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In this paper we propose a solution to the long standing problem present in the color glass condensate/
saturation approach: i.e., the powerlike fall off of the scattering amplitudes at large . We propose a new
nonlinear equation, which takes into account random walks both in transverse momenta of the produced
gluons, and in their impact parameter. We demonstrate, that this equation is in accord with previous
attempts to include diffusion in impact parameters in the Balitsky-Fadin-Kuraev-Lipatov evolution
equation. We show in the paper, that the solution to a new equation results in the exponential decrease
of the scattering amplitude at large impact parameter, and in the restoration of the Froissart theorem.
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I. INTRODUCTION

It is well known that perturbative QCD has a funda-
mental problem: the scattering amplitude decreases at large
impact parameters (b) as a power of b. In particular, the
color glass condensate (CGC)/saturation approach [1],
which is based on perturbative QCD, also has this problem.
At large b the scattering amplitude is small and, therefore in
perturbative QCD, only the linear Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation [2] is determined by the scatter-
ing amplitude. It is known that the eigenfunction of this
equation (the scattering amplitude of two dipoles with sizes
r and R) has the following form [3]

r2R2

by (rR.b)= <(b +%(r—R)>2(b—%(r—R))2>y
M(’ijyzeﬁ with §—In<ﬁ> (1)

b4

One can see that at large impact parameter b, the amplitude
has a powerlike decrease, which leads to the violation of the
Froissart theorem [4]. The violation of the Froissart
theorem stems from the growth of the radius of interaction
as a power of the energy. Since in Ref. [3] it was proven that
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the eigenfunction of any kernel with conformal symmetry
has the form of Eq. (1), one can only change the large b
behavior by introducing a new dimensional scale in the
kernel of the equation. This problem has been known from
the beginning of the saturation approach [5,6], and several
ideas have been proposed, of how to introduce a new
dimensional scale in the kernel of the BFKL equation (See
Refs. [5-10]). However, for the high energy community at
large, the problem was appreciated only after the papers of
Refs. [11,12] were published, where it was demonstrated,
that the violation of the Froissart theorem cannot be
avoided in the framework of the CGC approach.

First, we wish to illustrate why the Froissart theorem is
violated for the BFKL equation. The general solution to the
BFKL for the dipole scattering amplitude equation, has the
following form:
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where

w(as,y) = asy(y) = asy (1) —w(r) —yw(l-7))

Sonto(r-3) +o((r-3) )
1\2 1\?3

(3)

w(z) denotes the Euler psi-function y(z) = dInl(z)/dz.
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The main contribution in Eq. (2) stems from y — 1,
where we can use the expansion shown in Eq. (3),
evaluating this integral using the method of steepest
descend, one can see that saddle point occurs at ygp =

1__¢
272y

b>r.R 1 r2R2> 1/2 1 2
N(r,Y;b) —> ¢ =) | — e™Ymor, (4
(r.:b) ¢(2)( ) 5 @)

Using Eq. (4) we attempt to determine the upper bound
from the unitarity constraints

< 1 and the amplitude is equal to

A2N(r,Y;b) = [N(r,Y;b)|> + Gin (P2, Y;b)  (5)

where G, describes the contribution of all inelastic
processes. Recalling that N is the imaginary part of the
scattering amplitude and assuming that the real part of
the amplitude is small, as is the case of the BFKL equation,
the unitarity constraint has the solution:
N =1-exp(-Q(r,Y;b)) < 1,

Gin =1 —exp(=2Q(r,Y; D)) (6)

where Q > 0, denotes an arbitrary function.

We can find the bound for the total cross section
following Ref. [4].

d*bN(r,Y;b).
by
(7)

We need to solve the following equation to find the value
of bo,

1\ (PR 1 2
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At large Y this solution gives b o« ePTVPP+42)Y anq
therefore,

b,
Utotzz/N(r,Y;b)d2b<2/ 0dzb—i—

N(r.Y;by) < elPHVPDH00)Y, 9)

Note, that for the soft amplitude of the typical form
Ngot  e®Y™#0 and b, Y. In this case, one can see, that
the first integral in Eq. (7) leads to ¢ < Const y?, which is
the Froissart theorem. This amplitude violates the Froissart
theorem and can be considered only at large values of b
where Ny < 1. However, the eikonal solution of Eq. (6)
with Q = N, satisfies the unitarity constraints and leads
to the amplitude, that describes the Froissart disc: the
amplitude is equal to 1 for b < (1/u)Y and it has an edge
which behaves as Ny,.

We hope that this simple estimate shows, that the
powerlike decrease of the scattering amplitude is the source
of the problem. To solve the problem in the framework of
the CGC/saturation approach we need to introduce in
addition to the saturation momentum, a new dimensional
scale u. In Ref. [4] it is shown that this new scale is related
to the mass of the lightest hadrons. Perturbative QCD
cannot reproduce the observed spectrum of hadrons, and
attempting to solve this problem, we are doomed to
introduce something from nonperturbative QCD estimates.
Since the nonperturbative approach is still in an embryonic
stage, one can only make a guess of how to introduce this
scale, which depends crucially on nonperturbative esti-
mates in lattice QCD, on the phenomenology of high
energy interactions and on intuition, which comes from
considering different theoretical models. We hope that the
following is a more or less complete list of the attempts to
solve this problem, and to find and introduce a new
dimensional scale appear in Refs. [5-10,12-24].

At first sight the recent papers [25,26] have questioned
the need of a new dimensional scale, since they demon-
strate that the next-to-leading order BFKL equation gen-
erates the exponential type of the impact parameter
behavior without the need of a new dimensional scale.
However, it turns out [27] that the NLO corrections do not
change the powerlike decrease of the scattering amplitude
at large impact parameter, generating the exponential-type
decreases in the large but limited region of the values of the
impact parameter.'

In this paper we re-visit one of the possible ways of
introducing a new dimensional scale: to incorporate in the
BFKL equation the diffusion in impact parameter (b). The
first such attempt was undertaken in the distant 1990’s [5,6]
and during three decades we have worked in this area
[7-10,14,23,24]. In the preprint version of this paper [28]
we give an extended review of all efforts to introduce a new
dimensional scale in the CGC framework. We consider this
review as the important part of presentation, which helps a
reader to trust our generalization of the BFKL equation,
since it shows that the Green function of the BFKL
Pomeron, that follows from our new equation, coincides
with other more phenomenological ways of introducing a
new dimensional scale. We were advised, that the manu-
script would be improved, if our historical review is
shortened. Therefore, after discussion of two kind of
diffusions: in impact parameter and in transverse momenta
in QCD in the next section, we propose in Sec. III our
generalization of the BFKL equation, which takes into
account the diffusion in b in accord with QCD estimates.
We will discuss the structure of the scattering amplitude at

'In addition to the powerlike behavior at large b the NLO
corrections lead to an oscillating behavior of the scattering
amplitude at large b, in direct contradiction with the unitarity
constraint [27].
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high energies, which at the present appears to be a black
disc with radius increasing as a power of energy. This paper
is partly motivated by Ref. [24], in which many questions
concerning QCD has been formulated on the black disc
behavior at high energy2 from the point of boost invariance
and the parton model. We hope that we succeed in
answering some of these questions in this paper. In
particular, we will demonstrate in Sec. IV, that QCD leads
to the Froissart disc at high energies, with specific behavior
of the amplitude at the edge of this disc.

II. DIFFUSIONS

A. Regge approach and Gribov’s diffusion
in impact parameter

In the framework of the Regge approach the high energy
amplitude is given by the exchange of the Pomeron, and has
the following form [29-32]:
sN(s. Q) =ImA(s, Q) = 91(Qr)g2(Qr)e @ (10)
where g¢;, ¢, and trajectory ap(Q7) =1+ Ap(Qr) =
1 + Ap — 0% + O(Q%) are functions that have to be
taken from phenomenology. Y =In(s) and Q; is the

momentum transferred by the Pomeron.’ Equation (10)
can be viewed as the solution to the following equation:

INOOr) _ ppiopnr0p) (1)
dy
with the initial condition
N(Y =0,07) = 9:1(Qr)9:(Qr). (12)

In impact parameter representation the solution of Eq. (10)
takes the form:

&L0;
N(Y,b) :/ﬁelb.QTNW:O, Or) =g192¢*"'n(Y,b)
1 b2

with n(Y,b)= e
drapY

(13)

In Eq. (13) we have neglected the Q7 dependence of g; and
g» which do not contribute at high energies.

In Ref. [31] the simple fact is noted, i.e., n(Y, b) is the
solution of the diffusion equation:

dn(Y,b)

77 (14)

= apVin(Y,b).

*We will use the Froissart disc instead the black disc behavior
with the radius which increase as In(s).

’In the case of the deep inelastic processes Y = In (1/x),
where x is the Bjorken variable.

Equation (14) together with Eq. (10) for the total cross
section:

ApY
O-totzngQZN(Y7QT:0):291926APY:602% (15)
n=0 :

have very simple interpretations in the parton model. In the
parton model [31-33] it is assumed, that we can describe the
interaction by a field theory, in which all integrals over
transverse momenta are convergent, and they lead to the
mean transverse momentum, which does not depend on
energy. In such a theory, the contribution to the total cross
section of the scattering amplitude for production of n partons
in each order of perturbation approach, can be viewed as

n

6y =My 0, ({Pir}) H &’ p;rdy;
i=0

Y}’l

nt’

— Mrrn({pi D) [ 01 (16)
(=0

=

In Eq. (16) we assume that in the proposed theory the
amplitude is not equal to zero, when rapidities of emitted
partons are equal to zero, and choose the largest contribu-
tion which comes from the ordering

O<y<y<..<y<..<y,<Y. (17)
One can see that in Eq. (15) My o ({pir}) [To iy =
Ap* and from this equation we can conclude that the
number of emitted partons n = ApY. Gribov’s idea, that
the emission of partons has no other correlations except the
fixed transverse momentum, can be viewed as a random
walk in two dimensional space. For each emission due to
uncertainty principle

1
Ab; ~

Abipi. ~1 or .
! (Ipirl)

(18)

Therefore, after each emission the position of the parton
will be shifted by an amount Ab? from Eq. (18), which on
average is the same. After n emissions, we have the picture
shown in Fig. 1, and the total shift in b is equal to

1 1

R2. = b? = =
" ey el

Therefore, this diffusion reproduces the shrinkage of the
diffraction peak. Indeed,

ApY. (19)

“In this estimate we assume that oy in Eq. (13) does not depend
on energy. In the field theories which can be a realization of the
parton model, usually 6, o 1/s% but the first result from QCD
was the understanding that in this approach ¢, does not depend
on energy [34].
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FIG. 1. The structure of the parton cascade: Fig. 1(a) shows the
time structure of the cascade while Fig. 1(b) illustrates the
random walk in b. The black lines describe the diffusion in
the parton model, while the red lines correspond to a random
walk in b for QCD.

d*bb*N(Y, b)
g = JELENDD) sy 20
T&bN(Y.B) P (20)

d(R? [ d*bN(Y,b
dy

) _ / Pbd*b'bK(b—b')N(Y,b)

Comparing Eq. (19) and Eq. (20) one can see that

Ap

= ) @)

Equation (11) can be rewritten in the impact parameter
representation for N(Y, b) of Eq. (13)

AN(Y.b) [ i 2 /
T_/de(b BN(Y. V)
d*Or

et aeon) ()

where K(b) = /

Writing the equation for the radius of interaction
[see Eq. (20)]. First, we see that for [d’bb>N(Y,b) =
R? [ d®bN(Y,b) we have the following equation:

- / Pb-b)LPYKDB-b)((b-b)>+2(b—b) b +b>)N(Y.,b)

= < / PB-b)Kb-b)((b-b)?) / PUN(Y,b) + / b -b)PYK{b-b)(b-b)-b'N(Y.b)

(1ab])Ap(Q7=0)

=0

+ < / d2(b—b’)K(b—b’)> < / b'DN(Y. b’)) (23)

A(Qr=0)

The second term vanishes due to integration over the
angle and finally we have the following equation

dR?

= Ap(lan) (24)

with the solution R*=Ap (|Ab*|)Y ==V} Ap(Q7)lg,—oY-
We can obtain Eq. (24) using the Mueller diagrams [35]
of Fig. 2.
Indeed, one can see that

Vo, N(Y. 07)lg,—0

= 4o, YerrY (25)

Therefore, for R? we obtain R? = dapYe??Y [eeY = dapY
in accord with Eq. (24).

The amplitude of Eq. (13) increases with energy and
violates the unitary constraints [see Eq. (5)]. The eikonal
unitarization of Eq. (6) leads to the following amplitude

I
N(Y,b) =1—exp (—eAF“Y e 4“F°Y> (26)
drapY

One can see that this amplitude tends to unity at b >
2\/ApapY leading to the total cross section o, Y? in
accord with the Froissart theorem [4].

In spite of the primitive level of calculations, especially if
one compares them with typical QCD calculations in DIS,
the parton model has been a good guide for the Pomeron
structure for years and, it is still the model where one can
see all typical features of the soft Pomeron. It turns out that
the time structure of the parton cascade is preserved for
QCD and simple parton estimates can help develop our
intuition regarding the solution of the QCD problems.
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FIG.2. Mueller diagrams for calculating VZQTN (Y, Q71)|g,—o- The wavy lines denote the Pomeron contribution at Q7 = 0. For Fig. 2-a
and Fig. 2-b it is the Pomeron in the parton model of Eq. (10), while for Fig. 2(c) and Fig. 2(d) it is the BFKL Pomeron in QCD [see
Eq. (33)]. The red blobs denote vé;-AP (O1)lg,—0 0r Vo, Ap(Q7)|g,—o as it is indicated in the figures. Functions ¢, and ¢, are defined
in the text.

B. BFKL approach and diffusion in In(p;)

1. The BFKL equation

The BFKL equation was derived in momentum representation [2] and has the following form:

ON(Y;q.0r)  _ /dzq’
oy s\ o ke

where ag = (N./7)ag. Kernel K, describes the emission of a gluon, while kernel K, is responsible for the Reggeization
of gluons in t-channel. They have the forms:

(@ —q.0r)N(Y;q'.0r) = Keg(q —q'.Qr)N(Y: ¢, Qr)) (27)

11 2q-4) (Or —q)zq’z} o=0 1
K -q, =_ _ =T 1
enlq =4 Q1) 2<q—q/>2{ -0 o= grd )T a-a7
. 1 7 (Qr —q) }QTO 1 q° 23
R T P e e e el

This equation is rewritten in the coordinate representation for the scattering amplitude of a dipole of size r, at impact
parameter b [3,36]:

8 dzr/ / /. / 1 / / 1
EN(rb Y) = /271 K(r,r—r,r)(N(r,b—E(r—r),Y)+N<r—r,b—§r’,Y)—N(r,b,Y)) (29)

with very useful for discussions of the nonlinear corrections,
since the unitarity constraints are diagonal for the dipole

r scattering amplitude [see Eq. (5)]. However, discussing the
(30)  random walk in In(p7) we need a solution in the momen-
tum representation in which p;r denote the momenta of

In Eq. (29) produced gluons. Note, that in Eq. (28) ¢ — ¢ = py. For
Q7 the solution can be easily obtained, since the eigen-
Pq . function have the following form [2]
N(r,b,Y):r2/ge"1"N(q,b,Y); e
- 42b . - ¢y(61, 90,07 =0) = (q_2> . (32)
N(Yiq.0p) = / SO b Y), 31) %

Comparing Eq. (32) with Eq. (1) one can see that g, ~ 1/R,

2. Solutions and random walk in In(py)

We have discussed solutions in the coordinate represen-
tation [see Eq. (1), Eq. (2), and Eq. (4)]. These solutions are

where R denotes the size of the target. Repeating all the
steps, that are given by Eq. (2) and Eq. (3), we obtain the
solution in the form of Eq. (4); viz.
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5 1 2\ 1/2
Ma.0r =0.1) =4 (3)(B) " enrita.)

e (33)

where 71(q,Y) =

with & =1n(q?/q3). One can recognize that for the
function n we have the diffusion equation in the form:
0 _ - 0 -
—n . Y — D —=A 7 N Y . 34
o7& ) = DoY) (34)

Therefore, the BFKL equation describes that at each
emission, In(g?/q’*) changes its value by a constant
(In(¢*/q"*))> = 8, and as a result after n emissions we
obtain In? (p%/g3) = 6n. Since n = w,Y (see the previous
section) we obtain (In (¢%/¢3))*6w,Y. This estimate shows
that 4D = dw,. From this estimate we see that after n
emissions the typical transverse momenta increase as
(|p%]) = g3 exp (6n), making the shift in b(|Ab?|), «
1/{|p%]) ~ (1/43) exp (=8n). Therefore, only a small num-
ber of steps at the beginning could participate in the
increase of b [see red lines in Fig. 1(b)].

3. The Green function of the BFKL Pomeron

The solution of Eq. (33) can be rewritten in the following
form:

q 0r=0, Y
/Hm dw /e+zoo dy 1 R () (35)

2mi 2rniw—w(y)

We introduce the Green function of the BFKL Pomeron as
follows:

GBFKL(Q), Z:) _ /e+ioo ﬂ 1 ewY+(V—1)5 (36)

i 27w — w(y)

The Green function in the Y representation can be calcu-
lated as

~ 1 e+ico
GBFKL(Y’g):q / da) BFKL(w 50y =0)
0Je—ico

/€+l°° do /6+’°° dr 1 b eri(-)E
qo . 270 Je—ioo 2miw—(y)

r=t+ivw<l Le‘”OY /€+zood_w 1 e_DK(%Y+KUE
9490 e—ico 272Dk
w—w
where Ko = (’f()) (37)

Integrating over k, we obtain the solution of Eq. (33).

One can see that GBKL(Y =0,& Qr =0) = §(¢)
and therefore, the scattering amplitude can be found
N(Y;q,0r = 0) = [ d&yGP™ (& = &) ®;, (&), where @
is the initial condition for the scattering amplitude. It should
also be mentioned that factors 1/(gq,) are absorbed in the
integration of & in the diagrams for Pomeron interactions.

4. The BFKL approach: Random walk in b

As one can see from Eq. (33) we have introduced
a new dimensional scale: gq. It was introduced as the
nonperturbative size of the target g, ~ 1/R, but its actual
meaning is the separation scale: in perturbative QCD we
can calculate only for p; > gy, while smaller transverse
momenta have to be treated in nonperturbative approaches.
From the solution of Eq. (33) one can see that the
probability to have pr = ¢, is small #ﬁ but not

negligible. The gluons with transverse momenta of the
order of ¢, could participate in the random walk in b,
leading to [5,6]

1 1
(1B?), = —Prn x—VY (38)
0] do

11
X—F—F—n
q5\/n

where Pj denotes the probability to have the minimum
momentum after n emissions. In Refs. [5,6] the numerical
coefficient in Eq. (38) is evaluated. Since the average
(|b*]),, diverges at small g, in some sense the value of the
coefficient is not important. However, we feel it is instruc-
tive to understand two qualitative features: the infrared
divergency and the energy dependence.

First, we calculate the main ingredients of the calculation
that we have discussed in Sec IT A:

/
VQTKem(q - q/v QT>|QT:O == ﬁ (% - %) ;
)
Vo, Kee(@—4.01)|g,—0 = —(q_lq,)Z <qq/2 qth );
Vo, Kem(@ =4 07)l0,~0 = =0, Kem(@ — 4. Q1) 0,~0
J— 2 .
242
Kreg(q - q/’ QT>|QT:O =0 (39)

As we have discussed in Sec. Il A [see Eq. (23)], we
can write the equation for -V, N(Y;q.07)lg,—0 =
S (‘ZIZ ’)’2 b*N(q.b,Y) applying =V, to the both parts of
Eq. (27). In doing so, we obtain:

014023-6
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5 ) .
oy (—VZQTN(Y; 4, Or)lo,—0) = /d2q’V2QTK(q ~4.9r) ‘QT=0N(Y

- 2/07261/VQTK(‘I _ql7QT)‘Q

;q/v QT)

0r=0

(Yo, M(Y:q. 01)

or-o)

+ / *q'K(q —q”Qr)’QTZO(—VZQTN(Y; 7 QT)‘QT:o)'

To obtain the complete system of equations we need to add the equation for V_

0 -
57 (Vo N(i0.01)lg0) = [ @4V Kla=1.00)|, F(¥iq.0p)

+/d2q’K(q —q’,Qr)

Equation (41) can be rewritten as

0 _
<W—1>VQT (Y59, 0r)lo,-0 as%(/qz

(40)

N(Y;q, O7)lg,—o- It takes the form:

In the double Mellin transform of Eq. (36) the solution to Eq. (42) has the form:

VQTN(O); Vs QT)|Q7=O =

07r=0
(VQT (Y54, Or) T:o>' (41)
q/2 5 .
A N(Y:q . Qr=0)-N(¥:q.0r = 0)). (42)
q 1 1
7 o—al) (1——f 1)‘ (43)

Plugging the solution of Eq. (43) into Eq. (40), we reduce this equation to the following one:

0 - _
oY (_VZQTN(Y; 4q, QT)|QT:0) - / qK(q-q.0r = 0)(_V2QTN(Y; q, QT)|QT:0)

o 12 e+ico 1 1 5
=23 / Y R(viq.0r = 0) + 22 / " da” / e el )
7 Lo ¢7 ecico 2mi0 —(y) \1 —

The main contributions to the integrals over ¢’ stem from
the region ¢’ — 0. Taking this into account, the solution in
the w- representation has the form:

a5 1 + ag 1

2 N
VQTN(LU’CL 0r)lo,-0 ? D

(45)

(1)—0)0'

Therefore, we see from Eq. (45) that Vé,{N
e™Y,

We need to divide this solution by the N(Y; ¢', Qr) l0,=0
and finally, we obtain for & < DY that

(w34, QT)|QT=O &

(b%) = 2ag(1 + ag) %% VY =algVY.  (46)

As was shown in Refs. [5,6], the second term does not
have the suppression of the order of &g, as we can see from
Eq. (45). Such an enhancement comes from the replace-
ment in Eq. (40)

2 / Pq'Vo,Kla=qQn)], - (Yo, N(Yid.0n)lo, -0

—>2/d2q’VQTK(q—q’,QT))Q L, ®h(Y=Y'.q".q".0)
® (Vo,N(Y':47.01)lo,~0) (47)

® stands for all the required integrations. The eigenfunc-
tion ¢; [3] depends on the angles between ¢” and ¢’ and has
an intercept which is negative and o a;. Integration over Y’
leads to the factor 1/ag which compensates the small value
of ag. This contribution actually leads to the change of the
numerical coefficient, which does not have much meaning,
since (b?) is infrared unstable, and ¢ — ¢, gives the main
contribution. The value of the scale ¢ is not determined in
our approach. Hence, we introduce a new dimensional scale
ale which, we hope, will heal the large b behavior of the
scattering amplitude.
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III. A NEW NONLINEAR EVOLUTION EQUATION

In this section we propose a nonlinear equation, which
takes into account the random walk both in In(p7), and in b,
and which will transform the CGC/saturation approach into
an effective theory, describing QCD at high energies. The
effort to find such an equation covers a long span in time,
from the first GLR equation [37](see also Refs. [36,38,39])
till recent papers. Our goal is to introduce the random walk in

|

b in the framework of the nonlinear evolution equations,
which guarantee the unitarity of the scattering amplitude.
The CGC/saturation approach is based on the nonlinear
Balitsky -Kovchegov equation [40], which itself has prob-
lems with the behavior of the scattering amplitude at large
b, typical for perturbative QCD.

We proposed the following generalization of the
Balitsky-Kovchegov nonlinear evolution equation [40]:

) _ (a7 , L1 Lo
ﬁN(r,b,Y)—as/ o K(r,r—r,r){N(r,b—E(r—r’),Y>+N<r—r,b—§r’,Y>—N(r,b,Y)

1 1
—N(r—r’,b —Er’,Y>N<r’,b —E(r—r’), Y)} + (& V3)*N(r,b,Y)

r d*r
b as/ 2r K. r—r:r){N(.b,Y) + N(r—r.b.Y) = N(r.b.Y) = N(r—r.b,Y)N(r .b.Y)}
T

+ (i V3)*N(r.b.Y),

where ol is a new dimensional scale. We believe that
Eq. (48) is the correct way to introduce this scale for the
nonlinear evolution.

A. The BFKL Pomeron with diffusion in b

First, we solve the new equation at large b, where only
the linear part contributes. The equation takes the form:

a P dzr, J/ /. /

ﬁN(r,b, Y) —as/ o K. ,r—r';r){N(r.,b,Y)
+N(r—r'.,b,Y)—N(r,b,Y)}
+ (& V3)?N(r,b,Y). (48)

We can obtain the solution to this equation considering it
in the form: N(r,b,Y) = G(r, Y)®(Y; b) where G(r,Y) is
the Green’s function of the BFKL equation and ®(Y; D)
satisfies the following equation

8%/(1)(”’ Y) = (0 V3)*@(b.Y). (49)

In w-representation:

O(b, Y) = / RO v (b, ). (50)

—ico Tl
Equation (49) takes the form
(s V3)*@(b, 0) = 0@ (b, w) (51)

The general solution to Eq. (51) can be written (see
Ref. [41] formula 9.4.3) as

Ob,w)=P_(b,w) + P, (b,w) (52)
where @, are the solution to the following equations:
Vi@ (b, w) £ Vo (b, w) = 0. (53)

We restrict ourself by the solution ®(b, w) = @, (b, w)
for which the Green’s function is equal to

d> .
O, (b, o) = / (zf)g Jiorh

)
@i OF + Vo

(54)

where ¢ (w) should be found from the initial condition at
Y = 0. Searching for the Green’s function of Eq. (54) we
impose the initial condition:

@, (b,Y =0)=5%(b) (55)

which results in ¢(w) = 1/(2\/).

Equation (54) has the same form as the Green function of
the modified BFKL Pomeron, suggested in Ref. [23] (see
also the review section in Ref. [28]). In these papers a
theoretical approach is proposed, which is based on the
assumption, that the BFKL Pomeron, being perturbative in
nature, takes into account rather short distances (say of the
order of 1/mg, where m denotes the mass of the lightest
glueball); and the long distance contribution can be described
by the exchange of pions (1/2u > 1/m, where y is the pion
mass). The calculations are based on the t -channel unitarity,
as was proposed in Ref. [42], and on the finding, that the
intercept of the BFKL Pomeron does not depend on the
model of the long distances contribution [22].
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Taking the integral over d’Q; we obtain:

O, (b,ow) = w”“) (56)

1 b
K
4”a:=,ff\/zu— 0 <\/ aéff

and for ®(b,Y) we have

etico dp 1 b
O(b,Y)= e Ky ———=0'*|. (57
.7) l—ioo Sﬂziaéff\/a’—e 0( a:effw 7

For large b we can take the integral over w, plugging the
asymptotic behavior of the K|, function, and using the
method of steepest descend. Eq. (57) takes the form:

et+ioo o 1
®(b,Y) = —
( ) L—ioo 87T2i afcff\/E

1 1/8 1 _ b’ 1/4
XemY\/i() - e e ) (58)
w

/
ey

The equation for the saddle point has the following form

b 4/3
=0; Wep = [ ———— . 59
o (4Y ) (59)

From Eq. (59) we obtain for the integral over w:

4n a/ff>1/3 < 3 )
—aL exp| —-2Z 60
NP <4Yb2 P\ 73 (60)

b4 1/3
~(av) (¢1)
eff

Finally, from N(r,b,Y) = G(r,

1 «/
Y et

4 w3/4

Db, Y) =

where

Y)®(Y;b) we obtain

etico (]
G(r,b,y):/' 2::; Y =(-DEQ (Y b)
r 1 2
= — @Y e~ ®(Y; b 62
R 5Dy (Y;0) (62)

and ®(Y; b) is given by Eq. (60). In Eq. (62) we integrated
over y using the diffusion expansion for the kernel, y(y)
for y — %

For the region of not large b we obtain the solution which
has a cumbersome form:

L (—ayx Y,F 2 v
—a T R
162%;Y awtoF2 {35 25602 Y

33 b*
— b F 55 ey 63
0 2( 2°2 256a/§ffY>> (63)

where ,F, is the hyperbolic function (see formula 9.14
of Ref. [43]).

As we have mentioned above the solution of Eq. (61) is
the Green’s function of Eq. (50), and it preserves the
remarkable property of the Green’s function of the BFKL
Pomeron:

(b, Y) = / LPHOB—b.Y - Y)W, Y) (64)

— d2 / sz/T 14 ! /
— b i exp(a e“Q Y +ig'r-b)

2
« [
47?

_ / POy exp(2; Q"4 +iq'r-b). (65)

exp(a 3 Q7 (Y = Y') +iQr- (b-b"))

In Eq. (64) we use Eq. (54) for @, (b, w) which leads to the
following representation for ®(b,Y)

e+ico
ob,Y) = / 99 ' (b, o)

—ico Tl

— /dQQT exp(a’gfo“} +iq'y-b). (66)

The integration over @b’ in Eq. (64) generates ) (@7 — Q%),
which results in Eq. (64).

Using Eq. (64) we can prove that for the Green’s function
of Eq. (62) we have the following equation:

G(r.b.R.Y) = /dzr’dzb’G(r,b —b.r.Y-Y)G(.b.RY)

d/ d2 /
- / dE b / ar / QJ exp(@sy(r) + a5 Q)Y +

Sl

where & = In (?/R?).

exp (asy(y) +a efo4 (Y =Y') +

(yl _ 1)5/ + iqlT . bl)

(r=1(-¢&)+iQr-(b-b") (67)
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The integration over & and b’ gives §(y —y') and
52)(Qr — @%), which leads to the equation Eq. (67).

One can see that Eq. (62) has the same main features as
the Green function of the modified BFKL Pomeron, in
which the contribution of long distances stems from the
exchange of pions [23].

In particular, the unitarization leads to the Froissart disc
with radius

R 4 314 22
V X eft 4Day
a1/
whose edge decreases with b as e * *“«”  which corre-

sponds to the diffusion in b with (h?) VY, as follows
from Sec. 11 B 4.

B. Solution in the vicinity of the saturation scale

The behavior of the scattering dipole amplitude in the
vicinity of the saturation scale can be found from the solution
of the linear equation [37,44]. We will use the solution to
Eq. (48) in the form of Eq. (60), and will take the integral over
y using the method of steepest descend. The equation for the
saddle point in y has the form:

_ dy(y
g d(7/>

Y+ E=0. (69)

7=Vsp

The second condition is that the scattering amplitude is a
constant for r2Q? = 1, which has the form

3
asy(ysp)Y + (rsp — 1) — ZZ =0. (70)

Plugging Eq. (69) into Eq. (70) we obtain the following
equation for ygp.

dy(y) 3
& ey |Y = 1z (71)

as <)((}’SP) + (1 —7sp)

For Z = 0 the solution to Eq. (71) is ysp = 7., = 0.37. If
Z < agY we can find the solution to Eq. (71) assuming,
that ygp = 7., + oy with oy < y.,. The value of dy from
Eq. (71) turns out to be equal to

Lz

d,
(1=7) %2,

3
= — 2
oy 1 (72)

agY’

Substituting ysp = 7., + oy into Eq. (69), we obtain the
expression for the saturation momentum:

oy s Xre) 3
S=mn(@)=asy Y -7 (73)

In the vicinity of the saturation scale the scattering
amplitude shows geometric scaling behavior [45-48] and
has the following form [44] for 7 ~ 1:

N(r,b,Y) = No(r*Q(Y., b)) "7 = Noz'7er - (74)

where N, is a constant and we assumed that éy Inz < 1.
Using Eq. (73) for Q, we see that N(r, b, Y) of Eq. (74)
can be rewritten in the form:

3, pt \1/3

N(r,b,Y) = No(rPQX(Y,b = 0)) e " (75)

for the kinematic region

= Xlrer)

PROY = 0)e™ =" T ~ 1. (76)

C. The scattering amplitude
in the deep saturation region

We use the approach of Ref. [46] for linearizing Eq. (48)
deep inside the saturation region (r2Q2(Y,b) > 1): we
assume that N(r,b,Y)—1 and neglect the contributions,
which are proportional to A%(r,b,Y) <1 where N(r, b, Y) =
1 —A(r,b,Y). Eq. (48) reduces to the following linear
equation for A(r,b,Y)

O A(rb.Y) = - / L =) A b.Y)
s U, = —Q ) - ; U,
oY S Jyjouva 2m

+ (g V2)*A(r,b. ). (77)

In the previous section we found, that the scattering
amplitude for 7~ 1 shows geometric scaling behavior,
being a function of only one variable 7. The first term in
the r.h.s. of Eq. (77) is equal to —agInt = —agf. We can
re-write % as

a_gg_<&x<ycr> ! Z)ﬁ

oy ~acor \Si—y, Tai-pr)a Y

Assuming that mz <1 we can neglect this contri-

bution and rewrite Eq. (77) in the form
_ X(rer) OA(C. D)
ag —_—
1- Ver ag
= —asCA(C.b) + (s V3)*A(L. ) (79)

where

: 3
c=5+5s=5+as)‘(“)Y—4(l_y )

I- Yer
The solution to Eq. (79) can be written in the form (see
Sec. [T A):

Z (80)

2

A(C,b) = exp (— %)(D(C, b) with k= f(_g) (81)
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This solution violates the geometric scaling behavior of
the scattering amplitude, leading to the additional suppres-
sion of the scattering amplitude at large b. However, it should
be emphasized, that the main dependence on the impact
parameter is included in the b dependence of the variable ¢
[see Eq. (80)]. For the BK equation the asymptotic behavior
of the scattering amplitude is determined by A((,b) =

2 . . .
Constexp (— %), with a constant which we cannot estimate.
The solution of Eq. (81) states that instead of Const we can
have a function @ (Y, b). However, in the next section we will

argue that actually we can replace ®(Y, b) by 1.

D. Instructive example: Solution to leading twist
nonlinear equation

The general nonlinear evolution that is given by Eq. (48)
is difficult to analyze analytically for the full BFKL kernel
of Eq. (30) or Eq. (3). This kernel includes the summation
over all twist contributions. We would like to start with a
simplified version of the kernel in which we restrict
ourselves to the leading twist term only, which has the form

; forz=rQ; <1 summing(In (1/(rAqcp)))";
(1) = ﬁ for z = rQ, > 1 summing(In (rQ;))";

(82)

instead of the full expression of Eq. (30).

As indicated in Eq. (82) we have two types of logs:
(@sIn (rAgep))” in the perturbative QCD kinematic region
where rQ (Y, b) =7 < 1; and (agln (rQ,(Y,b)))" inside
the saturation domain (z > 1), where Q,(Y, b) denotes the
saturation scale. To sum these logs it is necessary to modify
the BFKL kernel in different ways, in the two kinematic
regions, as shown in Eq. (82).

Inside the saturation region where 7 = r2Q2(Y, b) > 1 the
logs originate from the decay of a large size dipole into one
small size dipole and one large size dipole. However, the size
of the small dipole is still larger than 1/Q,. This observation
can be translated in the following form of the kernel

/K(xm;xoz,xlz)dzxoz
dlx, —xo2|2

_)”/’an dx%2+”/01
QYD) X 1/02(v.b) o1 = Xoa*

Inside the saturation region Eq. (48) takes the form

GZN(Y;é,b)__ ON(Y;r,b)\ -,
v~ (1= )R}

,ON(Y;&,b)
o¢

(83)

+ (2 V3) (84)

where N(Y;&,b) = frz dr®N(Y;r'.b)/r*= [€dEN(Y.E.b).

The advantage of the simplified kernel of Eq. (82) is that,
in the double log approximation (DLA) for z < 1, it provides
a matching with the DGLAP evolution equation [49].

Introducing

ON(Y;£.b)
VP ] L oY ED)
i e (85)
we can rewrite Eq. (84) in the form:
84’(;5,1)) e IYED) — G bV ED (Y, & b)
+ (@ V3)2e?VEh), (86)

Assuming that ¢(¢,b) = p(Y.&E) + H(Y.b) we can
rewrite Eq. (86) as follows:

0p(Y,E b - - , i
¢(8Y ) =agN(Y;&,b) + (€¢(Y’b) (aeffvi)ze ¢(Y’b)>-
function ofY,b
(87)
Using Eq. (78) and Eq. (80) with
_ 3

We can reduce Eq. (87), applying 3% to the both sides of this
equation, to the following equation

¢(¢)

1

Introducing %ﬁp = F(¢) we can rewrite Eq. (89) in the
form

1dF(¢) 1

> ap sl
1 1
F2(¢):/d¢§(l—e‘¢):E(—1+¢+e‘¢)+C|(Y,b).
(90)
Finally,
df =+ Const. (91)

\/— ¢
2/4)0 \/—1 +¢' +e? +C(Y,b)

Further information regarding this equation can be found in
the book of Ref. [41] (see formula 4.1.1.).¢, is the value of
¢ at { = 0. One can see that if ¢y < 1 we have ¢ = ¢0e%‘:
for £ -0 for Const=0 and the arbitrary function
C(Y,b) = 0. Taking ¢ from Eq. (88) one can see that ¢p =
¢o(r*Q,(Y, b)) 7 providing the matching of the solution
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at 7 =r>Q?(Y,b) > 1 with the solution at 7 <1 (see
Sec. III B).

For large ¢ Eq. (91) leads to ¢ = Constexp (—¢?/8),
which is the scattering amplitude of Eq. (81) for our
simplified BFKL kernel. However, we find that ® = 1
in this solution.

Therefore, in this simplified version of the nonlinear
equation we found, that the scattering amplitude in the
saturation region has geometric scaling behavior, being a
function of one variable 7 = r>Q*(Y, b) with

Q3(Y.b) = 03(Y=0)

2er) 3 ( b )“3>
l_ycr 4(1_7/cr) 4a/gffY .

(92)

X exXp <5{S

Hence we find that the b dependence is concentrated in the
dependence of the saturation scale, as it has been assumed in
the numerous attempts to introduce b-dependence in the
saturation models (see Refs. [50,51] and references therein).

IV. THE FROISSART DISC IN QCD

In Secs. III C and III D we showed, that (i) the scattering
amplitude shows geometric scaling behavior being a function
of one variable ¢ [see Eq. (80)]and (i) 1 = N({) = A(¢) <« 1
for { > 1. The condition ¢ > 1 means that

_ x(rer) ,_ 3 (b4

1/3
(93)
(1 - ycr) 4a/foY)

Therefore, for

b <Ry = (4Y <45¥5)((y”) Y 4(1 - ycr)§)3>1/4'

A 3 3

where Ry denotes the radius of the Froissart disc.

In Fig. 3 we plot the solution to the leading twist
nonlinear equation (see previous section) as function of
b. The solution demonstrates all features of the Froissart
disc with a radius, which is proportional to Y. The edge of
the disc decreases as exp (—C,(b — Ry)?), where C, is a
constant that can be calculated. Indeed, we can see this by
plugging in the expression for the amplitude N(r,Y;b) =
No(r*Q%(Y, b)) b = Ry + Ab and expanding the ampli-
tude with respect to Ab. One can see, that for Ab < R, the
amplitude is equal

FIG. 3. The impact parameter(b) dependence of the scattering
amplitude. For negative { of Eq. (80) we use the solution of
Eq. (75), while for ¢ > 0 Eq. (91) is solved with C(Y, b) = 0 and
Const = 0. N, is taken to be equal to 0.055 and ay = 0.25.

3 (2R\ 13 Ab
N(r,Y;b):Noexp<——(—F> >

2\r V Uy

3/4 Ab
Ny exp (—6 (M> / > (95)
3 V Qegr

For large b > Ry the typical b* /Y.

The new equation leads to restoration of the Froissart
theorem. Indeed, in Eq. (6) one can see, that we can use
Eq. (74) and Eq. (75) to estimate the value of b,. Indeed,
this value we can find from the following equation:

W13
asx(7er)Y+(1=7.0)6=3( )

0
N(Y.E by) = e “a = fo.  (96)

in vicinity of the saturation scale

Assuming Y > £ we obtain

b dagy(y.)\ /4
\Y o ot 3

Plugging this value for b, into Eq. (6) we have

4 1/2
O < 2703 = 27l oy <“S"3(”> Y2 (98)

and the integral over b > b gives a smaller contribution,
which is of the order of /Y. Equation (98) is the Froissart
theorem in the specific realization for the QCD approach,
based on the new nonlinear evolution equation.

For applications one can use the simple analytical form
of the solution to the nonlinear equation, given in Ref. [52]:

Noe%¢

99
14 Noe )

N(¢) :a(l —exp (—Noeig)) +(1-a)

which describes the numerical solution within the accuracy
of 4% (see Fig. 4).

014023-12



LARGE IMPACT PARAMETER BEHAVIOR IN THE ...

PHYS. REV. D 101, 014023 (2020)

0.04

0.03

0.02

AN(Z)/N(D)

0.01

0.00

0 5 10 15 20 25 30
¢

FIG. 4. The comparison of the approximate analytical formula
of Eq. (99) with the numerical solution of Eq. (91). AN =
(N(¢,Eq.(91)). — N(¢,Eq.(99)))/N(¢,Eq.(99)). Equation (91)
is solved with C(Y, b) = 0 and Const = 0. N, is taken to be equal
to 0.055 and ag = 0.25. In Eq. (99) a = 0.65.

V. CONCLUSIONS

The main result of this paper is the new nonlinear
evolution equation which includes the random walk, both
in the transverse momentum and in impact parameter of the

produced gluons (dipoles). We showed, that the solution to
new equation results in the exponential decrease of
the scattering amplitude at large impact parameter and in
the restoration of the Froissart theorem. Therefore, this
equation solves the long standing problem of the CGC/
saturation approach. We demonstrated, that the new
equation generates the amplitude, which approaches 1
for b < ConstY and which decreases as exp (—ub) at
b > ConstY.

We found the solution to the equation in the kinematic
region, where Z <« 4yY. Hence, a problem to tackle in
the future, is to develop a more general solution, as well as
to describe the available experimental data within an
approach, based on the new equation.
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