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We study the structure of the Λcð2595Þ and Λcð2625Þ resonances in the framework of an effective field
theory consistent with heavy quark spin and chiral symmetries, which incorporates the interplay between

Σð�Þ
c π − NDð�Þ baryon-meson degrees of freedom (d.o.f.) and bare P-wave cūd quark-model states. We

show that these two resonances are not heavy quark spin symmetry partners. The JP ¼ 3=2− Λcð2625Þ
should be viewed mostly as a dressed three-quark state, whose origin is determined by a bare state,
predicted to lie very close to the mass of the resonance. The JP ¼ 1=2− Λcð2595Þ seems to have, however,
a predominant molecular structure. This is because it is either the result of the chiral Σcπ interaction, whose
threshold is located much closer than the mass of the bare three-quark state, or because the light d.o.f. in its
inner structure are coupled to the unnatural 0− quantum numbers. We show that both situations can occur
depending on the renormalization procedure used. We find some additional states, but the classification of
the spectrum in terms of heavy quark spin symmetry is difficult, despite having used interactions that
respect this symmetry. This is because the bare quark-model state and the Σcπ threshold are located
extraordinarily close to the Λcð2625Þ andΛcð2595Þ, respectively, and hence they play totally different roles
in each sector.

DOI: 10.1103/PhysRevD.101.014018

I. INTRODUCTION

In the infinite quark mass limit (mQ → ∞), the dynamics
of baryons containing a heavy quark should show an SU(2)
pattern because of the symmetry that quantum chromody-
namics (QCD) acquires in that limit under arbitrary
rotations of the spin of the heavy quark, SQ. This is known
as heavy quark spin symmetry (HQSS) [1–3]. The total
angular momentum jldof of the light degrees of freedom
(ldof) inside of the hadron is conserved, and heavy baryons
with J ¼ jldof � 1=2 are expected to form a degenerate
doublet.
Constituent quark models (CQMs) find a nearly degen-

erate pair of P-wave Λ�
c excited states, with spin-parity

JP ¼ 1=2− and 3=2−, and masses similar to those of the
isoscalar odd parity Λcð2595Þ and Λcð2625Þ resonances
[4–8]. Two different excitation modes are generally con-
sidered. In the λmode, excitations between the heavy quark
and the ldof are accounted for, while in the ρ mode,
excitations in the inner structure of the ldof are instead

considered. For singly heavy baryons, the typical excita-
tion energies of the λ mode are smaller than those of
the ρ mode [8,9]. Within this picture, the ΛCQM

c ð2595Þ and
ΛCQM
c ð2625Þ resonances would correspond to the members

of the HQSS doublet associated to ðlλ ¼ 1;lρ ¼ 0Þ, with
total spin Sq ¼ 0 for the ldof. The total spins of these states
are the result of coupling the orbital-angular momentum lλ

of the ldof—with respect to the heavy quark—with SQ.

Therefore, both ΛCQM
c ð2595Þ and ΛCQM

c ð2625Þ states are
connected by a simple rotation of the heavy-quark spin, and
these resonances will be degenerate in the mQ → ∞ limit.
Since the total angular momentum and parity

of the ldof in the S-wave Σcπ and Σ�
cπ pairs are 1−,

as in the CQM Λcð2595Þ and Λcð2625Þ resonances,
the ΛCQM

c ð2595; 2625Þ → πΣð�Þc → ππΛc decays respect
HQSS, and hence one could expect sizable widths for these
resonances, unless these transitions are kinematically sup-
pressed. This turns out to be precisely the case [10], and as it
is shown in Refs. [11,12], the use of the actual resonance
masses lead to widths for the CQM ðlλ ¼ 1;lρ ¼ 0Þ states
(jπldof ¼ 1−) predicted in [8], which is consistent with data.
Within CQM schemes, it is nevertheless unclear why the

role played by the Σð�Þ
c π baryon-meson pairs in the

generation of the Λcð2595Þ and Λcð2625Þ resonances
can be safely ignored, especially in the Λcð2595Þ case,
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since it is located very close to the Σcπ threshold (1 MeV
below or 4 MeVabove, depending on the charged channel).
This observation leads us naturally to consider molecular
descriptions of these lowest-lying odd parity charmed
baryon states, which should show up as poles in
coupled-channel T matrices, fulfilling exact unitary.
The first molecular studies [13,14] of the Λcð2595Þ and

Λcð2625Þ were motivated by the appealing similitude of
these resonances to theΛð1405Þ andΛð1520Þ in the strange
sector. In particular, the two isoscalar S-wave Λð1405Þ and
Λcð2595Þ resonances have several features in common.
The mass of the former lies in between the Σπ and NK̄
thresholds, to which it couples strongly. In turn, the
Λcð2595Þ lies below the ND and just slightly above the
Σcπ thresholds, and substituting the c quark by an s quark,
one might expect the interaction of ND to play a role in the
dynamics of the Λcð2595Þ similar to that played by NK̄ in
the strange sector. The first works had some clear limi-
tations. The JP ¼ 1=2− sector was studied in [13], where
the amplitudes obtained from the scattering of Goldstone
bosons off 1=2þ heavy-light baryons were unitarized.
Despite the interactions being fully consistent with chiral
symmetry, neither the ND nor the ND� channels were
considered.1 The work of Ref. [14] also studied the
Λcð2595Þ and there, the interactions were obtained from
chirally motivated Lagrangians upon replacing the s quark
by the c quark. Though in this way, the ND channel was
accounted for, the HQSS counterpart ND� was not con-
sidered. Subsequent works [16–19] introduced some
improvements, but they failed to provide a scheme fully
consistent with HQSS. In all cases, the Λcð2595Þ, or the
Λcð2625Þ when studied, could be dynamically generated
after a convenient tuning of the low energy constants (LEC)
needed to renormalize the ultraviolet (UV) divergences
resulting from the baryon-meson loops. As mentioned
before, none of these works were consistent with HQSS
since none of them considered the ND� channel [20].
Heavy pseudoscalar and vector mesons should be treated
on equal footing, since they are degenerated in the heavy
quark limit, and are connected by a spin rotation of the
heavy quark that leaves unaltered the QCD Hamiltonian in
that limit.
The first molecular description of the Λcð2595Þ and

Λcð2625Þ resonances, using interactions fully consistent
with HQSS, was proposed in Refs. [20,21]. In these works,
a consistent SUð6Þlsf × SUð2ÞHQSS extension of the chiral
Weinberg-Tomozawa (WT) πN Lagrangian—where “lsf”
stands for light-spin-flavor symmetry—was derived. Two
states with JP ¼ 1=2− were dynamically generated in the

region of 2595 MeV. The first one, identified with the
Λcð2595Þ resonance, was narrow and it strongly coupled to
ND and especially to ND�, with a small coupling to the
open Σcπ channel. Its wave function had a large jπldof ¼ 0−

component that, coupled to the spin (SQ ¼ 1
2
) of the charm

quark, gives a total JP ¼ 1
2
− for the Λcð2595Þ. Since the

transition of the dominant jPq ¼ 0− term of the Λcð2595Þ to
the final Σcπ state is forbidden by HQSS, this mechanism
will act in addition to any possible kinematical suppression.
The second JP ¼ 1=2− state found in [20,21] was quite

broad since it had a sizable coupling to the Σcπ channel,
and reproduced, in the charm sector, the chiral two-pole
structure of the Λð1405Þ [22–28]. On the other hand, a
JP ¼ 3=2− state is generated mainly by the ðND� − Σ�

cπÞ
coupled-channel dynamics. It would be the charm counter-
part of the Λð1520Þ, and it was argued that this could be
identified with the Λcð2625Þ resonance.
Several Λ�

c poles were also obtained in the approach
followed in Ref. [29]. There, the interaction ofND andND�
states, together with their coupled channels, are considered
by using an extension of the SU(3) local hidden gauge
formalism from the light meson sector [30–32] to four
flavors. The scheme also respects leading-order HQSS
constraints [33] and, as in Refs. [20,21], a two-pole structure
for the Λcð2595Þ was also found, with the ND� channel
playing a crucial role in its dynamics. This is a notable
difference to the situation in the strange sector, where the
analog NK̄� channel is not even considered in most of the
studies of the Λð1405Þ, because of the large K̄� − K̄ mass
splitting. We will refer to this model as extended local
hidden gauge (ELHG) for the rest of this work.
However, neither the SUð6Þlsf × SUð2ÞHQSS model, nor

the ELHG, consider the interplay between Σð�Þ
c π − NDð�Þ

baryon-meson d.o.f. and bare P-wave cūd quark-model
states. This is unjustified, in the same way it was also
unjustified in the neglect of baryon-meson effects in the
CQM approaches.
The CQM approach of Ref. [8] finds isoscalar JP ¼

1=2− and 3=2− states at 2628 and 2630 MeV, respectively.
Given the proximity of these bare three-quarks states to the
Λcð2595Þ and Λcð2625Þ, it is reasonable to expect a
significant influence of the CQM d.o.f. on the dynamics
of the physical states. This seems to be especially true for
the Λcð2625Þ, for which the CQM prediction almost
matches its mass. CQM d.o.f. can be taken into account
in hadron scattering schemes by considering an additional
energy dependent interaction [34,35], driven by a pole in
the baryon-meson tree-level amplitudes located at the bare

mass, M
∘
CQM, of the CQM state. At energies far enough

from M
∘
CQM, the contribution of the CQM d.o.f. can be

possibly accounted for by an appropriate LEC (induced by
the UV regulator of the loops) in the unitarized baryon-
meson amplitude. However, such a contribution becomes

1A detailed treatment of the interactions between the ground
state 1=2þ and 3=2þ singly charmed and bottomed baryons
and the pseudo-Nambu-Goldstone bosons, discussing also
the effects of the next-to-leading-order chiral potentials, can be
found in [15].
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more important for energies approaching M
∘
CQM, and its

energy dependence might then not be safely ignored.
In this work, we will study of the structure of the

Λcð2595Þ and Λcð2625Þ resonances, in the framework of
an effective theory consistent with heavy quark spin and
chiral symmetries, incorporating for the very first time, the

interplay between Σð�Þ
c π − NDð�Þ baryon-meson d.o.f. and

bare P-wave cūd quark-model states. For simplicity, we
will use the SUð6Þlsf × HQSS baryon-meson amplitudes,
though the most important conclusions extracted here do
not depend on the particular hadron scattering model
employed.
The work is organized as follows. After this

Introduction, the used formalism is briefly revised in
Sec. II, which is split into several subsections dealing with
the SUð6Þlsf × HQSS hadron amplitudes, their renormali-
zation and structure in the complex plane, with the
inclusion of the CQM d.o.f., and finally with the evaluation
of the Λ�

cð1=2−; 3=2Þ → Λcð1=2þÞππ three-body decays.
The results of this research are presented and discussed in
Sec. III, first neglecting CQM effects (Sec. III A) and next
coupling CQM and baryon-meson d.o.f. (Sec. III B).
Finally, the main conclusions of this work are summarized
in Sec. IV.

II. FORMALISM

A. SUð6Þlsf ×HQSS amplitudes

The building blocks considered in [20,21,36] in the C¼1

sector are the pseudoscalar (Ds;D;K; π; η; K̄; D̄; D̄s) and
vector (D�

s ; D�; K�; ρ;ω; K̄�; D̄�; D̄�
s ;ϕ) mesons, the spin-

1=2 octet and the spin-3=2 decuplet of low-lying light
baryons, in addition to the spin-1=2 (Λc, Σc, Ξc, Ξ0

c, Ωc),
and spin-3=2 (Σ�

c, Ξ�
c, Ω�

c) charmed baryons. All baryon-
meson pairs with ðC ¼ 1; S ¼ 0; I ¼ 0Þ quantum numbers
span the coupled-channel space for a given total angular
momentum J and odd parity. The S-wave tree-level
amplitudes between two channels are given by the
SUð6Þlsf × HQSS WT kernel

VJ
ijðsÞ ¼ DJ

ij

2
ffiffiffi
s

p
−Mi −Mj

4fifj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei þMi

2Mi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej þMj

2Mj

s
; ð1Þ

with s the baryon-meson Mandelstam variable, Mi and mi,
the masses of the baryon and meson in the i channel,
respectively, and Ei ¼ ðs −m2

i þM2
i Þ=2

ffiffiffi
s

p
, the center-of-

mass energy of the baryon in the same channel. The hadron
masses and meson decay constants, fi, have been taken
from Ref. [21]. The DJ

ij matrices are determined by the
underlying SUð6Þlsf × HQSS group structure of the inter-
action. Tables for all of them can be found in Appendix B
of Ref. [20]. Here, we truncate the coupled-channels space
to that generated by the Σcπ, ND, and ND� and Σ�

cπ and
ND� in the JP ¼ 1=2− and 3=2− sectors, respectively.

Other higher channels like Λcη, Λcω, Ξ
ð0;�Þ
c Kð�Þ, ΛDð�Þ

s ,

Σð�Þ
c ρ;… are somewhat relevant for the dynamics of the

Λcð2595Þ and Λcð2625Þ resonances [20,21], and have not
been considered in the analysis carried out in this work.
The matrices DJ are given in [20] in a basis of S-wave

baryon-meson states. They become, however, diagonal
when states with well-defined ldof total angular momen-
tum, jldof, are used. For the latter states, HQSS constrains
are straightforward because of the symmetry that QCD
acquires, in the infinite quark mass limit, under arbitrary
rotations of the spin of the heavy quark [1–3]. In both
bases, the total angular momentum of the baryon-meson
pair is defined, and both sets of states are related by a Racah

rotation [33,37]. In the ðΣð�Þ
c π; NDð�ÞÞ truncated space,

these matrices read

DJ¼1=2 ¼

Σcπ ND ND�0
BB@

−4
ffiffiffiffiffiffiffiffi
3=2

p
−1=

ffiffiffi
2

p
ffiffiffiffiffiffiffiffi
3=2

p
−3 −3

ffiffiffi
3

p

−1=
ffiffiffi
2

p
−3

ffiffiffi
3

p
−9

1
CCA

DJ¼3=2 ¼
Σ�
cπ ND�

�
−4 −

ffiffiffi
2

p

−
ffiffiffi
2

p
0

� ð2Þ

with eigenvalues λ0¼−12, λatr1 ¼−2−
ffiffiffi
6

p
, and λrep1 ¼ −2þffiffiffi

6
p

, and λatr1 and λrep1 , for JP ¼ 1=2− and JP ¼ 3=2−,
respectively [37]. Actually, the SUð6Þlsf ×SUð2ÞHQSS
extension of the WT πN interaction proposed in
[20,21,36] leads to a large attraction (λ0) in the subspace
where the total angular-momentum-parity quantum num-
bers of the ldof are jπldof ¼ 0−. This latter configuration
does not occur for J ¼ 3=2, when only S-wave interactions
are considered, and the ldof are necessarily coupled to
jπldof ¼ 1−. In the jπldof ¼ 1−-subspace, there exist both
attractive (λatr1 ) and repulsive (λrep1 ) components, and HQSS
relates the DJ¼1=2 and DJ¼3=2 matrices.
In summary, the DJ matrices of Eq. (2) are fully

consistent with HQSS, as explicitly discussed in Sec. 2.2
of Ref. [37]. In addition, some spin-flavor symmetry
breaking terms are included in the approach, as in
Refs. [20,21], by employing physical hadron masses and
decay constants. This induces mostly SU(4)-flavor break-
ing corrections, since the charmed-hadrons masses and
decay constants follow the HQSS predictions in good
approximation.

B. Renormalization of the Bethe-Salpeter equation

We use the matrix VJ
ij as a kernel to solve the Bethe-

Salpeter equation (BSE), leading to a T matrix
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TJðsÞ ¼ 1

1 − VJðsÞGJðsÞV
JðsÞ; ð3Þ

satisfying exact unitarity in coupled channels. The diagonal
matrix GJðsÞ is constructed out of the baryon-meson loop
functions

GiðsÞ ¼ i2Mi

Z
d4q
ð2πÞ4

1

q2 −m2
i þ iϵ

1

ðP − qÞ2 −M2
i þ iϵ

;

ð4Þ

with P the total momentum of the system such that P2 ¼ s.
We omit the index J from here on for simplicity. The bare
loop function is logarithmically UV divergent and needs to
be renormalized. This can be done by one subtraction

GiðsÞ ¼ ḠiðsÞ þ GiðsiþÞ; ð5Þ

where the finite part of the loop function, ḠiðsÞ, reads

ḠiðsÞ ¼
2Mi

ð4πÞ2
��

M2
i −m2

i

s
−
Mi −mi

Mi þmi

�
log

Mi

mi
þ LiðsÞ

�
;

ð6Þ

with si� ¼ ðmi �MiÞ2 and the multivalued function LðsÞ
given in Eq. (A10) of Ref. [38].
The divergent contribution of the loop function, GiðsiþÞ

in Eq. (5), needs to be renormalized. We will examine here
two different renormalization schemes. On the one hand,
we will perform one subtraction at a certain scale

ffiffiffi
s

p ¼ μ,
such that Gið

ffiffiffi
s

p ¼ μÞ ¼ 0. In this way,

Gμ
i ðsiþÞ ¼ −Ḡiðμ2Þ: ð7Þ

In addition, we consider the prescription employed in
Refs. [20,21], where a common scale μ is chosen to be
independent of the total angular momentum J [16,18], and
equal to

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðm2

π þM2
Σc
Þ

q
; ð8Þ

in the sectors of the Λcð2595Þ and Λcð2625Þ resonances. In
the equation above, α is a parameter that can be adjusted to
data [20]. In what follows, we will refer to this scheme as
SCμ (subtraction at common scale).
In the second renormalization scheme, we make finite

the UV divergent part of the loop function using a cutoff
regulator Λ in momentum space, which leads to [39]

GΛ
i ðsiþÞ ¼

1

4π2
Mi

mi þMi

�
mi ln

mi

Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

i

p

þMi ln
Mi

Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

p
�
: ð9Þ

Note that there are no cutoff effects in the finite ḠiðsÞ-loop
function, as it would happen if the two-body propagator of
Eq. (4) would have been directly calculated using the UV
cutoff Λ.
If a common UV cutoff is used for all channels, both

renormalization schemes are independent and will lead to
different results. However, if one allows the freedom of
using channel-dependent cutoffs, the subtraction at a
common scale scheme, SCμ, is recovered by choosing in
each channel, Λi such that

GΛi
i ðsiþÞ ¼ −Ḡiðμ2Þ: ð10Þ

C. Interplay between bare CQM and
baryon-meson d.o.f.

Within the quark-model approach of Ref. [8], odd parity
Λ� states are obtained at 2628 and 2630 MeV for J ¼ 1=2
and 3=2, respectively. The ldof are coupled to angular-
momentum-parity-quantum numbers jπldof ¼ 1− (λ mode)
in both cases, which explains their approximate degen-
eracy. Higher excited states appear at 2.9 GeV (ρmode), far
from the Λcð2595Þ and Λcð2625Þ narrow resonances, and
will not be considered in the present analysis. However,
the low-lying λ-mode states, given their proximity to the
Λcð2595Þ and Λcð2625Þ, might significantly influence the
dynamics of the physical states. This seems to be specially
truth for theΛcð2625Þ, since the prediction of Ref. [8] for its
mass is only 2 MeV higher than the experimental one
[ð2628.11� 0.19Þ MeV [10] ].
Bare CQM states effects on the baryon-meson dynamics

can be effectively considered by means of an energy
dependent interaction [35,40,41]

VJ
exðsÞ¼ 2M

∘
CQM

½VJ
CQM�† · ½VJ

CQM�
s− ðM∘ CQMÞ2

;

VJ¼1=2
CQM ¼ Σcπ ND ND�

ðd1
ffiffiffi
3

p
c1=2 −c1=2Þ

; VJ¼3=2
CQM ¼ Σ�

cπ ND�

ð−d1 c1 Þ
ð11Þ

where d1 and c1 are undetermined dimensionless param-
eters that control the strength of the baryon-meson-CQM-
state vertex. Note that ½VJ

CQM�† · ½VJ
CQM� gives rise to 3 × 3

and 2 × 2 matrices in the JP ¼ 1=2− and 3=2− sectors,
respectively. The above interaction accounts for the con-
tribution to baryon-meson scattering of the exchange of
an intermediate odd parity CQM λ-mode state. It does not
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obviously affect the jπldof ¼ 0− subspace of the JP ¼ 1=2−

sector, and it is consistent with HQSS in the jπldof ¼ 1−

subspace of the JP ¼ 1=2− and JP ¼ 3=2− sectors, which
are related by a spin rotation of the heavy quark. Actually, it
is only thanks to HQSS that both sectors can be described
by the same d1 and c1 LECs.2

Note that VJ
exðsÞ introduces a pole in the baryon-meson

tree-level amplitudes located at the bare mass value,ffiffiffi
s

p ¼ M
∘
CQM. It should be interpreted as the mass of the

CQM state in the limit of vanishing coupling to the baryon–
meson-pairs (d1, c1 → 0), and therefore it is not an
observable. The interaction with the baryon-meson cloud
dresses the CQM state through loops, renormalizing its
mass, and the dressed state might also acquire a finite

width, when it is located above threshold. A priori,M
∘
CQM is

a free parameter of the present approach, and moreover it
depends on the renormalization scheme [35]. This is
because in the effective theory, the UV regulator is finite,
and the difference between the bare and the physical
resonance masses is a finite renormalization that depends
on the adopted scheme. The value of the bare mass,
which is thus a free parameter, can either be indirectly
fitted to experimental observations, or obtained from
schemes that ignore the coupling to baryon-meson pairs,
such as some CQMs. In this latter case, the issue certainly
would be to set the UV regulator to match the quark model
and the baryon-meson scattering approaches [35]. For
simplicity, and consistently with HQSS, we take a common
bare mass for both J ¼ 1=2 and J ¼ 3=2, which is fixed to
the average of masses reported in the quark model of

Ref. [8] (M
∘
CQM ¼ 2629 MeV). We will explore different

values of the renormalization scheme-dependent bare
couplings d1 and c1 to elucidate the robustness of our
results.
At energies far enough from M

∘
CQM, the contribution of

Vex can be regarded as a small contact interaction that can
be accounted for by means of a LEC. However, the
exchange contribution becomes more important for ener-

gies approachingM
∘
CQM, and it may not be safe to ignore its

energy dependence. One might expect such a situation in
the J ¼ 3=2 sector, where Vex should provide a sizable
attraction (repulsion) for energies slightly below (above)

M
∘
CQM, relevant in the dynamics of the Λcð2625Þ. We

expect a less relevant role in the case of the Λcð2595Þ, since
this resonance is located furthest from M

∘
CQM.

D. Riemann sheets, poles, and residues

Masses and widths of the dynamically generated reso-
nances in each J− sector are determined from the positions
of the poles,

ffiffiffiffiffi
sR

p
, in the second Riemann sheet (SRS)

of the corresponding baryon-meson scattering amplitudes,
namely,

ffiffiffiffiffi
sR

p ¼ MR − iΓR=2. In some cases, we also find
real poles in the first Riemann sheet (FRS)which correspond
to bound states. The different Riemann sheets are defined in
terms of the multivalued function LðsÞ, introduced in
Eq. (6), that is evaluated here as explained in Eq. (A13)
of Ref. [38], and thus are labeled by ξ1ξ2ξ3 [ξ1ξ2], with
ξi ¼ 0, 1, in the J ¼ 1=2½3=2� sector. The SRS in the
relevant fourth quadrant is obtained from the first quadrant
FRS by continuity across each of the four unitarity cuts.
The coupling constants of each resonance to the various

baryon-meson states are obtained from the residues at the
pole by matching the amplitudes to the expression

TJ
ijðsÞ ¼

gigjffiffiffi
s

p
− ffiffiffiffiffi

sR
p ; ð12Þ

for energy values s close to the pole, where the dimension-
less couplings, gi, turn out to be, in general, complex.
Note that when solving the BSE, we have neither

considered the hadronic width of the D� vector meson,
nor those of the Σc and Σ�

c baryons. The latter are of the
order of 2 and 15MeV, respectively, while the former one is
just around 100 keV. They could be taken into account by
convoluting the loop function G of these channels with the
spectral function of the unstable particles, as done for
instance in [42]. Because of the small widths of the D� and
Σð�Þ
c resonances, the effects on pole positions and couplings

would not be relevant for the present discussion. Such
effects only become relatively important when one deals
with broad states, like the ρ meson or the Δ baryon with
widths of 150 or 120 MeV, respectively [42].

E. The Λ�
cð1=2− ;3=2Þ → Λcð1=2+ Þππ three-body

decays through the πΣð�Þ
c intermediate state

Isospin conservation forbids single pion transitions
between the Λ�

c and Λc, and hence the Λ�
cð1=2−; 3=2Þ decay

into Λc and two pions. The decays proceed via an inter-
mediate I ¼ 1 baryon state down to aΛcπ pair. The relatively
small masses of the Λ�

c’s above Λc kinematically restrict the
outgoing pion energies, making feasible a chiral derivative
expansion [43]. There are two different final states,Λþ

c π
−πþ

and Λþ
c π

0π0, and we will consider here only the resonant

term driven by the excitation of the Σð�Þ
c and its subsequent

decay into Λcπ, as shown in Fig. 1. This is by and large the
dominant contribution to the Λcð2595Þ width, while it
becomes significantly smaller for the Λcð2625Þ one, since
the virtual Σ�

c intermediate state is very much off shell
[43,44]. Indeed the ARGUS Collaboration reported a
ratio [45] R ¼ Γ½Λcð2625Þ → Λþ

c π
þπ−ðnon-resonantÞ�=

Γ½Λcð2625Þ → Λþ
c π

þπ−ðtotalÞ� ¼ 0.54� 0.14.

2HQSS relations are straightforward when the Σð�Þ
c π and NDð�Þ

states are expressed in terms of the basis of well-defined ldof total
angular momentum, where one can readily isolate the jπldof ¼ 1−

component of each baryon-meson pair [37].
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TheΛcð2595Þ orΛcð2625Þ decay width into the charged-pions mode,3 at lowest order in chiral perturbation theory and in
the heavy mass limit, is given in the resonance rest frame (LAB) by [43]

dΓπ−πþ

ds12ds23
¼ Γ0fE2

3p⃗
2
2jGΣð�Þ

c
ðs12Þj2þE2

2p⃗
2
3jGΣð�Þ

c
ðs13Þj2þ 2E2E3Re½G�

Σð�Þ
c
ðs12ÞGΣð�Þ

c
ðs13Þ�p⃗2 · p⃗3g

Γ0 ¼
g2Dg

2

RΣð�Þ
c π

144f2ππ3

MΛc
M2

Σð�Þ
c

M2
RðMR −MΣð�Þ

c
Þ2 GΣð�Þ

c
ðsÞ ¼ 1

s−M2

Σð�Þ
c
þ iMΣð�Þ

c
ΓΣð�Þ

c
ðsÞ

ΓΣð�Þ
c
ðsÞ ¼ g2D

6πf2π

MΛc

MΣð�Þ
c

jp⃗Λcπ
π j3; jp⃗Λcπ

π j ¼ λ
1
2ðs;M2

Λc
;m2

πÞ
2

ffiffiffi
s

p ; s13 ¼M2
R þ 2m2

π þM2
Λc
− s12 − s23

E3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p⃗2
3

q
¼M2

R þm2
π − s12

2MR
; E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p⃗2
2

q
¼M2

Rþm2
π − s13

2MR
; p⃗2 · p⃗3 ¼ E2E3þm2

π − s23=2 ð16Þ

withMR the resonance mass, λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz. In addition, s12 (invariant mass square of Λcπ
þ)

varies between ðMΛc
þmπÞ2 and ðMR −mπÞ2, while the limits of s23 (invariant mass square of the πþπ− pair) are

smax;min
23 ¼ ðE�

πþ þ E�
π−Þ2 − ðp�

πþ ∓ p�
π−Þ2; E�

πþ ¼ s12 þm2
π −M2

Λc

2
ffiffiffiffiffiffi
s12

p ; E�
π− ¼ M2

R −m2
π − s12

2
ffiffiffiffiffiffi
s12

p ð17Þ

with p�2
π� ¼ E�2

π� −m2
π . The expression of Eq. (16) corresponds to the square of the sum of amplitudes associated to the first

two diagrams of Fig. 1. In addition gD=fπ ¼ 0.0074 MeV−1, which leads to Γ½Σc → Λcπ� ¼ 1.9 MeV and
Γ½Σ�

c → Λcπ� ¼ 14.4 MeV, and we take the dimensionless coupling g
RΣð�Þ

c π
from the residue at the resonance pole

[Eq. (12)] of the Σð�Þ
c π channel (S wave) that we choose to be real, by an appropriate redefinition of the overall phases of the

meson and baryon fields.

FIG. 1. Diagrams for Λcð2595Þ or Λcð2625Þ decay into Λþ
c and two pions, mediated by the Σc or Σ�

c resonances, respectively.

3The Λð2595Þ and Λð2625Þ amplitudes read

TJ¼1=2
π−πþ ¼ −

gDgRΣcπ

3fπ

2MΣc

ðMR −MΣc
Þ ūΛc

�
ðvpπ−ÞGΣc

ðs12Þð=pπþ þ vpπþÞγ5
1þ =v
2

þ ðvpπþÞGΣc
ðs13Þð=pπ− þ vpπ−Þγ5

1þ =v
2

�
uR ð13Þ

TJ¼3=2
π−πþ ¼ gDgRΣcπ

3fπ

2MΣc

ðMR −MΣc
Þ ½ðvpπ−ÞGΣc

ðs12Þpμ
πþ þ ðvpπþÞGΣc

ðs13Þpμ
π− �ūΛc

PμνðvÞuνR ð14Þ

where v is the common velocity of all involved charmed hadrons, which remains unaltered in the heavy quark limit. It satisfies v2 ¼ 1

and =vuðνÞR ¼ uðνÞR and =vuΛc
¼ uΛc

, with u and uν mass dimensions of the Dirac and Rarita-Scwinger spinors, respectively. The spin-3=2
projector is

PμνðvÞ ¼
�
−gμν þ vμvν þ 1

3
ðγμ þ vμÞðγν − vνÞ

�
1þ =v
2

ð15Þ

with metric ðþ;−;−;−Þ, and the sum over fermion polarizations is given by uū ¼ 2Mð1þ =vÞ=2 and uμūν ¼ 2MPμν.
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The processes occur so close to threshold, especially the
Λcð2595Þ decay, that the available phase space might
depend significantly on the small isospin-violating mass

differences between members of the pion and Σð�Þ
c multip-

lets.4 We have usedmπ¼mπ� ,MΣð�Þ
c
¼ðMΣþþð�Þ

c
þMΣ0ð�Þ

c
Þ=2,

MΛcð2595Þ ¼ 2592.25 MeV andMΛcð2625Þ ¼ 2628.11 MeV.
The errors on the masses of the Λ�

c resonances quoted in the
review of particle properties [10] are 0.28 and 0.19 MeV,
respectively, and turn out to be relevant only for the
Λcð2595Þ width, but even in that case, it induces variations
of the order of 1%.
The rates for the neutral-pions channel can be obtained

by adding a symmetry factor 1=2 to avoid double counting
the two identical bosons in the final state and using
mπ ¼ mπ0 , MΣð�Þ

c
¼ MΣþð�Þ

c
.

Adding the contribution of neutral and charged-pion
modes, we find that the Σð�Þ

c -resonant contribution to the
Λcð2595Þ and Λcð2625Þ decays into Λþ

c and two pions are

Γ½Λcð2595Þ → Λcππ� ¼ 1.84 × g2Λcð2595ÞΣcπ
½MeV�;

Γ½Λcð2625Þ → Λcππ� ¼ 0.27 × g2Λcð2625ÞΣ�
cπ

½MeV� ð18Þ

with the π0π0 channel being the 81.5%and45.0%of the total
for the Λcð2595Þ and Λcð2625Þ partial widths, respectively.
In the exact isospin limit, the two-neutral-pions partial
width is a factor of 2 smaller than the πþπ− one. The
experimental width of the Λcð2595Þ is 2.6� 0.6 MeV
(nearly 100% saturated by the two Λcππ modes), while
there exists an upper bound of 0.97 MeV for the Λcð2625Þ
[10]. Hence, the experimental Γ½Λcð2595Þ� provides a
direct measurement of the S-wave coupling constant
g2Λcð2595ÞΣcπ

, assuming that a possible D-wave contribution

is negligible [46]. The bound on Γ½Λcð2625Þ�, on the other
hand, puts upper limits on the coupling in S wave of this
resonance to theΣ�

cπ pair, but one should bear inmind that in
this case, the resonant contribution does not saturate the
decay width.
The interference term in Eq. (16) for the charged mode,

and the equivalent one in the case of π0π0, gives a small
contribution to the integrated width. In particular for the
Λcð2595Þ, it is of the order of−1% and−0.2% for the πþπ−

and π0π0 channels, respectively. For the Λcð2625Þ, it
becomes larger around −5% and −4%, respectively, but
it is still quite small. This can be easily understood by
changing the s12 and s23 integration variables to E3 and
cos θ23, with θ23 the angle formed by the two pions in the
resonance rest frame. The energy E2 (or equivalently s13)
depends on cos θ23 through the conservation of energy
equation, MR ¼ E3ðp⃗3Þ þ E2ðp⃗2Þ þ EΛc

ðp⃗2 þ p⃗3Þ. In the

infinite charm limit, the recoiling Λc baryon carries off
momentum but not kinetic energy, and hence the approxi-
mation [43]

E2 ∼MR −MΛc
− E3 ð19Þ

turns out to be quite accurate, especially for the Λcð2595Þ
where the energy released by the decaying resonance is
very small. Within this approximation, the only dependence
of the differential decay rate on cos θ23 comes from the
scalar product p⃗2 · p⃗3 in the interference term, which would
vanish in the integrated width, since cos θ23 covers almost
totally the ½−1; 1� range for all E3 allowed values. Indeed,
we recover Eq. (3.5), up to a factor 1=2, of Ref. [43] from
the expression of Eq. (16) by neglecting the interference
term and adopting the approximation of Eq. (19), using that
ds12 ¼ 2MRdE3 and taking into account that the integra-
tion over ds23 gives 4p�

πþp
�
π− ∼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3 −m2

π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 −m2

π

p
,

approximating in the propagators ðs12ð13Þ −M2

Σð�Þ
c
Þ by

2MΣð�Þ
c
ðMR − E3ð2Þ −MΣð�Þ

c
Þ, and finally identifying g2D ¼

h21=2 and g2
RΣð�Þ

c π
¼ 3h22ðMR −MΣð�Þ

c
Þ2=ð2f2πÞ, with h1;2

used in Ref. [43]. The factor 1=2 introduced in this latter
work does not hold for the πþπ− decay mode, though
should be included for the neutral mode.5

We would like to mention that three-body Λcð2595Þ →
Λcππ decay rate can be approximated by using the narrow

width approximation of the Σð�Þ
c propagators,

jGΣc
ðsÞj2∼ π

MΣc
ΓΣc

ðsÞδðs−M2
Σc
Þ¼ 6πf2π

MΛc
jp⃗Λcπ

π j3 δðs−M2
Σc
Þ

ð20Þ
which leads to

Γπ−πþ ∼ ðΓΛcð2595Þ→Σþþ
c π− þ ΓΛcð2595Þ→Σ0

cπ
þÞ;

Γπ0π0 ∼ ΓΛcð2595Þ→Σþ
c π

0 ð21Þ

ΓΛcð2595Þ→Σa
cπ

b ¼
g2Λcð2595ÞΣcπ

6π

MΣa
c

MΛcð2595Þ
jp⃗πj;

jp⃗πj ¼
λ
1
2ðM2

Λcð2595Þ;M
2
Σa
c
; m2

πb
Þ

2MΛcð2595Þ
ð22Þ

for the charge combinations ða; bÞ ¼ ðþþ;−Þ; ð0;þÞ, and
(þ; 0), which correspond to the square of the amplitudes of
each of the three diagrams depicted in Fig. 1. To obtain
Eq. (21) from Eq. (16), using the approximation of
Eq. (20), we have neglected the interference contributions,

4For the same reason, we have here explicitly included the
energy dependent widths of the intermediate Σc and Σ�

c reso-
nances [10].

5Note, however, that the expression for the Λcπ
0π0 partial

width used by the CDF Collaboration in Ref. [46] is wrong by a
factor of 2. The 1=2 in Eq. (13) for the amplitude in that reference
should be replaced by 1=

ffiffiffi
2

p
.
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have approximated the LAB energy of the nonresonant
pion and the momentum of the resonant one by
ðMΛcð2595Þ −MΣc

Þ and jp⃗πj, respectively, and, in addition,
we have made use of the fact that the momentum of the
nonresonant pion in the Σc rest frame isMΛcð2595Þjp⃗πj=MΣc

.
The two-body S-wave-widths limit of Eq. (21) works well
when the intermediate Σc is nearly on shell. The value
used here for MΛcð2595Þ is 1.2 (4.6) MeV below (above)

the Σþþ;0
c mπ∓ (Σþ

c mπ0) threshold. We find that Γπ0π0 and
ΓΛcð2595Þ→Σþ

c π
0 differ only in 0.19 g2Λcð2595ÞΣcπ

[MeV], this is

to say, the latter width is just 2.5% greater than the former
one. The Σþþ

c and Σ0
c cannot be put on shell for this mass of

the Λcð2595Þ, but clearly the differential decay width
of Eq. (16) is strongly dominated by the contribution of
two well-separated peaks that correspond to the first two
mechanisms shown in Fig. 1 [43].
Finally, we should acknowledge that we have neither

considered direct two pion emission processes mediated
by heavier Σð�Þ

c − resonances, nor ππ or πΛc final state-
interactions (FSI) effects. In the case of the Λcð2595Þ, the
decay is dominated by the intermediate Σcð2455Þ mecha-
nism [10]. Indeed, the ARGUS Collaboration reported a
value of 0.66þ0.13

−0.16 � 0.07 for the ratio of the resonant
contribution to width and total width [47], while the results
of the E687 Collaboration are consistent with this ratio
being 100% [48]. Other mechanisms are then expected to
be significantly smaller. We should bear in mind that we
only use the three body decays of the Λcð2595Þ and
Λcð2625Þ to limit the acceptable values of the couplings

of these resonances to the Σð�Þ
c π pairs, and thus considering

only the intermediate Σcð2455Þ contribution is sufficiently
accurate for our purposes. On the other hand, pions
are produced almost at threshold and hence one should
expect small effects from their FSI. The πΛc FSI are,
however, large, and are dominated by the production
of the Σcð2455Þ, whose effects are explicitly taken into
account thanks to the complex propagator of this inter-
mediate resonance. For the Λcð2625Þ case, contact two
pion emission processes can be more relevant. However,
the strongest bound for g2Λcð2625ÞΣ�

cπ
comes from the

Σ�
cð2520Þ resonant contribution measured by the

ARGUS Collaboration [45], which is precisely what we
compute here using the mechanisms depicted in Fig. 1.

III. RESULTS AND DISCUSSION

A. SUð6Þlsf ×HQSS hadron molecules: Dependence
on the renormalization scheme

First, we present in Fig. 2 the dynamically generated
resonances (poles in the SRS of the amplitudes) that are
obtained, when the effects produced by the exchange of
CQM bare states are neglected. We show both the J ¼ 1=2
and J ¼ 3=2 sectors, and consider the two renormalization

schemes introduced in Sec. II B. The numerical positions of
the poles and residues are given in the first row of Tables I
and II.
The SCμ results found here, working with the reduced

NDð�Þ − Σð�Þ
c π coupled-channels space, reproduce reason-

ably well the most important features reported in the
original works of Refs. [20,21]. Indeed, we choose α ¼
0.95 to better account for some of the effects produced by
the channels that have not been considered in the current
approach. We see that a narrow JP ¼ 1=2− Λ0−

cðnÞð2595Þ
resonance (Γ ∼ 2 MeV) is produced. This is mostly gen-
erated from the extendedWTND − ND� coupled-channels
dynamics in the jπldof ¼ 0− subspace. This state has a small
coupling to the ðjπldof ¼ 1−ÞΣcπ channel which, in addition
to the proximity to the open threshold, explains its
small width. There appears a second JP ¼ 1=2− pole
[Λ1−

cðbÞð2595Þ] in the 2.6 GeV region. Although it is placed

relatively close to the Σcπ threshold, this resonance is broad
(Γ ∼ 75 MeV) because of its sizable coupling to the latter
open channel. Nevertheless, as seen in Fig. 2, this second
wide state will not produce visible effects on the baryon-
meson S-wave cross sections, since its possible impact for
real values of swill be shadowed by the narrow Λ0−

cðnÞ that is
located at a similar mass and much closer to the scattering
line. Thus, this double pattern structure would be difficult
to be confirmed experimentally, and it will not certainly
show up in the Λcππ spectrum, where the evidence of the
Λcð2595Þ has been reported [46,47,49]. However, it has
been argued that exclusive semileptonic Λb ground-state
decays in excited charmed Λ�

c baryons could unravel the
two Λcð2595Þ states [37,50], if they exist.
In the JP ¼ 3=2− sector, we find a resonance that clearly

is the HQSS partner of the broad JP ¼ 1=2− Λ1−

cðbÞð2595Þ
state, with quantum numbers 1− for jπldof. It is located above
the Σ�

cπ threshold, with a width of around 55 MeV.
Furthermore, the coupling of this JP ¼ 3=2− pole to the
Σ�
cπ channel is essentially identical to that of the

Λ1−

cðbÞð2595Þ to Σcπ. This JP ¼ 3=2− isoscalar resonance

might be identified with theDwave Λcð2625Þ, although its
mass and width significantly differ from those of the
physical state. In Refs. [20,21], it is argued that a change
in the renormalization subtraction constant could move the
resonance down by 40 MeV to the nominal position of the
physical state, and that, in addition, this change of the mass
would considerably reduce the width, since the state might
even become bound below the Σ�

cπ threshold. Thus, within
the SUð6Þlsf × SUð2ÞHQSS model, the Λcð2625Þ would turn
out to be the HQSS partner of the second broadΛ1−

cðbÞð2595Þ
pole instead of the narrow Λ0−

cðnÞð2595Þ resonance.6 This is

6A more detailed discussion, incorporating some elements of
group theory, can be found in [21] and in Sec. 2.2.1 of Ref. [37].
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in sharp contrast to the predictions of the CQMs, where
there is no second 2595 pole, and the Λcð2625Þ and the
narrow Λcð2595Þ are HQSS siblings, produced by a
λ-mode excitation of the ground 1=2þ Λc baryon.

The SCμ-renormalization scheme plays an important
role in enhancing the influence of the ND� channel in the
dynamics of the narrow Λ0−

cðnÞð2595Þ state. Indeed, this

scheme also produces a reduction in the mass of the

FIG. 2. Absolute value of the determinant of the T matrix (AVD-T) in the JP ¼ 1=2− (left) and JP ¼ 3=2− (right) sectors using two
UV renormalization schemes: SCμ with α ¼ 0.95 and a cutoff of 650 MeV in the top and bottom panels, respectively. We display the
AVD-T for both the FRS [ImðEÞ > 0] and the SRS [ImðEÞ < 0] [fm] of the unitarized amplitudes as a function of the complex energy
E [MeV]. We also show the scattering line (blue solid curve) in all the cases. Bare CQM exchange interactions are set to zero
[d1 ¼ c1 ¼ 0 in Eq. (11)]. In the z axis we have AVD-T, in the x axis we have ReðEÞ, and in the y axis we have ImðEÞ.

TABLE I. Properties of the CQM and molecular JP ¼ 3=2− poles for different renormalization schemes and values of the d1 and c1
LECs, which determine the interplay between CQM and baryon-meson pair degrees of freedom. The angular-momentum-parity
quantum numbers of the ldof are always 1−, and masses and widths are given in MeV units.

Λ ¼ 650 MeV SCμ (α ¼ 0.95)

d1 c1 M − iΓ=2 Type jgΣ�
cπj jgND� j M − iΓ=2 Type jgΣ�

cπj jgND� j
0 0 ð2680.4 − i33.0Þ 1− 2.0 2.5 ð2662.6 − i27.2Þ 1− 2.3 2.4
−0.8 0 ð2704.0 − i31.5Þ 1− 1.7 2.2 ð2688.8 − i28.4Þ 1− 1.8 1.9
−0.8 0 2615.8 CQM 1.0 0.6 2617.5 CQM 1.1 0.5
−0.8 −1 ð2706.8 − i30.2Þ 1− 1.7 2.6 ð2681.1 − i27.0Þ 1− 1.8 2.4
−0.8 −1 2614.9 CQM 1.1 0.2 2617.7 CQM 1.0 0.5
−0.8 1 ð2701.4 − i32.4Þ 1− 1.8 1.8 ð2695.5 − i30.6Þ 1− 1.8 1.5
−0.8 1 2620.9 CQM 0.9 1.5 2612.9 CQM 1.2 1.4
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resonance of around 200 MeV, which thus appears in the
region of 2.6 GeV, instead of in the vicinity of the ND
threshold. Indeed, we see also in Fig. 2 and Table II that if
the UV behavior of the amplitudes is renormalized by
means of a common momentum cutoff of 650 MeV
[Eq. (9)], the position of the jπldof ¼ 0− pole in the JP ¼
1=2− sector moves up drastically, and it now appears at
2.8 GeV with few chances to be identified with the physical
Λcð2595Þ state. It is still narrow, because HQSS prevents its
coupling to Σcπ to become large. However, the main
features of the broad JP ¼ 3=2− resonance and the
jπldof ¼ 1− one in the J ¼ 1=2 sector are not much affected
by the change of renormalization scheme. The mass
position of the latter resonance can be moved down to
the vicinity of the Σcπ threshold using cutoffs of the order
of 750 MeV, which is still reasonable. At the same time, its
width also decreases since the available phase space for
the decay becomes smaller. However, to obtain masses for
the 3=2 state of around 2625 MeV, significantly larger
cutoffs of the order of 1200 MeV are needed. This might
hint at the existence of some further contributions to those
induced for the baryon-meson unitarity loops, and that are
effectively accounted for in the somehow unnatural UV
regulator. In this context, we will discuss in the next
subsection effects produced by CQM d.o.f. In addition,
the coupling jgΣ�

cπj would take values of around 1.6 leading
to Γ½Λcð2625Þ → Λcππ� ∼ 0.7 MeV from Eq. (18), 30%
below the upper bound on the total width of the resonance.
However, taking into account that the Σ�

c resonant con-
tribution measured by the ARGUS Collaboration is
ð46� 14Þ% [45] of the total, we find that 0.7 MeV is
around two sigmas above the inferred upper bound for the
resonant mechanism. Note that using Eq. (18), the upper
bound on the Σ�

c-resonant contribution to the Λcð2625Þ
width leads to

jgΣ�
cπj < 1.3� 0.2: ð23Þ

We end this discussion by studying the relation between
the cutoff and SCμ UV renormalization schemes. Results
obtained in SCμ are recovered by using appropriate
channel-dependent cutoffs as detailed in Eq. (10). These
are 459, 544, 905, and 1044 MeV for πΣc, πΣ�

c ND, and
ND�, respectively. We see that the cutoff for ND� is large
and it enhances the importance of this channel in the
dynamics of the narrow Λ0−

cðnÞð2595Þ resonance found in the
SCμ scheme.

B. CQM and baryon-meson d.o.f.

As mentioned in Sec. II C, the quark model of Ref. [8]
predicts a ðJP ¼ 1=2−; 3=2−Þ HQSS doublet of states,

almost degenerate and with M
∘
CQM ∼ 2629 MeV. Though

with some precautions, because the CQM bare mass is not
an observable and the matching procedure between the
quark model and the effective hadron theory is not well
defined, it seems natural to think that the bare CQM states
should have a important influence in the dynamics of the
Λcð2595Þ and Λcð2625Þ resonances, which are located so
close. Indeed, the baryon-meson interactions of Eq. (11),
driven by the exchange of the CQM state, have a strong

energy dependence close to M
∘
CQM ∼ 2629 that might be

difficult to accommodate by just modifying the real part of
the unitarity loops. The LECs c1 and d1, that control the
interplay between bare CQM and baryon-meson d.o.f., are
unknown. They are also renormalization scheme depen-
dent, and once the scheme is fixed, they should be inferred
from data. The hope is that in this way, some theoretical
predictions could become renormalization independent,
at least in some energy window around the experimental
inputs.

TABLE II. Properties of the CQM and molecular JP ¼ 1=2− poles for different renormalization schemes and values of the d1 and c1
LECs, which determine the interplay between CQM and baryon-meson pair degrees of freedom. Molecular states are labeled according
to their dominant ldof configuration, 0− or 1−, and masses and widths are given in MeV units.

Λ ¼ 650 MeV SCμ (α ¼ 0.95)

d1 c1 M − iΓ=2 Type jgΣcπj jgNDj jgND� j M − iΓ=2 Type jgΣcπj jgNDj jgND� j
0 0 ð2609.9 − i28.8Þ 1− 2.0 2.3 0.7 ð2608.9 − i38.6Þ 1− 2.3 2.0 1.9
0 0 ð2798.7 − i2.0Þ 0− 0.3 1.8 4.1 ð2610.2 − i1.2Þ 0− 0.5 3.9 6.2
−0.8 0 2590.0 1− 1.1 1.0 0.3 2591.1a 1− 1.3 1.5 0.5
−0.8 0 ð2799.0 − i2.2Þ 0− 0.3 1.8 4.1 ð2611.6 − i0.4Þ 0− 0.3 3.5 6.2
−0.8 0 ð2659.1 − i17.3Þ CQM 1.3 1.6 0.3 ð2652.8 − i22.2Þ CQM 1.5 0.8 1.7
−0.8 −1 2589.3 1− 1.2 0.5 0.2 ð2589.4 − i8; 6Þa 1− 2.6 1.7 0.7
−0.8 −1 ð2800.7 − i2.3Þ 0− 0.3 1.7 4.1 ð2610.1 − i0.0Þ 0− 0.0 3.8 5.9
−0.8 −1 ð2657.2 − i15.8Þ CQM 1.2 2.3 0.5 ð2642.3 − i19.4Þ CQM 1.5 1.1 2.5
−0.8 1 2591.0 1− 0.9 1.2 0.4 2590.3 1− 1.1 1.7 0.5
−0.8 1 ð2798.8 − i1.9Þ 0− 0.3 1.8 4.1 ð2612.6 − i0.7Þ 0− 0.4 3.2 6.3
−0.8 1 ð2660.0 − i18.9Þ CQM 1.3 1.1 0.2 ð2659.6 − i26.8Þ CQM 1.6 0.7 1.2

aVirtual state placed in the 100 sheet below the Σcπ threshold.
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1. The Λcð2625Þ
First we pay attention to the JP ¼ 3=2− sector. In Figs. 3,

4, and 5, we show results obtained using SCμ (α ¼ 0.95) or
a common UV cutoff of 650 MeV for different CQM and
baryon-meson couplings. In principle, one expects that d1
should be more relevant than c1 because the Σ�

cπ threshold

is closer to M
∘
CQM than the ND� one. Thus, in a first stage

we set c1 to zero and start varying d1. Results are depicted
in Fig. 3 (note that in this situation, the irreducible
amplitudes depend on d21). There are now two poles in
both renormalization schemes. The lightest one is located

below the Σ�
cπ threshold and it tends to M

∘
CQM when

d1 → 0. Its coupling to Σ�
cπ, jgΣ�

cπj, grows from zero, when
d1 ¼ 0, to values of around 1.8 or 1.9, when d1 ¼ −2, for
the UV cutoff or SCμ renormalization schemes, respec-
tively. The upper bound of Eq. (23) is not satisfied above
jd1j > 1.2ð1.0Þ for the Λ ¼ 650 MeV (SCμ) scheme.
On the other hand, the second pole, located at higher

masses, is a broad resonance, with a width of around
60 MeVand little sensitivity to d1. Indeed, as can be seen in
the figure, the width varies less than 2 (8) MeV in the UV
cutoff (SCμ) scheme, when d1 changes from 0 to −2. The

mass of this second resonance is more affected by d1, and
gets bigger when d21 increases, since the CQM exchange

interaction is repulsive for energies aboveM
∘
CQM. The pole

matches the SUð6Þlsf × HQSS molecular one discussed in
Sec. III A, when the coupling between CQM and baryon-
meson d.o.f. is switched off.
Within the nonrelativistic CQM used in Ref. [12], the

LEC d1 is predicted to be −0.8. With all cautions, already
mentioned, about the matching between quark models and
hadron-hadron based images of the problem, and the
dependence on the renormalization procedure, we will
fix d1 to the latter value, and study the dependence of
the previous results on c1. We let this latter parameter vary
in the range −3 to 2 in Fig. 4, where the jgΣ�

cπj and jgND� j
couplings, the mass and Σ�

cπ− molecular probability of
the JP ¼ 3=2− dressed CQM pole are shown as a function
of c1. The molecular probability is defined through
Weinberg’s compositeness rule [51,52], generalized for
the coupled-channels BSE formalism in Refs. [53,54],

PΣ�
cπ ¼ −g2Σ�

cπ

∂GΣ�
cπð

ffiffiffi
s

p Þ
∂ ffiffiffi

s
p

				 ffiffi
s

p ¼ ffiffiffiffi
sR

p : ð24Þ

FIG. 3. Dependence of the JP ¼ 3=2− CQM and molecular pole positions as a function of the LEC d1, for c1 ¼ 0. We show results for
both, the cutoff and SCμ (α ¼ 0.95) renormalization schemes, and the values of the bare CQM mass and the Σ�

cπ threshold energy.

FIG. 4. Dependence of the couplings, mass and Σ�
cπ− molecular probability of the JP ¼ 3=2− dressed CQM pole as a function of the

LEC c1, for d1 ¼ −0.8. We show results for both, the cutoff and SCμ (α ¼ 0.95) renormalization schemes. In addition,
ΔMCQM ¼ ½MCQMðd1Þ −MCQMðd1 ¼ −0.8Þ�, with MCQMðd1 ¼ −0.8Þ ¼ 2615.81 and 2617.49 MeV for the left and right panels,
respectively.
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As can be seen in the left panel of the figure, the variation
of the mass of the CQM pole with c1 is quite mild
within the cutoff scheme. It changes only about 3 MeV,
MCQM ∈ ½2614.7; 2617.8� MeV, when c1 varies in the
½−2.0; 0.5� interval and, at most, MCQM reaches values
close to 2630 MeV for the largest positive values of c1
shown in the figure. At the same time jgΣ�

cπj goes from 1.3
down to 0.8 when c1 varies from −3 to 2. Hence, one can
accommodate the experimental mass in the region of
2628 MeV consistently with the upper bound on the Σ�

c-
resonant contribution to the width discussed in Eq. (23).
The molecular probability of this state would be small since
PΣ�

cπ ∼ 0.1, reaching maximum values of about 0.2, when
c1 is close to −3. Moreover, for this latter value of c1, PND� ,
defined analogously to PΣ�

cπ in Eq. (24) with the obvious
replacements, is of the order of 0.04. When c1 increases,
PND� (not shown in the plot) continues decreasing and it
becomes zero close to c1 ¼ 0.2. From this point, PND�

starts growing to reach values of the order of 0.08 for
c1 ¼ 2. The coupling jgND� j, displayed in the figure,
follows a similar pattern, as expected.
Results obtained within the SCμ scheme, shown in the

right panel of Fig. 4, differ from those discussed above, but
some qualitative features are similar: the PND� and jgND� j
behaviors, the small molecular probability and the mild
dependence of MCQM and jgΣ�

cπj on c1. The maximum
values obtained for the mass (∼2618) of the state are

found for c1 in the region of −0.8. Note, however, that
the possible tension with the experimental mass of
2628.11 MeV is not really significant, since the agreement
can be likely improved by changing the renormalization
parameter α.
In Table I, we present together the properties of CQM

and molecular JP ¼ 3=2− poles, for d1 ¼ −0.8 and c1 ¼ 0,
1, and −1, and both renormalization schemes. The dressed
CQM results of the table were already discussed in Fig. 4.
The properties of the molecular state, which would have
jπldof ¼ 1− quantum numbers, hardly depend on c1 and
both renormalization schemes predict a new state around
2.7 GeV and 60 MeVof width. The emergence of this new
resonance, which would not be the Λcð2625Þ, can be
clearly seen in the FRS and SRS plots of Fig. 5, where
larger values of jc1j than in Table I have been considered.
Hence, we conclude that the physical Λcð2625Þ finds

naturally its origin in the CQM bare state obtained in
Ref. [8], while we predict the existence of a molecular
baryon, moderately broad, with a mass of about 2.7 GeV
and sizable couplings to both Σ�

cπ and ND�.
This latter pole will not show up in the experimental

Λcππ spectrum, dominated by the physical resonance.
Furthermore, this state, mistakenly associated with the
Λcð2625Þ in the previous SUð6Þlsf × HQSS studies of
Refs. [20,21] where the coupling to CQM d.o.f. was not
considered, will be similar to that found in the chiral

FIG. 5. AVD-T in the JP ¼ 3=2− sector using two UV renormalization schemes: SCμ (α ¼ 0.95) and a cutoff of 650 MeV in the
bottom and top panels, respectively, for different CQM and baryon-meson pair couplings (from left to right): ðc1 ¼ −3; d1 ¼ −0.8Þ,
ðc1 ¼ 0; d1 ¼ −0.8Þ, and ðc1 ¼ 2; d1 ¼ −0.8Þ. We display the AVD-T for both the FRS [ImðEÞ > 0] and the SRS [ImðEÞ < 0] [fm] of
the unitarized amplitudes as a function of the complex energy E [MeV]. We also show the scattering line (blue solid curve) in all the
cases. Axes are defined as in Fig. 2.
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approach of Ref. [18] or to the Σ�
cπ pole reported in the

ELHG scheme followed7 in [29]. The SU(3) chiral
approach of Ref. [15] reduces the mass of this molecular
state down to that of the Λcð2625Þ by using a large UV
cutoff of 2.13 GeV. This points, following the arguments
given in [55,56], to the existence of some relevant d.o.f.
(CQM states and/orND� components) that are not properly
accounted for in [15].

2. The Λcð2595Þ
Now, we turn the discussion into the JP ¼ 1=2− sector.

As we did before, in a first stage we set c1 to zero and start
varying d1. Results are depicted in Fig. 6. There appear
now three poles for both renormalization schemes consid-
ered in this work. As compared to the case in the left
panels of Fig. 2, where the coupling between CQM and
baryon-meson d.o.f. was switched off, there is an extra
state which has its origin in the jπldof ¼ 1− CQM bare state.
The mass and the width of the narrow state at 2800 MeV
(Λ ¼ 650 MeV) or 2610 MeV (SCμ) are practically
unaltered by d1. This is a trivial consequence of the
largely dominant jπldof ¼ 0− configuration of these states,
since HQSS forbids their coupling to the jπldof ¼ 1− CQM
bare state.
The location of the second broad molecular state,

[Λ1−

cðbÞð2595Þ], observed in Fig. 2, is strongly influenced
by the quark-model state that produces an attraction that
grows with d21. Thus, for d1 < −0.6 or −0.7, depending on
the renormalization procedure, it moves below the Σcπ
threshold and becomes a bound state. Within the SCμ
scheme, this jπldof ¼ 1− molecular state would not be,
however, identified with the physical Λcð2595Þ resonance

that would be reproduced by the narrowΛ0−

cðnÞð2595Þ pole at
2610–2611 MeV, with small jgΣcπj coupling8 and large
jgNDj and jgND� j ones, especially the latter (≥6.2). The
situation is different in the UV cutoff scheme, since the
jπldof ¼ 0− narrow resonance is placed at 2800 MeV, and it
is precisely the jπldof ¼ 1− molecular state, the best can-
didate to describe the physical Λcð2595Þ.
In addition, we see in Fig. 6 that the bare CQM state is

modified due to the baryon-meson loop effects, and it is
moved to the complex plane acquiring also a finite width
that obviously grows with d21. The quantitative details,
nevertheless, depend on the renormalization scheme.
As in the Λcð2625Þ subsection, we fix d1 ¼ −0.8 from

the CQM of Ref. [12], and study in Table II and Fig. 7, the
dependence of the spectrum of states on the LEC c1. As
expected, the mass position of the jπldof ¼ 0− pole is hardly
affected, while its small width depends much more on c1.
As mentioned above, within the SCμ scheme, the physical
Λcð2595Þ is identified with theΛ0−

cðnÞð2595Þ. We see that the

pole might have a coupling to the Σcπ pair that is smaller
than 1, and thus it would be smaller than needed to
reproduce the experimental width from Eq. (18). In the
UV cutoff approach, instead, there would be a molecular
narrow state close to the ND threshold, strongly coupled to
it and that might provide some visible signatures in
processes involving final state interactions of this
baryon-meson pair (see bottom panels of Fig. 7). In this
latter renormalization scheme, the Λcð2595Þ is described
by the jπldof ¼ 1− hadron molecule located below threshold
at around 2590 MeV, little affected by c1, and with
jgΣcπj ∼ 1. Thus, from Eq. (18) the Λcð2595Þ → Λππ width
will be predicted to be around 1.8, in good agreement with
experiment (2.6� 0.6). Nevertheless, the Λcð2595Þ,
despite of having 1− quantum numbers for the ldof, would
not be the HQSS partner of the Λcð2625Þ either in this case,

FIG. 6. Dependence of the JP ¼ 1=2− CQM and molecular pole positions as a function of the LEC d1, for c1 ¼ 0. We show results for
both, the cutoff and SCμ (α ¼ 0.95) renormalization schemes, and the values of the bare CQM mass and the Σcπ threshold energy.
Molecular states are labeled according to their dominant ldof configuration, 0− or 1−.

7In that work, it was not identified with the Λcð2625Þ
resonance, which is generated there as an ND� state, after
modifying the ELHG ND� → ND� potential including box-
diagrams constructed out of the anomalous D�D�π coupling,
and fitting the UV cutoffs to reproduce its mass.

8It decreases with d21 and it varies from 0.5 for d1 ¼ 0 down to
0.04 for d1 ¼ −2.
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because of the predominantly quark-model structure of the
latter. Indeed, the Λcð2595Þ would have a large molecular
content, PΣ�

cπ ¼ 0.6–0.7.
Note that the jπldof ¼ 1− state in the SCμ scheme will be

irrelevant, since its effects will be completely overcome by
those produced by the Λ0−

cðnÞð2595Þ (see Fig. 7); independ-
ently it is placed below the Σcπ threshold or it becomes a
broad resonance.
The different inner structure of the Λcð2595Þ within

the UV cutoff and SCμ schemes and the dependence
of this structure on c1 will lead to differences in ND and
ND� couplings that would produce different predictions for
the exclusive semileptonic Λb → Λcð2595Þ decay [37,50].
Finally, we see that in both renormalization schemes we

obtain the dressed CQM pole at masses around 2640–
2660 MeV and with a width of the order of 30–50 MeV,
depending on the chosen regulator and on c1, though for
moderate variations, one should not expect a large depend-
ence on c1 because the ND and ND� thresholds are not too
close. This is a prediction of the present work, and this
state should provide signatures in the open channel Σcπ
since its coupling to this pair is sizable, well above one. As
seen in Fig. 7, for large negative values9 of c1 in the SCμ
case, it could, however, be shadowed by the Λ0−

cðnÞð2595Þ
resonance.

C. Further comments

Here, we briefly revisit and summarize some of the
features/assumptions of the current approach that induce
ambiguities in the main conclusions of this work, which we
will be collected in the next section. We also suggest, when
possible, how the model dependence can be fixed by future
measurements.

(i) The regularization of the loop function determines
the off-shell behaviors of the amplitudes and leads to
a model dependence, as we have put here to
demonstrate by comparing the SCμ and UV cutoff
results. This source of systematic errors is ignored in
most of the molecular approaches available in the
literature. The existence of a narrow JP ¼ 1=2− state
close to the ND threshold would disentangle be-
tween these two renormalization schemes, since it
will definitely favor the UV cutoff scheme. This
state would show up in the Σcπ spectrum through
virtual ND and ND� loops.

(ii) The LECs c1 and d1 that control the interplay
between the bare CQM and the baryon-meson d.o.f.
are uncertain and are UV renormalization scheme-
dependent parameters. Nevertheless, the results dis-
played in Fig. 3 for the JP ¼ 3=2− higher mass
resonance constrain considerably d1 (coupling be-
tween the bare CQMstate andΣcπ).We find a sizable
dependence of the mass of this state on d1 that can

FIG. 7. AVD-T in the JP ¼ 1=2− sector using two UV renormalization schemes: SCμ (α ¼ 0.95) and a cutoff of 650 MeV in the
bottom and top panels, respectively, for different CQM and baryon-meson pair couplings (from left to right): ðc1 ¼ −3; d1 ¼ −0.8Þ,
ðc1 ¼ 0; d1 ¼ −0.8Þ, and ðc1 ¼ 2; d1 ¼ −0.8Þ. We display the AVD-T for both the FRS [ImðEÞ > 0] and the SRS [ImðEÞ < 0] [fm] of
the unitarized amplitudes as a function of the complex energy E [MeV]. We also show the scattering line (blue solid curve) in all the
cases. Note that the range of ReðEÞ is much larger in the top panels than in the bottom ones. Axes are defined as in Fig. 2.

9What it is really relevant is that the product c1d1 is positive.
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serve to fix this LEC in both renormalization schemes
employed in this work. Interestingly, we also observe
that the mass and the width of this resonance do not
depend drastically on the regularization method. We
note that the range of values considered in Fig. 3 for
jd1j is sufficiently large, given that it is estimated to be
around 0.8 in Ref. [12], using a framework compat-
ible with the CQM employed in [8] from which we

have taken M
∘
CQM. Hence, we end up with a reason-

ably robust prediction for the existence of a JP ¼
3=2− molecular baryon, moderately broad (Γ∼
60 MeV), with a mass of about 2.7 GeVand sizable
couplings to both Σ�

cπ and ND�. The future obser-
vation of this resonance, additional to the Λcð2625Þ,
would greatly limit the possible values of d1.
The results shown in Fig. 3 were obtained for

c1 ¼ 0, i.e., a vanishing coupling between the bare
CQMstate and the jπldof ¼ 1−-component of theND�

pair. Nevertheless, moderate nonzero values of this
LEC do not modify appreciably the mass and the
width of the higher JP ¼ 3=2− resonance, as seen in
Table I. This is because this state is placed signifi-
cantly far from the ND� threshold. Indeed, most of
the results found in this work are a little sensitive to
c1, because the ND and ND� thresholds are far from

M
∘
CQM, mass of the bare three-quark state with

jπldof ¼ 1−, and in addition, the formermeson-baryon
pairs feel the strongest interaction in the jπldof ¼ 0−

channel, as discussed in Sec. II. This reduced
dependence on c1 certainly make our results more
robust.10

(iii) The CQM jπldof ¼ 1− bare mass, M
∘
CQM, is also an

UV renormalization scheme-dependent parameter in

our approach. We have fixed it to the value obtained
in the state of the art CQM calculation of Ref. [8].
There, single- and double-heavy baryons were
studied, with model parameters fixed by the strange
baryon spectra, finding that the predictions for the
masses of the observed charmed and bottomed
baryons turned out to be in a fairly good agreement
with experiment. The predictions for the Λcð2625Þ
are the most sensitive to the choice of M

∘
CQM, but

even in this case, the properties of this resonance are
reasonably stable in front of moderate variations of
the mass of the bare CQM state, as can be seen in
Fig. 8. In this latter figure, we show the produced
changes in the mass (left) and coupling to Σ�

cπ (right)
of the dressed JP ¼ 3=2− CQM state, as a function

of the LEC d1, when M
∘
CQM is shifted by �15 MeV

with respect to the value of 2529 MeVused here and
taken from [8]. We see that as jd1j increases the
effect on the mass of the dressed state decreases.
The JP ¼ 3=2− higher mass resonance, located in
the region of 2.7 GeV, is much less affected and
for the largest jd1j ¼ 2 coupling, its mass changes
only at the level of 5 MeV, while it becomes

2–3 MeV wider (narrower) when M
∘
CQM ¼

2614ð2644Þ MeV is employed. These variations
are comparable to those produced by c1, as men-
tioned above.

IV. CONCLUSIONS

We have shown that the Λcð2595Þ and the Λcð2625Þ are
not HQSS partners. The JP ¼ 3=2− resonance should be
viewed mostly as a quark-model state naturally predicted to
lie very close to its nominal mass [8]. This contradicts a
large number of molecular scenarios suggested for this
resonance in the literature. In addition, there will exist a
molecular baryon, moderately broad, with a mass of about

FIG. 8. Mass (left) and coupling to Σ�
cπ (right) of the dressed CQM state as a function of the LEC d1, for three different values of the

mass of the bare CQM state, M
∘
CQM ¼ 2544, 2529, and 2514 MeV, in the JP ¼ 3=2− sector. In addition, the LEC c1 has been fixed to

zero. We show results obtained with the cutoff renormalization scheme.

10In any case as we mentioned, the position of the JP ¼ 1=2−
poles show a certain dependence for very large values of c1 (see
Fig. 7), which might be used to constrain this LEC.
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2.7 GeVand sizable couplings to both Σ�
cπ and ND�, which

will fit into the expectations of being a Σ�
cπ molecule

generated by the chiral interaction of this pair.
The Λcð2595Þ is predicted, however, to have a predomi-

nant molecular structure. This is because it is either the
result of the chiral Σcπ interaction, whose threshold is
located much closer than the mass of the bare three-quark
state, or because the ldof in its inner structure are coupled to
the unnatural 0− quantum numbers. The latter is what
happens in the SCμ renormalization scheme that enhances
the influence of the ND� channel in the dynamics of
this narrow resonance. Attending to the three-body
Λcð2595Þ → Λππ decay width, the SCμ scenario is slightly
disfavored, and it looks more natural to assign a 1−

configuration to the ldof content of the physical
Λcð2595Þ state, as found when an UV cutoff is employed.
We also obtain a further JP ¼ 1=2− resonance that is the

result of dressing the bare CQM pole with baryon-meson
loops. It would have a mass of around 2640–2660 MeVand
a width of the order of 30–50 MeV. Finally, within the UV
cutoff renormalization scheme, we also find a narrow state
at 2800MeV close to theND threshold. This state has large
ND and ND� couplings and it should provide some visible
signatures in processes involving final state interactions of
the ND and ND� pairs.
The spectrum found in this work cannot be easily

understood in terms of HQSS, despite having used inter-
actions that respect this symmetry. This is because the bare

quark-model state and the Σcπ threshold are located
extraordinarily close to the Λcð2625Þ and Λcð2595Þ,
respectively, and hence they play totally different
roles in each sector. Note that ðMΣ�

c
−MΣc

Þ ∼ 65 MeV is
around a factor of 2 larger than the Λcð2625Þ − Λcð2595Þ
mass splitting. This does not fit well into a molecular

picture of these two resonances generated by Σð�Þ
c π chiral

forces and, in addition, the splitting found in the CQM
study of Ref. [8] is only of 2 MeV, much smaller than any
of the mass differences quoted above. Moreover, the SCμ
renormalization scheme leads to an unexpected enhancing
of the importance of the jπldof ¼ 0− components of the
SUð6Þlsf × HQSS interaction in the JP ¼ 1=2− sector,
which are driven by ND − ND� coupled-channels inter-
actions. This is not the case when an UV cutoff is
employed.

ACKNOWLEDGMENTS

R. P. Pavao wishes to thank the program Santiago
Grisolia of the Generalitat Valenciana. This research has
been supported by the Spanish Ministerio de Ciencia,
Innovación y Universidades and European FEDER funds
under Contracts No. FIS2017-84038-C2-1-P and No. SEV-
2014-0398. This project has received funding from the
European Unions Horizon 2020 research and innovation
programme under Grant agreement No. 824093.

[1] N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130
(1991).

[2] M. B. Wise, Phys. Rev. D 45, R2188 (1992).
[3] M. Neubert, Phys. Rep. 245, 259 (1994).
[4] L. Copley, N. Isgur, and G. Karl, Phys. Rev. D 20, 768

(1979).
[5] S. Migura, D. Merten, B. Metsch, and H.-R. Petry, Eur.

Phys. J. A 28, 41 (2006).
[6] H. Garcilazo, J. Vijande, and A. Valcarce, J. Phys. G 34, 961

(2007).
[7] W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817

(2008).
[8] T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, and K. Sadato,

Phys. Rev. D 92, 114029 (2015).
[9] N. Isgur, M. B. Wise, and M. Youssefmir, Phys. Lett. B 254,

215 (1991).
[10] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[11] H. Nagahiro, S. Yasui, A. Hosaka, M. Oka, and H. Noumi,

Phys. Rev. D 95, 014023 (2017).
[12] A. Arifi, H. Nagahiro, and A. Hosaka, Phys. Rev. D 95,

114018 (2017).
[13] M. Lutz and E. Kolomeitsev, Nucl. Phys. A730, 110 (2004).

[14] L. Tolos, J. Schaffner-Bielich, and A. Mishra, Phys. Rev. C
70, 025203 (2004).

[15] J.-X. Lu, Y. Zhou, H.-X. Chen, J.-J. Xie, and L.-S. Geng,
Phys. Rev. D 92, 014036 (2015).

[16] J. Hofmann and M. Lutz, Nucl. Phys. A763, 90 (2005).
[17] T. Mizutani and A. Ramos, Phys. Rev. C 74, 065201 (2006).
[18] J. Hofmann and M. F. M. Lutz, Nucl. Phys. A776, 17

(2006).
[19] C. E. Jimenez-Tejero, A. Ramos, and I. Vidana, Phys. Rev.

C 80, 055206 (2009).
[20] C. Garcia-Recio, V. K. Magas, T. Mizutani, J. Nieves, A.

Ramos, L. L. Salcedo, and L. Tolos, Phys. Rev. D 79,
054004 (2009).

[21] O. Romanets, L. Tolos, C. Garcia-Recio, J. Nieves, L.
Salcedo, and R. Timmermans, Phys. Rev. D 85, 114032
(2012).

[22] J. Oller and U. G. Meissner, Phys. Lett. B 500, 263 (2001).
[23] C. Garcia-Recio, J. Nieves, E. Ruiz Arriola, and M. J.

Vicente Vacas, Phys. Rev. D 67, 076009 (2003).
[24] T. Hyodo, S. Nam, D. Jido, and A. Hosaka, Phys. Rev. C 68,

018201 (2003).
[25] D. Jido, J. Oller, E. Oset, A. Ramos, and U. Meissner, Nucl.

Phys. A725, 181 (2003).

J. NIEVES and R. PAVAO PHYS. REV. D 101, 014018 (2020)

014018-16

https://doi.org/10.1103/PhysRevLett.66.1130
https://doi.org/10.1103/PhysRevLett.66.1130
https://doi.org/10.1103/PhysRevD.45.R2188
https://doi.org/10.1016/0370-1573(94)90091-4
https://doi.org/10.1103/PhysRevD.20.768
https://doi.org/10.1103/PhysRevD.20.768
https://doi.org/10.1140/epja/i2006-10017-9
https://doi.org/10.1140/epja/i2006-10017-9
https://doi.org/10.1088/0954-3899/34/5/014
https://doi.org/10.1088/0954-3899/34/5/014
https://doi.org/10.1142/S0217751X08041219
https://doi.org/10.1142/S0217751X08041219
https://doi.org/10.1103/PhysRevD.92.114029
https://doi.org/10.1016/0370-2693(91)90423-N
https://doi.org/10.1016/0370-2693(91)90423-N
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.95.014023
https://doi.org/10.1103/PhysRevD.95.114018
https://doi.org/10.1103/PhysRevD.95.114018
https://doi.org/10.1016/j.nuclphysa.2003.10.012
https://doi.org/10.1103/PhysRevC.70.025203
https://doi.org/10.1103/PhysRevC.70.025203
https://doi.org/10.1103/PhysRevD.92.014036
https://doi.org/10.1016/j.nuclphysa.2005.08.022
https://doi.org/10.1103/PhysRevC.74.065201
https://doi.org/10.1016/j.nuclphysa.2006.07.004
https://doi.org/10.1016/j.nuclphysa.2006.07.004
https://doi.org/10.1103/PhysRevC.80.055206
https://doi.org/10.1103/PhysRevC.80.055206
https://doi.org/10.1103/PhysRevD.79.054004
https://doi.org/10.1103/PhysRevD.79.054004
https://doi.org/10.1103/PhysRevD.85.114032
https://doi.org/10.1103/PhysRevD.85.114032
https://doi.org/10.1016/S0370-2693(01)00078-8
https://doi.org/10.1103/PhysRevD.67.076009
https://doi.org/10.1103/PhysRevC.68.018201
https://doi.org/10.1103/PhysRevC.68.018201
https://doi.org/10.1016/S0375-9474(03)01598-7
https://doi.org/10.1016/S0375-9474(03)01598-7


[26] C. Garcia-Recio, M. F. M. Lutz, and J. Nieves, Phys. Lett. B
582, 49 (2004).

[27] T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012).
[28] Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E.

Oset, and W. Weise, Nucl. Phys. A954, 41 (2016).
[29] W. Liang, T. Uchino, C. Xiao, and E. Oset, Eur. Phys. J. A

51, 16 (2015).
[30] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T.

Yanagida, Phys. Rev. Lett. 54, 1215 (1985).
[31] M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164, 217

(1988).
[32] U. G. Meissner, Phys. Rep. 161, 213 (1988).
[33] C. Xiao, J. Nieves, and E. Oset, Phys. Rev. D 88, 056012

(2013).
[34] V. Baru, C. Hanhart, Yu. S. Kalashnikova, A. E. Kudryavtsev,

and A. V. Nefediev, Eur. Phys. J. A 44, 93 (2010).
[35] E. Cincioglu, J. Nieves, A. Ozpineci, and A. U. Yilmazer,

Eur. Phys. J. C 76, 576 (2016).
[36] C. Garcia-Recio, J. Nieves, O. Romanets, L. Salcedo, and L.

Tolos, Phys. Rev. D 87, 074034 (2013).
[37] J. Nieves, R. Pavao, and S. Sakai, Eur. Phys. J. C 79, 417

(2019).
[38] J. Nieves and E. Ruiz Arriola, Phys. Rev. D 64, 116008

(2001).
[39] C. Garcia-Recio, L. S. Geng, J. Nieves, and L. L. Salcedo,

Phys. Rev. D 83, 016007 (2011).
[40] M. Albaladejo, P. Fernandez-Soler, J. Nieves, and P. G.

Ortega, Eur. Phys. J. C 77, 170 (2017).

[41] M. Albaladejo, P. Fernandez-Soler, J. Nieves, and P. G.
Ortega, Eur. Phys. J. C 78, 722 (2018).

[42] D. Gamermann, C. Garcia-Recio, J. Nieves, and L. L.
Salcedo, Phys. Rev. D 84, 056017 (2011).

[43] P. L. Cho, Phys. Rev. D 50, 3295 (1994).
[44] D. Pirjol and T.-M. Yan, Phys. Rev. D 56, 5483 (1997).
[45] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B

317, 227 (1993).
[46] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 84,

012003 (2011).
[47] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B

402, 207 (1997).
[48] P. L. Frabetti et al. (E687 Collaboration), Phys. Lett. B 365,

461 (1996).
[49] K.W. Edwards et al. (CLEO Collaboration), Phys. Rev.

Lett. 74, 3331 (1995).
[50] W.-H. Liang, E. Oset, and Z.-S. Xie, Phys. Rev. D 95,

014015 (2017).
[51] S. Weinberg, Phys. Rev. 130, 776 (1963).
[52] S. Weinberg, Phys. Rev. 137, B672 (1965).
[53] D. Gamermann, J. Nieves, E. Oset, and E. Ruiz Arriola,

Phys. Rev. D 81, 014029 (2010).
[54] C. Garcia-Recio, C. Hidalgo-Duque, J. Nieves, L. L. Salcedo,

and L. Tolos, Phys. Rev. D 92, 034011 (2015).
[55] F.-K. Guo, U.-G. Meissner, and B.-S. Zou, Commun. Theor.

Phys. 65, 593 (2016).
[56] M. Albaladejo, J. Nieves, E. Oset, Z.-F. Sun, and X. Liu,

Phys. Lett. B 757, 515 (2016).

NATURE OF THE LOWEST-LYING ODD PARITY CHARMED … PHYS. REV. D 101, 014018 (2020)

014018-17

https://doi.org/10.1016/j.physletb.2003.11.073
https://doi.org/10.1016/j.physletb.2003.11.073
https://doi.org/10.1016/j.ppnp.2011.07.002
https://doi.org/10.1016/j.nuclphysa.2016.04.013
https://doi.org/10.1140/epja/i2015-15016-1
https://doi.org/10.1140/epja/i2015-15016-1
https://doi.org/10.1103/PhysRevLett.54.1215
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90090-7
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1140/epja/i2010-10929-7
https://doi.org/10.1140/epjc/s10052-016-4413-1
https://doi.org/10.1103/PhysRevD.87.074034
https://doi.org/10.1140/epjc/s10052-019-6929-7
https://doi.org/10.1140/epjc/s10052-019-6929-7
https://doi.org/10.1103/PhysRevD.64.116008
https://doi.org/10.1103/PhysRevD.64.116008
https://doi.org/10.1103/PhysRevD.83.016007
https://doi.org/10.1140/epjc/s10052-017-4735-7
https://doi.org/10.1140/epjc/s10052-018-6176-3
https://doi.org/10.1103/PhysRevD.84.056017
https://doi.org/10.1103/PhysRevD.50.3295
https://doi.org/10.1103/PhysRevD.56.5483
https://doi.org/10.1016/0370-2693(93)91598-H
https://doi.org/10.1016/0370-2693(93)91598-H
https://doi.org/10.1103/PhysRevD.84.012003
https://doi.org/10.1103/PhysRevD.84.012003
https://doi.org/10.1016/S0370-2693(97)00503-0
https://doi.org/10.1016/S0370-2693(97)00503-0
https://doi.org/10.1016/0370-2693(95)01458-6
https://doi.org/10.1016/0370-2693(95)01458-6
https://doi.org/10.1103/PhysRevLett.74.3331
https://doi.org/10.1103/PhysRevLett.74.3331
https://doi.org/10.1103/PhysRevD.95.014015
https://doi.org/10.1103/PhysRevD.95.014015
https://doi.org/10.1103/PhysRev.130.776
https://doi.org/10.1103/PhysRev.137.B672
https://doi.org/10.1103/PhysRevD.81.014029
https://doi.org/10.1103/PhysRevD.92.034011
https://doi.org/10.1088/0253-6102/65/5/593
https://doi.org/10.1088/0253-6102/65/5/593
https://doi.org/10.1016/j.physletb.2016.04.033

