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In this paper we propose a solution to the long standing problem present in the color glass condensate/
saturation approach: i.e., the powerlike fall off of the scattering amplitudes at large b. We propose a new
nonlinear equation, which takes into account random walks both in transverse momenta of the produced
gluons, and in their impact parameter. We demonstrate, that this equation is in accord with previous
attempts to include diffusion in impact parameters in the Balitsky-Fadin-Kuraev-Lipatov evolution
equation. We show in the paper, that the solution to a new equation results in the exponential decrease
of the scattering amplitude at large impact parameter, and in the restoration of the Froissart theorem.
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I. INTRODUCTION

It is well known that perturbative QCD has a funda-
mental problem: the scattering amplitude decreases at large
impact parameters (b) as a power of b. In particular, the
color glass condensate (CGC)/saturation approach [1],
which is based on perturbative QCD, also has this problem.
At large b the scattering amplitude is small and, therefore in
perturbative QCD, only the linear Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation [2] is determined by the scatter-
ing amplitude. It is known that the eigenfunction of this
equation (the scattering amplitude of two dipoles with sizes
r and R) has the following form [3]

ϕγðr;R;bÞ¼
�

r2R2

ðbþ 1
2
ðr−RÞÞ2ðb− 1

2
ðr−RÞÞ2

�
γ

⟶
b≫r;R

�
r2R2

b4

�
γ

≡eγξ with ξ¼ ln

�
r2R2

b4

�
ð1Þ

One can see that at large impact parameter b, the amplitude
has a powerlike decrease, which leads to the violation of the
Froissart theorem [4]. The violation of the Froissart
theorem stems from the growth of the radius of interaction
as a power of the energy. Since in Ref. [3] it was proven that

the eigenfunction of any kernel with conformal symmetry
has the form of Eq. (1), one can only change the large b
behavior by introducing a new dimensional scale in the
kernel of the equation. This problem has been known from
the beginning of the saturation approach [5,6], and several
ideas have been proposed, of how to introduce a new
dimensional scale in the kernel of the BFKL equation (See
Refs. [5–10]). However, for the high energy community at
large, the problem was appreciated only after the papers of
Refs. [11,12] were published, where it was demonstrated,
that the violation of the Froissart theorem cannot be
avoided in the framework of the CGC approach.
First, we wish to illustrate why the Froissart theorem is

violated for the BFKL equation. The general solution to the
BFKL for the dipole scattering amplitude equation, has the
following form:

Nðr; Y; bÞ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi
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eωðᾱS;γÞYþγξϕinðγÞ ð2Þ

where

ωðᾱS; γÞ ¼ ᾱSχðγÞ ¼ ᾱSð2ψð1Þ− ψðγÞ− ψð1− γÞÞ
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ψðzÞ denotes the Euler psi-function ψðzÞ ¼ d lnΓðzÞ=dz.
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The main contribution in Eq. (2) stems from γ → 1
2
,

where we can use the expansion shown in Eq. (3),
evaluating this integral using the method of steepest
descend, one can see that saddle point occurs at γSP ¼
1
2
− ξ

2DY ≪ 1 and the amplitude is equal to

Nðr; Y; bÞ⟶b≫r;R
ϕ

�
1

2

��
r2R2

b4

�
1=2 1

2
ffiffiffiffiffiffiffi
DY

p eω0Y−
ξ2

4DY: ð4Þ

Using Eq. (4) we attempt to determine the upper bound
from the unitarity constraints

2Nðr; Y; bÞ ¼ jNðr; Y; bÞj2 þGinðr2; Y; bÞ ð5Þ

where Gin describes the contribution of all inelastic
processes. Recalling that N is the imaginary part of the
scattering amplitude and assuming that the real part of
the amplitude is small, as is the case of the BFKL equation,
the unitarity constraint has the solution:

N ¼ 1 − exp ð−Ωðr; Y; bÞÞ < 1;

Gin ¼ 1 − exp ð−2Ωðr; Y; bÞÞ ð6Þ

where Ω > 0, denotes an arbitrary function.
We can find the bound for the total cross section

following Ref. [4].

σtot ¼ 2

Z
Nðr;Y;bÞd2b < 2

Z
b0
d2bþ

Z
b0

d2bNðr;Y;bÞ:

ð7Þ

We need to solve the following equation to find the value
of b0,

Nðr; Y; b0Þ ¼ ϕ

�
1

2

��
r2R2

b4

�
1=2 1

2
ffiffiffiffiffiffiffi
DY

p eω0Y−
ξ2

4DY

¼ f0 < 1: ð8Þ

At large Y this solution gives b20 ∝ eðDþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðDþ4ω0Þ

p
ÞY , and

therefore,

Nðr; Y; b0Þ < eðDþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðDþ4ω0Þ

p
ÞY: ð9Þ

Note, that for the soft amplitude of the typical form
Nsoft ∝ eω0Y−μb and b0 ∝ Y. In this case, one can see, that
the first integral in Eq. (7) leads to σ ≤ Const y2, which is
the Froissart theorem. This amplitude violates the Froissart
theorem and can be considered only at large values of b
where Nsoft < 1. However, the eikonal solution of Eq. (6)
with Ω ¼ Nsoft, satisfies the unitarity constraints and leads
to the amplitude, that describes the Froissart disc: the
amplitude is equal to 1 for b < ð1=μÞY and it has an edge
which behaves as Nsoft.

We hope that this simple estimate shows, that the
powerlike decrease of the scattering amplitude is the source
of the problem. To solve the problem in the framework of
the CGC/saturation approach we need to introduce in
addition to the saturation momentum, a new dimensional
scale μ. In Ref. [4] it is shown that this new scale is related
to the mass of the lightest hadrons. Perturbative QCD
cannot reproduce the observed spectrum of hadrons, and
attempting to solve this problem, we are doomed to
introduce something from nonperturbative QCD estimates.
Since the nonperturbative approach is still in an embryonic
stage, one can only make a guess of how to introduce this
scale, which depends crucially on nonperturbative esti-
mates in lattice QCD, on the phenomenology of high
energy interactions and on intuition, which comes from
considering different theoretical models. We hope that the
following is a more or less complete list of the attempts to
solve this problem, and to find and introduce a new
dimensional scale appear in Refs. [5–10,12–24].
At first sight the recent papers [25,26] have questioned

the need of a new dimensional scale, since they demon-
strate that the next-to-leading order BFKL equation gen-
erates the exponential type of the impact parameter
behavior without the need of a new dimensional scale.
However, it turns out [27] that the NLO corrections do not
change the powerlike decrease of the scattering amplitude
at large impact parameter, generating the exponential-type
decreases in the large but limited region of the values of the
impact parameter.1

In this paper we re-visit one of the possible ways of
introducing a new dimensional scale: to incorporate in the
BFKL equation the diffusion in impact parameter (b). The
first such attempt was undertaken in the distant 1990’s [5,6]
and during three decades we have worked in this area
[7–10,14,23,24]. In the preprint version of this paper [28]
we give an extended review of all efforts to introduce a new
dimensional scale in the CGC framework. We consider this
review as the important part of presentation, which helps a
reader to trust our generalization of the BFKL equation,
since it shows that the Green function of the BFKL
Pomeron, that follows from our new equation, coincides
with other more phenomenological ways of introducing a
new dimensional scale. We were advised, that the manu-
script would be improved, if our historical review is
shortened. Therefore, after discussion of two kind of
diffusions: in impact parameter and in transverse momenta
in QCD in the next section, we propose in Sec. III our
generalization of the BFKL equation, which takes into
account the diffusion in b in accord with QCD estimates.
We will discuss the structure of the scattering amplitude at

1In addition to the powerlike behavior at large b the NLO
corrections lead to an oscillating behavior of the scattering
amplitude at large b, in direct contradiction with the unitarity
constraint [27].
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high energies, which at the present appears to be a black
disc with radius increasing as a power of energy. This paper
is partly motivated by Ref. [24], in which many questions
concerning QCD has been formulated on the black disc
behavior at high energy2 from the point of boost invariance
and the parton model. We hope that we succeed in
answering some of these questions in this paper. In
particular, we will demonstrate in Sec. IV, that QCD leads
to the Froissart disc at high energies, with specific behavior
of the amplitude at the edge of this disc.

II. DIFFUSIONS

A. Regge approach and Gribov’s diffusion
in impact parameter

In the framework of the Regge approach the high energy
amplitude is given by the exchange of the Pomeron, and has
the following form [29–32]:

sNðs;QtÞ≡ ImAðs;QTÞ ¼ g1ðQTÞg2ðQTÞeαPðQ2
TÞY ð10Þ

where g1, g2 and trajectory αPðQ2
TÞ≡ 1þ ΔPðQTÞ ¼

1þ ΔP − α0PQ
2
T þOðQ4

TÞ are functions that have to be
taken from phenomenology. Y ¼ lnðsÞ and QT is the
momentum transferred by the Pomeron.3 Equation (10)
can be viewed as the solution to the following equation:

dNðY;QTÞ
dY

¼ ΔPðQTÞNðY;QTÞ ð11Þ

with the initial condition

NðY ¼ 0; QTÞ ¼ g1ðQTÞg2ðQTÞ: ð12Þ

In impact parameter representation the solution of Eq. (10)
takes the form:

NðY;bÞ¼
Z

d2QT

ð2πÞ2 e
ib·QTNðY ¼ 0;QTÞ¼ g1g2eΔP;YnðY;bÞ

with nðY;bÞ¼ 1

4πα0PY
e
− b2

4α0
P
Y: ð13Þ

In Eq. (13) we have neglected theQT dependence of g1 and
g2 which do not contribute at high energies.
In Ref. [31] the simple fact is noted, i.e., nðY; bÞ is the

solution of the diffusion equation:

dnðY; bÞ
dY

¼ α0P∇2
bnðY; bÞ: ð14Þ

Equation (14) together with Eq. (10) for the total cross
section:

σtot¼2g1g2NðY;QT¼0Þ¼2g1g2eΔPY¼σ0
X∞
n¼0

ΔPY
n!

ð15Þ

have very simple interpretations in the parton model. In the
parton model [31–33] it is assumed, that we can describe the
interaction by a field theory, in which all integrals over
transverse momenta are convergent, and they lead to the
mean transverse momentum, which does not depend on
energy. In such a theory, the contribution to the total cross
sectionof the scattering amplitude for productionofn partons
in each order of perturbation approach, can be viewed as

σn ¼ M2→2þnðfpi;TgÞ
Yn
i¼0

d2pi;Tdyi

¼ M2→2þnðfpi;TgÞ
Yn
i¼0

d2pi;T
Yn

n!
: ð16Þ

In Eq. (16) we assume that in the proposed theory the
amplitude is not equal to zero, when rapidities of emitted
partons are equal to zero, and choose the largest contribu-
tion which comes from the ordering

0 < y1 < y2 < … < yi < … < yn < Y: ð17Þ

One can see that in Eq. (15)M2→2þnðfpi;TgÞ
Q

n
i¼0d

2pi;T ¼
Δn

P
4 and from this equation we can conclude that the

number of emitted partons n ¼ ΔPY. Gribov’s idea, that
the emission of partons has no other correlations except the
fixed transverse momentum, can be viewed as a random
walk in two dimensional space. For each emission due to
uncertainty principle

Δbipi;T ∼ 1 or Δbi ∼
1

hjpi;T ji
: ð18Þ

Therefore, after each emission the position of the parton
will be shifted by an amount Δb2 from Eq. (18), which on
average is the same. After n emissions, we have the picture
shown in Fig. 1, and the total shift in b is equal to

R2
int ¼ b2n ¼

1

hjp2
i;T ji

¼ 1

hjp2
i;T ji

ΔPY: ð19Þ

Therefore, this diffusion reproduces the shrinkage of the
diffraction peak. Indeed,

2We will use the Froissart disc instead the black disc behavior
with the radius which increase as lnðsÞ.

3In the case of the deep inelastic processes Y ¼ ln ð1=xÞ,
where x is the Bjorken variable.

4In this estimate we assume that σ0 in Eq. (13) does not depend
on energy. In the field theories which can be a realization of the
parton model, usually σ0 ∝ 1=s2 but the first result from QCD
was the understanding that in this approach σ0 does not depend
on energy [34].
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R2 ¼
R
d2bb2NðY; bÞR
d2bNðY; bÞ ¼ 4α0PY: ð20Þ

Comparing Eq. (19) and Eq. (20) one can see that

α0P ¼ ΔP

4hjp2
i;T ji

: ð21Þ

Equation (11) can be rewritten in the impact parameter
representation for NðY; bÞ of Eq. (13)

dNðY; bÞ
dY

¼
Z

d2b0Kðb − b0ÞNðY; b0Þ

where KðbÞ ¼
Z

d2QT

ð2πÞ2 e
ib·QTΔPðQTÞ ð22Þ

Writing the equation for the radius of interaction
[see Eq. (20)]. First, we see that for

R
d2bb2NðY; bÞ ¼

R2
R
d2bNðY; bÞ we have the following equation:

dðR2
R
d2bNðY;bÞÞ
dY

¼
Z

d2bd2b0b2Kðb− b0ÞNðY;b0Þ

¼
Z

d2ðb− b0Þd2b0Kðb− b0Þðððb− b0Þ2þ 2ðb− b0Þ · b0 þb02ÞNðY;b0Þ

¼
�Z

d2ðb− b0ÞKðb− b0Þððb− b0Þ2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hjΔbjiΔPðQT¼0Þ

Z
d2b0NðY;b0Þþ

Z
d2ðb− b0Þd2b0Kðb− b0Þðb− b0Þ · b0NðY;b0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ
�Z

d2ðb− b0ÞKðb− b0Þ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔðQT¼0Þ

�Z
d2b0b02NðY;b0Þ

�
ð23Þ

The second term vanishes due to integration over the
angle and finally we have the following equation

dR2

dY
¼ ΔPhjΔb2ji ð24Þ

with the solution R2¼ΔPhjΔb2jiY¼−∇2
QT
ΔPðQTÞjQT¼0Y.

We can obtain Eq. (24) using the Mueller diagrams [35]
of Fig. 2.
Indeed, one can see that

∇2
QT
NðY;QTÞjQT¼0

¼ −
Z

dY 0eΔPðY−Y 0ÞeΔPY 0Þ∇2
QT
ΔPðQTÞ

���
QT¼0

¼ 4α0PYe
ΔPY ð25Þ

Therefore, for R2 we obtain R2 ¼ 4α0PYe
ΔPY=eΔPY ¼ 4α0PY

in accord with Eq. (24).

The amplitude of Eq. (13) increases with energy and
violates the unitary constraints [see Eq. (5)]. The eikonal
unitarization of Eq. (6) leads to the following amplitude

NðY; bÞ ¼ 1 − exp

�
−eΔPY

1

4πα0PY
e
− b2

4α0
P
Y

�
ð26Þ

One can see that this amplitude tends to unity at b >
2

ffiffiffiffiffiffiffiffiffiffiffiffi
ΔPα

0
P

p
Y leading to the total cross section σtot ∝ Y2 in

accord with the Froissart theorem [4].
In spite of the primitive level of calculations, especially if

one compares them with typical QCD calculations in DIS,
the parton model has been a good guide for the Pomeron
structure for years and, it is still the model where one can
see all typical features of the soft Pomeron. It turns out that
the time structure of the parton cascade is preserved for
QCD and simple parton estimates can help develop our
intuition regarding the solution of the QCD problems.

0

Y

time

2

i n
Rint

n

(b)(a)

FIG. 1. The structure of the parton cascade: Fig. 1(a) shows the
time structure of the cascade while Fig. 1(b) illustrates the
random walk in b. The black lines describe the diffusion in
the parton model, while the red lines correspond to a random
walk in b for QCD.
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B. BFKL approach and diffusion in lnðpTÞ
1. The BFKL equation

The BFKL equation was derived in momentum representation [2] and has the following form:

∂ÑðY; q;QTÞ
∂Y ¼ ᾱS

�Z
d2q0

2π
Kemðq − q0;QTÞÑðY; q0; QTÞ − Kregðq − q0;QTÞÑðY; q0; QTÞ

�
ð27Þ

where ᾱS ¼ ðNc=πÞαS. Kernel Kem describes the emission of a gluon, while kernel Kreg is responsible for the Reggeization
of gluons in t-channel. They have the forms:

Kemðq − q0;QTÞ ¼
1

2

1

ðq − q0Þ2
�
−

Q2
Tðq − q0Þ2

ðQT − q0Þ2q02 þ 1þ ðQT − qÞ2q02
ðQT − q0Þ2q2

�
⟶
QT¼0 1

ðq − q0Þ2

Kregðq − q0;QTÞ ¼
1

2

1

ðq − q0Þ2
�

q2

ðq − q0Þ2 þ q02
þ ðQT − qÞ2
ðq − q0Þ2 þ ðQT − q0Þ2

�
⟶
QT¼0 1

ðq − q0Þ2
q2

ðq − q0Þ2 þ q02
ð28Þ

This equation is rewritten in the coordinate representation for the scattering amplitude of a dipole of size r, at impact
parameter b [3,36]:

∂
∂Y Nðr; b; YÞ ¼ ᾱS

Z
d2r0

2π
Kðr0; r − r0; rÞ

�
N

�
r0; b −

1

2
ðr − r0Þ; Y

�
þ N

�
r − r0; b −

1

2
r0; Y

�
− Nðr; b; YÞ

�
ð29Þ

with

Kðr0; r − r0; rÞ ¼ r2

r02ðr − r0Þ2 : ð30Þ

In Eq. (29)

Nðr; b; YÞ ¼ r2
Z

d2q
2π

eiq·rÑðq; b; YÞ;

ÑðY; q;QTÞ ¼
Z

d2b
ð2πÞ2 e

iQT ·bÑðq; b; YÞ: ð31Þ

2. Solutions and random walk in lnðpTÞ
We have discussed solutions in the coordinate represen-

tation [see Eq. (1), Eq. (2), and Eq. (4)]. These solutions are

very useful for discussions of the nonlinear corrections,
since the unitarity constraints are diagonal for the dipole
scattering amplitude [see Eq. (5)]. However, discussing the
random walk in lnðpTÞ we need a solution in the momen-
tum representation in which pi;T denote the momenta of
produced gluons. Note, that in Eq. (28) q − q0 ¼ pT . For
QT the solution can be easily obtained, since the eigen-
function have the following form [2]

ϕγðq; q0; QT ¼ 0Þ ¼
�
q2

q20

�
γ−1

: ð32Þ

Comparing Eq. (32) with Eq. (1) one can see that q0 ∼ 1=R,
where R denotes the size of the target. Repeating all the
steps, that are given by Eq. (2) and Eq. (3), we obtain the
solution in the form of Eq. (4); viz.

=

Y

0

(a) (c)

=

(b)

Y

0

Y’

Y

0

Y’

q

q"

q0

0

0 0

Y

0

Y’

Y’’

0

0

q’
 K

 K

(d)

1

FIG. 2. Mueller diagrams for calculating∇2
QT
NðY;QTÞjQT¼0. The wavy lines denote the Pomeron contribution atQT ¼ 0. For Fig. 2-a

and Fig. 2-b it is the Pomeron in the parton model of Eq. (10), while for Fig. 2(c) and Fig. 2(d) it is the BFKL Pomeron in QCD [see
Eq. (33)]. The red blobs denote ∇2

QT
ΔPðQTÞjQT¼0 or ∇QT

ΔPðQTÞjQT¼0 as it is indicated in the figures. Functions ϕ0 and ϕ1 are defined
in the text.
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Ñðq;QT ¼ 0; YÞ ¼ ϕ

�
1

2

��
q20
q2

�
1=2

eω0Yñðq; YÞ

where ñðq; YÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
πDY

p e−
ξ̃2

4DY ð33Þ

with ξ̃ ¼ ln ðq2=q20Þ. One can recognize that for the
function n we have the diffusion equation in the form:

∂
∂Y ñðξ̃; YÞ ¼ D

∂2

∂ξ̃2 ñðξ̃; YÞ: ð34Þ

Therefore, the BFKL equation describes that at each
emission, ln ðq2=q02Þ changes its value by a constant
ðln ðq2=q02ÞÞ2 ¼ δ, and as a result after n emissions we
obtain ln2 ðp2

T=q
2
0Þ ¼ δn. Since n ¼ ω0Y (see the previous

section) we obtain ðln ðq2=q20ÞÞ2δω0Y. This estimate shows
that 4D ¼ δω0. From this estimate we see that after n
emissions the typical transverse momenta increase as
hjp2

T ji ¼ q20 exp ðδnÞ, making the shift in bhjΔb2jin ∝
1=hjp2

T ji ∼ ð1=q20Þ exp ð−δnÞ. Therefore, only a small num-
ber of steps at the beginning could participate in the
increase of b [see red lines in Fig. 1(b)].

3. The Green function of the BFKL Pomeron

The solution of Eq. (33) can be rewritten in the following
form:

Ñðq;QT ¼ 0;YÞ

¼
Z

ϵþi∞

ϵ−i∞

dω
2πi

Z
ϵþi∞

ϵ−i∞

dγ
2πi

1

ω−ωðγÞe
ωYþðγ−1Þξ̃ϕintðγÞ ð35Þ

We introduce the Green function of the BFKL Pomeron as
follows:

GBFKLðω; ξ̃Þ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

1

ω − ωðγÞ e
ωYþðγ−1Þξ̃ ð36Þ

The Green function in the Y representation can be calcu-
lated as

GBFKLðY; ξ̃Þ¼ 1

q20

Z
ϵþi∞

ϵ−i∞

dω
2πi

GBFKLðω; ξ̃;QT ¼ 0Þ

¼ 1

q20

Z
ϵþi∞

ϵ−i∞

dω
2πi

Z
ϵþi∞

ϵ−i∞

dγ
2πi

1

ω−ωðγÞe
ωYþðγ−1Þξ̃

⟶
γ¼1

2
þiν;ν≪1 1

qq0
eω0Y

Z
ϵþi∞

ϵ−i∞

dω
2πi

1

2Dκ0
e−Dκ2

0
Yþκ0 ξ̃

where κ0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω−ω0Þ

D

r
ð37Þ

Integrating over κ0 we obtain the solution of Eq. (33).

One can see that GBFKLðY ¼ 0; ξ̃;QT ¼ 0Þ ¼ δðξ̃Þ
and therefore, the scattering amplitude can be found
ÑðY; q;QT ¼ 0Þ ¼ R

dξ̃0GBFKLðξ̃ − ξ̃0ÞΦinðξ̃0Þ, where Φ
is the initial condition for the scattering amplitude. It should
also be mentioned that factors 1=ðqq0Þ are absorbed in the
integration of ξ̃ in the diagrams for Pomeron interactions.

4. The BFKL approach: Random walk in b

As one can see from Eq. (33) we have introduced
a new dimensional scale: q0. It was introduced as the
nonperturbative size of the target q0 ∼ 1=R, but its actual
meaning is the separation scale: in perturbative QCD we
can calculate only for pT > q0, while smaller transverse
momenta have to be treated in nonperturbative approaches.
From the solution of Eq. (33) one can see that the
probability to have pT ¼ q0 is small ∝ 1

2
ffiffiffiffiffi
DY

p but not

negligible. The gluons with transverse momenta of the
order of q0 could participate in the random walk in b,
leading to [5,6]

hjb2jin ¼
1

q20
Pn
q0n ∝

1

q20

1ffiffiffi
n

p n ∝
1

q20

ffiffiffiffi
Y

p
ð38Þ

where Pn
q0 denotes the probability to have the minimum

momentum after n emissions. In Refs. [5,6] the numerical
coefficient in Eq. (38) is evaluated. Since the average
hjb2jin diverges at small q, in some sense the value of the
coefficient is not important. However, we feel it is instruc-
tive to understand two qualitative features: the infrared
divergency and the energy dependence.
First, we calculate the main ingredients of the calculation

that we have discussed in Sec II A:

∇QT
Kemðq − q0;QTÞjQT¼0 ¼ −

1

ðq − q0Þ2
�
q
q2

−
q0

q02

�
;

∇QT
Kregðq − q0;QTÞjQt¼0 ¼ −

1

ðq − q0Þ2
�

q
q02

−
q0q2

q04

�
;

−∇2
QT
Kemðq − q0;QTÞjQT¼0 ¼ −ΔQT

Kemðq − q0;QTÞjQT¼0

¼ 2

q2q02
;

ΔQT
Kregðq − q0;QTÞjQT¼0 ¼ 0 ð39Þ

As we have discussed in Sec. II A [see Eq. (23)], we
can write the equation for −∇2

QT
ÑðY; q;QTÞjQT¼0 ¼R

d2b
ð2πÞ2 b

2Ñðq; b; YÞ applying −∇2
QT

to the both parts of

Eq. (27). In doing so, we obtain:
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∂
∂Y ð−∇2

QT
ÑðY; q;QTÞjQT¼0Þ ¼

Z
d2q0∇2

QT
Kðq − q0;QTÞ

���
QT¼0

ÑðY; q0; QTÞ
���
QT¼0

− 2

Z
d2q0∇QT

Kðq − q0;QTÞ
���
QT¼0

·
	
∇QT

ÑðY; q0; QTÞ
���
QT¼0



þ
Z

d2q0Kðq − q0;QTÞ
���
QT¼0

	
−∇2

QT
ÑðY; q0; QTÞ

���
QT¼0



:

ð40Þ

To obtain the complete system of equations we need to add the equation for ∇QT
ÑðY; q0; QTÞjQT¼0. It takes the form:

∂
∂Y ð∇QT

ÑðY; q;QTÞjQT¼0Þ ¼
Z

d2q0∇QT
Kðq − q0;QTÞ

���
QT¼0

ÑðY; q0; QTÞ
���
QT¼0

þ
Z

d2q0Kðq − q0;QTÞ
���
QT¼0

	
∇QT

ÑðY; q0; QTÞ
���
QT¼0



: ð41Þ

Equation (41) can be rewritten as� ∂
∂Y − 1

�
∇QT

ÑðY; q;QTÞjQT¼0 ¼ ᾱS
q
q2

�Z
q2

dq02

q02
ÑðY; q0; QT ¼ 0Þ − ÑðY;q;QT ¼ 0Þ

�
: ð42Þ

In the double Mellin transform of Eq. (36) the solution to Eq. (42) has the form:

∇QT
Ñðω; γ; QTÞjQT¼0 ¼ ᾱS

q
q2

1

ω − ωðγÞ
�

1

1 − γ
− 1

�
: ð43Þ

Plugging the solution of Eq. (43) into Eq. (40), we reduce this equation to the following one:

∂
∂Y ð−∇2

QT
ÑðY; q;QTÞjQT¼0Þ −

Z
d2q0Kðq − q0;QT ¼ 0Þð−∇2

QT
ÑðY; q0; QTÞjQT¼0Þ

¼ 2
ᾱS
q2

�Z
∞

0

dq02

q02
ÑðY; q0; QT ¼ 0Þ þ 2ᾱS

Z
q2

0

dq02

q02

Z
ϵþi∞

ϵ−i∞

dγ
2πi

1

ω − ωðγÞ
�

1

1 − γ
− 1

�
eωYþðγ−1Þξ̃

�
: ð44Þ

The main contributions to the integrals over q0 stem from
the region q0 → 0. Taking this into account, the solution in
the ω- representation has the form:

∇2
QT
Ñðω; q;QTÞjQT¼0 ¼ 2

ᾱS
q2

1þ ᾱS
D2κ20

∝
1

ω − ω0

: ð45Þ

Therefore,we see fromEq. (45) that∇2
QT
Ñðω; q;QTÞjQT¼0 ∝

eω0Y .
We need to divide this solution by the ÑðY; q0; QTÞjQT¼0

and finally, we obtain for ξ2 ≪ DY that

hb2i ¼ 2ᾱSð1þ ᾱSÞ
ffiffiffiffi
π

D

r
1

q2
ffiffiffiffi
Y

p
¼ α0eff

ffiffiffiffi
Y

p
: ð46Þ

As was shown in Refs. [5,6], the second term does not
have the suppression of the order of ᾱS, as we can see from
Eq. (45). Such an enhancement comes from the replace-
ment in Eq. (40)

2

Z
d2q0∇QT

Kðq−q0;QTÞ
���
QT¼0

· ð∇QT
ÑðY;q0;QTÞjQT¼0Þ

→ 2

Z
d2q0∇QT

Kðq−q0;QTÞ
���
QT¼0

⊗ϕ1ðY−Y 0;q”;q0;θÞ

⊗ ð∇QT
ÑðY 0;q”;QTÞjQT¼0Þ ð47Þ

⊗ stands for all the required integrations. The eigenfunc-
tion ϕ1 [3] depends on the angles between q” and q0 and has
an intercept which is negative and ∝ ᾱS. Integration over Y 0
leads to the factor 1=ᾱS which compensates the small value
of ᾱS. This contribution actually leads to the change of the
numerical coefficient, which does not have much meaning,
since hb2i is infrared unstable, and q → q0 gives the main
contribution. The value of the scale q0 is not determined in
our approach. Hence, we introduce a new dimensional scale
α0eff which, we hope, will heal the large b behavior of the
scattering amplitude.
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III. A NEW NONLINEAR EVOLUTION EQUATION

In this section we propose a nonlinear equation, which
takes into account the randomwalk both in lnðpTÞ, and in b,
and which will transform the CGC/saturation approach into
an effective theory, describing QCD at high energies. The
effort to find such an equation covers a long span in time,
from the first GLR equation [37](see also Refs. [36,38,39])
till recent papers.Our goal is to introduce the randomwalk in

b in the framework of the nonlinear evolution equations,
which guarantee the unitarity of the scattering amplitude.
The CGC/saturation approach is based on the nonlinear
Balitsky -Kovchegov equation [40], which itself has prob-
lems with the behavior of the scattering amplitude at large
b, typical for perturbative QCD.
We proposed the following generalization of the

Balitsky-Kovchegov nonlinear evolution equation [40]:

∂
∂Y Nðr; b; YÞ ¼ ᾱS

Z
d2r0

2π
Kðr0; r − r0; rÞ

�
N

�
r0; b −

1

2
ðr − r0Þ; Y

�
þ N

�
r − r0; b −

1

2
r0; Y

�
− Nðr; b; YÞ

− N

�
r − r0; b −

1

2
r0; Y

�
N

�
r0; b −

1

2
ðr − r0Þ; Y

��
þ ðα0eff∇2

bÞ2Nðr; b; YÞ

⟶
b≫r;r0

ᾱS

Z
d2r0

2π
Kðr0; r − r0; rÞfNðr0; b; YÞ þ Nðr − r0; b; YÞ − Nðr; b; YÞ − Nðr − r0; b; YÞNðr0; b; YÞg

þ ðα0eff∇2
bÞ2Nðr; b; YÞ;

where α0eff is a new dimensional scale. We believe that
Eq. (48) is the correct way to introduce this scale for the
nonlinear evolution.

A. The BFKL Pomeron with diffusion in b

First, we solve the new equation at large b, where only
the linear part contributes. The equation takes the form:

∂
∂Y Nðr; b; YÞ ¼ ᾱS

Z
d2r0

2π
Kðr0; r − r0; rÞfNðr0; b; YÞ

þ Nðr − r0; b; YÞ − Nðr; b; YÞg
þ ðα0eff∇2

bÞ2Nðr; b; YÞ: ð48Þ

We can obtain the solution to this equation considering it
in the form: Nðr; b; YÞ ¼ Gðr; YÞΦðY; bÞ where Gðr; YÞ is
the Green’s function of the BFKL equation and ΦðY; bÞ
satisfies the following equation

∂
∂YΦðb; YÞ ¼ ðα0eff∇2

bÞ2Φðb; YÞ: ð49Þ

In ω-representation:

Φðb; YÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2πi

eωYΦðb;ωÞ: ð50Þ

Equation (49) takes the form

ðα0eff∇2
bÞ2Φðb;ωÞ ¼ ωΦðb;ωÞ ð51Þ

The general solution to Eq. (51) can be written (see
Ref. [41] formula 9.4.3) as

Φðb;ωÞ ¼ Φ−ðb;ωÞ þΦþðb;ωÞ ð52Þ

where Φ� are the solution to the following equations:

α0eff∇2
bΦ�ðb;ωÞ �

ffiffiffiffi
ω

p
Φ�ðb;ωÞ ¼ 0: ð53Þ

We restrict ourself by the solution Φðb;ωÞ ¼ Φþðb;ωÞ
for which the Green’s function is equal to

Φþðb;ωÞ ¼
Z

d2QT

ð2πÞ2 e
iQT ·b

ϕinþðωÞ
α0effQ

2
T þ ffiffiffiffi

ω
p ð54Þ

where ϕinþðωÞ should be found from the initial condition at
Y ¼ 0. Searching for the Green’s function of Eq. (54) we
impose the initial condition:

Φþðb; Y ¼ 0Þ ¼ δð2ÞðbÞ ð55Þ

which results in ϕinþðωÞ ¼ 1=ð2 ffiffiffiffi
ω

p Þ.
Equation (54) has the same form as the Green function of

the modified BFKL Pomeron, suggested in Ref. [23] (see
also the review section in Ref. [28]). In these papers a
theoretical approach is proposed, which is based on the
assumption, that the BFKL Pomeron, being perturbative in
nature, takes into account rather short distances (say of the
order of 1=mG, where mG denotes the mass of the lightest
glueball); and the long distance contribution can be described
by the exchange of pions (1=2μ ≫ 1=mG, whereμ is the pion
mass). The calculations are based on the t -channel unitarity,
as was proposed in Ref. [42], and on the finding, that the
intercept of the BFKL Pomeron does not depend on the
model of the long distances contribution [22].
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Taking the integral over d2QT we obtain:

Φþðb;ωÞ ¼
1

4πα0eff
ffiffiffiffi
ω

p K0

�
bffiffiffiffiffiffiffi
α0eff

p ω1=4

�
ð56Þ

and for Φðb; YÞ we have

Φðb;YÞ¼
Z

ϵþi∞

ϵ−i∞

dω
8π2i

1

α0eff
ffiffiffiffi
ω

p eωYK0

�
bffiffiffiffiffiffiffi
α0eff

p ω1=4

�
: ð57Þ

For large b we can take the integral over ω, plugging the
asymptotic behavior of the K0 function, and using the
method of steepest descend. Eq. (57) takes the form:

Φðb; YÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
8π2i

1

α0eff
ffiffiffiffi
ω

p

× eωY
ffiffiffi
π

2

r �
1

ω

�
1=8 1ffiffiffiffiffiffiffiffiffi

bffiffiffiffiffi
α0eff

pq e
− bffiffiffiffiffi

α0
eff

p ω1=4

: ð58Þ

The equation for the saddle point has the following form

Y −
1

4

bffiffiffiffiffi
α0eff

p

ω3=4
SP

¼ 0; ωSP ¼
�

b

4Y
ffiffiffiffiffiffiffi
α0eff

p �
4=3

: ð59Þ

From Eq. (59) we obtain for the integral over ω:

Φðb; YÞ ¼ 4πffiffiffi
6

p
α0eff

�
α0eff
4Yb2

�
1=3

exp

�
−
3

4
Z
�

ð60Þ

where

Z ¼
�

b4

4α02effY

�
1=3

: ð61Þ

Finally, from Nðr; b; YÞ ¼ Gðr; YÞΦðY; bÞ we obtain

Gðr; b; YÞ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

eᾱSχðγÞY−ð−γÞξΦðY; bÞ

¼ r
R
eω0Y

1

2
ffiffiffiffiffiffiffiffiffiffi
πDY

p e−
ξ2

4DYΦðY; bÞ ð62Þ

and ΦðY; bÞ is given by Eq. (60). In Eq. (62) we integrated
over γ using the diffusion expansion for the kernel, χðγÞ
for γ → 1

2
.

For the region of not large bwe obtain the solution which
has a cumbersome form:

1

16α02effY

�
−4

ffiffiffi
π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α02effY

q
0F2

�
;
1

2
; 1;−

b4

256α02effY

�

− b20F2

�
;
3

2
;
3

2
;−

b4

256α02effY

��
ð63Þ

where 0F2 is the hyperbolic function (see formula 9.14
of Ref. [43]).
As we have mentioned above the solution of Eq. (61) is

the Green’s function of Eq. (50), and it preserves the
remarkable property of the Green’s function of the BFKL
Pomeron:

Φðb; YÞ ¼
Z

d2b0Φðb − b0; Y − Y 0ÞΦðb0; Y 0Þ ð64Þ

¼
Z

d2b0
Z

d2Q0
T

4π2
expðα02effQ04

TY
0 þ iq0T ·b0Þ

×
Z

d2QT

4π2
expðα02effQ4

TðY−Y 0Þþ iQT · ðb−b0ÞÞ

¼
Z

d2QT expðα02effQ04
T þ iq0T ·bÞ: ð65Þ

In Eq. (64) we use Eq. (54) forΦþðb;ωÞ which leads to the
following representation for Φðb; YÞ

Φðb; YÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2πi

eωYΦþðb;ωÞ

¼
Z

d2QT expðα02effQ04
T þ iq0T · bÞ: ð66Þ

The integrationoverd2b0 inEq. (64) generates δð2ÞðQT−Q0
TÞ,

which results in Eq. (64).
Using Eq. (64) we can prove that for the Green’s function

of Eq. (62) we have the following equation:

Gðr; b;R; YÞ ¼
Z

d2r0d2b0Gðr; b − b0; r0; Y − Y 0ÞGðr0; b0;R; Y 0Þ

¼
Z

dξ0d2b0
Z

dγ0

2πi

Z
d2Q0

T

4π2
expððᾱSχðγ0Þ þ α02effQ

04
TÞY 0 þ ðγ0 − 1Þξ0 þ iq0T · b0Þ

×
Z

dγ
2πi

Z
d2QT

4π2
expððᾱSχðγÞ þ α02effQ

4
TÞðY − Y 0Þ þ ðγ − 1Þðξ − ξ0Þ þ iQT · ðb − b0ÞÞ ð67Þ

where ξ0 ¼ ln ðr02=R2Þ.
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The integration over ξ0 and b0 gives δðγ − γ0Þ and
δð2ÞðQT − Q0

TÞ, which leads to the equation Eq. (67).
One can see that Eq. (62) has the same main features as

the Green function of the modified BFKL Pomeron, in
which the contribution of long distances stems from the
exchange of pions [23].
In particular, the unitarization leads to the Froissart disc

with radius

Rffiffiffiffiffiffiffiffi
α0eff

p ¼ 4

33=4
ω3=4
0 Y −

31=4

4Dω1=4
0

ξ2

Y
ð68Þ

whose edge decreases with b as e
−3
4
ð b4

4α02
eff

Y
Þ1=3

which corre-
sponds to the diffusion in b with hb2i ∝ ffiffiffiffi

Y
p

, as follows
from Sec. II B 4.

B. Solution in the vicinity of the saturation scale

The behavior of the scattering dipole amplitude in the
vicinity of the saturation scale can be found from the solution
of the linear equation [37,44]. We will use the solution to
Eq. (48) in the formofEq. (60), andwill take the integral over
γ using the method of steepest descend. The equation for the
saddle point in γ has the form:

ᾱS
dχðγÞ
dγ

����
γ¼γSP

Y þ ξ ¼ 0: ð69Þ

The second condition is that the scattering amplitude is a
constant for r2Q2

s ¼ 1, which has the form

ᾱSχðγSPÞY þ ðγSP − 1Þξ − 3

4
Z ¼ 0: ð70Þ

Plugging Eq. (69) into Eq. (70) we obtain the following
equation for γSP.

ᾱS

�
χðγSPÞ þ ð1 − γSPÞ

dχðγÞ
dγ

jγ¼γSP

�
Y ¼ 3

4
Z: ð71Þ

For Z ¼ 0 the solution to Eq. (71) is γSP ¼ γcr ≈ 0.37. If
Z ≪ ᾱSY we can find the solution to Eq. (71) assuming,
that γSP ¼ γcr þ δγ with δγ ≪ γcr. The value of δγ from
Eq. (71) turns out to be equal to

δγ ¼ 3

4

1

ð1 − γcrÞ dχðγÞdγ jγ¼γcr

Z
ᾱSY

: ð72Þ

Substituting γSP ¼ γcr þ δγ into Eq. (69), we obtain the
expression for the saturation momentum:

ξs ¼ lnðQ2
sÞ ¼ ᾱS

χðγcrÞ
1 − γcr

Y −
3

4ð1 − γcrÞ
Z: ð73Þ

In the vicinity of the saturation scale the scattering
amplitude shows geometric scaling behavior [45–48] and
has the following form [44] for τ ∼ 1:

Nðr; b; YÞ ¼ N0ðr2Q2
sðY; bÞÞ1−γcr ¼ N0τ

1−γcr ð74Þ
where N0 is a constant and we assumed that δγ ln τ ≪ 1.
Using Eq. (73) for Qs we see that Nðr; b; YÞ of Eq. (74)

can be rewritten in the form:

Nðr; b; YÞ ¼ N0ðr2Q2
sðY; b ¼ 0ÞÞ1−γcre−

3
4
ð b4

4α02
eff

Y
Þ1=3 ð75Þ

for the kinematic region

r2Q2
sðY ¼ 0ÞeᾱSχðγcrÞ1−γcr

Y− 3
4ð1−γcrÞZ ∼ 1: ð76Þ

C. The scattering amplitude
in the deep saturation region

We use the approach of Ref. [46] for linearizing Eq. (48)
deep inside the saturation region (r2Q2

sðY; bÞ ≫ 1): we
assume that Nðr;b;YÞ→1 and neglect the contributions,
which are proportional toΔ2ðr;b;YÞ≪1whereNðr; b; YÞ ¼
1 − Δðr; b; YÞ. Eq. (48) reduces to the following linear
equation for Δðr; b; YÞ
∂
∂Y Δðr; b; YÞ ¼ −ᾱS

Z
r

1=QsðY;bÞ

d2r0

2π
Kðr0; r − r0; rÞΔðr; b; YÞ

þ ðα0eff∇2
bÞ2Δðr; b; YÞ: ð77Þ

In the previous section we found, that the scattering
amplitude for τ ∼ 1 shows geometric scaling behavior,
being a function of only one variable τ. The first term in
the r.h.s. of Eq. (77) is equal to −ᾱS ln τ≡ −ᾱSζ. We can
re-write ∂

∂Y as

∂
∂Y ¼ ∂

∂ζ
∂ζ
∂Y ¼

�
ᾱS

χðγcrÞ
1 − γcr

þ 1

4ð1 − γcrÞY
Z
� ∂
∂ζ : ð78Þ

Assuming that 1
4ð1−γcrÞYZ ≪ 1 we can neglect this contri-

bution and rewrite Eq. (77) in the form

ᾱS
χðγcrÞ
1 − γcr

∂Δðζ; bÞ
∂ζ

¼ −ᾱSζΔðζ; bÞ þ ðα0eff∇2
bÞ2Δðζ; bÞ ð79Þ

where

ζ ¼ ξþ ξs ¼ ξþ ᾱS
χðγcrÞ
1 − γcr

Y −
3

4ð1 − γcrÞ
Z ð80Þ

The solution to Eq. (79) can be written in the form (see
Sec. III A):

Δðζ; bÞ ¼ exp

�
−
ζ2

2κ

�
Φðζ; bÞ with κ ¼ χðγcrÞ

1 − γcr
ð81Þ
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This solution violates the geometric scaling behavior of
the scattering amplitude, leading to the additional suppres-
sion of the scattering amplitude at largeb. However, it should
be emphasized, that the main dependence on the impact
parameter is included in the b dependence of the variable ζ
[see Eq. (80)]. For the BK equation the asymptotic behavior
of the scattering amplitude is determined by Δðζ; bÞ ¼
Const exp ð− ζ2

2κÞ, with a constant which we cannot estimate.
The solution of Eq. (81) states that instead of Const we can
have a functionΦðY; bÞ. However, in the next sectionwewill
argue that actually we can replace ΦðY; bÞ by 1.

D. Instructive example: Solution to leading twist
nonlinear equation

The general nonlinear evolution that is given by Eq. (48)
is difficult to analyze analytically for the full BFKL kernel
of Eq. (30) or Eq. (3). This kernel includes the summation
over all twist contributions. We would like to start with a
simplified version of the kernel in which we restrict
ourselves to the leading twist term only, which has the form

χðγÞ ¼
(

1
γ for τ ¼ rQs < 1 summingðln ð1=ðrΛQCDÞÞÞn;
1

1−γ for τ ¼ rQs > 1 summingðln ðrQsÞÞn;
ð82Þ

instead of the full expression of Eq. (30).
As indicated in Eq. (82) we have two types of logs:

ðᾱS ln ðrΛQCDÞÞn in the perturbative QCD kinematic region
where rQsðY; bÞ≡ τ ≪ 1; and ðᾱS ln ðrQsðY; bÞÞÞn inside
the saturation domain (τ ≫ 1), where QsðY; bÞ denotes the
saturation scale. To sum these logs it is necessary to modify
the BFKL kernel in different ways, in the two kinematic
regions, as shown in Eq. (82).
Inside the saturation regionwhere τ ¼ r2Q2

sðY; bÞ > 1 the
logs originate from the decay of a large size dipole into one
small size dipole and one large size dipole. However, the size
of the small dipole is still larger than 1=Qs. This observation
can be translated in the following form of the kernelZ

Kðx01; x02; x12Þd2x02

→ π

Z
x2
01

1=Q2
sðY;bÞ

dx202
x202

þ π

Z
x2
01

1=Q2
sðY;bÞ

djx01 − x02j2
jx01 − x02j2

ð83Þ

Inside the saturation region Eq. (48) takes the form

∂2ÑðY; ξ; bÞ
∂Y∂ξ ¼ ᾱS

��
1 −

∂ÑðY; r; bÞ
∂ξ

�
ÑðY; ξ; bÞ

�

þ ðα0eff∇2
bÞ2

∂ÑðY; ξ; bÞ
∂ξ ð84Þ

where ÑðY;ξ;bÞ¼R
r2dr02NðY;r0;bÞ=r02¼R

ξdξ0NðY;ξ0;bÞ.

The advantage of the simplified kernel of Eq. (82) is that,
in the double log approximation (DLA) for τ < 1, it provides
a matching with the DGLAP evolution equation [49].
Introducing

∂ÑðY; ξ; bÞ
∂ξ ¼ 1 − e−ϕðY;ξ;bÞ ð85Þ

we can rewrite Eq. (84) in the form:

∂ϕðY; ξ; bÞ
∂Y e−ϕðY;ξ;bÞ ¼ ᾱSe−ϕðY;ξ;bÞÑðY; ξ; bÞ

þ ðα0eff∇2
bÞ2e−ϕðY;ξ;bÞ: ð86Þ

Assuming that ϕðζ; bÞ ¼ ϕðY; ξÞ þ ϕ̃ðY; bÞ we can
rewrite Eq. (86) as follows:

∂ϕðY; ξ; bÞ
∂Y ¼ ᾱSÑðY; ξ; bÞ þ ðeϕ̃ðY;bÞðα0eff∇2

bÞ2e−ϕ̃ðY;bÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
function ofY;b

:

ð87Þ

Using Eq. (78) and Eq. (80) with

ζ ¼ ξþ ξs ¼ ξþ 4ᾱSY −
3

2
Z: ð88Þ

We can reduce Eq. (87), applying ∂
∂ξ to the both sides of this

equation, to the following equation

d2ϕðζÞ
dζ2

¼ 1

4
ð1 − e−ϕðζÞÞ: ð89Þ

Introducing dϕðζÞ
dζ ¼ FðϕÞ we can rewrite Eq. (89) in the

form

1

2

dF2ðϕÞ
dϕ

¼1

4
ð1−e−ϕÞ;

F2ðϕÞ¼
Z

dϕ
1

2
ð1−e−ϕÞ¼1

2
ð−1þϕþe−ϕÞþCjðY;bÞ:

ð90Þ

Finally,

ffiffiffi
2

p Z
ϕ

ϕ0

dϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ ϕ0 þ e−ϕ

0 þ CðY; bÞ
q ¼ ζ þ Const: ð91Þ

Further information regarding this equation can be found in
the book of Ref. [41] (see formula 4.1.1.).ϕ0 is the value of
ϕ at ζ ¼ 0. One can see that if ϕ0 ≪ 1 we have ϕ ¼ ϕ0e

1
2
ζ

for ζ → 0 for Const ¼ 0 and the arbitrary function
CðY; bÞ ¼ 0. Taking ζ from Eq. (88) one can see that ϕ ¼
ϕ0ðr2QsðY; bÞÞ1−γcr providing the matching of the solution
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at τ ¼ r2Q2
sðY; bÞ > 1 with the solution at τ ≤ 1 (see

Sec. III B).
For large ϕ Eq. (91) leads to ϕ ¼ Const exp ð−ζ2=8Þ,

which is the scattering amplitude of Eq. (81) for our
simplified BFKL kernel. However, we find that Φ ¼ 1
in this solution.
Therefore, in this simplified version of the nonlinear

equation we found, that the scattering amplitude in the
saturation region has geometric scaling behavior, being a
function of one variable τ ¼ r2Q2ðY; bÞ with

Q2
sðY;bÞ ¼Q2

sðY ¼ 0Þ

×exp

�
ᾱS

χðγcrÞ
1− γcr

Y −
3

4ð1− γcrÞ
�

b4

4α02effY

�
1=3

�
:

ð92Þ

Hencewe find that the b dependence is concentrated in the
dependence of the saturation scale, as it has been assumed in
the numerous attempts to introduce b-dependence in the
saturation models (see Refs. [50,51] and references therein).

IV. THE FROISSART DISC IN QCD

In Secs. III C and III D we showed, that (i) the scattering
amplitude showsgeometric scaling behavior being a function
ofonevariableζ [seeEq. (80)] and(ii)1 − NðζÞ ¼ ΔðζÞ ≪ 1
for ζ ≥ 1. The condition ζ ≥ 1 means that

ᾱS
χðγcrÞ
1 − γcr

Y þ ξ ≥
3

4ð1 − γcrÞ
�

b4

4α02effY

�
1=3

: ð93Þ

Therefore, for

bffiffiffiffiffiffiffi
α0eff

p ≤ RF ¼
�
4Y

�
4ᾱS

χðγcrÞ
3

Y þ 4ð1 − γcrÞ
3

ξ

�
3
�

1=4
:

ð94Þ

where RF denotes the radius of the Froissart disc.
In Fig. 3 we plot the solution to the leading twist

nonlinear equation (see previous section) as function of
b. The solution demonstrates all features of the Froissart
disc with a radius, which is proportional to Y. The edge of
the disc decreases as exp ð−C1ðb − RFÞ3Þ, where C1 is a
constant that can be calculated. Indeed, we can see this by
plugging in the expression for the amplitude Nðr; Y; bÞ ¼
N0ðr2Q2

sðY; bÞÞγ̄ b ¼ RF þ Δb and expanding the ampli-
tude with respect toΔb. One can see, that forΔb ≪ RF, the
amplitude is equal

Nðr; Y; bÞ ¼ N0 exp

�
−
3

2

�
2RF

Y

�
1=3 Δbffiffiffiffiffiffiffi

α0eff
p �

⟶
Y≫ξ

N0 exp

�
−6

�
χðγcrÞ
3

�
3=4 Δbffiffiffiffiffiffiffi

α0eff
p �

ð95Þ

For large b ≫ RF the typical b2 ∝
ffiffiffiffi
Y

p
.

The new equation leads to restoration of the Froissart
theorem. Indeed, in Eq. (6) one can see, that we can use
Eq. (74) and Eq. (75) to estimate the value of b0. Indeed,
this value we can find from the following equation:

NðY; ξ; b0Þ ¼ e
ᾱSχðγcrÞYþð1−γcrÞξ−3

4
ð b4

0

4α02
eff

Y
Þ
1=3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
in vicinity of the saturation scale

¼ f0: ð96Þ

Assuming Y ≫ ξ we obtain

b0ffiffiffiffiffiffiffiffi
α0eff

p ¼
�
4ᾱSχðγcrÞ

3

�
1=4

Y: ð97Þ

Plugging this value for b0 into Eq. (6) we have

σtot ≤ 2πb20 ¼ 2πα0eff

�
4ᾱSχðγcrÞ

3

�
1=2

Y2 ð98Þ

and the integral over b > b0 gives a smaller contribution,
which is of the order of

ffiffiffiffi
Y

p
. Equation (98) is the Froissart

theorem in the specific realization for the QCD approach,
based on the new nonlinear evolution equation.
For applications one can use the simple analytical form

of the solution to the nonlinear equation, given in Ref. [52]:

NðζÞ¼ a
	
1− exp

�
−N0e

1
2
ζ




þð1−aÞ N0e
1
2
ζ

1þN0e
1
2
ζ

ð99Þ

which describes the numerical solution within the accuracy
of 4% (see Fig. 4).

FIG. 3. The impact parameter(b) dependence of the scattering
amplitude. For negative ζ of Eq. (80) we use the solution of
Eq. (75), while for ζ > 0 Eq. (91) is solved with CðY; bÞ ¼ 0 and
Const ¼ 0. N0 is taken to be equal to 0.055 and ᾱS ¼ 0.25.
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V. CONCLUSIONS

The main result of this paper is the new nonlinear
evolution equation which includes the random walk, both
in the transverse momentum and in impact parameter of the

produced gluons (dipoles). We showed, that the solution to
new equation results in the exponential decrease of
the scattering amplitude at large impact parameter and in
the restoration of the Froissart theorem. Therefore, this
equation solves the long standing problem of the CGC/
saturation approach. We demonstrated, that the new
equation generates the amplitude, which approaches 1
for b ≤ ConstY and which decreases as exp ð−μbÞ at
b > ConstY.
We found the solution to the equation in the kinematic

region, where Z ≪ 4γ̄Y. Hence, a problem to tackle in
the future, is to develop a more general solution, as well as
to describe the available experimental data within an
approach, based on the new equation.
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