
 

Radiative decays in charmonium beyond the p=m approximation
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We analyze the theoretical description of radiative decays in charmonium. We use an elementary
emission decay model to build the most general electromagnetic transition operator. We show that accurate
results for the widths can be obtained from a simple quark potential model reasonably fitting the
spectroscopy if the complete form of the operator is used instead of its standard p=m approximation and the
experimental masses are properly implemented in the calculation.
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I. INTRODUCTION

Electromagnetic decays in heavy quarkonium (bottomo-
nium or charmonium) may play a key role in the under-
standing of its structure. The current impossibility to
directly solve QCD, the theory of strong interactions, for
the description of hadrons, forces us to rely, for the
knowledge of such structure, on models and/or effective
theories, incorporating at the greater extent the properties of
QCD (see for instance [1,2] and references therein). Among
these approximations the most successful one regarding the
number of described heavy quarkonium states below
the open flavor meson-meson thresholds is undoubtedly
the constituent quark model, see [1] and references therein,
where heavy quarkonium is described as a quark-antiquark
bound system. Then, as the electromagnetic transition
operator is known (with no free parameter) the comparison
of the measured widths with their calculated values from
different spectroscopic quark models may be an ideal test to
discriminate between these models and to advance in the
understanding of the heavy quarkonium structure.
In a recent paper [3], we have shown that this discrimi-

nation may be rather difficult in bottomonium. By using the
standard expansion of the electromagnetic transition oper-
ator up to pb=Mb order, where pb ðMbÞ stands for three-
momentum (mass) of the b quark, we have shown that
accurate results for thewidths can be obtained from different
quark potential models reasonably fitting the spectroscopy
once the experimental masses of the bottomonium states

instead of the calculated ones are properly implemented in
the calculation. The argument justifying this substitution
(and giving meaning to the qualifying term “reasonably
fitting the spectroscopy” employed) is that the experimental
masses can be hopefully obtained from thewave functions of
the calculated states by applying first order perturbation
theory. Therefore, the implementation of the experimental
masses allows for a direct test of the quark model wave
functions.
In this article we analyze electromagnetic decays in

charmonium, focusing on the quantitatively most relevant
electromagnetic transitions, 3S1 ↔ 3PJ, for which there are
data available. We first show that the pc=Mc order approxi-
mation,where the subindex c stands for the c quark, does not
give rise to such an accurate description of the decay widths
as in bottomonium. This could be somehow expected since
the expectation value of jpcj=Mc, representing the speed of
the quark, can be about half the speed of light for the low
lying charmonium states, what makes the use of the
transition operator up to the pc=Mc order debatable. We
proceed then to build the complete transition operator and to
apply it to the calculation of the decaywidths. This allows us
to discriminate between different quarkmodels according to
their accuracy in the description of radiative decays.
These contents are organized as follows. In Sec. II we

detail the Cornell potential models we use to calculate the
masses and wave functions of the low lying charmonium
states. We expect that the experimental masses can be
obtained from the calculated values via corrections to the
Hamiltonian evaluated at first order in perturbation theory.
In Sec. III the elementary emission model for electromag-
netic transitions is developed in some detail. From it we
recover the usual pc=Mc approximation in Sec. IV. The
comparison of the calculated decay widths with data points
out the need to go beyond this approximation. Then, in
Sec. V the complete transition operator, to all pc=Mc
orders, is built. The transition amplitude and the explicit
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form of its electric and magnetic contributions is detailed.
This is applied in Sec.VI to the calculation of radiative decay
widths which are compared to data. Finally, in Sec. VII our
main results and conclusions are summarized.

II. SPECTROSCOPIC QUARK MODELS

For the description of charmonium we shall use a
nonrelativistic quark potential model framework defined
by the Hamiltonian

H ¼ p2

Mc
þ VðrÞ; ð1Þ

with a Cornell potential energy

VðrÞ ¼ σr −
ζ

r
þ β ð2Þ

where p is the relative momentum operator, r ¼ jrj is the
c − c̄ distance operator (r is the relative position operator),
the parameters σ and ζ stand for the string tension and the
chromoelectric coulomb strength respectively, and β is a
constant to fix the origin of the potential. It is important to
emphasize that

(i) this potential form arises from spin independent
quenched lattice QCD calculations in the Born-
Oppenheimer approximation [4],

(ii) in the spirit of the nonrelativistic quark model
calculations σ, ζ, β and the quark mass Mc should
be considered as effective parameters through which
spin dependent and/or spin independent corrections
may be implicitly incorporated.

Henceforth we shall make use of two different quark
models with the same Hamiltonian form (1), Model I and
Model II, that have been used for the analysis of radiative
decays in bottomonium [3]. As we are dealing with a radial
potential we shall denote the spectroscopic states by
n2sþ1LJ where s, L, and J stand for the spin, orbital angular
momentum, and total angularmomentum quantum numbers
respectively.
Model I, providing a good description of spin triplet state

masses in bottomonium [5] is defined in charmonium [6]
by the set of parameter values

σI ¼ 850 MeV=fm;

ζI ¼ 100 MeV: fm;

ðMcÞI ¼ 1348.6 MeV; ð3Þ

giving account of the mass differences between some of
the low lying (spin triplet) charmonium states whose
electromagnetic transitions are measured, more pre-
cisely between 23S1 and 13P1, and between 13P1 and
13S1. Hence, the model also describes accurately, through
a convenient choice of the additive constant ðβcÞI, the

masses of the 13S1, 23S1 and 13P1 states. Furthermore,
inasmuch as the mass splittings between P states can be
obtained via first order perturbation theory the 13P0;2 states
would be described by the same wave function as the 13P1

one. In Table I we list the ratios of the calculated mass
differences to the experimental ones.
Model II, defined in reference [8] by the set of parameter

values

σII ¼ 925.5 MeV=fm;

ζII ¼ 102.6 MeV: fm;

ðMcÞII ¼ 1840 MeV; ð4Þ

is based on the assumption that mass corrections to the
charmonium states calculated from (1) may have to do
mainly with nonconsidered spin dependent terms in the
potential, so that the quark model should fit the centers of
gravity of spin triplet and spin singlet states.
Let us realize that the chosen value for the string tension,ffiffiffiffiffiffi
σII

p ¼ 427.4 MeV, agrees with the one derived from the
analysis of Regge trajectories in light mesons [4], and that
the Coulomb strength ζII ¼ 102.6 MeV fm corresponds to
a strong quark-gluon coupling αs ¼ 3ζ

4ℏ ≃ 0.39 quite in
agreement with the value derived in QCD from the fine
structure splitting of 1P states in charmonium [9]. As for
Mc the chosen value gives mass differences between any
two of the centers of gravity of the 1S, 2S, and 1P states in
accord with data within a 10% of accuracy. In Table II we
list the ratios of the calculated center of gravity mass
differences to the experimental ones. One could think of
refining the values of the parameters to make all these ratios
closer to 1. This can only be done at the price of losing the
close connection of σII and/or ζII with their expected
phenomenological values. Instead, we prefer to maintain
such connection and the modest discrepancy reflected in
Table II. Moreover, the chosen values of σII and ζII have
been used in bottomonium for an accurate description of
electromagnetic decay widths [3] what adds interest to the

TABLE I. Ratios of the calculated mass differences ðMi−
MfÞTheorI between 13S1, 23S1, 13P1 charmonium states from
Model I as compared to the experimental ones ðMi −MfÞExpt
taken from [7].

i − f
ðMi−MfÞTheorI
ðMi−MfÞExpt

23S1 − 13P1 1.00
13P1 − 13S1 0.99
23S1 − 13S1 0.99
23S1 − 13P2 1.09
23S1 − 13P0 0.65
13P0 − 13S1 1.29
13P2 − 13S1 0.89
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possibility of getting such an accurate description in
charmonium as well.
It is worth to point out that the quark model wave

functions are the same for any value of the additive constant
β. Indeed, we could change ðβcÞII to obtain from Model II
an approximate mass description of the 13S1, 23S1, and 13P1

states, or we could change ðβcÞI to obtain from Model I the
centers of gravity of the 1S, 2S, and 1P states in accord with
data within a 5% of accuracy. In this sense, Model I and
Model II are quite equivalent with respect to the mass
description of the low lying charmonium states except for
23PJ, as shown in Table III. Hence, any significant differ-
ence in their predictions for other observables involving
these states can put severe constraints on the possible
values of the parameters, in particular on the charm mass
whose value in Model I is very different to that in Model II.
It should be also remarked that simplicity is not the only

argument to use a Cornell potential model for the study of
radiative decays. The absence of any momentum depend-
ence in the potential allows for a complete factorization of
the heavy quarkonium mass dependence in the calculation
of the electromagnetic decay widths up to pc=Mc order.
Furthermore, such a complete factorization can be also
pursued to higher orders as will be shown later on. Then, if
the experimental masses instead of the calculated ones are
implemented in the calculation the comparison of the
calculated decay widths to data becomes a powerful tool

to test the model wave functions. As a counterpart, the use
of the Cornell potential in charmonium restricts the study to
the low lying states where meson-meson threshold effects
can be neglected.

III. ELECTROMAGNETIC DECAY MODEL

Let us consider the decay I → γF where I and F are the
initial and final charmonium states respectively. In the rest
frame of the decaying meson I the total width is given by
(we follow the PDG conventions, see [7, p. 567])

ΓI→γF ¼ k0
8πM2

I

1

ð2JI þ 1Þ
X
λ¼�1

X
mI;mF

jMλ
JF;mF;JI ;mI

j2; ð5Þ

where k0 is the energy of the photon and MI , JI , and mI
stand for the mass of I, its total angular momentum
and its third projection respectively. The polarization of
the photon is represented by λ (as usual we choose the
three-momentum of the photon in the Z direction) and the
transition amplitude byMλ

JF;mF;JI ;mI
. This amplitude can be

obtained from the interaction Hamiltonian Hint as

ð2πÞ3δð3ÞðPI − k − PFÞMλ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p ffiffiffiffiffiffiffi
2k0

p
hFγjHintjIi; ð6Þ

where PI ¼ ðEI;PIÞ ¼ ðMI; 0Þ, PF¼ðEF;PFÞ, and ðk0; kÞ
are the meson and photon four-momenta.
In the elementary emission decay model the radiative

transition I → γF takes place through the emission of the
photon by the quark or the antiquark in the initial state.
In QED the interaction Hamiltonian at the quark level is
given by

Hint ¼
Z

dxjμðxÞAμðxÞ; ð7Þ

where Aμ is the photon field and jμ the electromagnetic
current given by

jμðxÞ ¼ q̄ðxÞQγμqðxÞ ð8Þ

where qðxÞ is the quark field andQ the quark charge matrix.
Notice that the time dependence has been obviated since in
the calculation of the transition amplitude it only gives rise to
a Dirac delta accounting for energy conservation.
In quantum field theory the quark field operator with no

time dependence is written as (see for example [10, p. 58],
but note that we use Dirac spinors instead of the Weyl
representation adopted there)

qðxÞ ¼
Z

dp
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffi
2EðpÞp X

ms

ðumsðpÞbms
1 ðpÞeip·x

þ vmsðpÞbms†
2 ðpÞe−ip·xÞ; ð9Þ

TABLE II. Ratios of the calculated center of gravity mass
differences ðM̄i − M̄fÞTheorII between 1S, 2S, 1P charmonium
states from Model II as compared to the experimental ones
ðM̄i − M̄fÞExpt taken from [7].

i − f
ðM̄i−M̄fÞTheorII
ðM̄i−M̄fÞExpt

2S − 1S 0.98
2S − 1P 1.09
1P − 1S 0.94

TABLE III. Calculated masses, Mn2sþ1LJ
, in MeV for the low

lying spin triplet states. The subscripts I and II refer to Model I
with ðβcÞI ¼ 53 MeV and Model II with ðβcÞII ¼ −850 MeV
respectively. Experimental masses from [7]. We have not quoted
any mass for the experimental 23P1 state since the Xð3872Þ
cannot be considered a pure Cornell state.

n2sþ1LJ ðMn2sþ1LJ
ÞI ðMn2sþ1LJ

ÞExpt ðMn2sþ1LJ
ÞII

13S1 3099 3096.916� 0.011 3088
23S1 3685 3686.09� 0.04 3678
13P0 3509 3414.75� 0.31 3516
13P1 3509 3510.66� 0.07 3516
13P2 3509 3556.20� 0.09 3516
23P0 3911 3862þ26þ40

−32−13 3959
23P1 3911 3959
23P2 3911 3927.2� 2.6 3959
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where EðpÞ is the relativistic energy of a quark Q or

antiquark Q̄, EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Q þ p2
q

, umsðpÞ and vmsðpÞ are

the Dirac spinors

umsðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MQ þ EðpÞ

q � χms

p·σ
MQþEðpÞ χ

ms

�
ð10Þ

vmsðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MQ̄ þ EðpÞ

q � p·σ
MQ̄þEðpÞ χ

ms

χms

�
ð11Þ

with χms being the Pauli spinor, and bms
1 ðpÞ ðbms†

2 ðpÞÞ the
annihilation (creation) operator of a quark (antiquark) with
spin projection ms and three-momentum p.
Then, by defining

qαðxÞ≡
Z

dpα

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ EαðpαÞ

2EαðpαÞ

s X
ms

eipα·xχms
α bms

α ðpαÞ;

ð12Þ
where α ¼ 1; 2 refers to quark and antiquark respectively,
the electromagnetic current jμðxÞ reads

j0ðxÞ ¼
X
α¼1;2

eα

�
q†αðxÞqαðxÞ þ

�
∇qαðxÞ†
Mα þ Eα

·
∇qαðxÞ
Mα þ Eα

þ iσα ·
∇qαðxÞ†
Mα þ Eα

×
∇qαðxÞ
Mα þ Eα

��
ð13Þ

and

jðxÞ¼
X
α¼1;2

eα

�
−i
�
q†αðxÞ

�
∇qαðxÞ
MαþEα

�
−
�
∇q†αðxÞ
MαþEα

�
qαðxÞ

�
þ
��

∇q†αðxÞ
MαþEα

�
×σαqαðxÞ−q†αðxÞσα×

�
∇qαðxÞ
MαþEα

���
; ð14Þ

where e1 ¼ ec ¼ 2
3
e (with e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

being αem the fine
structure constant), e2 ¼ ec̄ ¼ −ec, and Eα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

α − ∇2
α

p
.

It is important to highlight that in the derivation of the
current operator we have kept only terms that conserve
separately the number of quarks and antiquarks, since we
are only interested in radiative processes where there is no
quark-antiquark photoproduction or annihilation.

In order to calculate the matrix element hFγjHintjIi from
the spectroscopic quark model wave functions one needs
the “first quantized” form of the interaction. Following the
procedure explained in [11] and detailed in Appendix A,
we obtain the first quantized form of the current (in
Appendix B it is checked that this current is conserved,
as required by gauge invariance)

j01stðxÞ ¼
X
α¼1;2

eα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ Eα

2Eα

s �
δð3Þðx − rαÞ þ

�
pα

Mα þ Eα
· δð3Þðx − rαÞ

pα
Mα þ Eα

þ iσα ·
pα

Mα þ Eα
× δð3Þðx − rαÞ

pα
Mα þ Eα

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ Eα

2Eα

s
; ð15Þ

j1stðxÞ ¼
X
α¼1;2

eα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ Eα

2Eα

s ��
δð3Þðx − rαÞ

pα
Mα þ Eα

þ pα
Mα þ Eα

δð3Þðx − rαÞ
�

− iσα×

�
δð3Þðx − rαÞ

pα
Mα þ Eα

−
pα

Mα þ Eα
δð3Þðx − rαÞ

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ Eα

2Eα

s
: ð16Þ

Then the operator to be sandwiched between the meson states reads

hk;λjHint
1stj0i¼−

1ffiffiffiffiffiffiffi
2k0

p
X
α¼1;2

eα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mαþ Êα

2Êα

s �
e−ik·r̂α

p̂α
Mαþ Êα

þ p̂α
Mαþ Êα

e−ik·r̂α − iσα×

�
e−ik·r̂α

p̂α
Mαþ Êα

−
p̂α

Mαþ Êα

e−ik·r̂α
��

· ðϵλkÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mαþ Êα

2Êα

s
; ð17Þ
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where we have put a hat above E and p and r to make more
clear that they are operators, in contrast to k which is a
vector number.
It is a common practice in the analysis of radiative

transitions in heavy quarkonium to proceed to a non-
relativistic reduction of this operator up to pc

Mc
order. This

has been justified for the use of the nonrelativistic
Schrödinger equation for the calculation of the states, see
for example [11]. However, as the effectiveness of the quark
model parameters and the implementation of the experi-
mental masses in the calculation of radiative decays may
incorporate in an effective manner relativistic effects the
restriction of the operator to the pc

Mc
order may be ques-

tionable, at least for charmonium where the speed of the
quarks in the low lying states is not much smaller than
the speed of light in vacuum. Therefore we proceed next to
the evaluation of the transition amplitudeMλ

JF;mF;JI ;mI
, first

in the pc
Mc

approximation and then to all pc
Mc

orders. Aswe shall

see, the consideration of the higher pc
Mc

orders becomes
essential for an accurate description of the decay widths.

IV. THE p=m APPROXIMATION

The pc
Mc

approximation is defined from (17) in the limit
Êα ¼ Mα. A thorough analysis of this approximation has
been carried out in [3]. Here we only give the final
expressions for the calculation of the amplitude:

Mλ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p X
α¼1;2

eα
2Mc

hΨFjOαjΨIi; ð18Þ

where

jΨi≡ jJ;m; nL; si ð19Þ
stands for the cc̄ spectroscopic n2sþ1LJ state and Oα for an
operator that we detail next.
Thus, for 3S1 → γ3PJ transitions we have (here we write

only the electric part of the operator; the form for the
magnetic part can be found in the appendices of [3])

hOel
α i3S1→γ3PJ

≡ hΨFð3PJÞjOel
α jΨIð3S1Þi

¼ hΨFð3PJÞjeið−1Þ
αðk·r̂

2
Þð−1Þα2p̂ · ðϵλkÞ�jΨIð3S1Þi

ð20Þ

where r̂ ¼ r̂1−r̂2
2

is the relative position operator and p̂ ¼
p̂1−p̂2

2
is the relative three-momentum operator.

By using the equality

p̂ ¼ −i
Mc

2
½r̂; H� ð21Þ

where H is the Cornell spectroscopic Hamiltonian, and
introducing a Parseval identity in terms of a complete set of

intermediate eigenstates fjΨintig of H, the mass depend-
ence in the matrix element can be explicitly extracted:

hOel
α i3S1→γ3PJ

¼ −iMc

X
int

hΨFð3PJÞjeið−1Þ
αðk·r̂

2
ÞjΨinti

× ðMI −MintÞhΨintjð−1Þαr̂ · ðϵλkÞ�jΨIð3S1Þi:
ð22Þ

This permits the implementation of the experimental mass
differences (MI −Mint) instead of the calculated ones so
that the quark model wave functions can be directly tested.
As for 3PJ → γ3S1 transitions, using ½p̂; e−ik·r̂� ¼ −ke−ik·r̂

we get in a similar manner

hOel
α i3PJ→γ3S1

≡ hΨFð3S1ÞjOel
α jΨIð3PJÞi

¼ hΨFð3S1Þjð−1Þα2p̂ · ðϵλkÞ�eið−1Þ
αðk·r̂

2
ÞjΨIð3PJÞi

¼ −iMc

X
int

ðMint −MFÞhΨFð3S1Þjð−1Þαr̂ · ðϵλkÞ�jΨinti

× hΨintjeið−1Þαðk·r̂2 ÞjΨIð3PJÞi: ð23Þ
These expressions get further simplified in the so-called

long wavelength (LWL) limit, corresponding to take
eið−1Þαðk·r̂2 Þ ¼ 1:

hðOel
α ÞLWLi3S1→γ3PJ

¼−iMcðMI −MFÞhΨFð3PJÞjð−1Þαr̂·ðϵλkÞ�jΨIð3S1Þi; ð24Þ

hðOel
α ÞLWLi3PJ→γ3S1

¼−iMcðMI −MFÞhΨFð3S1Þjð−1Þαr̂·ðϵλkÞ�jΨIð3PJÞi: ð25Þ

Actually this is the limit commonly used in the literature
[12] for the calculation of radiative decays despite the fact
that it can only be taken for granted when the condition

jkjð2hr̂2i12ÞF < 1 ð26Þ
is satisfied [3]. Indeed, regarding the considered transitions
in charmonium, the only LWL processes are 23S1 →
γ31P1;2 as can be checked from Table IV where the root

TABLE IV. Experimental values of the photon energy jkjExpt
and calculated values of jkjExptð2hr2i12Þ3PJ

from Model II for
3S1 → γ3PJ and 3PJ → γ3S1 radiative transitions.

3S1 → γ3PJ jkjExpt (MeV) jkjExptð2hr2i12Þ3PJ

ψð2SÞ → γχc0ð1pÞ 261 1.6
ψð2SÞ → γχc1ð1pÞ 171 1.0
ψð2SÞ → γχc2ð1pÞ 128 0.8
χc0ð1pÞ → γJ=ψ 303 1.2
χc1ð1pÞ → γJ=ψ 389 1.5
χc2ð1pÞ → γJ=ψ 430 1.6
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mean square radii have been obtained from Model II (the
same conclusion comes out from Model I).
In Table V we list the calculated 3S1 ↔ 3PJ transition

widths as compared to data for charmonium. In all cases the
experimental masses for the initial, final and (when known)
intermediate charmonium states instead of the calculated
ones from the spectroscopic Hamiltonian have been used. It
turns out that the consideration of intermediate n3PJ states
with n ≤ 2 is enough in the sense that the inclusion of
higher Cornell states hardly changes (2% at most) the
results. Regarding the intermediate 23PJ states we have
used the experimental masses for 23P0, corresponding to
χc0ð3860Þ under the assumption that this resonance is a
pure Cornell state, and 23P2, corresponding to χc2ð3930Þ
that may be reasonably taken as a pure Cornell state since it
lies quite below the first S-wave 2þþ meson-meson thresh-
old [6]. As for 23P1 we have used the calculated mass from
Model I, see Table III, since it lies in between those of 23P0

and 23P2 as should be expected when no threshold effects
are taken into account (notice that the Xð3872Þ can not be
taken as a pure Cornell state).
A look at Table V confirms, through a comparison of the

calculated LWL results (second column for Model I and
sixth column for Model II) with the pc

Mc
ones (third column

for Model I and fifth column for Model II), the validity of
the LWL limit for 23S1 → γ31P1;2.
It makes also clear, through the comparison of the

calculated pc
Mc

decay widths with data, that the pc
Mc

approxi-
mation does not give an accurate overall description of
these decays. More precisely, except for 13P0 → γ13S1
from Model I and 23S1 → γ13P2 from Model II, all the
calculated pc

Mc
widths are out of the experimental intervals,

in some cases with big differences respect to data. This is in
contrast with the situation in bottomonium [3] where most
of the calculated widths were within or pretty close to the
measured intervals.
By realizing that this may have to do at least in part with

the poor convergence of the expansion of the complete
transition operator in powers of pc

Mc
(let us recall that the

expectation value of jpcj
Mc

in the low lying charmonium states

can be as big as 0.5) we develop in what follows the
formalism for the application of the complete operator (17)
to the calculation of the decay widths.

V. BEYOND THE p=m APPROXIMATION

As it was mentioned before, the extraction of the mass
dependence in the matrix elements involved in the calcu-
lation of the radiative decay widths, allowing for the
substitution of the calculated masses by the measured
ones, is a crucial step to test the spectroscopic quark model
wave functions. Moreover, it is a condition sine qua non to
get an accurate description of radiative decay widths in
bottomonium [3].
When the complete transition operator (17) is consid-

ered, the presence of the momentum dependent operator Êα

(instead of the constant Mα in the pc
Mc

approximation)
complicates this mass extraction. To facilitate it, we first
rearrange expression (17) to group all the energy dependent
operators to the right so that they act on the initial state.
This is convenient on the one hand because we can extract
the mass dependence in the terms multiplying the energy
dependent operators in exactly the same manner as done in
the pc

Mc
approximation (see below), and on the other hand

because the action of Êα simplifies when acting on a state of
zero total three-momentum. In fact, as the initial state is in
its rest frame the action of p̂α ¼ P̂

2
− ð−1Þαp̂ becomes

equivalent to that of p̂:

ÊαjP ¼ 0; J; m; nL; si

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c þ p̂2
q

jP ¼ 0; J; m; nL; si: ð27Þ
To relocate the energy dependent operators we use that

e−ik·r̂α represents a three-momentum translation, so that

e−ik·r̂α jpαi ¼ jpα − ki: ð28Þ
If we expand for convenience the meson states in terms of
the quark and antiquark momentum eigenstates, jp1; p2i
where we obviate the spin quantum number since it does
not play any role in this argument, then (28) gives an

TABLE V. Calculated widths up to order pc
Mc

as compared to data for ψð2SÞ → γχcJ ð1PÞ and χcJ ð1PÞ → γJ=ψ . Notation as follows.

ΓðTheor−ExptÞ
LWL : width in the LWL approximation implemented with the experimental masses and photon energy. ΓðTheor−ExptÞ

p=M : width in
the pc

Mc
approximation implemented with the experimental masses and photon energy. The subscripts I and II refer to Model I and II.

ΓPDG
Expt : measured widths [7].

Radiative Decay ðΓðTheor−ExptÞ
LWL ÞI ðKeVÞ ðΓðTheor−ExptÞ

p=M ÞI ðKeVÞ ΓPDG
Expt ðKeVÞ ðΓðTheor−ExptÞ

p=M ÞII ðKeVÞ ðΓðTheor−ExptÞ
LWL ÞII ðKeVÞ

ψð2SÞ → γχc0ð1pÞ 61 77 28.8� 1.4 57 47
ψð2SÞ → γχc1ð1pÞ 53 52 28.7� 1.5 41 41
ψð2SÞ → γχc2ð1pÞ 37 37 28.0� 1.3 29 29
χc0ð1pÞ → γJ=ψ 186 160 151� 14 118 128
χc1ð1pÞ → γJ=ψ 386 464 288� 22 315 266
χc2ð1pÞ → γJ=ψ 513 616 374� 27 419 353
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account of the transition from a quark (antiquark) state with
three-momentum pα to a quark (antiquark) state with three-
momentum ðpα − kÞ through the emission of a photon with
three-momentum k. Then energy conservation tells us that

Êαðe−ik·r̂α jpαiÞ ¼ Êαjpα − ki ¼ ðEα − k0Þjpα − ki; ð29Þ

where Eα and k0 are numbers, not operators, so that we can
write

Êαðe−ik·r̂α jpαiÞ ¼ ðEα − k0Þðe−ik·r̂α jpαiÞ
¼ e−ik·r̂αðEα − k0Þjpαi
¼ e−ik·r̂αðÊα − k0Þjpαi: ð30Þ

Since this equality holds for the complete set of momentum
eigenstates fjpαig we can rewrite it as an identity between
operators:

Êαe−ik·r̂α ¼ e−ik·r̂αðÊα − k0Þ: ð31Þ

Then, using (31) and the well-known commutator

½p̂α; e−ik·r̂α � ¼ −ke−ik·r̂α ð32Þ

we rearrange (17) as

hk; λjHint
1stj0i ¼ −

1ffiffiffiffiffiffiffi
2k0

p
X
α¼1;2

eα
2Mα

fe−ik·r̂α2p̂αPþðÊαÞ − e−ik·r̂αkKðÊαÞ

− iσα × ½e−ik·r̂α2p̂αP−ðÊαÞ þ e−ik·r̂αkKðÊαÞ�g · ðϵλkÞ� ð33Þ

where P�ðÊαÞ and KðÊαÞ stand for the energy dependent scalar operators

P�ðÊαÞ≡
�

Mα

Mα þ Êα

� Mα

Mα þ Êα − k0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMα þ ÊαÞðMα þ Êα − k0Þ

4ÊαðÊα − k0Þ

s
; ð34Þ

KðÊαÞ≡
�

2Mα

Mα þ Êα − k0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMα þ ÊαÞðMα þ Êα − k0Þ

4ÊαðÊα − k0Þ

s
: ð35Þ

Equivalently, using (32) we can also write

hk; λjHint
1stj0i ¼ −

1ffiffiffiffiffiffiffi
2k0

p
X
α¼1;2

eα
2Mα

f2p̂αe−ik·r̂αPþðÊαÞ þ e−ik·r̂αkK0ðÊαÞ

− iσα × ½2p̂αe−ik·r̂αP−ðÊαÞ þ e−ik·r̂αkK0ðÊαÞ�g · ðϵλkÞ�; ð36Þ

with

K0ðÊαÞ≡
�

2Mα

Mαþ Êα

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMαþ ÊαÞðMαþ Êα−k0Þ

4ÊαðÊα−k0Þ

s
: ð37Þ

For 3S1 ↔ 3PJ transitions, the use of (33) makes easier
the calculation when the initial state is an S-wave
(LI ¼ 0), whereas (36) is more convenient when the initial
state is a P-wave (LI ¼ 1), as it was the case in the p

M
approximation [3].
From (33) or (36) the transition amplitude Mλ

JF;mF;JI ;mI

can be straightforwardly derived following the step by step
procedure explained in [3]. Thus, using

jIi ¼ jPI; JI; mI; nILI; sIi; ð38Þ

jFi ¼ jPF; JF;mF; nFLF; sFi; ð39Þ

introducing center of mass

R̂ ¼ r̂1 þ r̂2
2

P̂ ¼ p̂1 þ p̂2 ð40Þ

and relative

r̂ ¼ r̂1 − r̂2 p̂ ¼ p̂1 − p̂2
2

ð41Þ

operators, integrating over the center of mass spatial degrees
of freedom, taking into account that ðϵλkÞ� · k ¼ 0 and that in
the rest frame of the decaying meson one has PI ¼ 0,
PF ¼ −k, the transition amplitude becomes

Mλ
JF;mF;JI ;mI

¼
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p X
α¼1;2

eα
2Mα

hΨFjÕαjΨIi ð42Þ
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where the matrix element hΨFjÕαjΨIi≡ hÕαiFI can be
conveniently expressed as a sum of electric and magnetic
contributions

hÕαiFI ¼ hÕαielFI þ hÕαiðmagÞσ×k
FI þ hÕαiðmagÞσ×p̂

FI

¼ hÕ0
αielFI þ hÕ0

αiðmagÞσ×k
FI þ hÕ0

αiðmagÞσ×p̂
FI ; ð43Þ

the first decomposition being technically convenient when
the initial state is an S-wave, the second one when the initial
state is a P-wave.
More explicitly, in the first decomposition the electric

part is given by

hÕαielFI ¼hΨFjeið−1Þαðk·r̂2 Þð−1Þα2p̂ · ðϵλkÞ�PþðÊαÞjΨIi; ð44Þ

the first magnetic term by

hÕαiðmagÞσ×k
FI ¼hΨFjeið−1Þαðk·r̂2 Þiσα×k ·ðϵλkÞ�KðÊαÞjΨIi; ð45Þ

and the second magnetic term by

hÕαiðmagÞσ×p̂
FI

¼−hΨFjeið−1Þαðk·r̂2 Þiσα× ð−1Þα2p̂ · ðϵλkÞ�P−ðÊαÞjΨIi. ð46Þ

As can be easily checked these expressions reduce to the
corresponding ones obtained in the pc

Mc
approximation by

taking Êα ¼ Mα and k0 ≪ Mα.
The second decomposition reads

hÕ0
αielFI ¼ hΨFjð−1Þα2p̂ · ðϵλkÞ�eið−1Þ

αðk·r̂
2
ÞPþðÊαÞjΨIi; ð47Þ

hÕ0
αiðmagÞσ×k

FI ¼ hΨFjiσα × k · ðϵλkÞ�eið−1Þ
αðk·r̂

2
ÞPþðÊαÞjΨIi;

ð48Þ

hÕ0
αiðmagÞσ×p̂

FI

¼−hΨFjiσα×ð−1Þα2p̂ ·ðϵλkÞ�eið−1Þ
αðk·r̂

2
ÞP−ðÊαÞjΨIi. ð49Þ

In order to extract the mass dependence from the p̂
operator we use (21) and introduce two Parseval identities
in terms of eigenstates of the Cornell Hamiltonian

I ¼
X
A

jΨAihΨAj ð50Þ

where A is a shorthand notation for all the quantum
numbers labeling the eigenstates (JA;mA; nA; LA; sA), so
that the above expressions become

hÕαielFI ¼ −iMc

X
A;B

hΨFjeið−1Þαðk·r̂2 ÞjΨAiðMB −MAÞhΨAjð−1Þαr̂ · ðϵλkÞ�jΨBihΨBjPþðÊαÞjΨIi; ð51Þ

hÕαiðmagÞσ×k
FI ¼

X
B

hΨFjeið−1Þαðk·r̂2 Þiσα × k · ðϵλkÞ�jΨBihΨBjKðÊαÞjΨIi; ð52Þ

hÕαiðmagÞσ×p̂
FI ¼ iMc

X
A;B

hΨFjeið−1Þαðk·r̂2 ÞjΨAiðMB −MAÞhΨAjð−1Þαiσα × r̂ · ðϵλkÞ�jΨBihΨBjP−ðÊαÞjΨIi; ð53Þ

and

hÕ0
αielFI ¼ −iMc

X
A;B

hΨFjð−1Þαr̂ · ðϵλkÞ�jΨAiðMA −MFÞhΨAjeið−1Þαðk·r̂2 ÞjΨBihΨBjPþðÊαÞjΨIi; ð54Þ

hÕ0
αiðmagÞσ×k

FI ¼
X
B

hΨFjeið−1Þαðk·r̂2 Þiσα × k · ðϵλkÞ�jΨBihΨBjPþðÊαÞjΨIi; ð55Þ

hÕ0
αiðmagÞσ×p̂

FI ¼ iMc

X
A;B

hΨFjð−1Þαiσα × r̂ · ðϵλkÞ�jΨAiðMA −MFÞhΨAjeið−1Þαðk·r̂2 ÞjΨBihΨBjP−ðÊαÞjΨIi: ð56Þ

To proceed further we should extract the state mass
dependence, if present, from the matrix elements involving
the energy dependent operators. Although in principle one
could extract it through the expansion of the energy

operators in powers of p̂2

M2
c
and the introduction of as many

additional complete sets of intermediate states as needed,

this is not practicable. Instead we can infer the possible
mass dependence by realizing that

(i) k0 is quite smaller thanMc,
k0
Mc

≤ 0.3 for Model I and
k0
Mc

≤ 0.23 for Model II, as can be verified from

Table IV. Then, up to ð k0Mc
Þ0 order the energy

dependent operators reduce to (let us recall that as
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Êα is acting on the initial state it can be substituted
by Ê ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c þ p̂2
p

)

PþðÊÞ ≃
Mc

Ê
≃KðÊÞ ð57Þ

P−ðÊÞ ≃ 0 ð58Þ

where

Mc

Ê
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ p̂2

M2
c

q ¼ 1−
p̂2

2M2
c
þ3

2

�
p̂2

2M2
c

�
2

þ�� � ð59Þ

and

p̂2

2M2
c
¼ H − VðrÞ

2Mc
: ð60Þ

(ii) as the energy dependent operators are scalars,
the only contributions to the matrix elements, for
example hΨBjPþðÊαÞjΨIi, come from jΨBi being
equal to jΨIi or to a radial excitation of jΨIi.
The dominant contribution is the diagonal one
hΨIjPþðÊαÞjΨIi involving the matrix element
hΨIjH − VðrÞjΨIi ¼ ðMI − 2McÞ − hΨIjVðrÞjΨIi.

(iii) according to our assumption that the difference
between the calculated mass and the experimental
one is due to potential corrections evaluated at

first order in perturbation theory it is obvi-
ous that ðMIÞcalculated − hΨIjVðrÞjΨIi ¼ ðMIÞExpt −
hΨIjVcorrectedðrÞjΨIi for any of our quark models.
Hence, we can appropriately calculate hΨIjH −
VðrÞjΨIi with Model I or II without the need of
extracting the mass dependence to implement the
measured values. Notice though that the more
significant the contribution of the nondiagonal
matrix elements of the energy dependent operators,
whose mass dependence has not been extracted, the
more uncertain the result.

Therefore, as the consideration of higher k0
Mc

orders do not
introduce any additional dependence on the mass of the
states, we can calculate the matrix elements of the energy
dependent operators fromModel I or II. One should keep in
mind though that the presence of the energy dependent

operators, depending on p̂2

2M2
c
¼ H−VðrÞ

2Mc
, introduces an addi-

tional quark mass dependence in the amplitude with respect
to the pc

Mc
approximation. Thismakes the calculatedwidths to

be more model dependent so that their comparison to data is
not only testing the quark model wave functions but also the
quark mass parameter. This means that this parameter loses
part of its effectiveness becoming amore phenomenological
one. In fact, we show next that the analysis of radiative
transitions may severely constrain its range of values in
correlation with the phenomenological string tension.
For the sake of completeness we write also the former

matrix elements in the LWL limit:

ðhÕαielFIÞLWL ¼ ðhÕ0
αielFIÞLWL ¼ −iMc

X
B

hΨFjðMB −MFÞð−1Þαr̂ · ðϵλkÞ�jΨBihΨBjPþðÊαÞjΨIi; ð61Þ

ðhÕαiðmagÞσ×k
FI ÞLWL ¼ ðhÕ0

αiðmagÞσ×k
FI ÞLWL ¼

X
B

hΨFjðiσα × kÞ · ðϵλkÞ�jΨBihΨBjKðÊαÞjΨIi; ð62Þ

ðhÕαiðmagÞσ×p̂
FI ÞLWL ¼ ðhÕ0

αiðmagÞσ×p̂
FI ÞLWL ¼ iMc

X
B

hΨFjiσα × ðMB −MFÞð−1Þαr̂ · ðϵλkÞ�jΨBihΨBjP−ðÊαÞjΨIi. ð63Þ

A. Transitions 3S1 → γ3PJ

In order to evaluate the 3S1 → γ3PJ amplitude we use r̂ · ðϵλkÞ� ¼
ffiffiffiffi
4π
3

q
rðYλ

1ðr̂ÞÞ�, the well-known expansion

eiðk·r2 Þ ¼
X∞
l¼0

il
ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
jl

�
kr
2

�
Y0
l ðr̂Þ ð64Þ

where k is in the Z direction, and the fact that the energy dependent operators are scalars, so that for example

hΨBjPþðÊαÞjΨIi ∝ δJB;JIδmB;mI
δLB;LI

δsB;sI : ð65Þ

Thus, from (42) and (51) the electric part of the amplitude reads
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ðMλðelectricÞ
JF;mF;JI ;mI

Þ3S1→γ3PJ ¼ i
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p
δSI;SFec

X∞
l¼0

X
JA;LA

ð−1ÞlþLFþLIð4lþ 1Þð2LA þ 1Þ

× C0;mF;mF
2l;JA;JF

Cλ;mF;mI
1;JA;JI

�
LA 2l LF

0 0 0

��
LA 1 LI

0 0 0

��
JF 2l JA
LA SF LF

��
JI 1 JA
LA SI LI

�

×
X
nA;nB

ðMB −MAÞ
�Z

∞

0

drr2ðRnFLF
Þ�j2l

�
kr
2

�
RnALA

��Z
∞

0

drr2ðRnALA
Þ�rRnBLI

�

× hJI; mI; nBLI; sIjPþðÊαÞjΨIi; ð66Þ

where MB is the mass of the state jJI; mI; nBLI; sIi, MA is the mass of jJA;mF; nALA; sFi, C is the Clebsch-Gordan
coefficient

Cm1;m2;m3

j1;j2;j3
≡ ð−1Þj2−j1−m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j3 þ 1

p �
j1 j2 j3
m1 m2 −m3

�
ð67Þ

with ( ) standing for the 3j symbol, and

�
j1 j2 j12
j3 j j23

�
≡ ð−1Þj1þj2þj3þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2j12 þ 1Þð2j23 þ 1Þ

p �
j1 j2 j12
j3 j j23

�
ð68Þ

with fg standing for the 6j symbol.
As for the first magnetic term, we get from (42) and (52)

ðMλðmagneticÞσ×k
JF;mF;JI ;mI

Þ3S1→γ3PJ ¼ i
ffiffiffiffiffiffiffiffi
2EI

p ffiffiffiffiffiffiffiffiffi
2EF

p
ecλ

k
m

X∞
l¼1

Xl

J̃¼maxð1;jl−2jÞ
ilðð−1Þl þ ð−1ÞSF−SIÞð−1ÞLFþl−1 2l − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2LF þ 1Þ

p

× C0;λ;λ
l−1;1;J̃C

λ;mF;mI

J̃;JF;JI

�
LF l − 1 LI

0 0 0

��
SI 1 SF
1
2

1
2

1
2

�264
LF l − 1 LI

SF 1 SI
JF J̃ JI

3
75

×
X
nB

�Z
∞

0

drr2ðRnFLF
Þ�jl−1

�
kr
2

�
RnBLI

�
hJI; mI; nBLI; sIjKðÊαÞjΨIi: ð69Þ

Finally, for the second magnetic term we obtain from (42) and (53)

ðMλðmagneticÞσ×p̂
JF;mF;JI ;mI

Þ3S1→γ3PJ ¼ i
ffiffiffiffiffiffiffiffi
2EI

p ffiffiffiffiffiffiffiffiffi
2EF

p
ec

ffiffiffi
3

2

r X∞
l¼0

X
JA;LA

ilð−1ÞLFþLIðð−1Þl þ ð−1ÞSF−SIÞð2lþ 1Þð2LA þ 1Þ

×C0;mF;mF
l;JA;JF

Cλ;mF;mI
1;JA;JI

�
LA l LF

0 0 0

��
LA 1 LI

0 0 0

��
JF l JA
LA SF LF

��
SI 1 SF
1
2

1
2

1
2

�264
LA 1 LI

SF 1 SI
JA 1 JI

3
75

×
X
nA;nB

ðMB −MAÞ
�Z

∞

0

drr2ðRnFLF
Þ�jl

�
kr
2

�
RnALA

��Z
∞

0

drr2ðRnALA
Þ�rRnBLI

�

× hJI;mI; nBLI; sIjP−ðÊαÞjΨIi: ð70Þ

For simplicity the matrix elements of the energy dependent operators have been evaluated in momentum space.

B. Transitions 3PJ → γ3S1
We proceed in the same manner for 3PJ → γ3S1 transitions. Thus, from (42) and (54) the electric part of the amplitude

reads
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ðMλðelectricÞ
JF;mF;JI ;mI

Þ3PJ→γ3S1 ¼ i
ffiffiffiffiffiffiffiffiffi
2MI

p ffiffiffiffiffiffiffiffiffi
2EF

p
δSI;SFec

X∞
l¼0

X
JA;LA

ð−1Þlð4lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2LI þ 1Þð2LF þ 1Þ

p

× C0;mI;mI
2l;JI ;JA

Cλ;mF;mI
1;JF;JA

�
LI 2l LA

0 0 0

��
LF 1 LA

0 0 0

��
JA 2l JI
LI SI LA

��
JA 1 JF
LF SF LA

�

×
X
nA;nB

ðMA −MFÞ
�Z

∞

0

drr2ðRnFLF
Þ�rRnALA

��Z
∞

0

drr2
�
RnALA

Þ�j2l
�
kr
2

�
RnBLI

�

× hJI; mI; nBLI; sIjPþðÊαÞjΨIi: ð71Þ

where MB is the mass of the state jJI; mI; nBLI; sIi and MA is the mass of the intermediate state jJA;mI; nALA; sIi.
As for the first magnetic term, we get from (42) and (55)

ðMλðmagneticÞσ×k
JF;mF;JI ;mI

Þ3PJ→γ3S1 ¼ i
ffiffiffiffiffiffiffiffi
2EI

p ffiffiffiffiffiffiffiffiffi
2EF

p
ecλ

k
m

X∞
l¼1

Xl

J̃¼maxð1;jl−2jÞ
ilðð−1Þl þ ð−1ÞSF−SIÞð−1ÞLFþl−1 2l − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2LF þ 1Þ

p

× C0;λ;λ
l−1;1;J̃C

λ;mF;mI

J̃;JF;JI

�
LF l − 1 LI

0 0 0

��
SI 1 SF
1
2

1
2

1
2

�264
LF l − 1 LI

SF 1 SI
JF J̃ JI

3
75

×
X
nB

�Z
∞

0

drr2
�
RnFLF

Þ�jl−1
�
kr
2

�
RnBLI

�
hJI; mI; nBLI; sIjPþðÊαÞjΨIi: ð72Þ

Finally, for the second magnetic term we obtain from (42) and (56)

ðMλðmagneticÞσ×p̂
JF;mF;JI ;mI

Þ3PJ→γ3S1 ¼ i
ffiffiffiffiffiffiffiffi
2EI

p ffiffiffiffiffiffiffiffiffi
2EF

p
ec

ffiffiffi
3

2

r X∞
l¼0

X
JA;LA

ilðð−1Þl þ ð−1ÞSF−SIÞð2lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2LI þ 1Þð2LF þ 1Þ

p

× C0;mI ;mI
l;JI ;JA

Cλ;mF;mI
1;JF;JA

�
LI l LA

0 0 0

��
LF 1 LA

0 0 0

��
JA l JI
LI SI LA

��
SI 1 SF
1
2

1
2

1
2

�264
LF 1 LA

SF 1 SI
JF 1 JA

3
75

×
X
nA;nB

ðMA −MFÞ
�Z

∞

0

drr2ðRnFLF
Þ�rRnALA

��Z
∞

0

drr2ðRnALA
Þ�jl

�
kr
2

�
RnBLI

�

× hJI;mI; nBLI; sIjP−ðÊαÞjΨIi: ð73Þ

For simplicity the matrix elements of the energy depen-
dent operators have been evaluated in momentum space.

VI. RESULTS AND CONCLUSIONS

From the electric and magnetic amplitudes detailed in the
preceding section, the total amplitude

Mλ
JF;mF;JI ;mI

¼ MλðelectricÞ
JF;mF;JI ;mI

þMλðmagneticÞσ×k
JF;mF;JI ;mI

þM
λðmagneticÞσ×p̂
JF;mF;JI ;mI

ð74Þ

and the width for the I → γF decay, given by (5), can be
straightforwardly evaluated.
Notice that the intermediate B states are ðnBÞ3S1 for

3S1 → γ3PJ and ðnBÞ3PJ for 3PJ → γ3S1 transitions. The
intermediate A states are ðnAÞ3PJA in both cases.

We have checked numerically that for the calculated
3S1 → γ3PJ and 3PJ → γ3S1 widths it is enough to take
nB ≤ 2 and nA ≤ 2 to assure convergence at the level of
1%. As we did in the case of the pc

Mc
approximation we have

used the experimental masses for 23P0 [corresponding to
χc0ð3860Þ� and 23P2 [corresponding to χc2ð3930Þ� and the
Cornell calculated mass from Model I for 23P1. The results
obtained are shown in Table VI.
A first general feature of these results is that the values of

the widths from Model I are systematically bigger than
from Model II. As this was also the case in the pc

Mc
approximation, see Table V, it can be mostly attributed
to the different wave functions from both models (let us
recall that in the pc

Mc
approximation the quark mass depend-

ence of the calculated width is reduced with respect to the
complete calculation).
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A second general feature of the results in Table VI is that
the calculated widths fromModel II are much closer to data
than the ones from Model I (the only exception being
23S1 → γ13P2, where they are almost equal). More pre-
cisely, half (three) of the calculated widths from Model II
are within the experimental intervals; another one, the
13P0 → γ13S1 calculated width is very close to the exper-
imental value differing from it a 6%, whereas the remaining
two calculated widths, 23S1 → γ13P0;2, differ from data
about a 40%. In contrast, all the calculated widths from
Model I are out of the experimental intervals, in half of the
cases with big differences (bigger than 40%) with respect
to data.
Centering on Model II, the calculated widths show

better agreement with data for 23S1 → γ13P1 than for
23S1 → γ13P0;2, and the same tendency, although attenu-
ated, is observed for 13P1 → γ13S1 as compared to
13P0;2 → γ13S1. This points out to a good wave function
for 13P1 and to some deficiency in the 13P0;2 wave
functions, what can be correlated to the mass description
of the charmonium states, see Table III: quite good for 13S1,
23S1 and 13P1 and deficient for 13P0;2. Then, it is quite
possible that nonperturbative or second order perturbative
corrections to the 13P0;2 wave functions play some role. If
we assume that this is the case, so that the wave function
corrections are responsible for the observed discrepancies
with data, then we may tentatively conclude that an
accurate description of radiative decays in charmonium
is feasible.
We may also conclude that the analysis of radiative

decay processes serves as a stringent test of the spectro-
scopic quark model. In this regard, let us recall that the
difference between Model I and II comes essentially from
the different values of the parameters, σ andMc. Actually, σ
and Mc are correlated in the sense that an increase in σ has
to be compensated with an increase in Mc to maintain the
spectral mass fit, see Table III. The fact that Model II works
much better for the description of the studied radiative
decays indicates that the value of the effective parameter σ
has to be quite close to its phenomenological value from the

analysis of Regge trajectories in light mesons and, as a
consequence, that the quark mass effective parameter, at
least for the description of the low lying charmonium states,
is constrained to be around 1.84 GeV.
Certainly, the prediction of the decay widths for radiative

transitions not yet measured could provide, if confirmed by
future experiments, strong support to our conclusions. In
practice, this comparison program presents some difficul-
ties. On the one hand we may expect that the 33S1 →
γ13P0;2 widths suffer at least from the same uncertainty as
the 23S1 → γ13P0;2. On the other hand the experimental
resonance ψð4040Þ contains presumably a significant
mixing of 33S1 and 23D1 states and the calculation of
23D1 → γ13P0;1;2 beyond the pc

Mc
approximation is quite

uncertain due to the current dearth of 3DJ state mass data to
be implemented. The same arguments apply to 33S1 →
γ23P0;2. On the other hand the observed decays Xð3872Þ →
γð1; 2Þ3S1 cannot be described as 23P1 → γð1; 2Þ3S1
from Model II since the Xð3872Þ description requires
the incorporation of meson-meson threshold effects.
Furthermore, the same kind of effects might be present
in χc0ð3860Þ that we have assumed to be the pure 23P0

Cornell state in spite of being above its first IðJPCÞ ¼
0ð0þþÞ meson-meson threshold, and in many other high
lying charmonium sates.
This reduces the range of our comparison program to the

prediction of the 23P0;2 → γð1; 2Þ3S1 decay widths from
Model II with a significant degree of uncertainty due to
the deficient description of the 3P0;2 wave functions, and in
the 23P2 → γ13S1 case to the contribution of nondiagonal
matrix elements of the energy dependent operators. From
our calculation, we may conservatively estimate a maxi-
mum uncertainty of about a 50% in the results.
The results with the estimated maximum uncertainties

are shown in Table VII.

VII. SUMMARY

In this article we have analyzed 3S1 ↔ 3PJ electromag-
netic transitions in charmonium. From two constituent

TABLE VI. Calculated widths as compared to data for ψð2SÞ → γχcJ ð1PÞ and χcJ ð1PÞ → γJ=ψ transitions.

Notation as follows. ΓðTheor−ExptÞ
complete : calculated width implemented with the experimental masses and photon energy.

The subscripts I and II refer to Model I and Model II. ΓPDG
Expt : measured widths [7].

Radiative Decay ðΓðTheor−ExptÞ
complete ÞI ðKeVÞ ΓPDG

Expt ðKeVÞ ðΓðTheor−ExptÞ
complete ÞII ðKeVÞ

ψð2SÞ → γχc0ð1pÞ 54 28.8� 1.4 43
ψð2SÞ → γχc1ð1pÞ 35 28.7� 1.5 30
ψð2SÞ → γχc2ð1pÞ 20 28.0� 1.3 18
χc0ð1pÞ → γJ=ψ 187 151� 14 130
χc1ð1pÞ → γJ=ψ 415 288� 22 284
χc2ð1pÞ → γJ=ψ 566 374� 27 385
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quark models reasonably fitting the masses of the low lying
charmonium states and from an elementary emission model
for the description of the radiative processes we have
shown that

(i) neither the standard pc
Mc

approximation to the electro-
magnetic transition operator nor its commonly used
long wave length limit should be taken for granted
for they can not give accurate account of data.
Although this inaccuracy has been only quantita-
tively proved for two Cornell potential models it
may be reasonably assumed to be valid in general
since the Cornell potential form contains the more
relevant terms for an appropriate description of the
low lying charmonium states. As a consequence, the
pc
Mc

approximation or its long wave length limit
should also not be used to discriminate between
different spectroscopic quark models.

(ii) the use of the complete electromagnetic operator
may allow for an accurate description of 3S1 ↔ 3PJ
radiative transitions between low lying charmonium
states from a Cornell potential model, when the
string tension parameter is close to the phenomeno-
logical value derived from the analysis of Regge
trajectories in light mesons. This restricts drastically
the possible values of the charm mass parameter to
keep an appropriate charmonium mass description.

Therefore, electromagnetic decay processes in char-
monium can be used as a powerful tool to constrain
the value of the charm mass parameter and to
discriminate among different quark models.

(iii) the complete electromagnetic operator formalism
developed for the calculation of the radiative widths
can be straightforwardly applied to bottomonium
bb̄, and trivially extended to treat radiative decays of
bottom, charmed mesons bc̄ and cb̄. Actually, for
bottomonium the calculated widths are in agreement
within a 15% with the ones obtained in the pb

Mb

approximation, the only exception being for 33S1 →
γ13PJ where the difference is about 50%. This
confirms the sufficiency of the pb

Mb
approach for

calculating radiative decays in bottomonium, for
the difference in the 33S1 → γ13PJ case is very
uncertain due to the very relevant nondiagonal
contributions to the matrix elements of the energy
dependent operators.
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APPENDIX A: FIRST QUANTIZED
TRANSITION OPERATOR

Let us consider for instance the quark part of the vector
component of the current (following the main text, we
denote quark components by subscript 1) given by

ðjðxÞÞ1 ¼ e1

�
−i
�
q†1ðxÞ

�
∇q1ðxÞ
M1 þ E1

�
−
�

∇q†1ðxÞ
M1 þ E1

�
q1ðxÞ

�
þ
��

∇q†1ðxÞ
M1 þ E1

�
× σ1q1ðxÞ − q†1ðxÞσ1×

�
∇q1ðxÞ
M1 þ E1

���
;

ðA1Þ

and a quark Fock state given by

jηi ¼ 1

ð2πÞ32
Z

dp1

X
ms

ϕms
η ðp1Þbms†

1 ðp1Þj0i ¼
1

ð2πÞ32
Z

dp1

1

ð2πÞ32
Z

dr1e−ip1·r1
X
ms

ψms
η ðr1Þbms†

1 ðp1Þj0i ðA2Þ

where ϕðp1Þ and ψðr1Þ stand for the wave function in momentum and configuration space respectively.
We define the first quantized quark part of the vector component of the current ðj1stðxÞÞ1 by requiring that

hξjðjðxÞÞ1jηi ¼
Z

dr1
X
ms;m0

s

ðψm0
s

ξ ðr1ÞÞ�ðj1stðxÞÞm
0
s;ms

1 ðr1Þψms
η ðr1Þ: ðA3Þ

TABLE VII. Predicted widths from Model II. Same notation as
in Table VI. ΓðTheor−ExptÞ

complete : calculated width implemented with the
experimental masses and photon energy. The errors correspond to
the estimated maximum uncertainties.

Radiative Decay ðΓðTheor−ExptÞ
complete ÞII ðKeVÞ

χc2ð3930Þ → γJ=ψ 54� 27
χc2ð3930Þ → γψð2SÞ 128� 64
χc0ð3860Þ → γJ=ψ 36� 18
χc0ð3860Þ → γψð2SÞ 45� 23
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It is then easy to check that

ðj1stðxÞÞ1 ¼ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ E1

2E1

s �
δð3Þðx − r1Þ

p1
M1 þ E1

þ p1
M1 þ E1

δð3Þðx − r1Þ

− iσ1×

�
δð3Þðx − r1Þ

p1
M1 þ E1

−
p1

M1 þ E1

δð3Þðx − r1Þ
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M1 þ E1

2E1

s
: ðA4Þ

By using the radiation gauge so that the time component of the electromagnetic field vanishes ðA0ðxÞ ¼ 0Þ we get

Hint ¼
Z

dxjμ1stðxÞAμðxÞ ¼ −
Z

dxj1stðxÞ · AðxÞ

¼ −
X
α¼1;2

eα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ Eα

2Eα

s ��
AðrαÞ ·

pα
Mα þ Eα

þ pα
Mα þ Eα

· AðrαÞ
�

−i
�
σα × AðrαÞ ·

pα
Mα þ Eα

−
pα

Mα þ Eα
· σα × AðrαÞ

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ Eα

2Eα

s
: ðA5Þ

To obtain the desired form of the transition operator we expand AðxÞ, the electromagnetic field at t ¼ 0, in terms
of creation and annihilation operators (see for example [10, p. 123]):

AðxÞ ¼
Z

dk
ð2πÞ3

1ffiffiffiffiffiffiffi
2k0

p
X
λ¼�1

ðϵλkaλkeik·x þ ðϵλkÞ�aλ†k e−ik·xÞ ðA6Þ

where aλ†k is the operator that creates a photon with three-momentum k and polarization λ

jk; λi ¼ aλ†k j0i: ðA7Þ
Then, taking the matrix element of (A6) between the vacuum and the one photon state yields

hk; λjAðxÞj0i ¼ 1ffiffiffiffiffiffiffi
2k0

p e−ik·xðϵλkÞ� ðA8Þ

where ϵλk stands for the photon polarization vector, and the first quantized transition operator to be sandwiched between the
meson states reads

hk; λjHint
1stj0i ¼ −

1ffiffiffiffiffiffiffi
2k0

p
X
α¼1;2

eα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ Êα

2Êα

s

×

�
e−ik·r̂α

p̂α
Mα þ Êα

þ p̂α
Mα þ Êα

e−ik·r̂α − iσα ×

�
e−ik·r̂α

p̂α
Mα þ Êα

−
p̂α

Mα þ Êα

e−ik·r̂α
��

· ðϵλkÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þ Êα

2Êα

s
:

ðA9Þ

APPENDIX B: GAUGE INVARIANCE

Let us show that the electromagnetic current satisfies the
condition

kμj
μ
1stðxÞ ¼ 0; ðB1Þ

meaning that the current is conserved as required by gauge
invariance. For this purpose, we have to verify that the
matrix element of kμj

μ
1stðxÞ between any initial and final

meson state is zero. Equivalently, expanding the meson
states in terms of quark and antiquark momentum eigen-
states, we can verify that

hpf; m0
sjkμjμ1stðxÞjpi; msi

¼ hpf; m0
sjk0j01stðxÞ − k · j1stðxÞjpi; msi

¼ k0hpf; m0
sjj01stðxÞjpi; msi − k · hpf; m0

sjj1stðxÞjpi; msi
¼ 0 ðB2Þ
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where pi is the three-momentum of the initial quark state going to a final state with a photon and a quark with three-
momentum pf.

Let us prove it for the quark contribution. The time component of the current is given by

ðj01stðxÞÞ1 ¼ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ E1

2E1

s �
δð3Þðx − r1Þ þ

�
p1

M1 þ E1

· δð3Þðx − r1Þ
p1

M1 þ E1

þ iσ1 ·
p1

M1 þ E1

× δð3Þðx − r1Þ
p1

M1 þ E1

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ E1

2E1

s
ðB3Þ

as can be easily checked following the procedure detailed
in Appendix A, whilst the vector component is given by
(A4).
To calculate the matrix elements we take into account the

action of the energy and momentum operators:

p1jpi; msi ¼ pijpi; msi; ðB4Þ

hpf; m0
sjp1 ¼ hpf; m0

sjpf; ðB5Þ

and

E1jpi; msi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þ p2i

q
jpi; msi ¼ Eijpi; msi; ðB6Þ

hpf; m0
sjE1 ¼ hpf; m0

sj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þ p2f

q
¼ hpf; m0

sjEf: ðB7Þ

The matrix element of the time component reads

hpf; m0
sjðj01stðxÞÞ1jpi; msi ¼ e1

�
δm

0
s;ms

�
1þ pi

M1 þ Ei
·

pf
M1 þ Ef

�
− iσm

0
s;ms

1 ·
pi

M1 þ Ei
×

pf
M1 þ Ef

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ Ef

2Ef

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ Ei

2Ei

s
eiðpi−pfÞ·x ðB8Þ

where we have used

hpf; m0
sjδðx − r1Þjpi; msi ¼ eiðpi−pfÞ·xδm0

s;ms ðB9Þ

with δm
0
s;ms being the Kronecker delta. Note that for momentum eigenstates we have adopted the nonrelativistic

normalization

hp0; m0
sjp; msi ¼ ð2πÞ3δð3Þðp − p0Þδm0

s;ms ; ðB10Þ
consistently with [7, p. 567]. In the same way, for the matrix element of the vector component we obtain

hpf; m0
sjðj1stðxÞÞ1jpi; msi ¼ e1

�
δm

0
s;ms

�
pi

M1 þ Ei
þ pf
M1 þ Ef

�
− iσm

0
s;ms

1 ×

�
pi

M1 þ Ei
−

pf
M1 þ Ef

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ Ef

2Ef

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1 þ Ei

2Ei

s
eiðpi−pfÞ·x: ðB11Þ

Now, using

pi;f · pi;f ¼ p2i;f ¼ E2
i;f −M2

1 ðB12Þ

it is easy to show that

ðpi − pfÞ ·
�

pi
M1 þ Ei

þ pf
M1 þ Ef

�
¼ ðEi − EfÞ

�
1þ pi

M1 þ Ei
·

pf
M1 þ Ef

�
ðB13Þ
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and

ðpi − pfÞ · σm
0
s;ms

1 ×
�

pi
M1 þ Ei

−
pf

M1 þ Ef

�

¼ ðEi − EfÞσm
0
s;ms

1 ·
pi

M1 þ Ei
×

pf
M1 þ Ef

; ðB14Þ

so that

ðpi − pfÞ · hpf; m0
sjðj1stðxÞÞ1jpi; msi

¼ ðEi − EfÞhpf; m0
sjðj01stðxÞÞ1jpi; msi: ðB15Þ

Then, applying four-momentum conservation in the
emission of the photon by the quark

k0 ¼ Ei − Ef; ðB16Þ

k ¼ pi − pf; ðB17Þ

(B15) becomes

k · hpf;m0
sjðj1stðxÞÞ1jpi; msi ¼ k0hpf;m0

sjðj01stðxÞÞ1jpi; msi;
ðB18Þ

showing that the quark contribution to the current is
conserved.
It is clear that the substitutions e1 → e2 and M1 → M2

do not affect this result, so that the antiquark contribution is
conserved as well. Then, the conservation of both the quark
and antiquark components separately implies the conser-
vation of the total current defined by (15) and (16).
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