose physical components
correspond to the full set of charged and neutral kaons.
We denote operators of definite G-parity quantum number
with a tilde (∼), and display the quantum number in the
subscript:

K̃þ
þ ¼ 1ffiffiffi

2
p ðKþ þ K0þÞ ¼ iffiffiffi

2
p ðūγ5s − s̄0γ5dÞ

¼ −
1ffiffiffi
2

p ψT
hCγ

5σ2ψ l;

K̃−þ ¼ 1ffiffiffi
2

p ðK− þ K0−Þ ¼ −iffiffiffi
2

p ðs̄γ5u − d̄γ5s0Þ

¼ 1ffiffiffi
2

p ψhCγ5σ2ψT
l ;

K̃0þ ¼ 1ffiffiffi
2

p ðK0 þ K00Þ ¼ iffiffiffi
2

p ðd̄γ5sþ s̄0γ5uÞ ¼ iffiffiffi
2

p ψ lγ
5ψh;

¯̃K0
þ ¼ 1ffiffiffi

2
p ðK̄0 þ K̄00Þ ¼ −iffiffiffi

2
p ðs̄γ5dþ ūγ5s0Þ ¼ −iffiffiffi

2
p ψhγ

5ψ l:

ð127Þ

We also have moving states with the opposite G-parity
quantum number:

K̃þ
− ¼ 1ffiffiffi

2
p ðKþ − K0þÞ ¼ iffiffiffi

2
p ψT

hCγ
5σ1ψ l;

K̃−
− ¼ 1ffiffiffi

2
p ðK− − K0−Þ ¼ −

iffiffiffi
2

p ψhCγ5σ1ψT
l ;

K̃0
− ¼ 1ffiffiffi

2
p ðK0 − K00Þ ¼ iffiffiffi

2
p ψ lγ

5σ3ψh;

¯̃K0
− ¼ 1ffiffiffi

2
p ðK̄0 − K̄00Þ ¼ −iffiffiffi

2
p ψhγ

5σ3ψ l: ð128Þ

B. Operators acting on the physical kaon

When measuring the K → ππ amplitudes or BK in the
G-parity framework we are concerned with operators that
act only on the physical kaon state and not the fictional
partner. However, in order to determine matrix elements
between physical states with known momenta we must
work with the G-parity eigenstates that contain the fictional
partner. As this transforms into the physical state when it
crosses the boundary, we might expect it to make a
nontrivial unphysical contribution to the measured ampli-
tude. In order to analyze the size of this effect, consider the
infinite-volume matrix element,

hϕjOphysjK0i; ð129Þ

where Ophys is chosen to be an operator that acts on the
physical kaon, does not involve the unphysical s0 quark
operator and induces a mixing/decay to some final state
jϕi. Now we introduce the fictional partner to the strange
quark, s0, which introduces a new state, jK00i, that is degen-
erate with jK0i but has different flavor quantum numbers.
(Here the infinite-volume states jK0i and jK00i are QCD
energy and momentum eigenstates.) This infinite-volume
setup permits no mixing between these two states, hence

hϕjOphysjK00i ¼ 0: ð130Þ

We can therefore combine these equations in infinite
volume, giving the result

hϕjOphysðjK0i þ jK00iÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}ffiffi
2

p jK̃0
þi

¼ hϕjOphysjK0i: ð131Þ

If we restrict ourselves to momenta whose components
are integer multiples of 2π=L, the linear combination that
we label jK̃0þi is a valid eigenstate of the system in infinite
volume and, if viewed as a two-component wave function,
(K0, K00), will also obey G-parity boundary conditions
for a finite volume of size V ¼ L3. The infinite-volume
composite particles K0 and K00 receive only exponentially
suppressed corrections when confined to move in a finite
volume [11]. Thus, up to terms Oðe−mKLÞ, we can obtain
the infinite volume matrix element hϕjOphysjK0i that
appears on the right-hand side of Eq. (131) from the matrix
element on the left-hand side evaluated in finite volume.
Thus,

hϕjOphysjK0i ¼
ffiffiffi
2

p
hϕjOphysjK̃0þiV þ Oðe−mKLÞ; ð132Þ

where the matrix element on the left-hand side is evaluated
in infinite volume while that on the right in the finite
volume V.
This is an instructive, highly simplified example of

the more familiar relation between infinite-volume

TABLE II. The local gauge-invariant heavy-light bilinear op-
erators and their G-parity eigenvalues written is the two-flavor
formalism as well as the standard form. Here Γ is a generic spin-
color matrix.

Operator Standard form G-parity e-val

ψhΓσ0ψ l s̄Γd − ūCΓTCs0 þ1

ψhΓσ3ψ l s̄Γdþ ūCΓTCs0 −1
ψhΓσ1ψT

l −s̄ΓCuþ d̄ΓTCs0 −1
ψhΓσ2ψT

l is̄ΓCuþ id̄ΓTCs0 þ1

ψT
hΓσ1ψ l −s̄0CΓdþ ūCΓTs −1

ψT
hΓσ2ψ l −is̄0CΓd − iūCΓTs þ1

ψ lΓσ0ψh d̄Γs − s̄0CΓTCu þ1

ψ lΓσ3ψh d̄Γsþ s̄0CΓTCu −1
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two-particle scattering states and finite-volume energies
and matrix elements discovered by Lüscher [12] and by
Lellouch and Lüscher [2]. If we consider the case where
only the s-wave two-particle scattering phase shift is
nonzero, the analysis in Ref. [12] can be understood
as adjusting the relative momentum of the two-pions until
the s-wave two-particle scattering state combines with
the non-s-wave component of Lüscher’s Helmholtz func-
tion to produce a function obeying the finite-volume
boundary conditions. In our simpler case the momenta
of the jK0i and jK00i states are adjusted so that the
combined state ðjK0i þ jK00iÞ= ffiffiffi

2
p

obeys the required
G-parity boundary conditions.
The Lellouch-Luscher factor ∝ ∂ðδ0 þ ϕÞ=∂k of Ref. [2]

corrects for the higher partial waves that are present in the
finite volume ππ state and affect its normalization but do
not contribute directly to the s-wave decay matrix element.
The factor

ffiffiffi
2

p
in Eq. (132) plays a similar role, correcting

for the shift in the normalization of the state caused by the
otherwise irrelevant jK00i component of the finite-volume
eigenstate, jK̃0þi.
In the discussion above, we have focused on the treat-

ment of the kaon state that appears on the right-hand side of
the matrix element in Eq. (131) when G-parity boundary
conditions are present. Of course, the left-hand state hϕj in
that matrix element is also affected by these boundary
conditions. In the case of the mixing parameter BK the hK̄0j
state appears on the left-hand side of that matrix element
and can be treated in the same way as proposed for the
jK0i state on the right-hand side. In the case that the left-
hand state hϕj is an interacting multiparticle final state
there are additional contributions arising from the scatter-
ing, the form of which depends on the particles in ques-
tion. In practice we are primarily interested in K → ππ
decays, where the pions interact in the finite volume and
individually obey antiperiodic boundary conditions. Here
the contribution is completely described by the Lellouch-
Lüscher formula [2,13] generalized to the antiperiodic
case [14].

C. Strange quark determinant

With the introduction of the fictional s0 quark, the theory
now contains four flavors: two degenerate pairs, one light
and one heavy. In addition to the effect of the fictional s0 as
a valence quark that must appear in states which are
eigenstates of spatial momenta, that was discussed in the
previous section, the s0 quark will also appear as a sea quark
through the fermion determinant of the heavy-quark Dirac
operator which by definition acts on the s=s0 quark doublet.
However, in practice we wish to simulate a 2þ 1 flavor
theory with a single strange quark species so the contri-
bution of the s0 quark must be removed.
We can represent the Dirac matrix in this heavy flavor

space schematically as

ℳs=s0 ¼
�
ℳs←s ℳs←s0

ℳs0←s ℳs0←s0

�
: ð133Þ

The determinant of this block matrix is

detðℳs=s0 Þ¼detðℳs←s−ℳs←s0ℳ−1
s0←s0ℳs0←sÞdetðℳs0←s0 Þ:

ð134Þ

In infinite volume the flavor mixing components vanish
and the determinant reduces to the product of the deter-
minants of the elements connecting individual quark
flavors:

detðℳs=s0 Þ ¼L→∞detðℳs←sÞdetðℳs0←s0 Þ ¼ ½detðℳs←sÞ�2;
ð135Þ

where in the last equality we have used the degeneracy of
the s and s0 quarks. In this limit the contribution of a single
flavor can be obtained simply by taking the square root of
the two-flavor determinant.
At finite volume the Dirac matrix cannot be factored and

the rooting prescription does not result in the determinant
of a local operator. The nonlocality of the resulting effective
action then leaves no guarantee that the continuum limit of
the rooted determinant defines a theory that lies in the
correct universality class. This issue has received much
attention in the context of staggered fermions, where each
quark flavor corresponds to four “tastes” which are coupled
at high momenta and where a rooting prescription is used to
reduce the number of quark tastes from four to one.
Fortunately our situation is easier to analyze.
We will consider two quite similar determinants. The

first is the case of direct interest: an s=s0 doublet with the s
and s0 species connected at a boundary by G-parity
boundary conditions. In this case the determinant does
not factorize and taking the square root of that determinant
produces an effective action which does not precisely
correspond to that of a local field theory of fermions.
The second case also involves a degenerate q1=q2 doublet
but each obeys independent charge-conjugation boundary
conditions and the resulting determinant is a simple square
whose square root corresponds to the Pfaffian of a local
field theory of a single fermion species obeying charge-
conjugation boundary conditions [8].
We will demonstrate that these two determinants differ

by terms which fall exponentially as the system size grows
so that the square root of the G-parity determinant differs
from that of a proper local theory by terms which can be
safely neglected. These two theories are identical if the
boundary terms are neglected: both are theories of two
flavors of fermion obeying open boundary conditions. The
theories differ only because of the boundary terms. For the
s=s0 theory the boundary terms of the Wilson/domain wall
theory can be written explicitly as
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− s̄0ðL − 1ÞΓþ
x CUxðL − 1Þs̄Tð0Þ

þ s̄ðL − 1ÞΓþ
x CUxðL − 1Þs̄0Tð0Þ;

− s0TðL − 1ÞCΓ−
x U

†
xðL − 1Þsð0Þ

þ sTðL − 1ÞCΓ−
x U

†
xðL − 1Þs0ð0Þ: ð136Þ

For simplicity, we have assumed that G-parity boundary
conditions are imposed only in the x direction.
For the case of the doublet of fermions obeying charge-

conjugation boundary conditions, the corresponding boun-
dary terms are similar:X

i¼1;2

fq̄iðL − 1ÞΓþ
x CUxðL − 1Þq̄Ti ð0Þ

þ qTi ðL − 1ÞCΓþ
x U

†
xðL − 1Þqið0Þg: ð137Þ

We can now compare these two theories by expanding their
respective determinants in powers of these boundary terms.
These expansions will take the form of a sum of products of
closed loops of the sort shown in Fig. 4, where the vertices
joining two quark lines correspond to the bilinear terms in
Eqs. (136) and (137) and the directed lines in that figure
correspond to fermion propagators with open boundary
conditions. For our explicit examples in which G-parity or
charge-conjugation boundary conditions are imposed in
only the x direction, the vertices joining two outgoing quark
lines will have the gamma and link matrix structure
Γþ
x CUxðL − 1Þ while those at which two fermion lines

are absorbed will contain CΓþ
x UxðL − 1Þ�.

As suggested in Fig. 4 the leading term when L is large
will involve fermion propagators which connect operators
in two boundary terms at the same side of the volume.

That is either x ¼ 0 is connected with x ¼ 0 or x ¼ L − 1 is
connected with x ¼ L − 1. A propagator joining operators
located at x ¼ 0 and x ¼ L − 1 will be exponentially
suppressed. The connections that are shown in Fig. 4
correspond to a term which is not exponentially suppressed.
Inspecting Eqs. (136) and (137), we can recognize that

the graphs describing terms of the form shown in Fig. 4,
which are not exponentially suppressed, are identical for
these two theories. For theory with charge-conjugation
boundary conditions a graph such as that in Fig. 4 will
correspond to a specific Feynman amplitude with a
prefactor of 1=3 because of the symmetry of the graph
under cyclic shifts of the vertices by two positions along the
ring and an additional factor of 2 to account for the two
independent flavors.
Exactly the same Feynman amplitude will appear in the

G-parity theory with the same factor of 1=3 arising from the
cyclic symmetry. The factor of 2 also appears because for
the G-parity theory the propagators must alternate between
that of an s and that of an s0 quark as one moves around the
ring. The exchange of s and s0 everywhere yields the factor
of two. The two minus signs which appear in Eq. (136) do
not appear in Eq. (137). However, as can be seen from the
pattern of contractions which appears in Fig. 4 these minus
signs always appear in pairs for theG-parity case and hence
have no effect.
We conclude that if we neglect terms which are expo-

nentially suppressed, our rooted s=s0 determinant equals
the Pfaffian corresponding to a local theory of fermions
obeying charge conjugation boundary conditions. We
therefore expect no subtle difficulties to arise from our
use of the square root of this determinant.

VII. 2 + 1F DOMAIN WALL FERMION
ENSEMBLES

In this and the following section we present results for
full QCD simulations on a 163 × 32 lattice volume with
G-parity boundary conditions in zero, one and two direc-
tions. We begin by discussing the generation of the
G-parity gauge configurations and then present and inter-
pret the results of a variety of measurements made on these
ensembles.

A. Simulation parameters and generation

In Sec. III C we discussed the “one-flavor” implemen-
tation of G-parity boundary conditions in a single direction
whereby one simulates with a lattice of doubled extent
and antiperiodic quark boundary conditions. This technique
is very easy to implement in any lattice code library, but
suffers from an additional factor of 2n−1 increase in
computational cost when applied in n > 1 G-parity direc-
tions. A much cleaner approach is simply to simulate with
two separate quark fields that mix at the boundary; we refer
to this as the “two-flavor” approach. In practice this

FIG. 4. A term in the graphical expansion of the quark
determinant in powers of the boundary terms of the Dirac
operator. Here the directed lines represent lattice quark propa-
gators for a Dirac operator obeying open boundary conditions and
the vertices the boundary terms appearing in Eqs. (136) or (137).
In this figure we show only a leading term when L is large where
the fermion propagators join operators located at the same side of
the volume.
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requires significant code modifications to handle the
increased memory size of the two-flavor field and its
unusual boundary condition, as well as careful implemen-
tation of the complex conjugate boundary conditions on the
gauge fields. Nevertheless, using the one-flavor method as
a cross-check, we implemented the two-flavor technique in
the CPS++ library using the Bagel/BFM library [15] for
optimized fermion inversions on IBM Blue Gene/Q
machines [16]. An independent implementation in the
Grid framework [17] has since been developed and
cross-verified.

For our first fully dynamical simulations, we generated
two 2þ 1 flavor domain wall ensembles with the Iwasaki
gauge action at β ¼ 2.13 (a−1 ¼ 1.73ð3Þ GeV [18]) and
lattice size 163 × 32 × 16 with G-parity boundary condi-
tions in one and two directions. We henceforth refer to
these as the GP1 and GP2 ensembles respectively. For both
ensembles we used an input light quark mass of mu=d ¼
0.01 and a strange quark mass of ms ¼ 0.032. These
parameters were chosen to match those of a previously
generated ensemble with periodic boundary conditions,
details of which were originally published in Ref. [19],

FIG. 5. The evolution of the average plaquette (first line), chiral condensate (second line), pseudoscalar condensate (third line), and the
topological charge (final line) for the 16GP0, 16GP1 and 16GP2 ensembles from left to right respectively.
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although there a heavier strange mass of 0.04 was used; the
ensembles were later extended with the value of ms ¼
0.032 used for this study, which is closer to the physical
strange mass. For comparison with the G-parity ensembles
we make use of the latter configurations and refer to this
ensemble by the label GP0.

B. Ensemble generation

In most domain wall simulations, the matrix inversions
performed to evaluate the fermion determinant in the hybrid
Monte Carlo evolution (and of course for the measure-
ments) are obtained using the conjugate gradient algorithm.
This algorithm requires the fermion matrix to be Hermitian
and positive-definite, and to ensure this one typically
inverts instead the product ℳ†ℳ, where ℳ is the Dirac
matrix. The determinant thus obtained represents the
contribution of two degenerate flavors. The contribution
of a single strange quark is obtained using the rational
hybrid Monte Carlo (RHMC) algorithm, whereby a rational
approximation to the square root of the degenerate two-
flavor determinant is obtained.
With G-parity boundary conditions the Dirac matrix is

intrinsically two-flavor and therefore the square of the
determinant describes four flavors. As a result we must
also use RHMC in the light-quark sector in order to obtain
the two-flavor determinant; as this is an exact square there
are no systematics introduced by this procedure. For the
strange quark we must use the fourth root to obtain the
contribution of a single flavor, and the implications of
this rooting were discussed in Sec. VI C. In practice we
found the use of RHMC in the light sector required more
precise rational approximations than is typically required
for the strange quark in order to obtain good Metropolis
acceptance. This was not a severe hindrance for these cheap
ensembles, but for our physical-point ensembles that we
generated to measure the K → ðππÞI¼0 amplitudes [5] we
found the associated linear algebra overheads were sig-
nificant and limited the value of introducing multiple
Hasenbusch masses to reduce the inversion cost as well
as making it difficult to take advantage of mixed-precision
techniques.

Note that, although it was not used for this analysis, the
RHMC algorithm for the light quarks can be replaced by
the “exact one-flavor action” developed by TWQCD
[20,21], whereby a Hermitian and positive-definite operator
is constructed describing a single flavor (or two flavors
with GPBC) of Wilson/domain wall fermions. In Ref. [22]
we describe how to implement this technique in a highly
efficient manner and demonstrate a factor of 4.2× improve-
ment in the speed of generating the G-parity ensembles for
our K → ππ analysis.
The ensembles used for the analysis in this document

were generated using three layers of nested Omelyan
integrators. The lowest level integrator (with the shortest
time step) comprises the gauge field and conjugate momen-
tum; the mid-level integrator contains the strange-quark
action; and the top-level integrator contains the light-quark
action. Each integrator uses an Omelyan parameter of λ ¼
0.2 and we update the lowest-level integrator 8 times for
every update of the strange-quark force in order to improve
the acceptance; the other two Omelyan integrators both
update their child integrators with the usual 1∶1 cadence,
each with 1 step. Each trajectory on the G-parity ensembles
comprised 5 steps with a step size of 0.2, and the GP0
ensemble used 4 steps of step size 0.25. With this tuning we
obtained 65%Metropolis acceptance for the GP1 ensemble
and 63% on the GP2 ensemble. A 79% Metropolis
acceptance was reached for the GP0 ensemble.

C. Ensemble properties

For each of the three ensembles we measured the
plaquette, chiral and pseudoscalar condensates after every
trajectory. We also measured the topological charge after
every fifth trajectory starting from 500 MD time units
of evolution. We plot the Monte Carlo time histories of
these quantities in Fig. 5. From the plaquette, chiral and
pseudoscalar condensates we measure the accumulated
integrated autocorrelation times as a function of the MD
time separation, the results of which are shown in Fig. 6.
Here the errors were obtained by binning the correlations
Cðt; tþ ΔÞ with a fixed separation Δ over neighboring
configurations, using the first technique described in

FIG. 6. The integrated autocorrelation time as a function of the molecular dynamics time separation.
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Sec. II.D of Ref. [23]. We also measured the autocorrelation
using the topological charge measurements, but found that
these measurements, performed every 5 MD time units,
were sufficiently separated that no observable correlations
were found within the statistical errors; we therefore
excluded these data from the figures. The figures suggest
integrated autocorrelation times of ∼15 MD time units for
the G-parity ensembles, and ∼10 for the GP0 ensemble,
such that there are 30 and 20 MD time units between
independent measurements, respectively.
The expectation values of the plaquette, chiral conden-

sate and pseudoscalar density are given in Table III. Here
the errors are determined after binning uniformly over
40 MD time units. We observe excellent consistency
between the plaquettes, and the pseudoscalar density is
consistent with zero indicating good topological sampling.
The chiral condensate agrees well between the GP0 and
GP1 ensembles but differs between the GP0 and GP2
ensembles by 1.9(7)% level. While this may be simply
statistics, as supported by the agreement between the GP0
and GP1 ensembles, this difference may also be attributed
to the explicit breaking of the flavor nonsinglet axial
symmetry by the boundary conditions that we identified
in Sec. IV C. We would expect that any change in the chiral
condensate would also manifest directly in the pion energy,
which is related to the chiral condensate at leading order in
chiral perturbation theory (χPT). In Sec. VIII A below, we
find that the pion energy on this ensemble is indeed
different than expected at the 1.5% level, but the value
obtained is lower than expected, in the opposite direction to
that suggested by χPT for an upwards shift in the chiral
condensate. We therefore conclude that the observed effect
is likely statistical in nature or that a more elaborate
analysis using finite-volume χPT is needed.

VIII. RESULTS

In this section we present measurements of the residual
mass, the axial-current renormalization factor (via the
Ward-Takahashi identity), the pion and kaon energies
and decay constants, and the neutral kaon mixing param-
eter, BK . These quantities are computed on each of the three
ensembles discussed above, and compared to examine the
effects of the boundary.
We perform our measurements for all three ensembles

using 104 configurations in the range 500–1530, measuring

every 10 MD time units. In order to reduce the effect of
autocorrelations in the data we consistently bin (average)
over 4 successive configurations (40 MD time units) for
simplicity.
We use Coulomb gauge-fixed wall source propagators to

compute our correlation functions. Light and heavy quark
propagators are generated with unitary masses, ml ¼ 0.01
and mh ¼ 0.032 respectively. On the GP0 ensemble we
project onto zero momentum on the source timeplane,
whereas for the G-parity ensembles we project onto non-
zero source momenta: on the GP1 ensemble we use
momenta p⃗ ¼ � π

2L ð1; 0; 0Þ and on the GP2 ensemble
we use p⃗ ¼ � π

2L ð1; 1; 0Þ. The sources are placed on
time-slice 0 on all configurations, and we generate propa-
gators with both periodic (p) and antiperiodic (a) temporal
boundary conditions. From these we take linear combina-
tions F ¼ pþ a and B ¼ p − a that project out the
forwards and backwards moving components of the propa-
gator respectively, effectively doubling the temporal perio-
dicity and significantly reducing round-the-world finite-
time-extent effects.
For the G-parity ensembles we must construct the 2 × 2

flavor matrix propagators, with elements

Θfiðx⃗; t; p⃗Þ ¼
X
y⃗

Gfgðx⃗; t; y⃗; 0ÞṼ†
ghðy⃗Þηhiðy⃗Þe−ip⃗·y; ð138Þ

where f–i are flavor indices, Ṽ is the gauge-fixing matrix,
and η is a generic, flavor-matrix-valued source. For a wall
source, η is just the unit matrix for all sites. In order to
obtain Θ one can simply invert propagators for both source
flavor indices separately, i.e., construct Θf1 and Θf2 (for all
f) with two inversions of the two-flavor Dirac matrix. With
this approach, one must perform four inversions in order to
both compute Θðp⃗Þ and its parity partner Θð−p⃗Þ.
In most cases we can use the exact relation between the

propagator and its complex conjugate, Eq. (67), to obtain
both Θðp⃗Þ and Θð−p⃗Þ with only two inversions of the
Dirac matrix as follows: Taking the complex conjugate of
the solution vector,

Θ�ðx⃗; t; p⃗Þ ¼
X
y⃗

G�ðx⃗; t; y⃗; 0ÞṼTðy⃗Þη�ðy⃗Þeip⃗·y;

¼
X
y⃗

½γ5C−1σ2Gðx⃗; t; y⃗; 0Þσ2Cγ5�

× ½σ2Ṽ†ðy⃗Þσ2�η�ðy⃗Þeip⃗·y: ð139Þ

For any source that has the property Cγ5η�ðy⃗Þ ¼ ηðy⃗ÞCγ5
(which trivially applies to any source proportional to the
unit matrix, such as the wall source in question), the above
reduces to

Θ�ðx⃗; t; p⃗Þ ¼ γ5C−1σ2Θðx⃗; t;−p⃗Þσ2Cγ5: ð140Þ

TABLE III. The expectation values of the plaquette (second
column), chiral condensate (third column) and pseudoscalar
density (fourth column) for each ensemble.

Ensemble hPi hψψi hψγ5ψi
GP0 0.588048(23) 0.0017101(98) 0.000005(14)
GP1 0.588113(31) 0.0017073(94) 0.000032(19)
GP2 0.587987(38) 0.0017434(67) −0.000029ð23Þ
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Multiplying from both sides by σ2 and examining the
equation in component form, we find� Θ�

22ðx⃗; t; p⃗Þ −Θ�
21ðx⃗; t; p⃗Þ

−Θ�
12ðx⃗; t; p⃗Þ Θ�

11ðx⃗; t; p⃗Þ

�

¼ γ5C−1
�
Θ11ðx⃗; t;−p⃗Þ Θ12ðx⃗; t;−p⃗Þ
Θ21ðx⃗; t;−p⃗Þ Θ22ðx⃗; t;−p⃗Þ

�
Cγ5: ð141Þ

Notice that we can obtain the first column of the left-hand
side, i.e., those elements with source index 2, from the first
column of the right-hand side, which contains only
elements with source index 1. Using this relation we can

obtain both Θðp⃗Þ and Θð−p⃗Þ by computing only Θf1ðp⃗Þ
and Θf1ð−p⃗Þ, from which we obtain Θf2ð−p⃗Þ and Θf2ðp⃗Þ,
respectively.

A. Pion two-point function

Using the momentum-eigenstate field operators obtained
in Sec. IV we derived the appropriate operator for a neutral
pion state in Eq. (111). Taking pi ¼ π=2L for eachG-parity
direction [i.e., np ¼ 0 in Eq. (99)], and utilizing a wall
source and point sink, we obtain the following form for the
pion two-point function:

CLW
π0π0ðtÞ ¼

X
x⃗;y⃗;z⃗


�
e2ip⃗·x⃗

−iffiffiffi
2

p ψ lðx⃗; tÞσ3γ5ψ lðx⃗; tÞ
��

e−ip⃗·ðy⃗þz⃗Þ −iffiffiffi
2

p ψ lðy⃗; 0Þσ3
1

2
ð1þ σ2Þγ5ψ lðz⃗; 0Þ

��

¼ 1

4

X
x⃗;y⃗;z⃗

e2ip⃗·x⃗e−ip⃗·ðy⃗þz⃗ÞtrfG†
l ðx⃗; t; z⃗; 0Þσ3Glðx⃗; t; y⃗; 0Þσ3ð1þ σ2Þg

¼ 1

4

X
x⃗

e2ip⃗·x⃗trfΘ†
l ðx⃗; t;−p⃗; 0Þσ3Θlðx⃗; t; p⃗; 0Þσ3ð1þ σ2Þg; ð142Þ

where Θl are the light-quark solution vectors defined above.
The LW superscript indicates that the correlation function
has a local (point) sink and wall source. At the sink location
we have not included the ð1 − σ2Þ projector as it is not
necessary for a local operator. We remind the reader that
Wick contractions resulting in disconnected loops at the sink
location vanish because of the γ5-Hermiticity of the propa-
gator and its relation to its complex conjugate (cf. Sec. VA).
It is straightforward to show that the last line of Eq. (142)

can also be obtained by considering the charged pion
operators given in Eq. (103), which is necessary due to the
exact isospin symmetry of the formalism. We therefore
generically assign the source/sink operator with the label P
for pseudoscalar.
The corresponding pion two-point function for the GP0

ensemble is

CLW
PP ðtÞ ¼

X
x⃗

trfΘ†
l ðx⃗; t; 0⃗; 0ÞΘlðx⃗; t; 0⃗; 0Þg: ð143Þ

For all ensembles we compute the correlation functions
with both the forwards (F) and backwards (B) moving

propagators and average the results (after the appropriate
temporal reflection) to improve statistics. As the amount of
data is large, we were unable to accurately resolve a
correlation matrix and therefore performed uncorrelated
fits (i.e., with a diagonal correlation matrix) here and for the
other results presented in this document.
For use below we also fit the correlation functions

with axial-vector sink operators appropriate for neutral
pions,

Aμ ¼
−iffiffiffi
2

p ðūγμγ5u − d̄γμγ5dÞ

¼ iffiffiffi
2

p ψ lγ
μγ5σ3ψ ð144Þ

for μ in the temporal direction and each of the spatial
directions in which GPBC are applied. Here we have
chosen the phase convention such that the two-point
function describing a neutral pion annihilated by the
time-component axial-vector operator,

CLW
A4P

ðtÞ ¼
X
x⃗;y⃗;z⃗


�
e2ip⃗·x⃗

iffiffiffi
2

p ψ lðx⃗; tÞσ3γ4γ5ψ lðx⃗; tÞ
��

e−ip⃗·ðy⃗þz⃗Þ −iffiffiffi
2

p ψ lðy⃗; 0Þσ3
1

2
ð1þ σ2Þγ5ψ lðz⃗; 0Þ

��

¼ 1

4

X
x⃗;y⃗;z⃗

e2ip⃗·x⃗e−ip⃗·ðy⃗þz⃗ÞtrfG†
l ðx⃗; t; z⃗; 0Þσ3γ4Glðx⃗; t; y⃗; 0Þσ3ð1þ σ2Þg; ð145Þ
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is real and positive. With this convention the correlators with spatial axial-vector sinks are purely imaginary, which we will
show is necessary to fulfill the axial Ward-Takahashi identity.
We also compute the wall-source, wall-sink PP correlation function, which takes the following form on the G-parity

ensembles:

CWW
PP ðtÞ ¼

X
r⃗;s⃗;y⃗;z⃗


�
eip⃗·ðr⃗þs⃗Þ −iffiffiffi

2
p ψ lðr⃗; tÞσ3

1

2
ð1 − σ2Þγ5ψ lðs⃗; tÞ

��
e−ip⃗·ðy⃗þz⃗Þ −iffiffiffi

2
p ψ lðy⃗; 0Þσ3

1

2
ð1þ σ2Þγ5ψ lðz⃗; 0Þ�

�

¼ 1

8

X
r⃗;s⃗

eip⃗·ðr⃗þs⃗ÞtrfΘ†
l ðr⃗; t;−p⃗; 0Þσ3ð1 − σ2ÞΘlðs⃗; t; p⃗; 0Þσ3ð1þ σ2Þg; ð146Þ

where again we have suppressed the gauge fixing matrices
at source and sink.
On each ensemble we simultaneously fit the various

correlation functions with a common exponent. We also
include the point-sink two-point function with the A4

operator at the sink and the Hermitian conjugate of this
operator (ensuring a positive sign) at the source, in order to
improve the signal for the exponent. The data were fit to the
following forms:

CLW
O1O2

ðtÞ ¼ NLW
O1O2

½e−Et � e−Eð2T−tÞ� ð147Þ

where O1 and O2 are the sink and source operators
respectively, T ¼ 32 is the lattice temporal length, and
N are the amplitudes. We use the notation P for the
pseudoscalar operator and Aμ for the axial operators. The
sign of the backwards propagating component (the second
term in the brackets) depends on the how the operators
transform under time reflection: The PP and AiP, for i in a

spatial direction, require the plus (cosh-like) form and the
A4P the minus (sinh-like) form. Note the temporal length is
doubled due to our use of the F and B combinations of
temporal boundary condition.
The fitted masses and amplitudes that we obtain are

given in Table IV, alongside the fit ranges chosen by eye
based on effective mass plots (used uniformly for all
correlators on a given ensemble) and the uncorrelated
χ2=dof. A far more precise measurement of mπ on the
GP0 ensemble was performed in Ref. [24], which we also
include in this table. In Fig. 7 we show effective mass plots
for the PP point-sink channel.
In Table IV we also list the predicted values of the energy

that one obtains by applying the continuum dispersion
relation,

Eπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ
nπ2

L2

r
ð148Þ

where n is the number of G-parity directions, L ¼ 16 is the
spatial box size, and

ffiffiffi
n

p
π=L are the magnitudes of the

expected pion momenta. Here mπ is the fitted mass
obtained from the GP0 data in Ref. [24]. From the table
we observe good agreement between the predicted and
measured energies on the GP1 ensemble. The value on
the GP2 ensemble is 1.8(1.0)% smaller than the pre-
dicted value, although if we replace the continuum
dispersion relation with the following lattice expression,
Eπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ n sin2ðπ=LÞ
p

, the discrepancy drops to
1.4(1.0)% which is statistically compatible with zero.
On the other hand it is possible that this effect is related
to the larger value for the chiral condensate observed on
this ensemble that we discussed in Sec. VII C.

B. Signal-to-noise ratio of pion two-point functions

An interesting observation from Fig. 7 is that the signal-
to-noise ratio for the G-parity ensembles appears to reduce
with time, and degenerates more quickly as we increase
the number of G-parity directions. This will unfortunately
hamper our ability to measure the ππ energy and K → ππ
amplitudes with G-parity boundary conditions.

TABLE IV. The results of simultaneous fits to the PP, A4A4 and
AμP correlation functions on each of the three ensembles (μ ¼ 4

is the time direction). The superscripts LW andWW refer to wall-
source-point-sink and wall-source-wall-sink correlators respec-
tively. For the A1P and A2P correlators, the amplitudeN is of the
imaginary part of the correlator, and for the remainder it is of the
real part. The value of Eπ on the fifth line is that measured in
Ref. [24]. Epred

π is the predicted pion energy obtained by applying
the continuum dispersion relation to this, more precise value.

Quantity GP0 GP1 GP2

Fit range 8–30 5–25 6–25
χ2=dof 0.140(86) 0.29(15) 0.48(35)
Eπ 0.2460(27) 0.3117(32) 0.3628(38)
Eπ [24] 0.24373(47) � � � � � �
Epred
π � � � 0.31298(37) 0.36947(31)

NLW
PP 1.326ð43Þ × 105 5.14ð16Þ × 104 4.19ð14Þ × 104

NLW
A4A4

7.01ð28Þ × 103 5.14ð15Þ × 103 5.98ð22Þ × 103

NLW
A4P

1.964ð55Þ × 104 9.89ð24Þ × 103 9.66ð27Þ × 103

NLW
A1P

� � � 6.33ð22Þ × 103 5.06ð20Þ × 103

NLW
A2P

� � � � � � 5.14ð23Þ × 103

NWW
PP 4.99ð15Þ × 107 1.012ð30Þ × 107 7.83ð25Þ × 106
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The origin of the falling signal-to-noise ratio can be
understood via Lepage’s argument [25] for the statistical
error on a correlation function, which states that for a
Green’s function O computed on a gauge configuration i in
an ensemble of size N, the standard error on the mean, σ, of
the measurement hOi ¼ 1

N

P
N
i¼1 O½Ui� can be obtained as

follows:

σ2 ¼ 1

N
ðhOO†i − jhOij2Þ; ð149Þ

hence the error must grow as the square-root of the
expectation value of the square of the Green’s function.
The signal to noise ratio S=N, where S ¼ jhOij and
N ¼ σ is

S=N ¼ 1

1ffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hOO†i
jhOij2 − 1

q ≈
ffiffiffiffi
N

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
i
ðOO†Þ½Ui�

j1N
P

i
O½Ui�j2

r ⟶
t→∞

ffiffiffiffi
N

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 expð−E2tÞ
A2
1
expð−2E1tÞ

q
∝

ffiffiffiffi
N

p
e−ðE1−1

2
E2Þt: ð150Þ

Here E2 and A2 are the energy and amplitude of the lightest
state in the squared correlation function hOO†i, and E1 and

A1 are those of the state that we are measuring (in this
case the pion). We can see that the time dependence of
the signal-to-noise ratio drops out when E2 ¼ 2E1, and
that the signal-to-noise ratio will decrease with time
when E2 < 2E1.
For the two-point functions in the previous section, the

Green’s function OO† describes the propagation of two
quarks and two antiquarks. On the GP0 ensemble, the
ground state of this system is just two pions at rest, hence
the S=N is constant. On the G-parity ensembles this state
does not exist: instead the lightest two-pion state contains
only moving pions, and we again have E2 ¼ 2E1. We
might therefore expect that S=N would also remain con-
stant for these ensembles. However, the four-quark Green’s
function also contains a contribution from two pseudosca-
lar SU(2) flavor singlet particles with quark content
ūuþ d̄d. As only the connected components are present
in the noise, this state has the same energy as the stationary
pion on the GP0 ensemble, and the signal to noise will
remain constant. However, on the G-parity ensembles this
state is G-parity even and will therefore have the energy of
the stationary pion rather than the moving pion, such that
the states entering the noise are lighter than the moving
pions in the signal. To confirm this we measured the

FIG. 7. The pion effective energy in the PP channel overlaid by the fitted value on the GP0 (upper left), GP1 (upper right) and GP2
(lower) ensembles.
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exponential time dependence of the connected component
of the flavor-singlet Green’s function, whose operator is
ψγ5ψ in our formalism (cf. Table I), on the GP1 ensemble
and obtained an energy of Esinglet ¼ 0.2440ð50Þ which is in
excellent agreement with the stationary pion mass of mπ ¼
0.2460ð27Þ determined from the GP0 ensemble.
Note that if we replace one of the light quark propagators

with that of the strange/strange-prime quark pair (which
differ only in their input mass), the contractions for the
flavor singlet are identical to those of the G-parity kaonic
state, K̃0þ (see below). As a result the flavor singlet might
also be considered a “light kaon” in this sense.

To demonstrate that it is indeed this flavor singlet state
that dominates the noise we performed single-exponential
fits to the signal-to-noise ratio of the PP wall-source-
point-sink correlation function on all three ensembles; the
results are given in Table V and the data in Fig. 8. We
observe excellent consistency between the predicted and
measured exponential falloff of the signal-to-noise ratio on
both the GP1 and GP2 ensembles. On the GP0 ensemble
however, the Lepage argument predicts a constant behavior
but instead we observe a significant exponential falloff in
S=N suggesting a state of energy 0.370(32) appears in the
noise. This discrepancy has not been understood but may
result from the presence of multiple heavier states contrib-
uting with different signs or the absence of disconnected
diagrams.

C. Effects of quark-level rotational symmetry breaking

In Sec. IVG we observed that on a lattice with GPBC,
the quark’s momentum components in orthogonal direc-
tions must differ only by integer multiples of 2π=L. As a
result the momentum ð1; 1; 0Þ π

2L for GPBC in two direc-
tions is allowed but ð1;−1; 0Þ π

2L is not. Given that these two

FIG. 8. The signal-to-noise ratio of the PP wall-source-point-sink correlation function computed using the jackknife error bars on the
GP0 (upper left), GP1 (upper right) and GP2 (lower) ensembles, overlaid by the fitted exponential.

TABLE V. The results of fitting a single exponential to the
signal-to-noise ratio in the PP channel. The final line gives the
values predicted by the Lepage argument [25].

Quantity GP0 GP1 GP2

Fit range 13–30 11–30 9–30
χ2=dof 0.042(54) 0.13(15) 1.01(44)
Measured 0.061(14) 0.068(16) 0.119(12)
Expected 0 0.0657(42) 0.1168(47)
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momenta are related by a cubic rotation, the above
restriction constitutes a breaking of the cubic rotational
symmetry at the quark level.
In this subsection we will describe a numerical inves-

tigation of these rotational symmetry breaking effects and a
strategy for constructing interpolating operators which
reduce the size of this cubic symmetry breaking to what
we believe is an acceptable level. This investigation was
performed on a separate 163 × 32 × 8 ensemble of Möbius
domain wall fermions with bþ c ¼ 2 and the Iwasakiþ
DSDR gauge action with β ¼ 1.75 that was generated as
part of the preparation for our K → ππ project [5]. Aside
from the lattice size, Möbius parameter and a heavier pion
mass of 440 MeV, this ensemble is otherwise identical to
the 323 × 64 × 12 ensemble used for the K → ππ calcu-
lation, and has G-parity BCs in three directions. Instead of
the Coulomb gauge fixed wall sources used elsewhere in
this document, this investigation was performed using
hydrogen wavefunction smeared sources and the correla-
tion functions were computed using the all-to-all propa-
gator technique [26] used for the K → ππ calculation. In
this technique an approximation to the all-to-all propagator
is generated by combining exact low eigenmodes (we used
100 eigenmodes here) computed using the Lanczos algo-
rithm with a stochastic approximation to the high mode
component. We perform full time, spin, color and flavor
dilution such that the random numbers are required only to
induce a delta function in the spatial coordinate. We use a
single random hit per configuration such that the delta
function is generated under the ensemble average.
For each of the four pion momenta ð−2;−2;−2Þ

ð2;−2;−2Þ ð−2; 2;−2Þ and ð−2;−2; 2Þ (in units of π
2L)

we examine the two-point correlation functions of the
operators

O�
π ðp⃗; tÞ ¼ −

iffiffiffi
2

p
X
x⃗;y⃗

e−iðp⃗1·x⃗þp⃗2·y⃗Þ

Θðjx⃗ − y⃗jÞψ∓lðx⃗; tÞγ5σ3ψ�lðy⃗; tÞ ð151Þ

where Θðjx⃗ − y⃗jÞ ¼ expð−jx⃗ − y⃗j=rÞ, with radius r ¼ 2, is
the smearing function, and p⃗ ¼ p⃗1 þ p⃗2 is the pion
momentum, with p⃗1 and p⃗2 chosen from the appropriate
set of allowed momenta. For each operator and pion
momentum we choose p⃗1 and p⃗2 as those that have the
smallest magnitude subject to the constraints; the chosen
momenta are given in Table VI. Here in each case the O−

π

form contains the lower magnitude quark momenta, and is
therefore the natural primary choice of operator. (Note that
for the parity partners of these four momenta, the Oþ

π

operator would be the natural choice.)
We fit the correlation function

C�ðtÞ ¼ 1

LT

X
τ

h0j½O�
π ðp⃗; tþ τÞ�†O�

π ðp⃗; τÞj0i ð152Þ

to the form

C�ðtÞ ¼ N�
π ðe−E�

π t þ e−E
�
π ðLT−tÞÞ: ð153Þ

(Note that we do not employ the technique of combining
propagators with different temporal BCs here.)
We analyze 43 configurations separated by 8 MD time

units. The results of fitting the folded two-point functions
C� of the O�

π operators over the time range 6–15 are given
in Table VII. We observe that the pion energies are all
consistent as expected, but for both operators the ampli-
tudes fall into two distinct groups: those of the three
momenta perpendicular to the (1,1,1) diagonal are con-
sistent, and that of the momentum parallel to the diagonal is
∼16% larger (about 9σ) for the O−

π operator and ∼4.5%
smaller (about 3.5σ) for the Oþ

π operator, respectively. Thus
we have clear and unambiguous evidence of the rotational
symmetry breaking. The three momenta that have the same
amplitude can be recognized as being related by the
discrete group of 120° rotations around the diagonal of

TABLE VI. Choices of quark momenta for each operator and
pion total momentum, in units of π

2L.

p⃗ Operator p⃗1 p⃗2

ð−2;−2;−2Þ O−
π ð−1;−1;−1Þ ð−1;−1;−1Þ

Oþ
π (1,1,1) ð−3;−3;−3Þ

ð2;−2;−2Þ O−
π ð−1;−1;−1Þ ð3;−1;−1Þ

Oþ
π (1,1,1) ð1;−3;−3Þ

ð−2; 2;−2Þ O−
π ð−1;−1;−1Þ ð−1; 3;−1Þ

Oþ
π (1,1,1) ð−3; 1;−3Þ

ð−2;−2; 2Þ O−
π ð−1;−1;−1Þ ð−1;−1; 3Þ

Oþ
π (1,1,1) ð−3;−3; 1Þ

TABLE VII. Fit parameters for the C− and Cþ correlation function for each choice of pion momentum p⃗ (in units
of π

2L).

p⃗ E−
π N−

π Eþ
π Nþ

π

ð−2;−2;−2Þ 0.4639(26) 437.3ð6.5Þ × 103 0.4634(24) 1004.6ð13.9Þ × 103

ð2;−2;−2Þ 0.4632(22) 380.8ð5.5Þ × 103 0.4642(19) 1055.3ð12.0Þ × 103

ð−2; 2;−2Þ 0.4651(26) 383.0ð6.3Þ × 103 0.4660(26) 1055.1ð15.9Þ × 103

ð−2;−2; 2Þ 0.4640(23) 380.6ð5.6Þ × 103 0.4639(21) 1041.3ð14.0Þ × 103
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the spatial box, which can readily be seen as a residual
symmetry of the action from the discussion in Sec. IVG.
As part of this study we also measured the correlation

function of the averaged operator

Oavg
π ðp⃗Þ ¼ 1

2
½O−

π ðp⃗Þ þ Oþ
π ðp⃗Þ�: ð154Þ

The amplitudes and energies of the corresponding fits are
given in Table VIII. We observe that in performing this

average we significantly reduce the amount of rotational
symmetry breaking, and in fact the amplitudes all now
agree within statistics.
In order to test this further we also generated pion

two-point functions of higher momentum in the set
fð−6;−2;−2Þ; ð6;−2;−2Þ; ð−6; 2;−2Þ; ð−6;−2; 2Þg plus
cyclic permutations thereof. These measurements were
performed on 86 configurations separated by 4 MD time
units and binned over 3 successive configurations. The
corresponding quark momentum choices are given in
Table IX. To better discern the pattern of the symmetry
breaking for this noisier data, we perform a simultaneous fit
over all 12 correlation functions with a common energy.
The fit is performed to time range 5–15. The results for the
Oþ
π and O−

π operators alone are given in Table X. We
observe that the amplitudes for each operator clearly fall
into three discrete groups: two groups of three whose
momenta are related by 120° rotations about the (1,1,1)
diagonal, and one group of six whose momenta are related
by 60° rotations about the same axis. These groups are
recognizable as the sets of points that lie on discrete planes
whose normals are parallel to this diagonal. In Table XI
we show the results for the averaged operator Oavg

π where
we again find that the symmetry breaking is heavily
suppressed.
We make use of these averaged pion operators in Ref. [5]

when constructing ππ operators that are intended to trans-
form under particular representations of the cubic sym-
metry group. Details of the operators and further tests will
be presented in a forthcoming paper.

D. Residual mass

The residual mass mres is a measure of the explicit chiral
symmetry breaking in the domain wall formalism due to the
finite extent of the fifth dimension. It acts as an additive

TABLE VIII. Fit parameters for the Cavg correlation function of
the averaged operator Oavg for each choice of pion momentum p⃗
(in units of π

2L).

p⃗ Eavg
π Navg

π

ð−2;−2;−2Þ 0.4635(24) 360.4ð4.9Þ × 103

ð2;−2;−2Þ 0.4639(20) 358.9ð4.2Þ × 103

ð−2; 2;−2Þ 0.4657(25) 359.4ð5.3Þ × 103

ð−2;−2; 2Þ 0.4639(21) 355.4ð4.7Þ × 103

TABLE IX. Choices of quark momenta for each operator and
pion total momentum, in units of π

2L, for the higher-momentum
pions. The choices for the other cyclic permutations of momen-
tum can be obtained by permuting the momenta in this table.

p⃗ Operator p⃗1 p⃗2

ð−6;−2;−2Þ O−
π ð−1;−1;−1Þ ð−5;−1;−1Þ

Oþ
π (1,1,1) ð−7;−3;−3Þ

ð6;−2;−2Þ O−
π ð−1;−1;−1Þ ð7;−1;−1Þ

Oþ
π (1,1,1) ð5;−3;−3Þ

ð−6; 2;−2Þ O−
π ð−1;−1;−1Þ ð−5; 3;−1Þ

Oþ
π (1,1,1) ð−7; 1;−3Þ

ð−6;−2; 2Þ O−
π ð−1;−1;−1Þ ð−5;−1; 3Þ

Oþ
π (1,1,1) ð−7;−3; 1Þ

TABLE X. Fit parameters for the simultaneous fit to the C� correlation functions of the operator O� over all 12
choices of pion momentum p⃗ (in units of π

2L), for the higher-momentum pions. Here the three separate groups of four
correspond to the three cyclic permutations of the base set of momenta.

Quantity p⃗ Value Quantity p⃗ Value

E−
π 0.721(3) Eþ

π 0.718(3)
N−

π ð−6;−2;−2Þ 218ð4Þ × 103 Nþ
π ð−6;−2;−2Þ 462ð8Þ × 103

ð6;−2;−2Þ 160ð3Þ × 103 ð6;−2;−2Þ 505ð8Þ × 103

ð−6; 2;−2Þ 192ð3Þ × 103 ð−6; 2;−2Þ 471ð8Þ × 103

ð−6;−2; 2Þ 193ð4Þ × 103 ð−6;−2; 2Þ 468ð7Þ × 103

N−
π ð−2;−6;−2Þ 214ð4Þ × 103 Nþ

π ð−2;−6;−2Þ 461ð6Þ × 103

ð2;−6;−2Þ 194ð3Þ × 103 ð2;−6;−2Þ 469ð7Þ × 103

ð−2; 6;−2Þ 157ð3Þ × 103 ð−2; 6;−2Þ 498ð8Þ × 103

ð−2;−6; 2Þ 192ð3Þ × 103 ð−2;−6; 2Þ 472ð7Þ × 103

N−
π ð−2;−2;−6Þ 214ð4Þ × 103 Nþ

π ð−2;−2;−6Þ 461ð7Þ × 103

ð2;−2;−6Þ 196ð3Þ × 103 ð2;−2;−6Þ 476ð8Þ × 103

ð−2; 2;−6Þ 190ð4Þ × 103 ð−2; 2;−6Þ 465ð7Þ × 103

ð−2;−2; 6Þ 158ð3Þ × 103 ð−2;−2; 6Þ 494ð8Þ × 103
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renormalization of the bare quark masses, m̃ ¼ mþmres,
and it is the limit m̃ → 0 that defines the chiral limit. We
make use of mres below when computing the pseudoscalar
decay constants, and when testing the Ward Takahashi
identity, hence it is important to understand the effects of
the G-parity boundary conditions on this quantity.
The residual mass is measured by fitting the ratio

m0
resðtÞ ¼

P
x⃗h0jJa5qðx⃗; tÞjπað0ÞiP
x⃗h0jJa5ðx⃗; tÞjπað0Þi

ð155Þ

to a constant in time, and extrapolating the results to the
massless limit. Here Ja5 is the local pseudoscalar density

Ja5ðxÞ ¼ −Ψ̄ðx; Ls − 1ÞPLτ
aΨðx; 0Þ

þ Ψ̄ðx; 0ÞPLτ
aΨðx; Ls − 1Þ

¼ q̄ðxÞτaγ5qðxÞ ð156Þ

where Ψ are the 5d fields, q the 4d surface fields and τa are
the generators of the flavor symmetry [SU(2) in our case].
Ja5q is also a local pseudoscalar density, but defined from
the midpoint fields in the fifth direction:

Ja5qðxÞ ¼ −Ψ̄ðx; Ls=2 − 1ÞPLτ
aΨðx; Ls=2Þ

þ Ψ̄ðx; Ls=2ÞPLτ
aΨðx; Ls=2 − 1Þ: ð157Þ

Up to a constant we can compute m0
res for a neutral pion

(τa ¼ σ3=2) on the GP0 ensemble via the following (wall
source) correlation function

Cstd
J5
ðtÞ ¼ −1

2

X
x⃗;y⃗ z⃗

h0j½ūðx⃗; tÞγ5uðx⃗; tÞ − d̄ðx⃗; tÞγ5dðx⃗; tÞ�

× ½ūðy⃗; 0Þγ5uðz⃗; 0Þ − d̄ðy⃗; 0Þγ5dðz⃗; 0Þ�j0i
¼

X
x⃗;y⃗;z⃗

trfG†
l ðx⃗; t; z⃗; 0ÞGlðx⃗; t; y⃗; 0Þg ð158Þ

and the equivalent for J5q in which the propagator sink is
evaluated on the appropriate s-slices. Here we have used
the degeneracy of the quarks to relate the up and down
quark propagators, and we have not shown the Coulomb
gauge fixing matrices on the source timeslice.
We would, of course, obtain the same expression as the

above for any of the three pion states due to the exact
isospin symmetry, but the neutral pion can be created by a
particularly convenient operator in our G-parity formalism,
giving the following expression for CJ5 with GPBC:

CGPBC
J5

ðtÞ ¼ −1
2

X
x⃗;y⃗;z⃗

h0j½e2ip⃗·x⃗ψ lðx⃗; tÞγ5σ3ψ lðx⃗; tÞ�

× ½e−ip⃗·ðy⃗þz⃗Þψ lðy⃗; 0Þγ5σ3ψ lðz⃗; 0Þ�j0i

¼ 1

2

X
x⃗;y⃗

eip⃗·ð2x⃗−y⃗−z⃗Þ

× trfσ3G†
l ðx⃗; t; z⃗; 0Þσ3Glðx⃗; t; y⃗; 0Þg; ð159Þ

where ψ are the usual two-flavor G-parity fields and we are
using the same symbolGl for the one-flavor and two-flavor
light quark propagators in Eq. (158) and (159). Note that
we have not applied the 1þ σ2 flavor projection operator at
the source here; the result is that we potentially have a
poorer projection onto the desired moving pion state.
Nevertheless, the ratio m0

res is common to all pseudoscalar
states, and therefore can be obtained just as well from a
linear combination of pseudoscalar states as it can be from
just the ground state.
We compute m0

res using just the light-quark (ml ¼ 0.01)
propagators with antiperiodic temporal boundary condi-
tions. For simplicity we use a uniform fit range of t ¼ 4–28
and we perform uncorrelated fits. The values that we obtain
are listed in Table XII. We observe very good agreement
between the GP0 and GP2 ensembles, but the value on the
GP1 ensemble is slightly lower by ∼2σ. Examining this in
more detail, we plot m0

res as a function of time for the GP0
and GP1 ensembles in Fig. 9. Here we see no evidence of

TABLE XI. Fit parameters for the simultaneous fit to the Cavg

correlation functions of the averaged operator Oavg over all 12
choices of pion momentum p⃗ (in units of π

2L), for the higher-
momentum pions. Here the three separate groups of four
correspond to the three cyclic permutations of the base set of
momenta.

Quantity p⃗ Value

Eavg
π 0.718(3)

Navg
π ð−6;−2;−2Þ 170ð3Þ × 103

ð6;−2;−2Þ 166ð3Þ × 103

ð−6; 2;−2Þ 166ð3Þ × 103

ð−6;−2; 2Þ 165ð3Þ × 103

Navg
π ð−2;−6;−2Þ 169ð2Þ × 103

ð2;−6;−2Þ 166ð2Þ × 103

ð−2; 6;−2Þ 164ð3Þ × 103

ð−2;−6; 2Þ 166ð2Þ × 103

Navg
π ð−2;−2;−6Þ 169ð3Þ × 103

ð2;−2;−6Þ 168ð3Þ × 103

ð−2; 2;−6Þ 164ð2Þ × 103

ð−2;−2; 6Þ 163ð3Þ × 103

TABLE XII. The residual mass calculated on the 16GPx
ensembles alongside their uncorrelated χ2=dof.

Ensemble m0
res χ2=dof

16GP0 0.003105(45) 0.63(43)
16GP1 0.003005(45) 0.77(61)
16GP2 0.003106(65) 0.83(48)
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any systematic deviation between the ensembles, sug-
gesting the discrepancy is merely due to statistical fluctua-
tions. In principle we would not expect mres to have any
dependence on the boundary, it being simply a ratio of
amplitudes separated in the fifth dimension, and our results
are in line with this expectation.
Given that we measure with only a single valence quark

mass, we cannot extrapolate to the massless limit. However,
the result measured on the GP0 ensemble agrees very well
with the value m0

res ¼ 0.003102ð25Þ quoted in Ref. [19].
Recall these measurements were performed with a 25%
higher sea strange mass; this suggests the sea strange mass
dependence is very weak, and therefore that we can use the
value in the chiral limit of mres ¼ 0.00308ð4Þ given in that
paper as our final value for the residual mass on all three
ensembles.

E. Ward-Takahashi identity

Pseudoscalar and axial correlators comprisingNf degen-
erate flavors of domain wall fermion obey the Ward-
Takahashi identity [27]

Δμh0jAa
μðxÞJb5ðyÞj0i ¼ 2mh0jJa5ðxÞJb5ðyÞj0i

þ 2h0jJa5qðxÞJb5ðyÞj0i
− δx;yh0jq̄ðyÞfλa; λbgqðyÞj0i

ð160Þ

where J5 and J5q were defined in the previous section. Here
fλag are Nf × Nf flavor matrices, and a and b are flavor
indices (of the conventional sort). ΔμfðxÞ¼fðxÞ−fðx− μ̂Þ
is the discretized backwards derivative, with μ̂ a unit vector
in the μ-direction. The partially-conserved current Aμ is
composed of the 5d domain wall fields Ψ, and has the
“point-split” form,

Aa
μðxÞ ¼ −

1

2

XLs

s¼1

sign

�
Ls

2
− sþ 1

2

�
× ½Ψ̄ðx; sÞð1þ γμÞUμðxÞλaΨðxþ μ̂; sÞ
− Ψ̄ðxþ μ̂; sÞð1 − γμÞU†

μðxÞλaΨðx; sÞ�; ð161Þ

i.e., it is defined along the link between x and xþ μ̂ rather
than on the site x. This current can be related to the local
axial current Aa

μ ¼ q̄γμγ5λaq, comprised of the domain wall
surface fields q as follows:

Aa
μðxÞ ≈

ZA

ZA
Aa
μðxÞ; ð162Þ

where the relation becomes exact in the continuum limit. In
the above, ZA is the renormalization factor relating the local
current to the continuum-normalized Symanzik currents,
and ZA is the same for the partially conserved current (for
further information we refer the reader to Ref. [28]).
Combining Eqs. (160) and (162) we obtain

ZA

ZA
∂μh0jAa

μðx⃗; tÞJb5ðy⃗; 0Þj0i

¼ 2ðmþmresÞh0jJa5ðx⃗; tÞJb5ðy⃗; 0Þj0i ð163Þ

where we have used Eq. (155) to remove the J5q terms.
Inserting a complete set of states and taking the large time
limit, the left-hand side of Eq. (163) becomes

ZA

ZA
∂μh0jAa

μð0⃗; 0Þe−ip⃗·xe−Ep⃗tjπðp⃗Þihπðp⃗ÞjJb5ðy⃗; 0Þj0i

¼ −i
ZA

ZA

X
μ

pμh0jAa
μðx⃗; tÞjπðp⃗Þihπðp⃗ÞjJb5ðy⃗; 0Þj0i

ð164Þ

where we have allowed the ground state pion to have
nonzero three-momentum p⃗ and corresponding Euclidean
four-momentum pμ ¼ ð−iEp⃗; p⃗Þ. Inserting the above into
Eq. (163) and taking the spatial Fourier transform, we
obtain

− i
ZA

ZA

X
μ

pμ

X
x⃗;y⃗

eip⃗·ðx⃗−y⃗Þh0jAa
μðx⃗; tÞJb5ðy⃗; 0Þj0i

¼ 2ðmþmresÞ
X
x⃗;y⃗

eip⃗·ðx⃗−y⃗Þh0jJa5ðx⃗; tÞJb5ðy⃗; 0Þj0i: ð165Þ

Noticing that, in the large time limit, the source matrix
element hπðp⃗ÞjJb5j0i appears on both sides of the equation,
and that the time-dependence e−Ep⃗t is identical, we can
transform the above into an expression that acts upon the
ground-state amplitudes of general point-sink two-point
functions with a pseudoscalar source:

FIG. 9. m0
res on the GP0 and GP1 ensembles, overlaid by the fit

to the GP0 data.

LATTICE SIMULATIONS WITH G-PARITY BOUNDARY … PHYS. REV. D 101, 014506 (2020)

014506-29



−i
ZA

ZA

X
μ

pμNLS
Aa
μPb ¼ 2ðmþmresÞNLS

Ja
5
Pb ð166Þ

where S represents a general source smearing. We can
therefore utilize the wall-point amplitudes determined in
Sec. VIII A andmres determined above to obtain the relative
normalization of the local and partially conserved domain
wall axial currents, ZA=ZA.
Notice that the right-hand side of Eq. (166) is pure-real,

whereas the left-hand side contains a factor of i for the
spatial components of the sum. This implies that the spatial
amplitudes must be purely imaginary, which we previously
found to be the case. The expression therefore reduces to

ZA

ZA

�
−Ep⃗ReðNLS

Aa
0
PbÞ þ

X
i

piImðNLS
Aa
i P

bÞ
�

¼ 2ðmþmresÞReðNLS
Ja
5
PbÞ: ð167Þ

We combine the amplitudes in Table IV with mres

obtained in the previous section to obtain ZA
ZA

from the
above expression. We use a ¼ b ¼ 3, i.e., the third isospin
component of the pion triplet. Note that NLS

J5P
¼ −NLS

PP

where the minus sign occurs because in the latter we
compute

h½ψðxÞγ5σ3ψðxÞ�†ψðyÞγ5σ3ψðyÞi
¼ h½J35ðxÞ�†ψðyÞγ5σ3ψðyÞi ¼ −hJ35ðxÞψðyÞγ5σ3ψðyÞi:

The values that we obtain are listed in Table XIII. The value
measured on the GP0 ensemble agrees very well with
ZA=ZAðml ¼ 0.01Þ ¼ 0.71807ð14Þ given in Ref. [19], but
those obtained from the G-parity ensembles are ∼2%
higher. This discrepancy may arise due to the boundary
conditions but also due to differing discretization errors as
the G-parity Green’s functions are evaluated at nonzero
momentum. Nevertheless the effect is small. For use below,

we take use ZA=ZA ¼ 0.7162ð2Þ obtained in the massless
limit in Ref. [19] for all ensembles.

F. Pion decay constant

The decay constants for a pseudoscalar meson P are
defined on the lattice as [29,30]

fP ¼ i
qμ

h0jAμð0ÞjPðq⃗Þi; ð168Þ

where the states are normalized as hPðq⃗ÞjPðq⃗0Þi ¼
ð2πÞ32Eq⃗δ

ð3Þðq⃗ − q⃗0Þ and Aμ ¼ ZAAμ.
fP can be obtained from the following ratio of the

pseudoscalar correlator amplitudes computed in Sec. VIII A:

jNLS
AμP

j2
NSS

PP
¼ V

2Eq⃗
jh0jAμð0⃗; 0ÞjPðq⃗Þij2

¼ f2P
q2μV

2Z2
AEq⃗

: ð169Þ

Here ZA is the renormalization factor relating the local
domain wall current to the continuum rather than the ratio
ZA=ZA that we obtained in the previous section. However, as
ZA ¼ 1þ OðmresÞ we can obtain a good approximation to
fP using this ratio in place of ZA in the above.
For the pion we label the decay constant fll. In

Table XIV we list our measured values for this quantity,
computed on all ensembles using the amplitudes and
energies given in Table IV. We measure using the temporal
(μ ¼ 4) component of the axial-vector operator at the sink,
and also using the nonzero-momentum spatial components
on the G-parity ensembles (for which qμ ¼ π=L). As
expected we observe excellent agreement between the
results on all three ensembles and between spatial and
temporal determinations.

G. Impact of the flavor projection

It is interesting to observe the effect of the 1� σ2 flavor
projection for nonlocal sources. To do so we consider the
pseudoscalar point-sink correlation functions

CLWðtÞ

¼
X
x⃗;y⃗;z⃗


�
e�2ip⃗·x⃗ −iffiffiffi

2
p ψ lðx⃗; tÞσ3γ5ψ lðx⃗; tÞ

�

×

�
e−ip⃗·ðy⃗þz⃗Þ −iffiffiffi

2
p ψ lðy⃗; 0Þσ3

1

2
ð1� σ2Þγ5ψ lðz⃗; 0Þ

��
;

ð170Þ

where we vary both the sign in the source projection
operator and the sign of the sink momentum projection.
We fit each independently to obtain the amplitude and

TABLE XIII. Measured values of ZA=ZA.

Ensemble ZA=ZAðml ¼ 0.01Þ
GP0 0.7182(25)
GP1 0.7312(38)
GP2 0.7291(92)

TABLE XIV. fll computed from the temporal and spatial
components of the axial-vector operator.

μ GP0 GP1 GP2

4 0.0887(11) 0.0882(12) 0.0908(11)
1 � � � 0.0896(25) 0.0878(28)
2 � � � � � � 0.0891(35)
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ground-state energy. For simplicity we consider only the
GP1 ensemble [with p⃗ ¼ ðπ=2L; 0; 0Þ] and use a common
fit range of 5–25.
We list the fit results in Table XV. The first line of the table

gives the values with the “correct” flavor and sink momen-
tum projections, i.e., for which the sink momentum projec-
tion equals the total source momentum, and we use the
correct 1þ σ2 projector to make the source translationally
covariant. The amplitude and energy for this correlation
function agree within statistics with those obtained in our
simultaneous fit and listed in Table IV. If we attempt to
project onto the opposite sink momentum we find an
amplitude (second line of the table) statistically consistent
with zero as expected due to momentum conservation.
For the “wrong” source flavor projection we observe

from the third line of Table XV that this source also couples
strongly to the forwards-moving pion state with momentum
π=L. However we find (fourth line) that it also projects
onto the backwards-moving pion with momentum −π=L,
despite our explicit source momentum projection onto the
forwards-moving state, seemingly violating momentum
conservation. To see how this comes about, recall that
the 1 − σ2 operator projects out the ψ− field, for which the
allowed momenta are q ∈ π

2L f…;−9;−5;−1; 3; 7;…g ¼
−πð1þ 4nÞ=2L in each G-parity direction, where n is an
integer.
In the following discussion we suppress the coordinates

in the y and z and t directions. The phases expðiπ½1þ
4n�x=2LÞ associated with the allowed momenta for ψ−,
form an orthonormal basis:

XL−1
x¼0

exp ðiπ½1þ 4n�x=2LÞ × expð−iπ½1þ 4m�x=2LÞ

¼ 1 − exp ð2πi½n −m�Þ
1 − exp ð2πi½n −m�=LÞ ¼ Lδn;m: ð171Þ

We can therefore define a Fourier transform and its inverse
into a momentum space indexed by n:

ψ̂−ðnÞ ¼
X
x

exp ðiπ½1þ 4n�x=2LÞψ−ðxÞ; ð172aÞ

ψ−ðxÞ ¼
1

L

X
n

exp ð−iπ½1þ 4n�x=2LÞψ̂−ðnÞ: ð172bÞ

The Fourier transform of the quark field ψ−ðxÞ with the
nonallowed momentum π=2L can then be written as

X
x

e−iπx=2Lψ−ðxÞ ¼
1

L

X
n

ψ̂−ðnÞ
X
x

e−iπx=2Le−iπ½1þ4n�x=2L

¼ 1

L

X
n

RðnÞψ̂−ðnÞ; ð173Þ

where

RðnÞ ¼
X
x

e−iπx=2Le−iπ½1þ4n�x=2L

¼ 2

1 − e−iπ½1þ2n�=L ð174Þ

we observe that the coefficient is generally complex and is
nonzero for all n. The same will be true for the ψþ field
operator, which also has the same set of allowed momenta.
The source operator can then be written asX

x;x0
e−iπðxþx0Þ=2LψþðxÞσ3γ5ψ−ðx0Þ

¼ 1

L2

X
n;n0

RðnÞRðn0Þψ̂þðnÞσ3γ5ψ̂−ðn0Þ

¼ 1

L2

X
n;n0

RðnÞRðn0Þ
X
x;x0

eiπ½2þ4nþ4n0�x=2Lψ−ðxÞσ3γ5ψ−ðx0Þ

ð175Þ

which has nonzero projection onto all states of momentum
−½2þ 4nþ 4n0�π=2L. This includes the pion state with
momentum −π=L, for which n ¼ −n0. For example, with
n ¼ n0 ¼ 0 we have

RðnÞRðn0Þ ¼ 4

ð1 − e−iπ=LÞ2 ð176Þ

which has a nonzero imaginary component. We therefore
predict that the correlation function with source projection
1 − σ2 and sink momentum sign −1 should also have an
imaginary component. Performing the fit to our data we
indeed find a statistically resolvable imaginary component
with amplitude −4.1ð1.0Þ × 103 and an exponent E ¼
0.331ð26Þ consistent with the pion energy.

TABLE XV. Amplitudes (N) and energies (E) determined for different source flavor projections ð1� σ2Þ and
sink momentum directions �2p⃗ on the GP1 ensemble. The first column gives the sign of the source flavor
projection, and the second the sign of the sink momentum.

Source projection sign Sink momentum sign N E

þ þ 5.22ð17Þ × 104 0.3132(34)
þ − −1.1ð1.1Þ × 103 0.271(64)
− þ 3.31ð13Þ × 104 0.3126(38)
− − −1.566ð93Þ × 104 0.3127(64)
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Combinations with n0 ¼ −1 − n instead project onto the
forwards-moving pion with momentum π=L. For example
with n ¼ 0 and n0 ¼ −1, we have

RðnÞRðn0Þ ¼ 4

ð1 − e−πi=LÞð1 − eπi=LÞ ð177Þ

which is purely real. We therefore predict that we will not
observe an imaginary component for the correlation func-
tion with source projection 1 − σ2 and sink momentum
sign þ1. In practice we found that we could not fit to a
cosh-like form to the imaginary component (the fitter did
not converge) unless we performed a simultaneous fit
including the real part with a shared energy; there we
found an amplitude for the imaginary component of
1.7ð3.9Þ × 102, consistent with zero as expected. We can
fit the imaginary part alone to a constant, for which we
obtain a value 0.68(85), again consistent with zero.
We conclude that it is vital to perform the flavor

projection if one is concerned with the specific direction
of the resulting pion’s momentum. This is important, for
example, when constructing a two-pion state with zero total
momentum.

H. Kaon mass and decay constant

We obtain the mass and correlator amplitudes for the
neutral kaon on the GP0 ensemble and those of the mixed
state jK̃0þi ¼ 1ffiffi

2
p ðjK0i þ jK00iÞ, discussed in Sec. VI A

above, on the G-parity ensembles.
On the GP0 ensemble we compute wall-point correlators

of the form

CLW
PP ðtÞ ¼

X
x⃗;y⃗;z⃗

h0j½is̄ðx⃗; tÞγ5dðx⃗; tÞ�½id̄ðy⃗; 0Þγ5sðz⃗; 0Þ�j0i

ð178Þ

using our Coulomb gauge fixed wall source propagators.
Likewise, on the G-parity ensembles we compute

CLW
PP ðtÞ ¼

X
x⃗;y⃗;z⃗

h0j
�

iffiffiffi
2

p ψhðx⃗; tÞγ5ψ lðx⃗; tÞ
�

×

�
e−ip⃗·ðy⃗−z⃗Þ

iffiffiffi
2

p ψ lðy⃗;0Þγ5
1

2
ð1− σ2Þψhðz⃗;0Þ

�
j0i:

ð179Þ

Recall that the mixed combination jK̃0i was introduced in
Sec. VI A as the eigenstate of the QCD Hamiltonian which
is an energy and momentum eigenstate with the energy of
the kaon and zero spatial momentum. In order to obtain a
zero-momentum state under the constraint that the quark
momenta are odd-integer multiples of π=2L, we assign
momentumþp⃗ to the antilight quark and −p⃗ to the strange
quark as indicated above, where pi ¼ π

2L for each G-parity

direction and zero otherwise. Here we must be careful with
the momentum projection required to create a transla-
tionally covariant source operator: The momentum
−p⃗ (np⃗ ¼ −1) of the strange quark requires the projection
ψh →

1
2
ð1 − σ2Þψh, and the momentum þp⃗ of the antilight

quark requires ψ l → ψ l
1
2
ð1 − σ2Þ [cf. Eq. (96)]. If we swap

the momentum assignment we must also swap the sign of
the projection.
For the kaon wall-sink two-point function we measure

the following:

CWW
PP ðtÞ

¼
X
r⃗;s⃗;y⃗;z⃗

h0j
�
e−ip⃗·ðr⃗−s⃗Þ

iffiffiffi
2

p ψhðr⃗; tÞγ5
1

2
ð1 − σ2Þψ lðs⃗; tÞ

�

×

�
e−ip⃗·ðy⃗−z⃗Þ

iffiffiffi
2

p ψ lðy⃗; 0Þγ5
1

2
ð1 − σ2Þψhðz⃗; 0Þ

�
j0i:

ð180Þ

Computing the decay constant for the physical kaon
requires a little more thought. The continuum temporal
axial-vector operator that annihilates the K0 is A4 ¼
−is̄γ4γ5d, where we have chosen a phase convention such
that h0jA4jK0i is real and positive for the operators
specified in Sec. VI A. From the G-parity fields ψh and
ψ l we can construct such a bilinear operator (here for a
generic spin-matrix Γ) as

s̄Γd ¼ ψhF11ΓF11ψ l ð181Þ

where F11 ¼ 1
2
ð1þ σ3Þ, such that A4 ¼ −iψhF11γ

4γ5ψ l.
The axial-sink pseudoscalar source correlator is therefore

CLW
A4P

ðtÞ ¼
ffiffiffi
2

p X
x⃗;y⃗;z⃗

h0j½−iψhðx⃗; tÞF11γ
4γ5ψ lðx⃗; tÞ�

×

�
e−ip⃗·ðy⃗−z⃗Þ

iffiffiffi
2

p ψ lðy⃗;0Þγ5
1

2
ð1− σ2Þψhðz⃗;0Þ

�
j0i;

ð182Þ

where the coefficient of
ffiffiffi
2

p
compensates for the fact that

only the physical component of the incoming state couples
to the operator (up to exponential corrections) as explained
in Sec. VI B. (Note, as discussed in that section we have
limited the observable operator appearing in Eq. (182) to
one containing only the s-quark.) We can also compute the
matrix element with a similar axial operator that connects
to the unphysical K00 state, A0

4 ¼ −iψhF22γ
4γ5ψ l, where

F22 ¼ 1
2
ð1 − σ3Þ. The operators A0 and A0

0 interchange
under the G-parity operation, hence the G-parity symmetry
of the action implies hA4jK̃0i ¼ hA0

4jK̃0i. This is easily
verified numerically. In order to improve statistics we can
therefore take the average of the two.

N. H. CHRIST, C. KELLY, and D. ZHANG PHYS. REV. D 101, 014506 (2020)

014506-32



The data are fit to the functional form given in Eq. (147).
The fitted masses and amplitudes as well as the corre-
sponding values of the decay constant fK are given in
Table XVI, alongside the fit ranges chosen by eye based
on effective mass plots (used uniformly for all correlators
on a given ensemble) and the uncorrelated χ2=dof. In

Fig. 10 we show effective mass plots for the PP point-sink
channel.
We observe generally good agreement between the

values of both the masses and decay constants of all three
ensembles, suggesting that the masses of the degenerate K
and K0 particles are not significantly altered when they are
allowed to mix by the boundary and that we are able to
extract the decay constants of the physical kaon despite this
mixing. The 2.8σ discrepancy between the values of fK
shown in Table XVI may be sufficiently large that it reflects
an exponentially suppressed small finite volume effect.

I. Neutral kaon mixing parameter

The mixing between neutral kaons occurs via a second-
order weak process that can be realized at low energies by
the ΔS ¼ 2 effective four-quark operator OVVþAA,

OVVþAA ¼ ðs̄γμdÞðs̄γμdÞ þ ðs̄γ5γμdÞðs̄γ5γμdÞ
¼ ðψhF11γ

μψ lÞðψhF11γ
μψ lÞ

þ ðψhF11γ
5γμψ lÞðψhF11γ

5γμψ lÞ: ð183Þ

The desired matrix element is

FIG. 10. The kaon effective mass in the PP channel overlaid by the fitted value on the GP0 (upper left), GP1 (upper right) and GP2
(lower) ensembles.

TABLE XVI. The results of simultaneous fits to the PP, A4A4

and AμP heavy-light (kaonic) correlation functions on each of
the three ensembles (μ ¼ 4 is the time direction). The superscripts
LW and WW refer to wall-source-point-sink and wall-source-
wall-sink correlators respectively. Here N are the fitted
amplitudes.

Quantity GP0 GP1 GP2

Fit range 8–30 6–25 6–25
χ2=d:o:f: 0.14(8) 0.37(24) 0.21(10)
mK 0.3280(27) 0.3235(18) 0.3270(15)
fK 0.0969(11) 0.0956(10) 0.0992(8)
NLW

PP 1.103ð34Þ × 105 5.27ð12Þ × 104 5.29ð11Þ × 104

NLW
A4A4

1.039ð33Þ × 104 5.13ð14Þ × 103 4.85ð13Þ × 103

NLW
A4P

2.233ð58Þ × 104 1.074ð22Þ × 104 1.078ð20Þ × 104

NWW
PP 4.05ð11Þ × 107 9.78ð23Þ × 106 9.04ð19Þ × 106
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hK0ðt2ÞjOVVþAAðtÞjK̄0ðt1Þi
≂ ð

ffiffiffi
2

p
Þ2hK̃0ðt2ÞjOVVþAAðtÞj ¯̃K0ðt1Þi ð184Þ

where the factors of
ffiffiffi
2

p
on the right side again enter

because the physical operator only couples to the neutral
kaon component of the incoming and outgoing states.
Including these coefficients, the above Wick contracts to
FðγμÞ þ Fðγμγ5Þ, where

FðΓÞ ¼ 2trfΓGlðy⃗; t; x⃗2; t2ÞG†
hðy⃗; t; x⃗2; t2ÞF11g

× trfΓGlðy⃗; t; x⃗1; t1ÞG†
hðy⃗; t; x⃗1; t1ÞF11g

− 2trfΓGlðy⃗; t; x⃗2; t2ÞG†
hðy⃗; t; x⃗2; t2Þ

× ΓF11Glðy⃗; t; x⃗1; t1ÞG†
hðy⃗; t; x⃗1; t1ÞF11g: ð185Þ

Here we have made use of Eqs. (67) and (43) to simplify
the result. Without G-parity the corresponding Wick con-
tractions are

FðΓÞ ¼ 2trfΓGdðy⃗; t; x⃗2; t2ÞG†
sðy⃗; t; x⃗2; t2Þg

× trfΓGdðy⃗; t; x⃗1; t1ÞG†
sðy⃗; t; x⃗1; t1Þg

− 2trfΓGdðy⃗; t; x⃗2; t2ÞG†
sðy⃗; t; x⃗2; t2Þ

× ΓGdðy⃗; t; x⃗1; t1ÞG†
sðy⃗; t; x⃗1; t1Þg ð186Þ

which are identical in form up to the presence of the
additional flavor matrix F11, further demonstrating the
utility of our notation.
The expressions given in Eqs. (185) and (186) assume

that the kaon state is created by a point source at ðx1; t1Þ and
absorbed by a point sink located at ðx2; t2Þ. In a modern
calculation of neutral kaon mixing, improved source and
sink wave functions are used which better project onto the
kaon state and which fix the momentum of the kaon to be
zero in order to reduce systematic errors arising from the
contributions of excited or moving kaon states. Specifically
we might use Coulomb gauge fixed wall sources and sinks
for the light and strange quarks introducing explicit
position-dependent phase factors and the associated pro-
jection operator ð1� σ2Þ to give these quarks the momenta
required by the boundary conditions. If we do not show the

Coulomb gauge fixing matrices, a ¯̃K0 interpolating operator
at the time t would be written as

¯̃K0ðtÞ ¼
X
x⃗;y⃗

e−ip⃗·ðx⃗−y⃗Þψ lðx⃗; tÞγ5
1

2
ð1 − σ2Þψhðy⃗; tÞ ð187Þ

where as before the momentum p⃗ has components þπ=2L
for directions in which G-parity boundary conditions are
imposed and zero otherwise.
The bag parameter BK is constructed from the Green’s

functions containing the OVVþAA operator as follows:

Blat
K ðtÞ ¼ hK0ðt2ÞOVVþAAðtÞK̄0ðt1Þi

8
3
hK0ðt2ÞA4ðtÞihA4ðtÞK̄0ðt1Þi

; ð188Þ

where the denominator serves to divide out the normal-
izations of the source and sink operators. On the G-parity
ensembles the K0 operators in the above are replaced by K̃0

operators and a factor of 2 is required in the numerator, as
described above.
Following Ref. [31] we set t2 ¼ T and t1 ¼ 0 and utilize

the forwards (F) propagators (obtained by using quark
propagators which are the sum of propagators obeying
periodic and antiperiodic boundary conditions in the time)
to form the kaon between t1 and t such that it falls off
exponentially as expð−mK½t − t1�Þ. Similarly we form the
kaon between t and t2 from the backwards (B) propagators
(obtained by using quark propagators which are the differ-
ence of propagators obeying periodic and antiperiodic
boundary conditions in the time) such that it falls off
exponentially in the negative-t direction, expð−mK½t2 − t�Þ.
Similarly the hA4ðtÞK̄0ðt1Þi term in the denominator of
Eq. (188) is constructed with the F propagators and the
hA4ðtÞK0ðt2Þi from the B propagators. The exponential
time dependence then cancels exactly between the numer-
ator and denominator such that Blat

K ðtÞ is constant up to
excited state contamination.
We will next present the results from such a calculation

of BK. We begin by explaining that this calculation was
carried at the start of our study of G-parity boundary
conditions and the flavor projection matrix 1

2
ð1 − σ2Þ

shown in Eq. (187) was not included. This omission might
lead to the presence of additional kaon states with nonzero
momenta in both the numerator and denominator of
Eq. (188), resulting in systematic errors. However, for
our particular operators and kinematics, we can argue that
such effects are at or below the 1% level.
First we observe that the operator ¯̃K0ðtÞ defined in

Eq. (187) and its conjugate K̃0ðtÞ have positive G-parity.
Therefore, they obey periodic boundary conditions in each
spatial direction and can only create states whose momen-
tum components are integral multiples of 2π=L. Second,
both the weak mixing operator OVVþAA and the axial
current operators which appear in the numerator and
denominator of Eq. (188) are summed over the full spatial
volume. Since these operators do not contain a transla-
tionally invariant combination of our four quark flavors,
this sum over space is insufficient to ensure that these

TABLE XVII. The values of BK and the uncorrelated χ2=dof
obtained by fitting to the specified range on each ensemble.

Ensemble Fit range χ2=dof BK

GP0 6–26 1.32(68) 0.5997(63)
GP1 6–26 0.79(63) 0.5945(59)
GP2 6–26 0.42(40) 0.5956(50)
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operators cannot create or destroy momentum. However,
for the case of momentum components that are multiples of
2π=L, (i.e., p⃗ ¼ 2πn⃗=L where n⃗ is a vector of integers)
these spatial sums will give zero unless n⃗ ¼ 0⃗. Thus, for the
factors in the denominator, only zero-momentum kaons can
contribute. Similarly the spatial sum in the numerator
guarantees that the momentum of the initial and final kaon
must agree. Third, such an unwanted kaon with nonzero
momentum traveling from the source to the sink will be
suppressed relative to the kaon with zero momentum by the
factor expf−ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K þ ð2π=LÞ2
p

−MKÞTg ¼ 0.0027 for
our T ¼ 32, supporting our assertion that the resulting
errors are at or below 1%.
In Table XVII we list the hand-chosen fit ranges, the

fitted values of BK and the associated χ2=dof. Plots of
Blat
K ðtÞ are given in Fig. 11. We observe excellent consis-

tency between all three ensembles, demonstrating our
ability to compute physical kaon matrix elements using
the G-parity mixed kaon states.

IX. CONCLUSIONS

This document contains a thorough investigation of the
use of G-parity spatial boundary conditions (GPBC) [6–8]

in zero temperature lattice simulations. The G-parity
operation is a combination of charge conjugation and an
isospin rotation by π radians around the y axis under which
the charged and neutral pions are all odd eigenstates. GPBC
are therefore equivalent to antiperiodic boundary condi-
tions for the pions and the allowed discretized pion
momenta become odd-integer multiples of π=L, where L
is the lattice spatial extent. This results in the removal of the
stationary pion state from the spectrum, making this
technique ideal for studying interactions of moving pions
as it is no longer necessary to battle to isolate the weaker
excited-state contribution involving moving pions from the
dominant ground-state contribution. This is similar to the
technique of applying antiperiodic boundary conditions to
just the down or up quark [7], which also results in
antiperiodic charged pions and has been used successfully
to compute the ΔI ¼ 3=2 K → ππ decay amplitude [4,14].
GPBC are superior however as they also give rise to
moving neutral pions, and preserve the isospin symmetry
which is explicitly broken if different boundary conditions
are applied to the up and down quarks.
We demonstrated this technique numerically in Sec. VIII

by performing measurements of a variety of quantities
including the pion and kaon masses and decay constants,

FIG. 11. Results for Blat
K ðtÞ from Eq. (188) overlaid by the fitted value on the GP0 (upper left), GP1 (upper right) and GP2 (lower)

ensembles.
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the bag parameter BK, as well as the domain wall resi-
dual mass and axial current renormalization, using two
custom-generated 163 × 32 × 16, 2þ 1 flavor domain wall
ensembles with the Iwasaki gauge action at β ¼ 2.13
(a−1 ¼ 1.73ð3Þ) and G-parity boundary conditions in
one and two spatial directions. These were compared with
the same quantities computed on an identical lattice but
with periodic boundary conditions in all spatial directions.
The generation of custom ensembles is necessary here as
gauge invariance requires the gauge fields to obey charge
conjugate (complex conjugate) boundary conditions
(cf. Sec. III). Using these ensembles we show, for example,
that the pion ground-state energies indeed obey the con-
tinuum dispersion relation as the number of G-parity
directions increases, and that we can extract decay con-
stants from both the spatial and temporal axial current
operators that agree in all cases.
The implementation of GPBC is complicated by the

flavor mixing under the isospin rotation at the boundary. In
Sec. III C we demonstrated that GPBC in a single direction
is equivalent to antiperiodic boundary conditions on a
lattice of doubled spatial extent in the G-parity direction
where we force the gauge links on the second half to be
complex conjugates of those on the first. While this
provides a convenient implementation, extending this
technique to multiple G-parity directions requires either
further (unnecessary) doubling, increasing the computa-
tional cost, or applying unusual nonlocal boundary con-
ditions in the directions perpendicular to the first doubling.
We concluded that a general implementation of the lattice
action with an explicitly two-flavor fermion field that mixes
at the lattice boundary is more practical, and it is this
approach that we use for our later measurements and
in Ref. [5].
In Sec. IV we investigated the symmetries of the lattice

action. The mixing of quark flavor at the boundary
explicitly breaks baryon number conservation as, for
example, it transforms a proton (uud) into an antineutron
(d̄ d̄ ū). There is also a more subtle symmetry breaking of
the flavor nonsinglet axial current, which was originally
recognized by Wiese [6]. This potentially gives rise to a
change in the value of the chiral condensate and a
corresponding shift in the energy spectrum of the pion
states, but in Sec. VIII we argue that this is exponentially
suppressed in mπL and indeed found the effect to be small
on our 163 × 32 ensembles, for which mπL ∼ 4.
We also observed that, in contrast to antiperiodic

boundary conditions, the imposition of G-parity boundary
conditions in all three direction for a cubic box does not
result in a system which is symmetric under cubic rotations.
For example the quark free-field eigenstates of the system
are not symmetric under cubic rotations but instead, for our
conventions, must have the three components of their
momentum equal modulo 2π=L. This implies, for example,
that the momentum ð π

2L ;
π
2L ; 0Þ (for GPBC in two

directions) is allowed, but ð π
2L ;−

π
2L ; 0Þ is not. This sym-

metry breaking does not extend to the pions, which obey
standard antiperiodic boundary conditions in the G-parity
directions as we demonstrated explicitly in Sec. VIII by
showing that the energies of pions moving in orthogonal
directions are in good agreement. However, the fact that we
are restricted in our allowed choices of quark momentum
components forces us to use operators that are inequivalent
under cubic rotations in order to create pions moving in
different orthogonal directions. This results in values of
the two-point function amplitude that depend somewhat
strongly on the direction of the pion momentum. We found
that by choosing operators that are averages over multiple
choices of quark momenta with fixed total momentum
we drastically reduce the variation in the amplitude. This
ultimately enabled us to construct an interpolating
operator that was rotationally symmetric within our mea-
sured accuracy to absorb the ππ state in our K → ππ
calculation [5].
A further difficulty of theG-parity approach involves the

treatment of the strange quark. In Sec. VI we describe how
charge-conjugation boundary conditions, while consistent
with the gauge field boundary conditions, are not suitable
for constructing the stationary kaon state required for a
K → ππ calculation. Such a state can be constructed if we
instead impose G-parity boundary conditions between the
strange quark and a fictional degenerate partner, s0, and
comprises an admixture of the continuum kaon and an
unphysical, degenerate partner state. We discuss how
operators that interact only with the physical kaon retain
their continuum values up to a known numerical factor and
additional exponentially suppressed finite-volume correc-
tions that can be neglected. The effects of the unphysical
strange sea quark introduced here are removed by using the
square root of the resulting 2-quark fermion determinant in
order to revert to a three-flavor simulation. This can be
accomplished, for example by using the RHMC algorithm.
We show that the nonlocal effects of applying this square
root are exponentially suppressed in the spatial lattice size.
In Sec. VIII we study the strange quark states numerically
and observe that both BK and the kaon masses and decay
constants remain in excellent agreement as we impose
GPBC in a successively larger number of directions.
We conclude that G-parity boundary conditions provide

a novel and useful means with which to study mesonic
interactions and decays involving pions carrying above-
threshold momenta. The RBC and UKQCD collaborations
have already made use of these boundary conditions in
order to compute the I ¼ 0 K → ππ decay amplitude with
physical kinematics [5], which requires moving pions. Here
the statistical noise is very large due to disconnected
contributions, which makes isolating an excited state
contribution in such a setup difficult. Further investigations
of the momentum dependence of the ππ scattering phase
shift are among the future plans for this technique.
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APPENDIX: DOMAIN WALL FERMIONS WITH
G-PARITY BOUNDARY CONDITIONS

In Sec. III we formulated the lattice action for G-parity
boundary conditions in terms of two four-dimensional
fields ψ1ðxÞ ¼ dðxÞ and ψ2ðxÞ ¼ CūTðxÞ that transform
as T̂ψ1ðL − 1ÞT̂−1 ¼ ψ2ð0Þ and T̂ψ2ðL−1ÞT̂−1¼−ψ1ð0Þ
under translations across the boundary in a G-parity
direction (suppressing orthogonal coordinates). In this
appendix we show how to extend this formulation to the
five-dimensional quark fields in the domain wall fermion
framework.
For domain wall fermions the fundamental fieldsΦðx; sÞ

are functions of the fifth dimensional coordinate s, and the
four-dimensional fields are constructed as surface fields as
follows:

ϕðxÞ ¼ PRΦðx; 0Þ þ PLΦðx; Ls − 1Þ;
ϕ̄ðxÞ ¼ Φ̄ðx; 0ÞPL þ Φ̄ðx; Ls − 1ÞPR ðA1Þ

where ϕ and Φ here are generic 4d and 5d fields
respectively, and we have used ϕ=Φ rather than the
conventional ψ=Ψ to avoid confusion with our G-parity
fields. Here and below we capitalize the field variables to
indicate that they are five dimensional, and we explicitly
display the coordinate in only one of the four space-time
directions, which is assumed to have GPBC.
Starting with the known action of the charge conjugation

operation on the 4d field, we can induce its action on those
in five dimensions. This can be accomplished by express-
ing the charge-conjugated 4d field, ĈϕðxÞĈ−1 in two ways:

ĈϕðxÞĈ−1 ¼ PRĈΦðx; 0ÞĈ−1 þ PLĈΦðx; Ls − 1ÞĈ−1

ðA2Þ
and

ĈϕðxÞĈ−1 ¼ Cϕ̄TðxÞ
¼ PLCΦ̄Tðx; 0Þ þ PRCΦ̄Tðx; Ls − 1Þ ðA3Þ

and then equating the PL and PR terms found in these two
equations. We conclude that charge conjugation acting on
the 5d domain wall fields involves a reflection in the fifth
dimension:

ĈΦðx; sÞĈ−1 ¼ CΦ̄Tðx; Ls − 1 − sÞ; ðA4Þ

Ĉ Φ̄ðx; sÞĈ−1 ¼ −ΦTðx; Ls − 1 − sÞC−1; ðA5Þ

where the second equation can be obtained by applying the
same analysis to the conjugate fields ϕ̄ and Φ̄.
Next we generalize the single-flavor 5d field Φðx; sÞ to a

doublet of two fields Uðx; sÞ and Dðx; sÞ and define the
action of the G-parity operator Ĝ on this doublet as the
combination Ĉe−iÎy given in Eq. (1):

Ĝ

�
Uðx; sÞ
Dðx; sÞ

�
Ĝ−1 ¼

�
−CD̄Tðx; Ls − 1 − sÞ
CŪTðx; Ls − 1 − sÞ

�
; ðA6Þ

ĜðD̄ðx; sÞ;−Ūðx; sÞÞĜ−1 ¼ ðUTðx; Ls − 1 − sÞC−1;

−DTðx; Ls − 1 − sÞC−1Þ;
ðA7Þ

in analogy to Eq. (6).
Following Sec. II B we next define two 5d two-

component fields Ψ and Ψ̄ which are composed of U,
D, Ū and D̄ and defined so that each transforms into itself
under G-parity:

Ψðx; sÞ ¼
�

Dðx; sÞ
CŪTðx; Ls − 1 − sÞ

�
; ðA8Þ

Ψ̄ðx; sÞ ¼ ðD̄ðx; sÞ; UTðx; Ls − 1 − sÞCÞ: ðA9Þ

With these definitions we have extended our four-
dimensional formalism to five dimensions:

ĜΨðx; sÞĜ−1 ¼ iσ2Ψðx; sÞ; ðA10Þ

Ĝ Ψ̄ðx; sÞĜ−1 ¼ −Ψ̄iσ2 ðA11Þ

while maintaining the usual relation between the 4d and 5d
fields ψ , ψ , Ψ, and Ψ̄:

ψðxÞ ¼ PRΨðx; 0Þ þ PLΨðx; Ls − 1Þ; ðA12Þ

ψðxÞ ¼ Ψ̄ðx; 0ÞPL þ Ψ̄ðx; Ls − 1ÞPR: ðA13Þ

Equations (A10) and (A11) ensure that Ψðx; sÞ and
Ψ̄ðx; sÞ transform under translations in the same way as
the fields ψðxÞ and ψðxÞ:
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T̂μΨðxμ; sÞT̂−1
μ ¼

(
Ψðxμ þ 1Þ 0 ≤ xμ < L − 1

ðiσ2ÞΨð0; sÞ xμ ¼ L − 1 ; ðA14Þ

T̂μΨ̄ðxμ; sÞT̂−1
μ ¼

(
Ψðxμ þ 1Þ 0 ≤ xμ < L − 1

Ψ̄ð0; sÞð−iσ2Þ xμ ¼ L − 1 ðA15Þ

in analogy with Eq. (16).
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