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Radiative decays in charmonium beyond the p/m approximation
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We analyze the theoretical description of radiative decays in charmonium. We use an elementary
emission decay model to build the most general electromagnetic transition operator. We show that accurate
results for the widths can be obtained from a simple quark potential model reasonably fitting the
spectroscopy if the complete form of the operator is used instead of its standard p/m approximation and the
experimental masses are properly implemented in the calculation.
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I. INTRODUCTION

Electromagnetic decays in heavy quarkonium (bottomo-
nium or charmonium) may play a key role in the under-
standing of its structure. The current impossibility to
directly solve QCD, the theory of strong interactions, for
the description of hadrons, forces us to rely, for the
knowledge of such structure, on models and/or effective
theories, incorporating at the greater extent the properties of
QCD (see for instance [1,2] and references therein). Among
these approximations the most successful one regarding the
number of described heavy quarkonium states below
the open flavor meson-meson thresholds is undoubtedly
the constituent quark model, see [1] and references therein,
where heavy quarkonium is described as a quark-antiquark
bound system. Then, as the electromagnetic transition
operator is known (with no free parameter) the comparison
of the measured widths with their calculated values from
different spectroscopic quark models may be an ideal test to
discriminate between these models and to advance in the
understanding of the heavy quarkonium structure.

In a recent paper [3], we have shown that this discrimi-
nation may be rather difficult in bottomonium. By using the
standard expansion of the electromagnetic transition oper-
ator up to p, /M, order, where p, (M,,) stands for three-
momentum (mass) of the b quark, we have shown that
accurate results for the widths can be obtained from different
quark potential models reasonably fitting the spectroscopy
once the experimental masses of the bottomonium states
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instead of the calculated ones are properly implemented in
the calculation. The argument justifying this substitution
(and giving meaning to the qualifying term “reasonably
fitting the spectroscopy” employed) is that the experimental
masses can be hopefully obtained from the wave functions of
the calculated states by applying first order perturbation
theory. Therefore, the implementation of the experimental
masses allows for a direct test of the quark model wave
functions.

In this article we analyze electromagnetic decays in
charmonium, focusing on the quantitatively most relevant
electromagnetic transitions, 3 | < 3p 7, for which there are
data available. We first show that the p./M . order approxi-
mation, where the subindex c stands for the ¢ quark, does not
give rise to such an accurate description of the decay widths
as in bottomonium. This could be somehow expected since
the expectation value of |p.|/M,, representing the speed of
the quark, can be about half the speed of light for the low
lying charmonium states, what makes the use of the
transition operator up to the p./M,. order debatable. We
proceed then to build the complete transition operator and to
apply it to the calculation of the decay widths. This allows us
to discriminate between different quark models according to
their accuracy in the description of radiative decays.

These contents are organized as follows. In Sec. II we
detail the Cornell potential models we use to calculate the
masses and wave functions of the low lying charmonium
states. We expect that the experimental masses can be
obtained from the calculated values via corrections to the
Hamiltonian evaluated at first order in perturbation theory.
In Sec. III the elementary emission model for electromag-
netic transitions is developed in some detail. From it we
recover the usual p./M_. approximation in Sec. IV. The
comparison of the calculated decay widths with data points
out the need to go beyond this approximation. Then, in
Sec. V the complete transition operator, to all p./M,
orders, is built. The transition amplitude and the explicit
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form of its electric and magnetic contributions is detailed.
This is appliedin Sec. VIto the calculation of radiative decay
widths which are compared to data. Finally, in Sec. VII our
main results and conclusions are summarized.

II. SPECTROSCOPIC QUARK MODELS

For the description of charmonium we shall use a
nonrelativistic quark potential model framework defined
by the Hamiltonian

P’

C

with a Cornell potential energy

V() =or—1p 2)

where p is the relative momentum operator, r = |r| is the
¢ — ¢ distance operator (r is the relative position operator),
the parameters ¢ and ¢ stand for the string tension and the
chromoelectric coulomb strength respectively, and f is a
constant to fix the origin of the potential. It is important to
emphasize that

(1) this potential form arises from spin independent
quenched lattice QCD calculations in the Born-
Oppenheimer approximation [4],

(i) in the spirit of the nonrelativistic quark model
calculations o, £, f and the quark mass M, should
be considered as effective parameters through which
spin dependent and/or spin independent corrections
may be implicitly incorporated.

Henceforth we shall make use of two different quark
models with the same Hamiltonian form (1), Model I and
Model 1II, that have been used for the analysis of radiative
decays in bottomonium [3]. As we are dealing with a radial
potential we shall denote the spectroscopic states by
ntHIL 7 where s, L, and J stand for the spin, orbital angular
momentum, and total angular momentum quantum numbers
respectively.

Model I, providing a good description of spin triplet state
masses in bottomonium [5] is defined in charmonium [6]
by the set of parameter values

o; = 850 MeV/fm,
¢; =100 MeV. fm,
(M,); = 1348.6 MeV, (3)

giving account of the mass differences between some of
the low lying (spin triplet) charmonium states whose
electromagnetic transitions are measured, more pre-
cisely between 23S, and 1°P;, and between 13P; and
13S,. Hence, the model also describes accurately, through
a convenient choice of the additive constant (f.);, the

masses of the 135, 23S, and 1°P, states. Furthermore,
inasmuch as the mass splittings between P states can be
obtained via first order perturbation theory the 1°P , states
would be described by the same wave function as the 13P,
one. In Table I we list the ratios of the calculated mass
differences to the experimental ones.

Model II, defined in reference [8] by the set of parameter
values

o = 925.5 MeV/fm,
CII = 1026 MeV fm,
(M,);; = 1840 MeV, (4)

is based on the assumption that mass corrections to the
charmonium states calculated from (1) may have to do
mainly with nonconsidered spin dependent terms in the
potential, so that the quark model should fit the centers of
gravity of spin triplet and spin singlet states.

Let us realize that the chosen value for the string tension,
Vo =427.4 MeV, agrees with the one derived from the
analysis of Regge trajectories in light mesons [4], and that
the Coulomb strength {;; = 102.6 MeV fm corresponds to

a strong quark-gluon coupling a, = % ~ (.39 quite in
agreement with the value derived in QCD from the fine
structure splitting of 1P states in charmonium [9]. As for
M, the chosen value gives mass differences between any
two of the centers of gravity of the 15, 25, and 1P states in
accord with data within a 10% of accuracy. In Table I we
list the ratios of the calculated center of gravity mass
differences to the experimental ones. One could think of
refining the values of the parameters to make all these ratios
closer to 1. This can only be done at the price of losing the
close connection of o;; and/or {;; with their expected
phenomenological values. Instead, we prefer to maintain
such connection and the modest discrepancy reflected in
Table II. Moreover, the chosen values of o;; and {;; have
been used in bottomonium for an accurate description of
electromagnetic decay widths [3] what adds interest to the

TABLE 1. Ratios of the calculated mass differences (M;—
M )" between 1°S;, 23§;, 1°P; charmonium states from
Model I as compared to the experimental ones (M; — M ;)5
taken from [7].

_ Theor
238, — 1°P, 1.00
1’P, — 135, 0.99
238, — 135, 0.99
238, — 1°P, 1.09
23S, - 1°P, 0.65
3Py — 135, 1.29
13P, — 135, 0.89
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TABLE II. Ratios of the calculated center of gravity mass
differences (M; — M ;)] between 1S, 2S, 1P charmonium
states from Model II as compared to the experimental ones
(M; — M ;)E*" taken from [7].

. (M M )Theor
L — f (M M:)éxpl
25-18 0.98
2§ —-1P 1.09

- 18 0.94

possibility of getting such an accurate description in
charmonium as well.

It is worth to point out that the quark model wave
functions are the same for any value of the additive constant
B. Indeed, we could change (f3.),, to obtain from Model II
an approximate mass description of the 135, 23S, and 13P,
states, or we could change (f3,.), to obtain from Model I the
centers of gravity of the 1S, 25, and 1P states in accord with
data within a 5% of accuracy. In this sense, Model I and
Model II are quite equivalent with respect to the mass
description of the low lying charmonium states except for
23P,, as shown in Table III. Hence, any significant differ-
ence in their predictions for other observables involving
these states can put severe constraints on the possible
values of the parameters, in particular on the charm mass
whose value in Model I is very different to that in Model 11.

It should be also remarked that simplicity is not the only
argument to use a Cornell potential model for the study of
radiative decays. The absence of any momentum depend-
ence in the potential allows for a complete factorization of
the heavy quarkonium mass dependence in the calculation
of the electromagnetic decay widths up to p./M, order.
Furthermore, such a complete factorization can be also
pursued to higher orders as will be shown later on. Then, if
the experimental masses instead of the calculated ones are
implemented in the calculation the comparison of the
calculated decay widths to data becomes a powerful tool

TABLE III. Calculated masses, anmLJ, in MeV for the low
lying spin triplet states. The subscripts / and /1 refer to Model I
with (f.); =53 MeV and Model II with (f.),, = —850 MeV
respectively. Experimental masses from [7]. We have not quoted
any mass for the experimental 2P, state since the X(3872)
cannot be considered a pure Cornell state.

n2S+ILJ (an“'*'L,)[ (an"“L_,)Expt (an”]Lj)Il
138, 3099 3096.916 + 0.011 3088
238, 3685 3686.09 £ 0.04 3678
13P, 3509 3414.75 £0.31 3516
1°P, 3509 3510.66 £+ 0.07 3516
13P, 3509 3556.20 £ 0.09 3516
2°P, 3911 386272511 3959
23p, 3911 3959
23p, 3911 3927.24+2.6 3959

to test the model wave functions. As a counterpart, the use
of the Cornell potential in charmonium restricts the study to
the low lying states where meson-meson threshold effects
can be neglected.

III. ELECTROMAGNETIC DECAY MODEL

Let us consider the decay I — yF where [ and F are the
initial and final charmonium states respectively. In the rest
frame of the decaying meson [/ the total width is given by
(we follow the PDG conventions, see [7, p. 567])

ko
87[M2 2J Z Z M Jr M, szl

/1 +1 mymp

. (5

1—‘1—>;/F

where k is the energy of the photon and M;, J;, and m;
stand for the mass of [, its total angular momentum
and its third projection respectively. The polarization of
the photon is represented by A (as usual we choose the
three-momentum of the photon in the Z direction) and the
transition amplitude by M’}F.mF’ 7,.m,- This amplitude can be

obtained from the interaction Hamiltonian H™ as

(2”)36 ( —k- PF)MJFmFJ, m;
= \/2M1\/2EF\/2]€0 F}/|Hmt|1 s (6)

where P] (E[,P[) (M[,O), PF:(EF,PF), and (ko,k)
are the meson and photon four-momenta.

In the elementary emission decay model the radiative
transition / — yF takes place through the emission of the
photon by the quark or the antiquark in the initial state.
In QED the interaction Hamiltonian at the quark level is
given by

Him = / dojp (x)A, (x). 7)

where A, is the photon field and j* the electromagnetic
current given by

J(*) = q(x)Qrtq(x) (8)

where ¢(x) is the quark field and Q the quark charge matrix.
Notice that the time dependence has been obviated since in
the calculation of the transition amplitude it only gives rise to
a Dirac delta accounting for energy conservation.

In quantum field theory the quark field operator with no
time dependence is written as (see for example [10, p. 58],
but note that we use Dirac spinors instead of the Weyl
representation adopted there)

a0 = [ 52 ¢—Z

+ 0™ ()b (p)e™P), )
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where E(p) is the relativistic energy of a quark Q or

antiquark Q, E(p) = /M + p?, u™ " (p) are

the Dirac spinors

s(p) and v

u™(p) = MQ+E(p)< p-a) ) (10)

Mg+E@A

p-o m
. X

Vg (x)"

with y™ being the Pauli spinor, and 57" (p) (b3*"(p)) the
annihilation (creation) operator of a quark (antiquark) with
spin projection m, and three-momentum p.

Then, by defining

dp,
qa('x) E/(2§)3

where @ = 1, 2 refers to quark and antiquark respectively,
the electromagnetic current j#(x) reads

M + Ea pa i my
( Ze Pty by (Pa)

(12)

Vg, (x) Vg, (x)"

(13)

Jox) = Zea |:qjx(x)qa(x> + <M +E, M, +E

and

ea{_l |:
a=12

where e; = ¢, = %e (with e = \/4za,,, being a,,, the fine
structure constant), e, = e; = —e,, and E, = /M2 — V2.
It is important to highlight that in the derivation of the
current operator we have kept only terms that conserve
separately the number of quarks and antiquarks, since we
are only interested in radiative processes where there is no
quark-antiquark photoproduction or annihilation.

\%
+ io, X 9a(¥) )]
a M!X + Ea Ma + Ea

5 (B o] (R ) <= G )] 00

In order to calculate the matrix element (Fy|H™|I) from
the spectroscopic quark model wave functions one needs
the “first quantized” form of the interaction. Following the
procedure explained in [11] and detailed in Appendix A,
we obtain the first quantized form of the current (in
Appendix B it is checked that this current is conserved,
as required by gauge invariance)

M —|— E |: Pa 3 Pa . Pa 3 Do
7 e\~ — 5(>(x—r)+<7-5<~)(x— ) tie, x5 (x —ry)
lst aZIZ a Ma+Ea a Ma+Ea a Ma+E(x a Mac+Ea
M,+E
7“2; . (15)
a
M, + Eq K 3 Pa Pu 3
i ( 5 (x 1) + 5 (x 1)
o az;z ' M, +E, M,+E, ‘
Ciopx (6 —r)—Pa__Pa_ 501y )|, [MatEa (16)
M(l + E(l M(l + E(l 2E(I
Then the operator to be sandwiched between the meson states reads
+E Po wr i P Pa i
k., A Hmt . —tkr _ a _ e—lk-l‘(, —io, X <e—zk-r,, a S a _ e—zk~r,,
koAl m;z f M +E, M,+E, ‘ M, +E, M +E,
. M +E
(e}) # (17)
a
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where we have put a hat above E and p and r to make more
clear that they are operators, in contrast to k which is a
vector number.

It is a common practice in the analysis of radiative
transitions in heavy quarkonium to proceed to a non-
relativistic reduction of this operator up to £- order. This
has been justified for the use of the nonrelauVlstlc
Schrodinger equation for the calculation of the states, see
for example [11]. However, as the effectiveness of the quark
model parameters and the implementation of the experi-
mental masses in the calculation of radiative decays may
incorporate in an effective manner relativistic effects the

restriction of the operator to the ;Z order may be ques-

tionable, at least for charmonium where the speed of the
quarks in the low lying states is not much smaller than
the speed of light in vacuum. Therefore we proceed next to
the evaluation of the transition amplitude M* first

in the 1‘&—”[ approximation and then to all 1"% orders. As we shall

JpmpJpmp?

see, the consideration of the higher il—f orders becomes
essential for an accurate description of the decay widths.

IV. THE p/m APPROXIMATION

The ” < appr0x1mat10n is defined from (17) in the limit
E,= M A thorough analysis of this approximation has
been carried out in [3]. Here we only give the final
expressions for the calculation of the amplitude:

MJF mpJy, m, \/ IAY 2EF Z M

a=1,2

‘PF\O ¥, (18)

where
|¥) = |J, m, nL,s) (19)

stands for the ¢ spectroscopic n***!L, state and O, for an
operator that we detail next.

Thus, for 3§, — 7P, transitions we have (here we write
only the electric part of the operator; the form for the
magnetic part can be found in the appendices of [3])

<Ofxl>3sl—»y3pj = (Yr
= <‘PF(3P,)|ei<

op) O W0s,))

"EN(=1)72p - ()" [¥ies,))
(20)

where 7 = r'%rz is the relative position operator and p =
’@ is the relative three-momentum operator.
By using the equality

M,
) (21)

where H is the Cornell spectroscopic Hamiltonian, and
introducing a Parseval identity in terms of a complete set of

intermediate eigenstates {|W¥;,)} of H, the mass depend-
ence in the matrix element can be explicitly extracted:

<Ogl>3sl_>y3p —iM, Z Yeee,) et &P

int
x (M, - 1) - (61)*[Wyes,)-
(22)

lIlt >

Mint) <Tint|(_

This permits the implementation of the experimental mass
differences (M; — M,,,) instead of the calculated ones so
that the quark model wave functions can be directly tested.

As for3P; — 38, transitions, using [p, e 7] = —ke~**
we get in a similar manner

!

<Ogt >3PJ—>;/3SI

— 1

= (Wres) 10 [Yrep))

= <lPF(3S1)|(_1)a2ﬁ : (eﬁ)

= —iM.y (Miy — Mp)(¥

int

2 <lPint|ei(

@), ¢p))
F(3S|)‘(_1)ar' <€k)*|‘Pim>

" ¥, CPy) )- (23)

These expressions get further simplified in the so-called
long wavelength (LWL) limit, corresponding to take
ei(_”a(%) = 1:

<(OS/)LWL>3S,—>73PJ

=—iM (M= Mp)(¥pep,) | (1) () [¥es,)),  (24)
<(O§l)LWL>3P,—>y3S]
=—iM(M; =M p)(¥res) |(=1)F(€2) [yep,). (25)

Actually this is the limit commonly used in the literature
[12] for the calculation of radiative decays despite the fact
that it can only be taken for granted when the condition

[kl (2(7)2) < 1

is satisfied [3]. Indeed, regarding the considered transitions
in charmonium, the only LWL processes are 235, —
y*1P,, as can be checked from Table IV where the root

(26)

TABLE 1V. Experimental values of the photon energy [kl
and calculated values of |k|EXpt(2(r2)%)3PJ from Model II for
38, = y°P; and 3P, — ¢3S, radiative transitions.

3Sl - 73PJ |k‘Expt (MeV) |k|Expt(2<r2>%)3P1
w(28) = yx.,(1p) 261 1.6
w(2S) = yx.,(1p) 171 1.0
w(2S) = 170, (1p) 128 0.8
Xeo(1p) = v /w 303 1.2
xe,(1p) = vy 389 1.5
Xe,(1p) = 1) /w 430 1.6
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TABLE V. Calculated widths up to order £~ as compared to data for y(25) — yy,(1P) and y., (1P) — yJ /y. Notation as follows.

1—‘(Theor Expt)

(Theor—Expt) ,

LWL : width in the LWL approx1mat10n implemented with the experimental masses and photon energy. I, )/ : width in
the £~ approximation implemented with the experimental masses and photon energy. The subscripts / and /I refer to Model I and II.

FPDG

Expt - measured widths [7].

Radiative Decay ~ (T\ e ™) (KeV) (T BP0y - (Kev)

p

w(2S) = rxe,(1p) 61 77
w(2S) = yxe,(1p) 53 52
w(2S) = rxe,(1p) 37 37
2o, (1p) = Iy 186 160
2e,(1p) = vJ/y 386 464
Xe,(1p) = Iy 513 616

TEP9 (Kev) (T ™) (Kev)  (Tw™™),; (KeV)
288+ 1.4 57 47
2874+ 1.5 41 41
280+1.3 29 29
151+ 14 118 128
288 + 22 315 266
374 £ 27 419 353

mean square radii have been obtained from Model II (the
same conclusion comes out from Model I).

In Table V we list the calculated 35, <> 3P, transition
widths as compared to data for charmonium. In all cases the
experimental masses for the initial, final and (when known)
intermediate charmonium states instead of the calculated
ones from the spectroscopic Hamiltonian have been used. It
turns out that the consideration of intermediate n’P, states
with n <2 is enough in the sense that the inclusion of
higher Cornell states hardly changes (2% at most) the
results. Regarding the intermediate 2°P; states we have
used the experimental masses for 23P,, corresponding to
Zc0(3860) under the assumption that this resonance is a
pure Cornell state, and 23P,, corresponding to y.,(3930)
that may be reasonably taken as a pure Cornell state since it
lies quite below the first S-wave 27" meson-meson thresh-
old [6]. As for 23P,| we have used the calculated mass from
Model I, see Table I11, since it lies in between those of 23P0
and 23P, as should be expected when no threshold effects
are taken into account (notice that the X(3872) can not be
taken as a pure Cornell state).

A look at Table V confirms, through a comparison of the
calculated LWL results (second column for Model I and
sixth column for Model II) with the 4 Pc ones (third column
for Model I and fifth column for Model 1), the validity of
the LWL limit for 235, — 1P, ,.

It makes also clear, through the comparison of the
calculated " < decay widths with data, that the ” < approxi-
mation does not give an accurate overall descrlptlon of
these decays. More precisely, except for 13P, — y135,
from Model I and 23§, — y13P, from Model II, all the
calculated 1151_2 widths are out of the experimental intervals,

in some cases with big differences respect to data. This is in
contrast with the situation in bottomonium [3] where most
of the calculated widths were within or pretty close to the
measured intervals.

By realizing that this may have to do at least in part with
the poor convergence of the expansion of the complete

transition operator in powers of " < (let us recall that the

expectation value of ; V’” ~in the low lymg charmonium states

can be as big as 0.5) we develop in what follows the
formalism for the application of the complete operator (17)
to the calculation of the decay widths.

V. BEYOND THE p/m APPROXIMATION

As it was mentioned before, the extraction of the mass
dependence in the matrix elements involved in the calcu-
lation of the radiative decay widths, allowing for the
substitution of the calculated masses by the measured
ones, is a crucial step to test the spectroscopic quark model
wave functions. Moreover, it is a condition sine qua non to
get an accurate description of radiative decay widths in
bottomonium [3].

When the complete transition operator (17) is consid-
ered, the presence of the momentum dependent operator E,
(instead of the constant M, in the 1{’,[— approximation)

complicates this mass extraction. To facilitate it, we first
rearrange expression (17) to group all the energy dependent
operators to the right so that they act on the initial state.
This is convenient on the one hand because we can extract
the mass dependence in the terms multiplying the energy
dependent operators in exactly the same manner as done in
the 1{’4— approximation (see below), and on the other hand

because the action of £, simplifies when acting on a state of
zero total three-momentum. In fact, as the initial state is in
its rest frame the action of p, =% —(=1)?p becomes

equivalent to that of p:

E(,|P: 0.J,m,nL,s)

=\/M2+p*P =0,J,m,nL,s). (27)

To relocate the energy dependent operators we use that
e~*7. represents a three-momentum translation, so that

e~k Ipa> = Ipa - k> (28)

If we expand for convenience the meson states in terms of
the quark and antiquark momentum eigenstates, |p;,p-)
where we obviate the spin quantum number since it does
not play any role in this argument, then (28) gives an

014027-6
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account of the transition from a quark (antiquark) state with
three-momentum p,, to a quark (antiquark) state with three-
momentum (p, — k) through the emission of a photon with
three-momentum k. Then energy conservation tells us that

Since this equality holds for the complete set of momentum
eigenstates {|p,)} we can rewrite it as an identity between
operators:

Ea(e_ikhin |pa>) = Ealpa - k> = (Ea - kO)IPa - k>’ (29) Eae_ik.fa - e_lkr ( - kO) (31)
where E,, and k( are numbers, not operators, so that we can .
write Then, using (31) and the well-known commutator
Ea(e_ik';a Ipa>) = (Ea - kO)(e_ik.;a Ipa>) [ﬁaa e_ik-fa] = —ké_ik'fa (32)
= _ik.i‘u(E - kO)Ipa>
e * By — ko) [Pa)- (30)  we rearrange (17) as
|
— i64 % [e"""“ZpaP_(Ea) + e Rl (E,)]} - (e)° (33)
where P, (E,) and K(E,) stand for the energy dependent scalar operators
. M, M, M,+E)M,+E, -k
Palk) = (57 ) et J] (34
Ma+Ea Ma+Ea_k0 4Ea(Ea_k0)
. 2M Mo+ E)My+ E,—k
]C(Ea) = ( Aot ) ( a+ Aa)(,\ a+ a 0). (35)
Ma+Ea_kO 4Ea(Ea_k0>
Equivalently, using (32) we can also write
1 .
int —ik-F, —ik-7 Tl KN E
W AHE0) === 3 o P (B + e ki (E,)
— 64 X [2poe" " P_(E,) + ekl (E,)]} - (e1)", (36)
|
with introducing center of mass
. 2 Eo— L P+ F S
K'(E,) = ( M, ) Mot E) Mot Ea—ho) (7, R="22 P=pi+h (40)
Ma+Ea 4Ea(Ea_k0)
For 3S, <> 3P, transitions, the use of (33) makes easier and relative
the calculation when the initial state is an S-wave o
(L; = 0), whereas (36) is more convenient when the initial Fef —F, b _Pi—p (41)
state is a P-wave (L; = 1), as it was the case in the % 2

approximation [3].

From (33) or (36) the transition amplitude M e dymy
can be straightforwardly derived following the step by step
procedure explained in [3]. Thus, using

|I> = |P17J1’m17n1L1’31>v (38)

|F> = |PF’JvaF7nFLFasF>’ (39)

operators, integrating over the center of mass spatial degrees
of freedom, taking into account that (ef)* - k = 0 and that in
the rest frame of the decaying meson one has P; =0,

P = —k, the transition amplitude becomes
MJF mpJym; \/ IV 2EF Z 2M ‘PF|O |1PI> (42)
a=12
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where the matrix element (¥5|O,|¥;) = (O,);; can be
conveniently expressed as a sum of electric and magnetic
contributions

(O = (D) + Q)7 + (O™
= <O > <O:1> (mag) g + <O >(mag)axﬁ’ (43)

the first decomposition being technically convenient when

As can be easily checked these expressions reduce to the
correspondlng ones obtained in the ” < approx1mat10n by

taking £, = M, and ky < M,,.
The second decomposition reads

(O = (Pl (=1)2p - (&) V" DPLE,)|¥)). (47)

(DLt = (Prlioy x k- (ef) eV P (E,)¥)),

the initial state is an S-wave, the second one when the initial (48)
state is a P-wave.
More explicitly, in the first decomposition the electric o (mag) ;5
part is given by (O)rr
~ k N _<IPF|iO-a X (_1 )a2ﬁ : (el/l)*ei(_l)a(l%),})— (Ea) |lPI> (49)
(On)i = (Prle =" (=1)2p - (6]) P (Ea) | ¥)),  (44)
. In order to extract the mass dependence from the p
the first magnetic term by operator we use (21) and introduce two Parseval identities
- (ma " . in terms of eigenstates of the Cornell Hamiltonian
(D)t = (Wple D Dic, k- (€]) K(Eq) ), (45)
1= YoO(P 50
and the second magnetic term by ;' A} (¥l (50)
(0, >mag b where A is a shorthand notation for all the quantum
iz o A numbers labeling the eigenstates (J4,my, 14, Ly, 54), SO
—(Pple' V" Do, x (~1)2p - (e4) P_(E,)¥)). (46) that the above expressions become
|
(0.)5) = —iM, Z (P[0 ) (Mg — M) (Bl (1) - (1) W) (¥5I P (E) ), (51)
(O = > (Wplel " Wiz, x - ()W) (W5 KC(E) 1), (52)
B
(On) 1 — i Z Wl ) (M — Ma)(a|(=1)%i0, x 7+ (€f)" W) (| P_(E) [ ¥)), (53)
and
(0L = —iM Z Yrl(- - (€3)"[¥a) (M4 MF)<lPA|ei(_l>a(g)|"PB><"FB|,P+(E¢1>|T1>1 (54)
(O =" (Pl Sig, x k- (€f) [ Pa) (PP (Bo)¥)), (55)
B
(Ol & — iy Z Wrl(=1)ic, X 7+ (6})[¥a) (Ma — Mp) (W |e" V") W) (W | P_(E,) ). (56)

To proceed further we should extract the state mass
dependence, if present, from the matrix elements involving
the energy dependent operators. Although in principle one
could extract it through the expansion of the energy
operators in powers of £ H and the introduction of as many

additional complete sets ‘of intermediate states as needed,

|
this is not practicable. Instead we can infer the possible
mass dependence by realizing that

(1) kg is quite smaller than M ., A]}’ < 0.3 for Model I and
k” <0.23 for Model II, as can be verified from
Table IV. Then, up to (M_)O order the energy

dependent operators reduce to (let us recall that as
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E, is acting on the initial state it can be substituted
by £ = /M +p*)

M

P.(E)~ EC ~K(E) (57)
P_(E)~0 (58)
where
Mc 1 ﬁZ 3 ﬁz 2
A p— p— 1 — —_ .. 5
E- i 2M3+2<2M3 T (9)
M?
and
52
p°  H-V(r)
oM 2M,. (60)

(i) as the energy dependent operators are scalars,
the only contributions to the matrix elements, for
example (W5|P. (E,)|¥,), come from |¥,) being
equal to |¥;) or to a radial excitation of |¥;).
The dominant contribution is the diagonal one
(¥,|P,(E,)|¥,) involving the matrix element
(W |H = V(r)|¥) = (M; = 2M,) = (¥;|V(r)|¥)).

(iii) according to our assumption that the difference
between the calculated mass and the experimental
one is due to potential corrections evaluated at

|

first order in perturbation theory it is obvi-
ous that (Ml)ca.lculated - <\P1|V(F)|\P1> - (MI)Expt -
(¥11V comected () |¥;) for any of our quark models.
Hence, we can appropriately calculate (W¥;|H —
V(r)|¥;) with Model I or II without the need of
extracting the mass dependence to implement the
measured values. Notice though that the more
significant the contribution of the nondiagonal
matrix elements of the energy dependent operators,
whose mass dependence has not been extracted, the
more uncertain the result.

Therefore, as the consideration of higher % orders do not
introduce any additional dependence on the mass of the
states, we can calculate the matrix elements of the energy
dependent operators from Model I or II. One should keep in

mind though that the presence of the energy dependent
P H-V(r)
2M2 T T 2M,

tional quark mass dependence in the amplitude with respect
to the 1% approximation. This makes the calculated widths to

operators, depending on , introduces an addi-

be more model dependent so that their comparison to data is
not only testing the quark model wave functions but also the
quark mass parameter. This means that this parameter loses
part of its effectiveness becoming a more phenomenological
one. In fact, we show next that the analysis of radiative
transitions may severely constrain its range of values in
correlation with the phenomenological string tension.

For the sake of completeness we write also the former
matrix elements in the LWL limit:

(O we = (O we = =M S (Wel(Mp — M) (1) - (ef)* W) (¥5 [P (E,)|¥)). (61)
(O Y = (O )y = Y (Prl (o, x k) - (e7)* |2 ) (Wl (E,) W), (62)
B

(O e = (DL ), = IMLS (Bplio, x (M — Mp)(=1)F - (e) [¥5) (¥ P_(E)|¥)).  (63)

A. Transitions 3S; — y°P;

In order to evaluate the 3S; — y*P; amplitude we use - (e} )" = \/gr(Y’}(?))*, the well-known expansion

sk - . . k A
e =" iVAznV2l + 1)) <7’> YO(#) (64)
=0

where k is in the Z direction, and the fact that the energy dependent operators are scalars, so that for example

<lPB|P+ (Ea> |1P1> & 5JB,J[5mB,m15LB,L15

(65)

Sp.SI*

Thus, from (42) and (51) the electric part of the amplitude reads
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(M 570 = i BB 3 3™ (1) 481+ (2L +

=0 JaLy
CO,mF.mF Ampmy Ly, 2l Ly L, 1 L, Jrp 21 Jy Jr 1 Jy
< Cy €V,
o 0 oJ\o o 0/)lLy S LellLy S, L,
) . kr © .
X Z(MB - M,) <A d’”’”z(RnFLF)*Jzz <7>R;1ALA> (/0 drrz(RnALA) ’”RnEL,>
ny,ng
X (Jp.my, ngLy, SI|P+<E0:)|\P1>7 (66)

where Mp is the mass of the state |J;, m;, ngL;,s;), M, is the mass of |J4, mp,ny Ly, sg), C is the Clebsch-Gordan
coefficient

my,my,ms __ A R rl jl j2 j3
Cil»jani.? = (_1)J~ TV 20 1(m1 ) (67)

my —ms
with () standing for the 3j symbol, and
M R e rea ey M (68)
J3 J J23 J3 J J23

with {} standing for the 6 symbol.
As for the first magnetic term, we get from (42) and (52)

magnetic N . _ L 21 —-1
(M meentiClon 5127 P) = i\ /2E;\/2Epe i~ Z Z (1) + (=1)Se=S1) (=1)Lrtl IT 3(2Lp + 1)

M= I J=max(1,|I-2|)

L -1 L

Coﬂﬂ Cﬂmle LF l—l L] SI 1 SF SF 1 S]

X =110 " T JpJ; 0 0 0 11 1 F 1
2 2 2 5

Jr J J;

kr .
X Z(/ drr nFLF) Ji- 1<2>RnBL,)<lemlvnBleS1|IC(Ea)|\Pl>' (69)

Finally, for the second magnetic term we obtain from (42) and (53)

(M S8 — [T T [ 39 37 HA (1) + (19524 DL+ 1)

=0 J,Ly
L, | L Lo 1 LN[Ie 1 708 1 se1| 5t Bk
O.mp.mp ~A,mp.m A F A I F A 1 F
X CZ,JAI:‘JFFCI,JAF,J/( ) ( > |: :| |: 1 1 1 :| SF 1 SI
0 0 O 0 0 O Ly S Lrlls 3 3
Jy 1T
) k )
X Z(MB - M,) (/ drr*(R,,1,)" i <_r> RnALA) (/ drrz(RnALA>*arBL,>
nang 0 2 0
X <Jhml»”BLI»SI|P—(Ea)|lP1>- (70)

For simplicity the matrix elements of the energy dependent operators have been evaluated in momentum space.
B. Transitions *P; — 73S,

We proceed in the same manner for 3P, — 3, transitions. Thus, from (42) and (54) the electric part of the amplitude
reads

014027-10



RADIATIVE DECAYS IN CHARMONIUM BEYOND THE p/m ... PHYS. REV. D 101, 014027 (2020)

(electric)
Jpmp J, m,

(M

)PrmrS = iy /2M [\ 2E 5, 5, €. Z > (-1

=0 Ja.L4

L; 21 L Ly 1
% COm, m,Cﬂ M,y 1 A F
0 0 O 0 O

20,0, S 105
X E (M4

nanp

<J1’m17nBL1751|7)+(

{a14+1)\/(2L; + 1)(2Lp + 1)

LAMJA 21 J,HJA 1 JF}
o oo . (kr

_MF> (A drrz(Ranp>*arALA> (A drr2 (RnALA) JZI(Z)RnBLI)

o). (71)

where M is the mass of the state |J;, m;, ngL;, s;) and M, is the mass of the intermediate state |J4, m;, nyLy, s;).
As for the first magnetic term, we get from (42) and (55)

[
o\ Py 211
(MEmEes\P,~rS) = i\ /2B, \/2Epe A~ § § i"(-1) + (—1)SF-SI)(—1)LF+I—1—2 32Lp +1)

ax(1,|7-2()
< semm (e [
A AR
0 2 * 2 kr
Xz drro\ R,,.p,) Ji—1 > Ry, (Jrmp ngLy. si|Py(E,)|¥)).
np 0

Finally, for the second magnetic term we obtain from (42) and (56)

O ORI RE) ) O

= —

(72)

—1)Se=51) (21 4+ 1)\/(2L; + 1)(2Lp + 1)

=0 Jo.Ly
Ly 1 L,
O,my,my ~Amp,my LI ! LA LF 1 LA JA ) JI SI 1 SF
CIJ,JA ClJFJA 1 1 1 SF 1 SI
00 o0o/Vo o o/le, s Lylt L1
e 1 J,
0 0 . [kr
2 Z(M _MF) (A drrz(Ranp)*arALA> (/0 drrz(RnALA)*Jl<7>Rn3L,)
ny.np
X <J17m1,nBL1751|P—(Ea)|lP1>- (73)

For simplicity the matrix elements of the energy depen-
dent operators have been evaluated in momentum space.

VI. RESULTS AND CONCLUSIONS

From the electric and magnetic amplitudes detailed in the
preceding section, the total amplitude

(electric)

o (magnetic)
MJFmFJI my Mjpmpllm, +MJFmF.I,m,
A(magnetic) .,
+'/\/lJF mpJp,m; (74)

and the width for the I — yF decay, given by (5), can be
straightforwardly evaluated.

Notice that the intermediate B states are (nz)3S, for
38, = y*P; and (ng)3P, for 3P, — y3S, transitions. The
intermediate A states are (ny)*P;, in both cases.

We have checked numerically that for the calculated
38, = ¥3P, and 3P, — y3S, widths it is enough to take
ng <2 and ny <2 to assure convergence at the level of
1%. As we did in the case of the 1‘% approximation we have

used the experimental masses for 2°P,, [corresponding to
2c0(3860)] and 2°P, [corresponding to y,,(3930)] and the
Cornell calculated mass from Model I for 23P,. The results
obtained are shown in Table VL

A first general feature of these results is that the values of
the widths from Model I are systematically bigger than
from Model II. As this was also the case in the 2«
approximation, see Table V, it can be mostly attributed
to the different wave functions from both models (let us
recall that in the 1’51 approximation the quark mass depend-

ence of the calculated width is reduced with respect to the
complete calculation).
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TABLE VI. Calculated widths as compared to data for y(2S) — yx.,(1P) and y.,(1P) — yJ/y transitions.

Notation as follows. [ Teor—Expy).

calculated width implemented with the experimental masses and photon energy.

complete .

The subscripts I and I refer to Model I and Model II. T’ gfpth measured widths [7].

Radiative Decay (Diheer B9Y) | (KeV) TEPG (KeV) (Diome ), (KeV)
w(28) = vy, (1p) 54 288+ 1.4 43

w(2S) = yx., (1p) 35 287+ 1.5 30

w(28) = yx.,(1p) 20 280+1.3 18

Xeo(1P) = v [y 187 151+ 14 130

e, (1p) = v [y 415 288 £ 22 284

Ye,(1p) = v [y 566 374 +27 385

A second general feature of the results in Table VI is that
the calculated widths from Model II are much closer to data
than the ones from Model I (the only exception being
23§, — y1°P,, where they are almost equal). More pre-
cisely, half (three) of the calculated widths from Model 11
are within the experimental intervals; another one, the
13P, — 7138, calculated width is very close to the exper-
imental value differing from it a 6%, whereas the remaining
two calculated widths, 23S, — y13P,, differ from data
about a 40%. In contrast, all the calculated widths from
Model I are out of the experimental intervals, in half of the
cases with big differences (bigger than 40%) with respect
to data.

Centering on Model II, the calculated widths show
better agreement with data for 23S, — y1°P, than for
23S, — y13P,, and the same tendency, although attenu-
ated, is observed for 13P; — y13S, as compared to
1°Py, — y13S,. This points out to a good wave function
for 1°P; and to some deficiency in the 1°P,, wave
functions, what can be correlated to the mass description
of the charmonium states, see Table III: quite good for 135,
23S, and 1P, and deficient for 13Py,. Then, it is quite
possible that nonperturbative or second order perturbative
corrections to the 1P, wave functions play some role. If
we assume that this is the case, so that the wave function
corrections are responsible for the observed discrepancies
with data, then we may tentatively conclude that an
accurate description of radiative decays in charmonium
is feasible.

We may also conclude that the analysis of radiative
decay processes serves as a stringent test of the spectro-
scopic quark model. In this regard, let us recall that the
difference between Model I and II comes essentially from
the different values of the parameters, ¢ and M .. Actually, ¢
and M. are correlated in the sense that an increase in ¢ has
to be compensated with an increase in M. to maintain the
spectral mass fit, see Table III. The fact that Model II works
much better for the description of the studied radiative
decays indicates that the value of the effective parameter ¢
has to be quite close to its phenomenological value from the

analysis of Regge trajectories in light mesons and, as a
consequence, that the quark mass effective parameter, at
least for the description of the low lying charmonium states,
is constrained to be around 1.84 GeV.

Certainly, the prediction of the decay widths for radiative
transitions not yet measured could provide, if confirmed by
future experiments, strong support to our conclusions. In
practice, this comparison program presents some difficul-
ties. On the one hand we may expect that the 335, —
y13PO’2 widths suffer at least from the same uncertainty as
the 23S, — y13P,. On the other hand the experimental
resonance (4040) contains presumably a significant
mixing of 33S; and 23D, states and the calculation of
2°Dy — y1°Pg 1, beyond the % approximation is quite
uncertain due to the current dearth of 3D state mass data to
be implemented. The same arguments apply to 33S, —
y23P,,. On the other hand the observed decays X (3872) —
y(1,2)3S, cannot be described as 2°P; — y(1,2)3S,;
from Model II since the X(3872) description requires
the incorporation of meson-meson threshold effects.
Furthermore, the same kind of effects might be present
in y.0(3860) that we have assumed to be the pure 2°P,
Cornell state in spite of being above its first 1(JFC) =
0(0™*) meson-meson threshold, and in many other high
lying charmonium sates.

This reduces the range of our comparison program to the
prediction of the 2°Py, — y(1,2)3S, decay widths from
Model II with a significant degree of uncertainty due to
the deficient description of the 3P0,2 wave functions, and in
the 23P, — y13S, case to the contribution of nondiagonal
matrix elements of the energy dependent operators. From
our calculation, we may conservatively estimate a maxi-
mum uncertainty of about a 50% in the results.

The results with the estimated maximum uncertainties
are shown in Table VIIL

VII. SUMMARY

In this article we have analyzed 3S, <> 3P, electromag-
netic transitions in charmonium. From two constituent
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TABLE VII. Predicted widths from Model II. Same notation as
in Table VI Topert ¥®: calculated width implemented with the
experimental masses and photon energy. The errors correspond to

the estimated maximum uncertainties.

(F(Theor Expt) )" (KeV)

complete

Radiative Decay

22(3930) - yvJ/y 54 +£27
7e2(3930) = 7y (25) 128 + 64
7e0(3860) = 7J Jyr 36+ 18
1e0(3860) = 7y (25) 45+23

quark models reasonably fitting the masses of the low lying

charmonium states and from an elementary emission model

for the description of the radiative processes we have
shown that

() neither the standard 4; Pe approximation to the electro-

magnetic transition operator nor its commonly used

long wave length limit should be taken for granted

for they can not give accurate account of data.

Although this inaccuracy has been only quantita-

tively proved for two Cornell potential models it

may be reasonably assumed to be valid in general

since the Cornell potential form contains the more

relevant terms for an appropriate description of the

low lying charmonium states. As a consequence, the

51—”( approximation or its long wave length limit

should also not be used to discriminate between
different spectroscopic quark models.

(i1) the use of the complete electromagnetic operator
may allow for an accurate description of 3§, < 3P,
radiative transitions between low lying charmonium
states from a Cornell potential model, when the
string tension parameter is close to the phenomeno-
logical value derived from the analysis of Regge
trajectories in light mesons. This restricts drastically
the possible values of the charm mass parameter to
keep an appropriate charmonium mass description.

|

e = e -i[afe) (320 ) - (74 ) ] +

and a quark Fock state given by

m—égﬁm;ﬁ@wlmm%

L
(27):

Therefore, electromagnetic decay processes in char-
monium can be used as a powerful tool to constrain
the value of the charm mass parameter and to
discriminate among different quark models.

the complete electromagnetic operator formalism
developed for the calculation of the radiative widths
can be straightforwardly applied to bottomonium
bb, and trivially extended to treat radiative decays of
bottom, charmed mesons b¢ and cb. Actually, for
bottomonium the calculated widths are in agreement

within a 15% with the ones obtained in the ”—”

(iii)

approximation, the only exception being for 33S, —
y13P, where the difference is about 50%. This
confirms the sufficiency of the % approach for

calculating radiative decays in bottomonium, for
the difference in the 33S; — y13P, case is very
uncertain due to the very relevant nondiagonal
contributions to the matrix elements of the energy
dependent operators.
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APPENDIX A: FIRST QUANTIZED
TRANSITION OPERATOR

Let us consider for instance the quark part of the vector
component of the current (following the main text, we
denote quark components by subscript 1) given by

/dpl( 2] /dl‘le "’I”Zz/f (r)b}" (py)[0)

where ¢(p;) and y/(r;) stand for the wave function in momentum and configuration space respectively.
We define the first quantized quark part of the vector component of the current (j;,(x)), by requiring that

(&GO n) = /meNHMAW“MW%)

mg,ml

(A3)
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It is then easy to check that

. M, +E, )41 )41
Gl = eny Mo o0 ) L P P 50—
M E
Cioyx (6@ —r) =Pl P sy )| L (Ad)
M, +E M, 1E 2F,

By using the radiation gauge so that the time component of the electromagnetic field vanishes (A°(x) = 0) we get

e = [ a4, = - [ @uile)-A)

Do Do
--Y e, Ar,) - A
a=12 |:< (ra) Ma+Ea+Ma+Ea (ra>>
M E
—io,xA(ry) —Pr P o Ay [ Rt e (AS)
M,+E, M,+E, 2E,

To obtain the desired form of the transition operator we expand A(x), the electromagnetic field at r =0, in terms
of creation and annihilation operators (see for example [10, p. 123]):

Ax) = / \/m Z olkx + (e )*af(Te_ik'x) (A6)

A==1

where afj is the operator that creates a photon with three-momentum k and polarization 4
k.2) = &/ |0). (A7)

Then, taking the matrix element of (A6) between the vacuum and the one photon state yields

(k, 2|4 (x)|0) =

\/;Toe—ik-x(el,i)* (A8)

where e,i stands for the photon polarization vector, and the first quantized transition operator to be sandwiched between the
meson states reads

(k. 2[HT|0) = ——= \/
: 2k0 021:2 Ol

X |: —ik-t, W jE +M jE e—iki'a —iaa X (e—ik-i-aMﬁa _ ﬁa _ e_,'k.;«a>:| X (6‘]&)* Ma:f'Ea.
a a a a

APPENDIX B: GAUGE INVARIANCE meson state is zero. Equivalently, expanding the meson
states in terms of quark and antiquark momentum eigen-

Let us show that the electromagnetic current satisfies the .
states, we can verify that

condition
,mblk, < (xX)|p;, my
k,,j’fst(x) =0, (Bl) <pf K | ﬂ]lit( ).O > '
= <pf’ ms|k0.]1st(x> —k '.]lst(x) Ipi’ ms>
meaqing that the current is conserved as requirgd by gauge = ko(p s, ml| 04 () iy mg) — k- (p mlfrg () |y, )
invariance. For this purpose, we have to verify that the
matrix element of k, /| (x) between any initial and final =0 (B2)
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where p; is the three-momentum of the initial quark state going to a final state with a photon and a quark with three-
momentum p .

Let us prove it for the quark contribution. The time component of the current is given by

] M+ E p P P p
0 — LT S03) (5 — L 5B (x = 1 s —p)—LL
() = e 2E, [ (e =r) + <Ml + E, (x )Ml +E, +ioy M, +E, x o x =) M, +E,

IM| + E,
R B
“\ " 2E, (B3)

as can be easily checked following the procedure detailed  and
in Appendix A, whilst the vector component is given by

(A4). S
To calculate the matrix elements we take into account the Eilpi,m;) = \/M{ +p;lp;.m) = Eilp;, my), (B6)
action of the energy and momentum operators:
pilpi.mg) = pilp;. my), (B4) <pf’m/s|E1 = <Pf’mls|\/M% +P§' = <I’f’mls|Ef- (B7)
pr milpy = ps.milpy, (B5)  The matrix element of the time component reads
|
(70 ) N = 5,,1/\\.,71“ 1 Pi . Py m.mg Pi % Py
IR lm) = e[ (1 o P ) i P R
" M, +Ef M1 +E, ipip))x (BS)
2E
where we have used
Py m|5(x — 1) |pi, m) = e/ PPIxF (B9)

with &7 being the Kronecker delta. Note that for momentum eigenstates we have adopted the nonrelativistic
normalization

' milp, my) = (21)°6%) (p — p')5"™, (B10)

consistently with [7, p. 567]. In the same way, for the matrix element of the vector component we obtain

. / Di pf ml,m Di pf
, / . — SMssMs s _
<pf mS|(]lSt<x))1|pl ms> e |: (Ml +E; +M1 +Ef> 161 x <Ml +E M, +Ef>:|

" M, + E; M1 +E, i Pip7)% (B11)
2E¢
Now, using
Pif Pif = sz _M2 (B12)
it is easy to show that
Di Py pi Py
D + =(E,—E;)| 1+ . BI13
pi=ry) <M1+E,~ M,+Ef> (E: f)( M, + E; M,+Ef) (B13)
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and

Ly Pi )4
@rm»ﬁmx( i )

M| +E M +E;

Di Dy

= (5= Eal ™ g P e (1)
so that
Pi —py) - pp, M| Gr(x))1|pis ms)
= (E; = Ef)(ps, mi| (34 (%)), i my). (B15)

Then, applying four-momentum conservation in the
emission of the photon by the quark

ko :Ei —Ef, (B16)

k=p, —Dy» (B17)

(B15) becomes

k- <pfvmls|(jlst(x))1|pi’m5> = k0<pfvmls|<j(1)st(x))l|pivms>’
(B13)

showing that the quark contribution to the current is
conserved.

It is clear that the substitutions e¢; — e, and M; —> M,
do not affect this result, so that the antiquark contribution is
conserved as well. Then, the conservation of both the quark
and antiquark components separately implies the conser-
vation of the total current defined by (15) and (16).
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