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We report on the computation of the connected light-quark vacuum polarization with 2þ 1þ 1 flavors of
highly improved staggered quarks [Follana et al., Phys. Rev. D 75, 054502 (2007).] fermions at the
physical point and its contribution to the muon anomalous magnetic moment. Three ensembles, gene-
rated by the MILC collaboration, are used to take the continuum limit. The finite-volume correction
to this result is computed in the (Euclidean) time-momentum representation to next-to-next-to-leading
order (NNLO) in chiral perturbation theory. We find allμ ðHVPÞ ¼ ð659� 20� 5� 5� 4Þ × 10−10, where
the errors are statistical and estimates of residual uncertainties from taking the continuum limit, scale setting,
and truncation of chiral perturbation theory at NNLO. We compare our results with recent ones in the
literature.
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I. INTRODUCTION

Fermilab experiment E989 is measuring the anomalous
magnetic moment of the muon (aμ ¼ ðg − 2Þ=2) with
the goal of reducing the error on the BNL E821 [1] result
by a factor of 4. An upcoming experiment at J-PARC,
E34, aims to do the same with a completely different
technique. Lattice calculations of the hadronic contribu-
tions to the muon g − 2, like the one reported here, are
crucial to obtain and cross-check the standard model value
to the same accuracy in order to discover new physics or lay
to rest the longstanding discrepancy between theory and
experiment.

In this paper we focus on the leading hadronic
vacuum polarization (HVP) contribution to the muon
anomaly. The aim is to test the efficacy of modern
noise-reduction techniques to reduce the statistical
errors of Monte Carlo methods used in lattice QCD
in the context of the HVP and to provide accurate
finite-volume corrections to these results using chiral
perturbation theory at two-loop order.
The total HVP contribution to aμ comes from both

connected- and disconnected-quark line diagrams shown in
Fig. 1, for each flavor of quark in nature. The u, d quark-
connected contributions are by far the largest, and we only
compute them in this work. Comparison to other recent
precise calculations [2–7] provides important validation for
the lattice method.
The plan of this paper is the following. In Sec. II

we review the theoretical framework for the calculation,
including important details of the lattice calculation
and the calculation in chiral perturbation theory (ChPT)
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in Euclidean space of the leading and next-to-leading finite-
volume corrections to the HVP contribution to the muon
g − 2. Section III presents our results and comparison to
other calculations. In Sec. IV we give a summary of this
work and discuss implications for future work and the
important upcoming comparison with experiment. The
appendix reports details of the next-to-next-to-leading
order (NNLO) chiral perturbation theory calculation.

II. THEORETICAL FRAMEWORK

Using lattice QCD and continuum, infinite-volume
(perturbative) QED, one can calculate the HVP contribu-
tion to the muon anomalous magnetic moment [8–10],

aHVPμ ¼ 4α2
Z

∞

0

dq2fðq2ÞΠ̂ðq2Þ; ð1Þ

fðq2Þ ¼ m2
μq2Z3ð1 − q2ZÞ
1þm2

μq2Z2
; ð2Þ

Z ¼ −
q2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þ 4m2

μq2
q
2m2

μq2
: ð3Þ

mμ is the muon mass, and Π̂ðq2Þ is the subtracted HVP,
Π̂ðq2Þ ¼ Πðq2Þ − Πð0Þ, computed directly on a Euclidean
space-time lattice from the Fourier transform of the vector
current two-point function,

ΠμνðqÞ ¼
Z

d4xeiqxhjμðxÞjνð0Þi ð4Þ

¼ Πðq2Þð−qμqν þ q2δμνÞ; ð5Þ

jμðxÞ ¼
X
i

Qiψ̄ iðxÞγμψ iðxÞ: ð6Þ

jμðxÞ is the electromagnetic (EM) current, and Qi is the
quark electric charge in units of the electron charge e (the
sum is over active flavors). The form in the second equation
is dictated by Lorentz and gauge symmetries.
In the following it is convenient to use the time-

momentum representation [11], which results from

interchanging the order of the Fourier transform and
momentum integrals in Eqs. (4) and (1), respectively.

Πðq2Þ − Πð0Þ ¼
X
t

�
cos qt − 1

q2
þ 1

2
t2
�
CðtÞ; ð7Þ

CðtÞ ¼ 1

3

X
x⃗;i

hjiðx⃗; tÞjið0Þi; ð8Þ

wðtÞ ¼ 4α2
Z

∞

0

dω2fðω2Þ
�
cosωt − 1

ω2
þ t2

2

�
; ð9Þ

where CðtÞ is the Euclidean time correlation function,
averaged over spatial directions, and Eq. (1) becomes

aHVPμ ðTÞ ¼
XT=2

t¼−T=2
wðtÞCðtÞ ¼ 2

XT=2
t¼0

wðtÞCðtÞ: ð10Þ

T is the temporal size of the lattice, and aHVPμ is obtained in
the limit T → ∞. We have anticipated the use of the lattice
with a discrete version of Eq. (10). The weight wðtÞ is
sometimes modified by replacing the continuum Euclidean
momentum squared with its lattice version [3],

ŵðtÞ ¼ 4α2
Z

∞

0

dω2fðω2Þ
�

cosωt − 1

ð2 sin ðω=2ÞÞ2 þ
t2

2

�
: ð11Þ

Note the double subtraction [11–13] in the cosine term in
Eq. (7): t2=2 cancels Πð0Þ “configuration-by-configura-
tion” while the leading finite size correction is killed by the
“−1”. The latter arises since Πμνðq2Þ does not vanish as
q2 → 0 when the time extent of the lattice is finite [11], but
instead leads to a thermal electric susceptibility. In fact such
terms are not constrained by the Ward-Takahashi identity,
which in infinite volume leads to Eq. (5) and are allowed by
the lattice symmetries [11,13].

A. Finite-volume chiral perturbation theory

In this section, we consider the calculation of finite-
volume effects in aHVPμ to two loops, or NNLO in ChPT,

FIG. 1. The quark-connected (left) and disconnected (right) diagrams contributing to the hadronic vacuum polarization contribution to
the muon anomaly.
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with the aim of correcting our lattice result for aHVPμ for
finite-volume effects. With our pion masses near the
physical value, it is safe to assume that even at NNLO
the most significant finite-volume correction comes from
pion loops, and we can thus restrict our calculation to
isospin-symmetric two-flavor ChPT.
There are two possible strategies for doing this. One

is to first carry out a continuum extrapolation, and using
results from continuum ChPT to correct for finite-
volume effects. The other is to correct the results at
each lattice spacing, to obtain infinite-volume results at
fixed lattice spacing. As we are using staggered fer-
mions, the second strategy requires the use of staggered
ChPT (SChPT) [14,15]. If all our ensembles were at the
same pion mass and volume, the two methods should
yield equivalent results. However, both the pion masses
and volumes of the three ensembles are slightly different
(cf. Table I). In this case, applying the finite-volume
correction at a fixed lattice spacing has the advantage
that this automatically corrects for the slightly different
volumes.1 While a full two-loop SChPT calculation is
outside the scope of this paper, it is easy to change the
next-to-leading order (NLO) continuum ChPT result into
a SChPT result; one only has to carry out a weighted
average over the different taste pion masses for a given
ensemble [13]. In practice, what we do is to first correct
the finite-volume lattice results for aHVPμ using NLO
SChPT, then extrapolate to the continuum limit, after
which we apply the remaining NNLO continuum
ChPT correction. Because of the slight mistunings of
the pion masses and volumes, there is a systematic error
associated with this last step, but this systematic error
is much smaller than it would be if we were to
extrapolate to the continuum first, and then apply
NLO plus NNLO continuum ChPT to correct for
finite-volume effects.
While the vacuum polarization in finite volume to two

loops has been calculated before in momentum space
[18],2 we directly carry out the ChPT calculation of CðtÞ,
defined in Eq. (8), in the time-momentum representation,

for t > 0, in a spatial volume of linear size L, with
periodic boundary conditions.3 This makes the calculation
somewhat simpler, because we do not have to consider
diagrams that lead to contributions proportional to δðtÞ
(which, in momentum space, correspond to contact
terms). Our result depends on only two low-energy
constants, F, the pion decay constant in the chiral limit,
and l6, which is an order-p4 low-energy constant
appearing in the EM current at this order.4

Of course, the ChPT expression for CðtÞ is only reliable
for large t, whileCðtÞ for all t > 0 is needed in the sum (8).5

However, as already observed in Ref. [13], finite-volume
effects are a long-distance effect, and one thus expects the
finite-volume correction to this correlation function to be
reliably estimated for all t > 0, so that we can, in fact,
estimate the finite-volume effect in aHVPμ using ChPT. An
advantage is that this avoids using models to go beyond
NLO ChPT (which is the same as scalar QED), as was
proposed in Ref. [21]. As we see, the ChPT result for the
difference

ΔaHVPμ ¼ lim
L→∞

aHVPμ ðLÞ − aHVPμ ðLÞ ð12Þ

is indeed well defined6 in what follows.
The pion contribution to the EM current, to the order we

need, is given by7

jμðxÞ ¼ iðπ−∂μπ
þ − πþ∂μπ

−Þ
�
1 −

1

3F2
ððπ0Þ2 þ 2πþπ−Þ

�

−
2il6

F2
∂νð∂μπ

þ∂νπ
− − ∂νπ

þ∂μπ
−Þ: ð13Þ

Working in Euclidean space, a relatively straightforward
calculation in the time-momentum representation yields the
result for CðtÞ to NNLO in the continuum limit as

TABLE I. Gauge field ensemble parameters [17]. LM is the number of low modes of the preconditioned Dirac operator. AMA srcs is
the number of approximate point-source propagators on each configuration which are spread uniformly over several time slices. The
number of exact point-source propagators per configuration is eight for each ensemble. The number of configurations used for
approximate, exact, and LMA measurements in this study are given in the last column.

mπ (MeV) a (fm) Size L (fm) mπL LM AMA srcs Measurements (approx-exact LMA)

133 0.12121(64) 483 × 64 5.82 3.91 3000 43 × 4 26-26-26
130 0.08787(46) 643 × 96 5.62 3.66 3000 43 × 4 36-36-40
134 0.05684(30) 963 × 192 5.46 3.73 2000 33 × 8 22-22-23

1But not the slightly different pion masses [16].
2For recent work on finite-volume effects of order exp½−mπL�

not using ChPT, see Ref. [19].

3We take the time extent to be infinite.
4We use the notation and conventions of Ref. [20] for low-

energy constants.
5Cð0Þ is not needed as the weight wðtÞ ∝ t4 for small t.
6In general we define ΔfðLÞ ¼ limL→∞ fðLÞ − fðLÞ.
7There are contributions from other order-p4 low-energy

constants, but they do not appear in the result for CðtÞ after
mass renormalization.
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CðtÞ ¼ 10

9

1

3

�
1

Ld

X
p⃗

p⃗2

E2
p
e−2Ept

×

�
1 −

2

F2
Dðm2

πÞ −
8ðp⃗2 þm2

πÞ
F2

l6

�

þ 1

2dF2

1

L2d

X
p⃗;k⃗

p⃗2k⃗2

E2
pE2

k

Eke−2Ept − Epe−2Ekt

k⃗2 − p⃗2

�
; ð14Þ

in which

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p⃗2

q
; ð15Þ

Dðm2
πÞ ¼

1

Ld

X
k⃗

1

2Ek
; ð16Þ

and the sums over p⃗ and k⃗ are over the momenta 2πn⃗=L, ni
integer, in a box with periodic boundary conditions. In
Eq. (14) we gave the result in d ¼ 3þ ϵ spatial dimensions
in order to regulate the UV divergence present in d ¼ 3.
After defining a renormalized lr

6 by

l6 ¼ lr
6ðμÞ −

1

3

1

16π2

�
1

ϵ
− log μ −

1

2
ðlog ð4πÞ − γ þ 1Þ

�
;

ð17Þ

the limit d → 3 can be taken, yielding a finite result for
CðtÞ. The factor 10=9 is needed to isolate the light-quark
connected part [13,21,22]. The pion mass mπ appearing in
Eq. (14) is the renormalized (physical) pion mass. This
renormalization absorbs the low-energy constants l3;4

which appear in the explicit calculation. We note that
the terms in the double sum on the second line of Eq. (14)
with p⃗2 ¼ k⃗2 lead to a term proportional to te−2Ept, leading
to the expected energy shift for two pions in an I ¼ 1,
l ¼ 1 state in a finite volume [23].
In order to extract the finite-volume corrections, we use

the Poisson resummation formula

X
n⃗

δðdÞ
�
p⃗ −

2πn⃗
L

�
¼
X
n⃗

Ld

ð2πÞd δ
ðdÞ
�
Lp⃗
2π

− n⃗

�

¼ Ld

ð2πÞd
X
n⃗

ein⃗·p⃗L: ð18Þ

Let us work out the extraction of ΔaHVPμ to NLO in ChPT,
relegating the treatment of the NNLO contribution to the
appendix. The NLO part of CðtÞ is obtained by dropping all
terms of order 1=F2 in Eq. (14). Employing Eq. (18), the
NLO part CNLOðtÞ can be written as

CNLOðtÞ ¼ −
10

9

1

6π2
X∞
n2¼0

Z00ð0; n2Þ
1

nL

×
Z

∞

0

dp
p3

E2
p
e−2Ept sin ðnpLÞ; ð19Þ

where n2 is summed over all non-negative integers and [23]

Z00ð0; n⃗2Þ ¼ −
X

m⃗;m⃗2¼n⃗2
1: ð20Þ

The n2 ¼ 0 term, with sinðnpLÞ=ðnLÞ → p and
Z00ð0; 0Þ ¼ −1, yieldsCNLOðtÞ in the infinite-volume limit.
Inserting Eq. (19) into Eq. (10) with T ¼ ∞ and replacing
the sum over t by an integral, we find that

ΔaHVP;NLOμ ¼ 10

9

α2

6π2
X∞
n2¼1

Z00ð0; n2Þ
nL

×
Z

∞

0

dp
p3

E2
p
sin ðnpLÞFðp2Þ; ð21Þ

with

Fðp2Þ ¼
Z

∞

0

dq2fðq2Þ q2

E3
pð4E2

p þ q2Þ

¼ −
8E2

p −m2
μ

2E3
pm2

μ
þ 8ð2E2

p −m2
μÞ

Epm4
μ

log

�
2Ep

mμ

�

þ ð8E4
p − 8E2

pm2
μ þm4

μÞ
E2
pm4

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p −m2

μ

q

× log

 
−2Ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p −m2

μ

q
þ 2E2

p −m2
μ

m2
μ

!
: ð22Þ

Using the parameter values of Table I, we then obtain

ΔaHVP;NLOμ ¼

8>><
>>:

20.59 × 10−10; L=a ¼ 96

21.60 × 10−10; L=a ¼ 64

18.08 × 10−10; L=a ¼ 48

: ð23Þ

Adding the NNLO contributions computed in the appendix
and given in Eq. (A14), we find for the total finite-volume
correction

ΔaHVPμ ¼

8>><
>>:

ð29.7� 4.0Þ × 10−10; L=a ¼ 96

ð30.6� 3.8Þ × 10−10; L=a ¼ 64

ð25.5� 3.0Þ × 10−10; L=a ¼ 48

: ð24Þ

The errors are estimated as follows. The NNLO contri-
bution is of order 0.4–0.45 times the NLO contribution.
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We then assume that the next order in ChPT, which we did
not compute, is again of order 0.4–0.45 times the NNLO
contribution, and we use this estimate as our error.
The fact that the three values in Eq. (24) are different is

due to the mistuning of the pion masses and volumes of the
three ensembles. If we were to apply the correction to the
continuum extrapolated value of aHVPμ , we would thus have
to use some average, and the spread of 5.1 × 10−10 between
the three values would represent a systematic error asso-
ciated with the mistuning. If we were to apply only the
NNLO correction in the continuum limit, that spread would
be reduced to 1.7 × 10−10 [cf. Eq. (A14)]. Hence, as
explained above, what we do is to first use NLO SChPT
to correct the value of aHVPμ at each lattice spacing, then
extrapolate, and finally apply the NNLO correction com-
puted in Eq. (A14) in the appendix.
In order to adapt the NLO result (21) to the staggered

case, all that needs to be done is to average CNLOðtÞ of
Eq. (19) over the taste-split pion spectrum mπ ¼ mP, mA,
mT , mV and mI , with weights 1=16, 1=4, 3=8, 1=4 and
1=16, respectively. Using the taste-split pion spectrum for
each ensemble,8 we find for the staggered NLO finite-
volume corrections for each ensemble the values

ΔaHVPμ ¼

8>><
>>:

15.6 × 10−10; L=a ¼ 96

6.9 × 10−10; L=a ¼ 64

2.1 × 10−10; L=a ¼ 48

: ð25Þ

Finally, the n2 ¼ 0 term in Eq. (19) gives us access to the
effect of taste breaking in the pion masses in infinite
volume, to NLO in ChPT. We use this to compute the
corresponding corrections for each of our ensembles,
finding these to be equal to

ΔtasteaHVPμ ¼

8>><
>>:

9.5 × 10−10; L=a ¼ 96

34.2 × 10−10; L=a ¼ 64

51.6 × 10−10; L=a ¼ 48

: ð26Þ

These corrections are to be added to the lattice result to
correct for taste breaking in the pion spectrum in infinite
volume, to NLO in ChPT. Of course, since taste breaking
is a lattice-spacing effect, whether one adds these correc-
tions or not should not matter in the continuum limit. The
difference one finds between values extrapolated to the
continuum limit with or without this correction thus gives
an estimate of the systematic error associated with taking
the continuum limit. Adding both Eq. (25) and Eq. (26) to
the numerical lattice results will correct, at NLO, for finite-
volume effects [Eq. (25)] and taste-breaking effects
[Eq. (26)]. Lattice results corrected only with Eq. (25)

are shown in the third column of Table III below, while
those corrected with both Eqs. (25) and (26) are shown in
the fourth column. As already stated above, NNLO finite-
volume corrections are only applied after the continuum
limit has been taken.

B. Lattice details

The computation rests heavily on the use of noise
reduction techniques developed by the RBC and
UKQCD collaborations, including all-mode (AM) and full
volume low-mode (LM) averaging (see Refs. [3,24–29]).
We take a moment to describe the low-mode structure of

the staggered fermion Dirac operator, which plays a central
role. For valence quarks we use the highly improved
staggered quarks (HISQ) [30] fermion Dirac operator
minus the Naik term, so the following, which is true in
general for naive staggered fermions, applies here. The
staggered Dirac operator is the sum of a Hermitian mass
term which commutes with an anti-Hermitian hopping
term, so it satisfies (using even-odd ordering of sites)

M

�
no
ne

�
¼
�

m Moe

Meo m

��
no
ne

�
¼ ðmþ iλnÞ

�
no
ne

�
;

ð27Þ
where m is the quark mass andMoe hops quarks from even
to odd sites. Similarly, the preconditioned operator M†M
which is used in practice satisfies

�
m −Moe

−Meo m

��
m Moe

Meo m

��
no
ne

�

¼
�
m2 −MoeMeo 0

0 m2 −MeoMoe

��
no
ne

�

¼ ðm2 þ λ2nÞ
�
no
ne

�
: ð28Þ

Eigenvectors of the preconditioned operator are eigenvec-
tors ofM with squared magnitude eigenvalue, and the even
part can be obtained from the odd part,

ne ¼
−i
λn

Meono: ð29Þ

The eigenvalues come in � pairs: If nþ ¼ ðno; neÞ is an
eigenvector with eigenvalue λn, then n− ¼ ð−no; neÞ is also
an eigenvector with eigenvalue −λn,�

m Moe

Meo m

��−no
ne

�
¼ ðm − iλnÞ

�−no
ne

�
: ð30Þ

Thus we can construct pairs of eigenvectors, nþ, n−,
corresponding to �iλ for each eigenpair (λ2, no) computed
with the Lanczos algorithm.

8We thank Doug Toussaint for providing the pion spectra, and
for discussions of the taste splittings.
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The full-volume LMA takes advantage of the spectral
decomposition of the quark propagator that requires only
two independent volume sums instead of a volume-squared
sum in the correlation function. We employ a conserved
current (again, minus the three-hop Naik term) which
makes the “meson fields” a bit more complicated,

JμðxÞ ¼ −
1

2
ημðxÞðχ̄ðxþ μ̂ÞU†

μðxÞχðxÞ
þ χ̄ðxÞUμðxÞχðxþ μ̂ÞÞ: ð31Þ

χðxÞ are single component staggered fermion fields whose
spinor nature is encoded in the staggered phases, ηðxÞ,
arising from the spin diagonalization of the fermion action.
The gauge links UμðxÞ ensure the point-split current is
gauge invariant. A spectral decomposition of the low-mode
part of the quark propagator is used in the AMA and LMA
procedures,

M−1
x;y ¼

XNlow

n

�hxjnþihnþjyi
mþ iλn

þ hxjn−ihn−jyi
m − iλn

�
;

where Nlow is the number of low modes. The two-point,
current-current correlation function then becomes

4
X
x⃗;y⃗

hJμðtx; x⃗ÞJνðty; y⃗Þi

¼ −
X
m;n

X
x⃗;y⃗

1

λmλn
ðΛ†

μðxÞmnΛ
†
νðyÞnm þ Λ†

μðxÞmnΛνðyÞnm

þ ΛμðxÞmnΛ
†
νðyÞnm þ ΛμðxÞmnΛνðyÞnmÞ;

where λn is shorthand for eitherm� iλn, and the sums over
eigenvectors run up to 2Nlow. To compute the above we
construct meson fields,

ðΛμðtÞÞn;m ¼
X
x⃗

hnjxiημðxÞUμðxÞhxþ μjmið−1ÞðmþnÞxþm;

ð32Þ

lwith eigenvector ordering λ0;−λ0;λ1;−λ1;…;λNlow
;−λNlow

.
The factor ð−1ÞðmþnÞxþm arises from the construction of n−
from nþ since even m or n always corresponds to nþ while
odd corresponds to n−.
The AMA and LMA procedures are used to produce an

improved estimator for the expectation value of any
observable O by adding and subtracting terms that are
exactly equal in the infinite statistics limit. Outside this
limit the unimproved and improved estimates are sta-
tistically equivalent, with the latter having smaller errors
(assuming the same computational expense). The com-
bined AMA and full-volume LMA improved estimator is
given by

hOi ¼ hOiexact − hOiapprox þ
1

N

X
i

hOiiapprox

−
1

N

X
i

hOiiLM þ 1

V

X
i

hOiiLM: ð33Þ

The first three terms on the right-hand side of Eq. (33)
correspond to AMA [24,25] while the last two supplement
this with the full-volume LMA [3,26–29]. The expensive
“exact” (to numerical precision) calculation is done rela-
tively seldom while the inexpensive “approx” calculation is
done often to reduce the statistical error. The difference of
the first term with the second and fourth terms corrects the
bias induced by the third and fifth approximate terms. Note
that in this work the first two sums in Eq. (33) are taken
over a uniform grid of point-source propagators on a time
slice (see Table I), which is much smaller in number than
the total number of lattice sites summed over for the final
sum in Eq. (33). The approximate propagators are com-
puted with a relaxed conjugate gradient stopping residual,
10−5, while the exact is set to 10−8. Both are deflated; that
is, a number of exact low modes of the Dirac operator are
used to compute each (see Table I).

III. RESULTS

We use the 2þ 1þ 1 flavor, physical mass ensembles
generated by the MILC collaboration at three lattice
spacings shown in Table I. They have roughly the same
physical extent, L ∼ 5.5–5.8 fm.
In Fig. 2 the summand in Eq. (10) for each ensemble is

shown along with the full volume LMA and AMA
contributions. In the figure total refers to the sum of five
terms in Eq. (33). As observed in Ref. [3] there is a huge
reduction in statistical error from the low-mode average, the
last term in Eq. (33) (compare the total with full volume
LMA and without, which is just AMA). The error reduction
is especially large for large distance, as expected since the
low modes dominate this region. For the 963 ensemble the
number of low modes used was 2000 (×2) compared to
the other two ensembles (2 × 3000), due to computer and
memory resource limitations. This is unfortunate as one can
see from Fig. 2 that the full volume LMA is not as effective.
Even though it appears that the low-mode contribution is
mostly saturated (since it is comparable for all three
ensembles), apparently the extra low modes for the two
coarser ensembles are very effective at reducing statisti-
cal noise.
In order to reduce further the statistical errors on the

integrated result, we employ the bounding method [2,3]
wherein CðtÞ, for t > T, is given by CðtÞ ¼ 0 (lower
bound), and CðtÞ ¼ CðTÞe−E0ðt−TÞ (upper bound), where
E0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2π=LÞ2
p

, i.e., the lowest (two-pion)
energy state in the vector channel. At sufficiently large
T the bounds overlap, and an estimate for aμ can be
made which may be more precise than simply summing
over the noisy long-distance tail. In Fig. 3 results are shown

AUBIN, BLUM, TU, GOLTERMAN, JUNG, and PERIS PHYS. REV. D 101, 014503 (2020)

014503-6



for each ensemble. Central values for aμ are averages
over a suitable range where T is large enough for the
bounds to overlap but not so large that statistical
errors blow up. We average the upper and lower bounds

together over the ranges 2.7–3.2 fm for the 483

and 643 ensembles, and 2.6–2.8 fm for 963. The statistical
errors on the averages are computed using the jackknife
method.

FIG. 2. The summand in Eq. (10) for each ensemble in Table I
(from top, coarsest to finest). Total (red stars) refers to the sum in
Eq. (33). Also shown are the low-mode (black crosses) and AMA
(blue pluses) contributions. Odd-parity, excited state oscillations
intrinsic to staggered fermions are readily apparent.

FIG. 3. Bounding method for total contribution to the muon
anomaly, using the weighting function w. 483 (top), 643 (middle),
and 963 (bottom) ensembles. T=a is the time slice where CðtÞ
switches over from the calculated value to the analytic value
giving the upper (black crosses) or lower (red pluses) bound. The
blue shaded area indicates our averages.
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In Table II we collect results for aHVPμ computed on each
ensemble, for both w and ŵ weighting functions. Note that
scaling violations appear to be smaller for the choice w (see
Fig. 4). The muon anomaly for each lattice spacing is
shown in Fig. 4. Not much is gained from the bounding
method for the 483 and 643 ensembles which have small
statistical errors already. But on the 963 ensemble there is a
clear advantage. The statistical errors in the latter case are
larger likely because we have fewer measurements (see
Table I) and fewer low modes. For the 963 ensemble,
moving the “averaging window” to the right towards larger
times results in larger central values and statistical errors,
but with values that are consistent with the one quoted in
Table II. We chose the range for the central value to avoid
the region where the data first fluctuate up, contrary to
expectations, while still having significant overlap between
the upper and lower bounds. For the other two ensembles,
the central value and errors are insensitive to the choice of
averaging window.
To check that the statistical errors are not underesti-

mated, the ensembles were split into halves that were
analyzed separately. We expect the errors on the halves to
scale roughly like

ffiffiffi
2

p
times the total error. This scaling was

observed except for the 963 ensemble where the first half

had an error that was roughly twice the total while the
second half was about the same size as the total. In addition
the first and second half averages on the 643 ensemble
differed by two standard deviations which could signal
autocorrelations and an underestimation of the error.
We note that the separation between measurements for
the 643 ensemble is 12 trajectories while it is 40 and 48 for
483 and 963, respectively. To investigate the 643 ensemble
measurements were blocked into averages of one, two, and
four consecutive measurements. The errors computed from
block sizes two and four were very close to the original
analysis. Together, the above suggest the statistical errors
quoted here have not been significantly underestimated.
To take the continuum limit a simple linear in a2 ansatz is

used. But first the data must be corrected for finite-volume
effects, taste symmetry breaking, and pion mass mistunings
(similar corrections were made in Ref. [5]). To make the
various corrections we employ the following general
procedure. The contribution to aHVPμ is computed in chiral
perturbation theory at NLO. Finite-volume corrections are
obtained by taking the difference between infinite-volume
and finite-volume results [see Eq. (25)]. Similarly, taste-
breaking effects are obtained by differences between results
computed with the Goldstone pion mass and the average of
contributions for each taste pion [cf., Eq. (26)]. These can
be calculated at either finite or infinite volume. Finally, to
correct for the mistuning of the pion mass, the difference is
computed between the nominal Goldstone mass of
135 MeVand the unitary value measured for each ensemble
as given in Table I. It turns out the latter correction is only
really noticeable for the 643 ensemble (see the fifth column
in Table III), and results in a shift of −5.71 × 10−10 from the
measured value. This shift is slightly smaller than the one
reported in Ref. [5] which took the unitary mass to be
128 MeV. Finally, after extrapolating to the continuum and
correcting to infinite volume at NLO, we add to the result
the average of the NNLO finite volume corrections for each
ensemble.
In Table III, values of aHVPμ , including finite-volume and

finite-volume plus taste corrections for each ensemble, are
given in the third and fourth columns, respectively. They
are also displayed in Fig. 4. Values in the continuum should
agree, so the difference is a measure of the systematic error
associated with the continuum extrapolation, which we take
as one-half of the difference, which is equal to 4.8 × 10−10.
The fifth column gives aHVPμ after NLO corrections for
finite volume, taste symmetry breaking, and pion mass
retuning, which we take as the NLO-corrected central
value. Applying the averaged NNLO finite-volume cor-
rection of 8 × 10−10 from Eq. (A14) with a ChPT error of
4 × 10−10 to this result then yields

ð659� 20� 5� 5� 4Þ × 10−10 ¼ 659ð22Þ × 10−10:

ð34Þ

FIG. 4. Continuum limit of the muon anomaly after correcting
the data to infinite volume with NLO staggered chiral perturba-
tion theory (bursts), plus taste corrections (circles), plus pion
mass retuning (triangles). The uncorrected lattice data (squares) is
shown for comparison.

TABLE II. HVP contributions to the muon anomaly, in units of
10−10. Total refers to the bounding method described in the text,
and w (ŵ) refers to the use of the weight given by Eq. (9)
[Eq. (11)] in Eq. (10).

a (fm) Total (w) Total (ŵ)

0.12121(64) 562.1(8.4) 545.8(8.4)
0.08787(46) 594.8(10.4) 584.8(10.4)
0.05684(30) 623.1(27.5) 617.8(27.0)
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The first, dominant, error is statistical, while the rest are
systematic error estimates (in order of size): continuum
extrapolation, scale setting,9 and higher orders in ChPT.
The second equation gives the error by adding the indi-
vidual ones in quadrature.
The FNAL/MILC/HPQCD collaborations recently pro-

duced an update of their computation of the HVP con-
tribution [5], using the same physical mass HISQ
ensembles as those employed here (plus two additional
ones with a ≈ 0.15 fm), so it is particularly interesting to
compare our results with that work. Those authors use
different methods, including moments of local-local current
correlation functions and Padé approximants [31,32]. They
do not use LMA, instead relying on brute-force computa-
tions on 1000s of configurations to control statistical errors.
Because our computations are so different, consistency is a
significant test of these lattice computations. The values of
(uncorrected) light-quark connected contribution are given
in Table III of Ref. [5] for the three ensembles used in this
work. They find10 580(7), 605(7), and 608(14) in units of
10−10 compared to the values in the second column of
Table II, 562(8), 595(10), and 623(28). All of the errors just
quoted are statistical only, and comparable, except for the
963 ensemble. Since the lattice spacing errors in the valence
quark sector are different between the two calculations, the
above values need not agree precisely except in the
continuum and infinite-volume limits. The value quoted
in Eq. (3.2) of Ref. [5] is 630.1(8.3) which is consistent, but
somewhat smaller than, the value given in Eq. (34). The
authors of Ref. [5] also use a prior constraint on the
coefficient of the a2 term which reduces the uncertainty on
the continuum limit extrapolation. At closer inspection the
results on each ensemble are not so different either. The
points at 0.09 and 0.12 fm show similar behavior, and it
could be informative to obtain the point at 0.15 fm using
our method to better compare the overall a2 dependence.
The 0.06 fm points also agree well within (larger) statistical

errors. Finally, a significant part of the difference between
the values comes from the corrections beyond NLO ChPT:
ours is þ8 × 10−10, coming from NNLO ChPT, while their
model estimate varies from −4 × 10−10 to −10 × 10−10,
depending on the ensemble. Our result is consistent within
errors with other recent computations, as seen in Fig. 5.
However there is still a relatively large spread, with the
values on the low and high ends being incompatible with
each other.
To explore a more precise comparison with results from

other groups, we adopt the window method of Ref. [3],

aWμ ¼ 2
XT=2
t¼0

CðtÞwðtÞðΘðt; t0;ΔÞ − Θðt; t1;ΔÞÞ ð35Þ

Θðt; t0;ΔÞ ¼ 1

2
ð1þ tanhððt − t0Þ=ΔÞÞ; ð36Þ

where t1 − t0 is the size of the window and Δ is a suitably
chosen width that smears out the window at either edge.
We choose windows to avoid both lattice artifacts at short

TABLE III. HVP contributions to the muon anomaly, in units of 10−10, including corrections computed in chiral perturbation theory.
The second column repeats the second column of Table II, the third column includes the finite-volume corrections of Eq. (25), while the
fourth column also includes the infinite-volume taste corrections of Eq. (26). The fifth column adjusts the values shown in the fourth
column to a common pion mass of 135 MeVusing NLO ChPT, as described in the text. Continuum extrapolated values of each column
are shown in the last row. The weighting function w has been used throughout.

a (fm) Lattice value FV corr. FVþ taste corr: FVþ tasteþmπ corr:

0.12121(64) 562.1(8.4) 564.2(8.4) 615.8(8.4) 613.6(8.4)
0.08787(46) 594.8(10.4) 601.7(10.4) 635.9(10.4) 630.2(10.4)
0.05684(30) 623.1(27.5) 638.7(27.5) 648.2(27.5) 647.1(27.5)
0 648.3(20.0) 657.9(20.0) 651.1(20.1)

FIG. 5. Contributions to the muon anomaly from the connected
light-quark vacuum polarization from recent publications [2]
(BMW), [3] (RBC/UKQCD), [4] (ETM), [5] (Fermilab/HPQCD/
MILC), [6] (Shintani and Kuramashi), [7] (Mainz).

9For the values of a given in Table I, we simply adopt the scale
setting error given in Table IV of [5].

10The errors given here are statistical only (private commu-
nication with the authors). In Table III of Ref. [5] the errors are
statistical and systematic, combined in quadrature.
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distance and large statistical errors at long distance. Results
for several windows and both weighting functions are
tabulated in Table IV. We note that the window method can
also be used to combine lattice and dispersive results to
obtain a result that is more precise than either alone as was
shown in Ref. [3], though we do not pursue this here.
In Fig. 6 several continuum limits are shown for the

window with t0 ¼ 0.4, t1 ¼ 1, and Δ ¼ 0.15 fm. For this
window the statistical errors for each ensemble are very
small, so it allows a precise regime to explore and under-
stand discretization effects. Here we also ignore mass
retunings and finite-volume effects because they have a
negligible effect, with the two-pion state dominating only at
long distance (an explicit check reveals this assertion to be
true). However, we do investigate taste-breaking effects
since these are significant. The lower two curves in Fig. 6
correspond to uncorrected data points and weighting
functions w and ŵ. At nonzero lattice spacing there is a
noticeable effect, but the continuum limits are the same (see
the last row in Table IV). Including the taste-breaking
corrections shifts the data further, essentially making the
curve flat, but the continuum limit is barely affected. We

also show totally constrained “fits,” including an a4 term,
which lower the continuum limit slightly while signifi-
cantly increasing the statistical error. Linear extrapolations
using only the two finer ensembles give very similar results.
The various values, which are very different at nonzero
lattice spacing, and different extrapolations give consistent
results in the continuum limit, with small differences that
are well within statistical errors.
Figure 7 displays results for two representative windows

along with values from the recent RBC/UKQCD com-
putation using domain wall fermions (DWF) [3].11 The
results should agree in the continuum limit. We also show
the corresponding dispersive=eþe− value, using the R-ratio
compilation of Ref. [33]. The HISQ results lie above the
DWF and dispersive ones. The differences in central values
correspond to roughly 1–2 percent of the total HVP
contribution to aμ, depending on the window and the fit.
Leaving out the largest lattice spacing point (for HISQ)
tends to give a somewhat lower value with larger statistical
errors. Given the uncertainties (2–4 standard deviations), it
is difficult to conclude if there is a significant discrepancy,
though the spread seems uncomfortably large. The stat-
istical error on the a ¼ 0 HISQ point is smaller than for
DWF, but the uncertainty due to the lattice spacing is larger.
When adding them in quadrature, the total errors for HISQ
are smaller for window 1 and about the same for window 3.
It is interesting to note that the HISQ and DWF lattice-
spacing errors are comparable before taste symmetry break-
ing corrections, and that after including corrections the HISQ
points are remarkably flat, especially for window 1. In Fig. 7
finite-volume errors have been included to NLO, but are very
small in both windows and shift both DWF and HISQ curves
up by roughly the same amount. The absence of charm sea
quarks in the DWF result is estimated from perturbation
theory to be very small [3].
To check if the errors above were underestimated for the

windows, we performed the first half—second half analysis
as before. The situation turns out to be similar to the case
for the total, except the values for the 643 ensemble which
are now closer to three sigma away from each other. If we
inflate the errors by 50% on all points, then the difference is
again below 2 standard deviations, the error on the a ¼ 0
value also grows by 50%, and the almost 4 sigma
discrepancy found above goes down to about 3.5 sigma.
Thus our conclusions remain unchanged.

TABLE IV. HVP contributions to the muon anomaly, in units of 10−10, from the window method with windows 1, 2, and 3,
ðt0; t1;ΔÞ ¼ ð0.4; 1.0; 0.15Þ, (0.4,1.0,0.3), and (0.4,1.3,0.15), respectively. ŵ refers to the weighting function (11) in Eq. (10).

a (fm) Window 1 Window 2 Window 3 Window 1(ŵ) Window 2(ŵ) Window 3(ŵ)

0.12121(64) 201.07(56) 186.43(51) 308.32(94) 194.12(55) 179.32(49) 300.20(93)
0.08787(46) 205.95(66) 191.89(69) 319.16(1.44) 202.22(65) 187.95(68) 314.79(1.42)
0.05684(30) 207.13(92) 193.91(1.02) 324.37(2.40) 205.55(91) 192.18(1.02) 322.52(2.39)
0 209.78(96) 196.82(1.03) 329.99(2.25) 209.69(95) 196.52(1.02) 329.85(2.24)

FIG. 6. Continuum limit combined with the window method for
lattice data without finite-volume corrections. t0 ¼ 0.4 fm,
t1 ¼ 1 fm, Δ ¼ 0.15. Squares (crosses) correspond to uncor-
rected data points with weighting function ŵ (w); filled circles are
taste-breaking corrected to NLO from w data points. Solid curves
show linear fits in a2; all three agree very well in the continuum
limit. Dashed curves denote a fully constrained parametrization
(no degrees of freedom) using both a2 and a4 terms.

11Here we compare results that have been corrected to NLO in
ChPT since that is what is published in Ref. [3].
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One can see a tension between the HISQ and DWF
results in the continuum limit from this comparison.
Whether or not the difference will survive after further
investigation is unclear at this point. A third, smaller, lattice
spacing ensemble is being generated by the RBC/UKQCD
collaborations [34], and we plan to add statistics and a
fourth lattice spacing in the future, both of which should
help resolve the issue. It would be helpful if other groups
also applied the window method to their existing data.
A final check included for completeness comes from

moments of the correlation function [32],

Πll
n ¼ ðQ2

u þQ2
dÞð−1Þnþ12

XT=2
t¼0

t2nþ2

ð2nþ 2Þ!CðtÞ: ð37Þ

For the first moment we find 0.0797(27), 0.0841(39), and
0.069(39) for the three different ensembles, coarsest to
finest, respectively. A simple linear extrapolation in a2

yieldsΠll
1 ¼ 0.0884ð86Þwhich is consistent with the values

in Refs. [3,5].

IV. CONCLUSION

We have presented a lattice QCD computation of the
light-quark HVP contribution to the muon anomaly with
2þ 1þ 1 flavors of HISQ fermions. Three ensembles at
the physical point, generated by the MILC Collaboration,
were used to take the continuum limit at fixed volume
(L ≈ 5.5 fm), and the results are broadly consistent with
those in the literature. Using the window method, a precise
comparison yields values that are a bit higher than the
dispersive result and a recent one using DWF. Given the
statistical and systematic errors it is not clear that a real
discrepancy exists: a decisive determination requires addi-
tional computations.
Overall the statistical errors in this study are at the larger

end of the range from recent studies [2–5,10,35]. This is
primarily due to the fewer number of low modes and
measurements on the largest lattice used in our study.
Nevertheless the error reduction techniques used here are
demonstrably powerful. Future computations with more
measurements, and, in particular, that use more low modes,
can have an impact.
We have also presented a calculation in chiral perturba-

tion theory, in Euclidean space, through NNLO of the
finite-volume corrections to the HVP contribution to the
muon g − 2. The NNLO correction is large (∼1%) for
physical pion mass and the lattice sizes used in current
calculations, so it must be included for a precise compari-
son to experiment.
The computations presented here are important for the

test of the standard model against the ongoing experiment
at Fermilab and an upcoming one at J-PARC.
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FIG. 7. Continuum limit combined with the window method for
DWF [3], using the weight ŵ (circles) and HISQ, using the weight
w (squares). Δ ¼ 0.15, t0 ¼ 0.4 fm, t1 ¼ 1 fm (upper panel) and
1.3 fm (lower panel). The R-ratio result (cross, using data from
Ref. [33] by C. Lehner) is also shown in the upper panel. Finite-
volume (DWF and HISQ) and taste-breaking (HISQ) corrections
have been included to NLO in ChPT. Lattice spacing uncertain-
ties, added in quadrature with statistical errors, are also included.
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APPENDIX: NNLO FINITE-VOLUME CORRECTION

At NNLO, using the resummation formula (18), CðtÞ of Eq. (14) can be rewritten as
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We note that, despite the appearance of k⃗2 − p⃗2 in the denominator in various places, this is always accompanied by a
numerator that vanishes at k⃗2 ¼ p⃗2, and all functions we integrate over k⃗ and p⃗ are continuous. An implication is that if we
(as we do below) break up some of the terms containing the factor 1=ðk⃗2 − p⃗2Þ, any contributions from the apparent pole at
k⃗2 ¼ p⃗2 should be dropped. We always regulate such poles such that they do not contribute to the integrals.
The first two lines give the infinite-volume result, while the remaining lines represent finite-volume corrections. These

finite-volume corrections can be rearranged as

ΔCðtÞ ¼ −
10
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in which the renormalization-group invariant l̄6 is defined by
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6ðμÞ ¼ −
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and where the limit d → 3 has already been taken in the
first term. The first term in Eq. (A2) collects the terms
containing the factors e−2Ept on the third and fifth lines of
Eq. (A1), the second term (third line) collects the fourth line
and the remaining part of the fifth line (with the interchange
p⃗ ↔ k⃗), while the last two lines are copied from the sixth
and seventh lines of Eq. (A1).
The first term (first two lines) of Eq. (A2) can be dealt

with in the same way as the NLO contribution; all one
needs to do is to insert the expression between square
brackets inside the integral over p in Eq. (21). Numerically,
using

F ¼ Fπ ¼ 92.21 MeV;

l̄6 ¼ 16ð1Þ; ðA4Þ
(see Ref. [36]), we find that this shifts the values we found
in Eq. (23) by

ΔaHVP;NNLO;1μ ¼

8>><
>>:

8.89 × 10−10; L=a ¼ 96

8.77 × 10−10; L=a ¼ 64

7.22 × 10−10; L=a ¼ 48

: ðA5Þ

For the third and fourth lines in Eq. (A2), we need the
integral

1

F2

Z
ddk
ð2πÞd

X
n⃗≠0

ein⃗·k⃗L

Ek
¼ 1

F2

πd=2

ð2πÞdΓðd=2Þ
X
n⃗≠0

1

inL

×
Z

∞

−∞
ðk2Þϵ=2dk kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
π

p einkL;

ðA6Þ
which converges for d < 3. We use Cauchy’s theorem to
rewrite the k integral as an integral along the discontinuity
of the square root across the cut which we choose along the
positive imaginary axis starting at þimπ.

12 The result is
finite in the limit d → 3, and Eq. (A6) then becomes
equal to

1

2π2F2

X
n⃗≠0

1

nL

Z
∞

mπ

dy
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 −m2
π

p e−ynL

¼ −
m2

π

2π2F2

X∞
n2¼1

Z00ð0; n2Þ
nmπL

K1ðnmπLÞ: ðA7Þ

The numerical value of this expression is equal to 0.00399,
0.00375 and 0.00282 for the 963, 643 and 483 ensembles,
respectively. From these numbers, and using the values of
Eq. (23), we find for the contribution from the third line of
Eq. (A2) the values

ΔaHVP;NNLO;2μ ¼

8>><
>>:

−0.08 × 10−10; L=a ¼ 96

−0.08 × 10−10; L=a ¼ 64

−0.05 × 10−10; L=a ¼ 48

: ðA8Þ

The other integral over k⃗ on the fourth line of Eq. (A2) is,
writing k2 ¼ k⃗2 and p2 ¼ p⃗2, equal to

Bðp2Þ≡ lim
η→0

lim
d→3

1

F2

Z
ddk
ð2πÞd

X
n⃗≠0

ein⃗·k⃗L

Ek

k2

k2 − p2 þ 2iηk

¼ lim
η→0

lim
d→3

1

F2

πd=2

ð2πÞdΓðd=2Þ
X
n⃗≠0

1

inL

Z
∞

−∞
ðk2Þϵ=2dk

×
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
π

p einkL
k2

k2 − p2 þ 2iηk

¼ −
m2

π

2π2F2

X∞
n2¼1

Z00ð0; n2Þ
nmπL

×
Z

∞

1

dy
yffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − 1
p y2

y2 þ p⃗2

m2
π

e−ynmπL: ðA9Þ

Here we again closed the contour in the upper half k plane,
and regulated the poles at k ¼ �p − iη such that they are
located in the lower half k plane, and thus do not contribute;
cf. the explanation below Eq. (A1).
Using Eqs. (A7) and (A9) to numerically carry out the

integral over p⃗ on the fourth line of Eq. (A2), we find the
corrections

ΔaHVP;NNLO;3μ ¼

8>><
>>:

0.30 × 10−10; L=a ¼ 96

0.30 × 10−10; L=a ¼ 64

0.22 × 10−10; L=a ¼ 48

: ðA10Þ

The final term in Eq. (A2) can be brought into a simpler
form by carrying out the angular integrals, leading to a
contribution to ΔaHVPμ of the form

ΔaHVP;NNLO;4μ ¼ 10

9

α2

24dF2

�
2πd=2

Γðd=2Þð2πÞd
�

2

×
X∞
n2¼1

X∞
m2¼1

Z00ð0; n2ÞZ00ð0; m2Þ
nmL2

×
Z

∞

−∞
pd−3dp

Z
∞

−∞
kd−3dkeinpLþimkL

×
p3k3

EpEk

Fðp2Þ=Ep − Fðk2Þ=Ek

k2 − p2
: ðA11Þ

Interchanging p and k in the integral with Fðk2Þ=Ek in the
numerator, we obtain

12There is also a branch cut starting at −imπ which we can take
along the negative imaginary axis. The branch point at k ¼ 0 does
not contribute in the limit ϵ → 0.
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ΔaHVP;NNLO;4μ ¼ 10

9

α2

12dF2

�
2πd=2

Γðd=2Þð2πÞd
�

2

×
X∞
n2¼1

X∞
m2¼1

Z00ð0; n2ÞZ00ð0; m2Þ
nmL2

×
Z

∞

−∞
pϵdpeinpL

p3Fðp2Þ
E2
p

×
Z

∞

−∞
kϵdkeimkL k3

Ek

1

k2 − p2

¼ 10

9

α2

36π2
X∞
n2¼1

Z00ð0; n2Þ
nL

Z
∞

−∞
dp sin ðnpLÞ

×
p3Fðp2Þ

E2
p

Bðp2Þ; ðA12Þ

where Bðp2Þwas defined in Eq. (A9), and we took the limit
d → 3 in the last step. We find that, for the parameter values
of Table I,

ΔaHVP;NNLO;4μ ¼

8>><
>>:

0.02 × 10−10; L=a ¼ 96

0.02 × 10−10; L=a ¼ 64

0.01 × 10−10; L=a ¼ 48

: ðA13Þ

The total NNLO contribution thus adds up to

ΔaHVP;NNLOμ ¼

8>><
>>:

9.13 × 10−10; L=a ¼ 96

9.01 × 10−10; L=a ¼ 64

7.40 × 10−10; L=a ¼ 48

: ðA14Þ
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