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The QCD baryon number density can formally be expanded into a Laurent series in fugacity, which is a
relativistic generalization of Mayer’s cluster expansion. We determine properties of the cluster expansion in
a model with a phase transition and a critical point at finite baryon density, in which the Fourier coefficients
of the expansion can be determined explicitly and to arbitrary order. The asymptotic behavior of Fourier
coefficients changes qualitatively as one traverses the critical temperature and it is connected to the branch
points of a thermodynamic potential associated with the phase transition. The results are discussed in the
context of lattice QCD simulations at imaginary chemical potential. We argue that the location of a branch
point closest to the imaginary chemical potential axis can be extracted through an analysis of an exponential
suppression of Fourier coefficients. This is illustrated using the four leading coefficients both in a toy model
as well as by using recent lattice QCD data.
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I. INTRODUCTION

Identification of the phases and structure of strongly
interacting matter at finite baryon densities is one of the
outstanding issues in modern nuclear physics. It has been
established in the framework of lattice QCD that the quark-
hadron transition at vanishing baryon density is a smooth
crossover [1]. On the other hand, it is expected (although
not proven) that a first-order quark-hadron transition takes
place at sufficiently high baryon density, with the asso-
ciated QCD critical point (CP) [2]. The search for a critical
behavior at finite μB is performed using measurements of
fluctuations in heavy-ion collisions [3–6] and also using
indirect lattice methods such as Taylor expansion around
μB ¼ 0 [7–10] or analytic continuation from imaginary μB
[11–13]. Currently, the available lattice QCD results show
little (if any) hints for a CP [10,14].
In the present work we will consider the above questions

in the framework of an expansion

p
T4

¼ 1

VT3
lnZ ¼ 1

2

X∞
k¼−∞

pjkjðTÞekμB=T; ð1Þ

which represents the QCD grand canonical potential as a
Laurent series in baryon number fugacity λB ≡ eμB=T.
Formally, it can be viewed as a relativistic extension of
Mayer’s cluster expansion in fugacities [15].1 The net
baryon density, ρB ¼ ð∂p=∂μBÞT , reads

ρB
T3

¼ 1

2

X∞
k¼−∞

bjkjðTÞekμB=T

¼
X∞
k¼1

bkðTÞ sinh
�
kμB
T

�
; bk ≡ kpk: ð2Þ

The cluster expansion (2) of net baryon density is particu-
larly interesting in the context of lattice QCD simulations at
imaginary μB. Indeed, ρB attains a form of a trigonometric
Fourier series for a purely imaginary μB ¼ iθBT [12,17,18].
The cluster expansion coefficients bk become Fourier
coefficients:

bkðTÞ ¼
2

π

Z
π

0

Im

�
ρBðT; iθBTÞ

T3

�
sinðkθBÞdθB: ð3Þ

The four leading Fourier coefficients have been computed
at the physical point in Ref. [19]. Recent applications of the
Fourier expansion method include a construction of aPublished by the American Physical Society under the terms of
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1This expansion is often called the “relativistic virial expan-
sion” in the literature [16].
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crossover equation-of-state for finite baryon densities
[20–22], a determination of the net baryon number dis-
tribution in heavy-ion collisions at the LHC [23], and
analysis of the scaling properties of bk related to the chiral
phase transition [24,25] or repulsive interactions [26].
In the present work we explore how a a critical endpoint

of a first-order phase transition at finite baryon density
affects the properties of the cluster expansion, in particular
the asymptotic behavior of the Fourier coefficients. To this
end, we develop a toy model containing a phase transition
and a critical point for which one can evaluate all
coefficients bk of the cluster expansion explicitly. The
behavior of Fourier coefficients associated with the phase
transition criticality is elaborated. Based on universality
argument, the results obtained are expected to be quite
generic for any first-order phase transition with a critical
endpoint at finite density. This is additionally demonstrated
in Appendix B for a Nambu-Jona-Lasinio description. We
then explore a possibility of extracting the location of
thermodynamic singularities from a number of leading
Fourier coefficients and show that such a procedure is
feasible under certain circumstances.

II. TRIVIRIAL MODEL

For simplicity, we consider first a single-component
Maxwell-Boltzmann gas of interacting particles. In the
context of QCD, the particles can be regarded as abstract
baryonic degrees of freedom. The scaled particle number
density, n=T3, has the following cluster expansion form

nðT; μÞ
T3

¼ 1

2

X∞
k¼1

bkðTÞλk: ð4Þ

The ideal gas limit corresponds to truncating the series at
the first term. This is the case for the partial pressure of
baryons in the ideal hadron resonance gas model.
The CP-symmetry of QCD can be recovered by adding

an antisymmetric contribution of antibaryons to Eq. (4). In
such a case bk corresponds to the Fourier coefficients
defined in Eq. (3). Here we would like to determine how a
critical point at finite density influences the behavior of bk.
To achieve this goal, we are looking for a theory containing
a phase transition with a critical point where one can
evaluate bk explicitly.
Before proceeding to a model calculation, it is worth-

while to point out the expected large-k behavior of bk based
on generic features of power series expansions. The series
(4) converges for all complex values of λ inside a circle
around the origin which has a radius of jλrj. jλrj is the radius
of convergence of the power series (4), which corresponds
to the distance from the origin to the nearest point λr in the
complex λ plane where n=T3 cannot be defined as a
holomorphic function of λ. We will refer here to such a
point as a singularity. This singularity is located on the

above-mentioned circle of radius jλrj. The radius of
convergence is encoded in the asymptotic behavior of
the expansion coefficients. The general definition of jλrj is

jλrj ¼
�
lim sup
k→∞

�
1

2
jbkj

�
1=k

�
−1
: ð5Þ

A simple possibility which satisfies (5) is an exponential
dependence of bk on λr in the large-k limit:

bk ∼k→∞
λ−kr : ð6Þ

Below we demonstrate the validity of Eq. (6) in an explicit
model calculation.

A. Model definition

Perhaps the simplest theory with a critical point of a first-
order phase transition is the van der Waals (vdW) equation,
which is given in terms of the pressure as a function of the
temperature and particle number density:

pvdWðT; nÞ ¼ Tn
1 − bn

− an2: ð7Þ

The grand-canonical formulation of the vdW equation was
considered in Refs. [27–29] to study particle number
fluctuations associated with criticality. On the other hand,
an explicit vdW model determination of the coefficients
bkðTÞ to arbitrary order k does not appear to be straightfor-
ward. For this reason we consider here a slightly different
model, which is obtained by expanding the vdW equa-
tion (7) in power series in n and truncating the series at the
3rd order:

pðT; nÞ ¼ Tnþ T

�
b −

a
T

�
n2 þ Tb2n3: ð8Þ

In this model the pressure is represented as a third-order
polynomial in the particle number density. For this reason
wewill call this equation of state the trivirial model (TVM).
The qualitative behavior of the TVM isotherms coincides
with the one in the standard vdW model: above a certain
critical temperature Tc the pressure isotherms are mono-
tonically decreasing functions of the specific volume v ¼
n−1 while at T < Tc they contain non-monotonic wiggles
(see Fig. 1). This implies an existence of a first-order liquid-
gas transition with a critical point (CP) in the TVM. The
CP location is determined from equations ð∂p=∂nÞT ¼ 0

and ð∂2p=∂n2ÞT ¼ 0:
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Tc ¼
ffiffiffi
3

p
− 1

2

a
b
; nc ¼

1ffiffiffi
3

p
b
; pc ¼

3 −
ffiffiffi
3

p

18

a
b2

;

ð9Þ

where we picked only the solution with Tc > 0.

B. Grand canonical ensemble

Equation (8) defines the model pressure in the canonical
ensemble. As T and n are not the natural variables of the
pressure function, Eq. (8) so far does not define the
thermodynamic potential. This is achieved through a trans-
formation to the grand canonical ensemble (GCE). This
will allow the analysis of the cluster expansion coefficients
bk. In order to achieve that, we follow the procedure done in
Ref. [27]. First, the free energy FðT; V; NÞ is determined
from the thermodynamic relation p ¼ −ð∂F=∂VÞT;N .
Integrating the pressure function (8) and requiring that
the free energy reduces to that of an ideal gas in the limit
N=V → 0 one obtains

FðT; V; NÞ

¼ −TN
�
1þ ln

VϕðTÞe−b2N2=ð2V2Þ−bN=V

N

�
−
aN2

V
;

ð10Þ
with

ϕðTÞ ¼ dm2T
2π2

K2ðm=TÞ: ð11Þ

Here d and m are particle’s degeneracy factor and mass,
respectively, and K2 is the modified Bessel function.
The chemical potential, μ≡ ð∂F=∂NÞT;V , reads

μ ¼ −T ln½ϕðTÞ=n� þ T

�
3

2
ðbnÞ2 þ 2bn

�
1 −

a
bT

��
: ð12Þ

The fugacity reads

λ ¼ n
ϕðTÞ exp

�
3

2
ðbnÞ2 þ 2bn

�
1 −

a
bT

��
: ð13Þ

Equation (13) [or, equivalently, (12)] defines the particle
number density nðT; μÞ in the GCE, i.e., density as a
function of T and μ. Substituting nðT; μÞ into Eq. (8) then
allows one to reconstruct the GCE pressure. Relation (13) is
a transcendental equation for the GCE density.
At given values of T and (complex) μ, Eq. (13) may have

more than a single solution, meaning that nðT; μÞ is a multi-
valued function. This multivaluedness translates to the
analytic properties of the GCE thermodynamic potential
pðT; μÞ and is expected to determine the convergence
properties of the cluster expansion (4).

C. Branch points

The particle number density n, as defined by Eq. (13), is
a multivalued function of the (complex) fugacity λ at a fixed
temperature T. Therefore, nðλ;TÞ has branch points, which
correspond to the zeroes of the derivative of the inverse
function, i.e., ð∂λ=∂nÞT ¼ 0. Thus, λbr ¼ λðnbrÞ are the
branch points where nbr satisfies

3ðbnbrÞ2 þ 2

�
1 −

a
bT

�
bnbr þ 1 ¼ 0; ð14Þ

with the solution

nbr1;2 ¼
ν − 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν − νcÞðνþ

ffiffiffi
3

p
− 1Þ

q
3b

: ð15Þ

Here ν≡ a=ðbTÞ and νc ¼ a=ðbTcÞ ¼ 2=ð ffiffiffi
3

p
− 1Þ.

For the subcritical temperatures, T < Tc, the branch
points nbr1;2 are real, whereas for the supercritical temper-
atures, T > Tc, they correspond to a pair of complex
conjugate numbers. Expressing ν ¼ νc þ Δν where Δν <
0 for T > Tc and Δν > 0 for T < Tc, one has

nbr1;2 ¼
ffiffiffi
3

p þ Δν
3b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

3
p þ ΔνÞ2 − 3

q
3b

: ð16Þ

Amore detailed look shows that the two real roots at T < Tc
correspond to the spinodal points on the isotherms, see the
blue line in Fig. 1. In fact, one can see that Eq. (14) is
equivalent to the equation ∂pðT; nÞ=∂n ¼ 0 defining the
spinodal points. These points correspond to the boundaries
separating the mechanically unstable part of the isotherm
(∂p=∂n < 0) from the phases of metastable gas (nbr1) and
metastable liquid (nbr2 > nbr1). At T ¼ Tc the two roots
become degenerate, this corresponds to the critical point. At
T > Tc the two complex conjugate roots are located in the
complex plane away from the real axis. This corresponds to

FIG. 1. Pressure vs specific volume (inverse density) isotherms
for the trivirial model in reduced units. The symbol depicts the
critical point.
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the so-called crossover singularities [30]. A similar behavior
of thermodynamic singularities associated with a phase
transition has earlier been reported for the vdWequation of
state [31].
The locations of the branch points in the fugacity plane

are the following

λbr1;2 ¼
nbr1;2
ϕðTÞ exp

�
−
1

2
− ðΔνþ

ffiffiffi
3

p
Þbnbr1;2

�
; ð17Þ

where we used Eq. (14). For the complex chemical
potential plane one has:

μbr1;2 ¼ T lnðλbr1;2Þ þ i2πTk; k ∈ Z: ð18Þ

Here the second term appears due to the periodicity of the
chemical potential in the imaginary axis direction.

D. Cluster expansion coefficients

Let us define the principal branch of the GCE density
nðT; λÞ by the condition that n is real for real values of λ and
that it reduces to the ideal gas density in the dilute limit, i.e.,
n → ϕðTÞλ as λ → 0. This principal branch can then be
expressed in a Taylor series of the form (4) around λ ¼ 0.
Here we determine the coefficients bkðTÞ of the expansion.
The function nðT; λÞ is defined by Eq. (13) implicitly,

namely as the inverse of the function λðT; nÞ. Given that
λðT; nÞ is analytic at the point n ¼ 0 and λ0nðT; n ¼ 0Þ ≠ 0,
one can apply the Lagrange inversion theorem [32] to
evaluate the series coefficients bk. One obtains:

bk ¼ 2
ϕðTÞ
T

½bϕðTÞ�k−1 1

k!

× lim
ω→0

dk−1

dωk−1 exp

�
−2

�
1 −

a
bT

�
kω −

3

2
kω2

�
: ð19Þ

Let us make a variable substitution ω ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð3kÞp

:

bk ¼ 2
ϕðTÞ
T

½bϕðTÞ�k−1 1

k!

�
3k
2

�k−1
2

× lim
ω→0

dk−1

dxk−1
exp

�
−2

ffiffiffiffiffi
2k
3

r �
1 −

a
bT

�
x − x2

�
: ð20Þ

One can recognize the generating function of Hermite
polynomials in the r.h.s. of Eq. (20),

exp ð2tx − x2Þ ¼
X∞
n¼0

HnðtÞ
xn

n!
; ð21Þ

with t ¼ −½1 − a=ðbTÞ� ffiffiffiffiffiffiffiffiffiffi
2k=3

p
. The higher-order deriva-

tives evaluated at x ¼ 0 in the r.h.s. of Eq. (20) correspond
to the Taylor coefficients of the generating function of
Hermite polynomials. One obtains

bkðTÞ ¼ 2
ϕðTÞ
T3

½bϕðTÞ�k−1 1

k!

�
3k
2

�k−1
2

×Hk−1

�
−

ffiffiffiffiffi
2k
3

r �
1 −

a
bT

��
: ð22Þ

The four leading coefficients read

b1ðTÞ ¼ 2
ϕðTÞ
T3

; ð23Þ

b2ðTÞ ¼ −4
ϕðTÞ
T3

bϕðTÞ
�
1 −

a
bT

�
; ð24Þ

b3ðTÞ ¼ 9
ϕðTÞ
T3

½bϕðTÞ�2
�
1 −

8

3

a
bT

þ 4

3

�
a
bT

�
2
�
; ð25Þ

b4ðTÞ ¼ −
56

3

ϕðTÞ
T3

½bϕðTÞ�3
�
1 −

a
bT

�

×

�
1 −

32

7

a
bT

þ 16

7

�
a
bT

�
2
�
: ð26Þ

The first three coefficients evaluated in the TVM
coincide with the vdW model result (see Appendix in
Ref. [19]). This is not surprising as the pressures in the two
models coincide up to the 3rd power of the particle number
density. Starting from the 4th coefficient (26), however, the
two models differ.

E. Asymptotic behavior of bk
The asymptotic behavior of the cluster integrals bk

determines the convergence properties of the cluster
expansion (4). This behavior is determined by the asymp-
totic properties of Hermite polynomials, which are known.
Extra care should be taken here, as both the index and the
argument of the Hermite polynomials in (22) tend to large
values as k → ∞. In such a case the asymptotic behavior
depends on the relative increase rate of the Hermite
polynomial index and its argument. These different behav-
iors were studied in Ref. [33]. There are three cases relevant
for our analysis:
(1) For x >

ffiffiffiffiffiffi
2n

p
the Hermite polynomials HnðxÞ admit

the asymptotic representation (Theorem 1 in [33])

HnðxÞ ≃n→∞
exp

�
x2 − σx − n

2
þ n lnðσ þ xÞ

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ x

σ

�s
; σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 2n

p
:

In our case n ¼ k − 1 and x ¼ −
ffiffiffiffi
2k
3

q
ð1 − a

bTÞ. The
condition x >

ffiffiffiffiffiffi
2n

p
corresponds to the subcritical

temperatures, T < Tc. Recalling ν≡ a=ðbTÞ and
setting ν ¼ νc þ Δν one obtains the following for
the coefficients bk:
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bk ∼ k−3=2

8><
>:

ffiffiffi
3

p þ Δν
3

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

3
p þ ΔνÞ2 − 3

q
3

9>=
>;

−k

exp

8><
>:k

2
641
2
þ ð

ffiffiffi
3

p
þ ΔνÞ

ffiffiffi
3

p þ Δν −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

3
p þ ΔνÞ2 − 3

q
3

3
75
9>=
>;;

∼ k−3=2
�
bnbr1 exp

�
−
1

2
− ð

ffiffiffi
3

p
þ ΔνÞbnbr1

��
−k
;

∼
ðλbr1Þ−k
k3=2

: ð27Þ

The asymptotic behavior of the cluster expansion coefficients has the form of an exponential damping superimposed
on a power-law suppression. The exponential suppression is determined by the branch point λbr1, located on the real
fugacity axis.2

(2) For x ≈
ffiffiffiffiffiffi
2n

p
the Hermite polynomials HnðxÞ admit the asymptotic representation (Theorem 3 in [33])

HnðxÞ ≃n→∞
exp

�
n
2
lnð2nÞ − 3

2
nþ

ffiffiffiffiffiffi
2n

p
x

� ffiffiffiffiffiffi
2π

p
n1=6Ai½

ffiffiffi
2

p
ðx −

ffiffiffiffiffiffi
2n

p
Þn1=6�:

The notation x ≈
ffiffiffiffiffiffi
2n

p
here means that x →

ffiffiffiffiffiffi
2n

p
in the limit n → ∞, however x can be different from

ffiffiffiffiffiffi
2n

p
for a finite

value of n. The condition x ≈
ffiffiffiffiffiffi
2n

p
corresponds in the TVM to the critical temperature, T ¼ Tc. One obtains:

bk ≃
bT3

c

2
½bϕðTcÞ�−k

3−7=6

Γð2=3Þ ð
ffiffiffi
3

p
e3=2Þkk−4=3 ≃ bT3

c3
−7=6

2Γð2=3Þ
ðλcÞ−k
k4=3

: ð28Þ

The asymptotic behavior of bk at T ¼ Tc has the form of an exponential suppression superimposed on a power-law
damping. The exponential part is determined by the critical fugacity value λc which corresponds to the critical point
location.

(3) For jxj < ffiffiffiffiffiffi
2n

p
(i.e., T > Tc), the Hermite polynomials HnðxÞ have the asymptotic representation (Theorem 5

in [33])

Hn½
ffiffiffiffiffiffi
2n

p
sin θ� ≃n→∞

ffiffiffiffiffiffiffiffiffiffi
2

cos θ

r
exp

�
n
2
½lnð2nÞ − cosð2θÞ�

�
cos

�
n

�
1

2
sinð2θÞ þ θ −

π

2

�
þ θ

2

�
;

where − π
2
< θ < π

2
. Here n ¼ k − 1 and sinθ¼ffiffiffiffiffiffiffiffi

2k
2k−2

q
ð1þΔνffiffi

3
p Þ with ν¼νcþΔν, and −νc<Δν<0.

First, one observes that the fugacity values λbr1;2 (17)
at the branch points of the thermodynamic potential
can be written

λbr1;2 ¼
exp½−ð1

2
þ ðsin θ0Þ2Þ�ffiffiffi
3

p
bϕðTÞ

× exp

�
∓ i

�
θ0 −

π

2
þ sin 2θ0

2

��
ð29Þ

¼ jλbrje�iθbr : ð30Þ

with

θ0 ¼ arcsin

�
1þ Δνffiffiffi

3
p

�
; Δν < 0:

One obtains for bk:

bk ∼
jλbrj−k
k3=2

sin

�
kθbr þ

θ0
2

�
: ð31Þ

The asymptotic behavior of bk at T > Tc corre-
sponds to a damped oscillator superimposed on a
power-law decay. The branch points that define this
behavior correspond to the so-called crossover
singularities. Denoting λbr ¼ eμbr=T and μbr ¼ μRbr �
iμIbr one can see that jλbrj ¼ eμ

R
br=T and θbr ¼ μIbr=T.

Thus, the real part μRbr=T of the chemical potential at
the branch point determines the exponential sup-
pression of the magnitude of bk at T > Tc whereas
the imaginary part μIbr=T defines the period of
oscillations.

2It is noted in Ref. [30] that the branch points do lie on the real
axis at subcritical temperatures in the mean-field universality
class, but that this fact may not necessarily extend to other
universality classes.
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The obtained TVM results can be summarized as
follows:

bk ≃ A−
e−

kμsp1
T

k3=2
; T < Tc; ð32Þ

bk ≃ Ac
e−

kμc
T

k4=3
; T ¼ Tc; ð33Þ

bk ≃ Aþ
e−

kμRcrs
T

k3=2
sin

�
k
μIcrs
T

þ θ0
2

�
; T > Tc: ð34Þ

Here μsp1 corresponds to the spinodal point of the first-
order phase transition which delineates the metastable
gaseous phase and the mechanically unstable phase at
T < Tc, μc corresponds to the critical point at T ¼ Tc, and
μRcrs and μIcrs are, respectively, the real and imaginary parts
of the chemical potential corresponding to the crossover
branch points at T > Tc.
Figure 2 depicts the k-dependence of bk in the TVM for

five different temperatures: two temperatures above the
critical one, T ¼ 1.3Tc and T ¼ 1.1Tc, the critical temper-
ature, T ¼ Tc, and two temperatures below the critical one,
T ¼ 0.7Tc and T ¼ 0.9Tc. The coefficients here are
divided by the expected power-law, exponential, and
amplitude factors from Eqs. (32)–(34). We also set
bϕðTÞ ¼ 1 in this calculation. The large k behavior of
the computed coefficients is consistent with the expected
asymptotics. For T < Tc the asymptotic behavior is
approached monotonically. The rate of approach depends
on the distance of an isotherm to the critical one. For
example, the reduced coefficients are within 10% of the
asymptotic limit at k ¼ 7 for T ¼ 0.9Tc and already at
k ¼ 2 for T ¼ 0.7Tc. For T ¼ Tc the large-k limit is
reached considerably slower. For T > Tc the coefficients
exhibit an oscillatory behavior. The period of oscillations is
large at temperatures slightly above the critical one and
decreases with increasing temperatures. This behavior
reflects the increase of the imaginary part μIbr=T of the
crossover singularity chemical potential with the temper-
ature at T > Tc, in accordance with Eq. (34).
The asymptotic behavior (32)–(34) has been obtained

here in the framework of the TVM. Nevertheless, due to a
universality of the critical behavior this result is expected to
be the same for any theory with a phase transition and a
critical point at finite density which belongs to the mean-
field universality class, with nonuniversal constants A−, Ac,
Aþ, and θ0. In particular, we checked numerically that this
holds for the vdWmodel [Eq. (7)], through an evaluation of
a large number of leading bk coefficients in that model.
Additionally, in Appendix B we analyze the behavior of bk
in a Nambu-Jona-Lasinio (NJL) model through numerical
calculations at an imaginary chemical potential. These

calculations confirm that the asymptotic behavior (32)–
(34) also holds in NJL.
It should be noted that a phase diagram of a statistical

system may contain richer structures than those given
solely by a critical point that are studied here. These could
be, for example, a tricritical point and a line of second-order
phase transitions, as expected for QCD in the chiral limit
[34,35], or inhomogeneous phases [36–38]. How the phase
structures of such systems are related to the bk asymptotics
is not obvious. The TVM presented here is not suitable in
such cases, as the model is only suited to determine features
associated with a critical endpoint of a first-order phase
transition. Therefore, an analysis of Fourier coefficients
within other manageable models possessing these involved
phase structures is an interesting future possibility. One
possible choice is the Gross-Neveu model in large Nf limit
[39], which has been used in the past to test proposals to

FIG. 2. The k-dependence of the cluster expansion coefficients
bk evaluated in the trivirial model using Eq. (22) for five different
temperatures: T ¼ 1.3Tc, T ¼ 1.1Tc, T ¼ Tc, T ¼ 0.9Tc, and
T ¼ 0.7Tc (from top to bottom). The coefficients are scaled by
the expected asymptotic power-law, exponential, and amplitude
factors [Eqs. (32)–(34)].
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analyze the phase structure of QCD [40], in particular using
imaginary chemical potentials [41].
A behavior of Fourier coefficients of net baryon density

similar to Eqs. (32)–(34) have recently been obtained in
Ref. [25] in the framework of Landau theory of phase
transitions applied to the chiral phase transition in the limit
of small quark masses, as well as using scaling relations.
One notable difference to the present work is a pre-
exponential factor of k−2 in the case of a chiral crossover
in the mean-field approximation, which is different from
the k−3=2 factor obtained here [see Eq. (34)]. The apparent
reason for this difference is that Ref. [25] considers the
chiral criticality at μB ¼ 0, where the perturbation in μB is
coupled to the temporal Ising variable t, but where a
coupling of μB to the magnetic field variable h is forbidden
by symmetry. For a critical point at finite baryon density the
situation is different: μB is coupled to both the t and h Ising
variables, and the variable h is expected to dominate the
scaling near the critical point [30]. This behavior is
reflected in the TVM, leading to the pre-exponential factor
k−3=2 instead of k−2.
Another important remark is related to the universality

class of the critical behavior associated with a critical point
of the phase transition. As mentioned above, in the TVM
this is the mean-field universality class. The expected
universality class for the QCD critical point is Zð2Þ (3D-
Ising) [35,42], which is characterized by somewhat differ-
ent critical exponents [15]. Therefore, for a universality
class different from mean-field one expects a similar
asymptotic behavior to the one given in Eqs. (32)–(34),
but with corrections to the power-law exponents.
Based on the considerations above, we expect the

following asymptotic behavior of bk in a general case:

bkðTÞ ≃ A
e−

kμR
br
T

kα
sin

�
k
μIbr
T

þ θ

�
: ð35Þ

Here μbr ¼ μRbr � iμIbr is a singularity (a branch point) of the
thermodynamic potential which determines the asymptotic
behavior of the cluster expansion coefficients. Evidently,
this has to be the singularity located the closest to the
imaginary μB axis, as contributions from all other singu-
larities will have a stronger exponential suppression,
rendering their contributions to bk subleading. This singu-
larity may not necessarily be connected to a critical point of
a phase transition at finite density studied here.
The exponent α depends on the nature of the singularity

(universality class, critical point, spinodal or crossover,
etc.). While the only singularities in the TVM are those
related to the phase transition, in a more general case the
form (35) can also accommodate singularities not related to
physical phase transitions (see Ref. [26] for a number of
examples).

III. EXTRACTING THERMODYNAMIC
SINGULARITIES FROM FOURIER

COEFFICIENTS

The TVM introduced above can be used to model a
hypothetical phase transition and a critical point at finite
baryon density. In such a case one can associate interacting
particles in the TVM with abstract baryonic degrees of
freedom. The net baryon density reads3

ρB ¼ nB − nB̄; ð36Þ

where

nBðB̄Þ
T3

¼ 1

2

X∞
k¼1

bkðTÞλ�1
B ; ð37Þ

which implies

ρBðT; μBÞ
T3

¼
X∞
k¼1

bkðTÞ sinh
�
kμB
T

�
: ð38Þ

The form (38) coincides with the relativistic cluster
expansion [Eq. (2)] meaning that bk correspond to the
Fourier coefficients of net baryon density at imaginary μB.
The large k behavior of Fourier coefficients associated with
a phase transition at finite baryon density is given by
Eqs. (32)–(34).
Leading Fourier coefficients can in principle be calcu-

lated using lattice QCD simulations at imaginary μB
through the Fourier transform. In fact, this has already
been done for the four leading coefficients in Ref. [19] on
Nτ ¼ 12 lattices. The question that we want to address is
the following: can one extract useful information about
QCD thermodynamic singularities from a number of
leading Fourier coefficients based on the known expected
asymptotic behavior? We argue that the answer to this
question is affirmative. Moreover, we show that some
useful information can be extracted from the already
available lattice data.
Based on the general asymptotics (35) of Fourier

coefficients one notices that by far the strongest effect
on the overall magnitude of Fourier coefficients is exerted
by the real part μRbr of the branch point closest to the real μB
axis. More specifically, one has

ln jbkj≲ lnA − α ln k −
μRbr
T

k; ð39Þ

where the strongest k-dependence is in the third term. It can
be reasonable to expect the appearance of strong exponen-
tial suppression of Fourier coefficients already in the

3Here we consider the simplest relativistic generalization of the
TVM, where baryon-antibaryon interaction terms are neglected.
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leading coefficients. If that is the case, μRbr can be extracted
by fitting the absolute magnitudes of a number of the
leading bk’s with an ansatz

ln jbkj ¼ lnA − α ln k −
μRbr
T

k: ð40Þ

As a proof of concept, we take the TVM for baryons
with model parameters fixed in such a way as to obtain
a critical point at Tc ¼ 120 MeV and μc ¼ 528 MeV
(a ¼ 328 MeV fm3, b ¼ 1 fm3, d ¼ 10, and m ¼
938 MeV=c2). We fit the four leading Fourier coefficients
in the TVM with the ansatz (40) at three temperatures:
T ¼ 100 MeV, T ≈ Tc ¼ 120 MeV, and T ¼ 150 MeV.
Parameters A and μRbr are fitted while α is fixed to its
expected value of 3=2.
The fit results are depicted in Fig. 3 by the blue lines for

the k-dependence of ln jbkj. The fitted function provides a
reasonable description of the higher-order bk’s that were
not used in the fitting procedure. This is especially the case
for T ¼ 100 MeV and T ¼ 120 MeV. The extracted values
of μRbr can be compared with exact values [Eq. (18)]: 5.83 vs

5.89 at T ¼ 100 MeV, 4.26 vs 4.40 at T ¼ 120 MeV, and
2.79 vs 2.98 at T ¼ 150 MeV. A fit at T ≈ Tc ¼ 120 MeV
with the power-law exponent α equal to 4=3 (the expected
value for the critical isotherm) instead of 3=2, yields
μRbr ¼ 4.34, i.e., the procedure is not very sensitive to
moderate variations in α. The extracted μRbr values repro-
duce the true ones to a fairly good precision (10% or better),
even at T > Tc where the exponential suppression of bk is
superimposed on an oscillatory behavior. The procedure
can be improved by including higher-order coefficients into
the fit. Omitting a number of leading coefficients from the
fit could be helpful as well, as the asymptotic form (39) is
less justified for these coefficients than for the higher-
order ones.
The exercise shows that even only four leading Fourier

coefficients might be sufficient to extract the real part μRbr of
the limiting thermodynamic singularity under certain cir-
cumstances. Unfortunately, the method yields no conclu-
sive answer with regards to the nature of the extracted
singularity, in particular to the possible presence of an
imaginary part. Extraction of μIbr requires an analysis of the
possible oscillatory behavior of bk ’s which might require
knowledge of a considerably larger number of coefficients.
Nevertheless, the extracted μRbr in all likelihood serves as a
lower bound on the value of the critical chemical potential
at a given temperature. Indeed, a presence of a singularity
which is closer to the imaginary axis would imply a weaker
exponential damping of Fourier coefficients.
We now repeat the fit procedure using the real lattice

QCD data for b1, b2, b3, and b4 [19] for the temperature
range 135 < T < 230 MeV. Results are depicted in Fig. 4.
In addition to α ¼ 3=2, here we also consider two addi-
tional cases: α ¼ 1 and α ¼ 2. This allows to asses the
sensitivity of the results to the choice of α, which can be
different depending on the nature of singularity. While α ≈
3=2 is expected for a (crossover) phase transition at finite
baryon density, one can also have α ¼ 1 in the case of a
Roberge-Weiss transition [43] or α ≈ 2 for a chiral cross-
over singularity for small quark masses [25]. These con-
siderations lead us to assume the interval 1 ≤ α ≤ 2 as a
reasonable bound on α.
The left panel of Fig. 4 depicts the fit results for three

different temperatures: T ¼ 135, 170, and 215 MeV. One
can see that the exponential suppression is stronger at lower
temperatures. At T ¼ 135 MeV fits are not sensitive to the
chosen value of α. At T ¼ 175 MeV the differences are
seen more clearly: while α ¼ 1 and α ¼ 3=2 fits still
describe the data reasonably well, α ¼ 2 does a noticeably
worse job. For T ¼ 215 MeV, the α ¼ 2 case appears to be
ruled out. The temperature dependence of the extracted
μRbr=T values is depicted in the right panel of Fig. 4. Fits at
T ≳ 200 MeV are characterized by small (α ¼ 1) or
vanishing (α ¼ 3=2, 2) values of μRbr=T, indicating a
possibility of a power-law suppression of Fourier coeffi-
cients instead of an exponential one. Such a scenario would

FIG. 3. The blue lines depict the results of the fits to the four
leading Fourier coefficients of the TVM with the ansatz (40) for
three different temperatures: T ¼ 100 MeV (lower panel), T ≃
Tc ¼ 120 MeV (middle panel), and T ≃ T ¼ 150 MeV (upper
panel). The blue points correspond to the four leading Fourier
coefficients that were used in the fitting procedure, while the
orange points depict the higher-order Fourier coefficients that
were not used in the fits. The full and open symbols corresponds
to positive and negative values of bk, respectively.
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correspond to a singularity at a purely imaginary value of
the chemical potential. This may be an indication of the
Roberge-Weiss transition at imaginary chemical potential
at T > TRW [44], where TRW ≃ 208 MeV according to
lattice QCD estimates [45].
For comparison, we also depict in Fig. 4 the predictions of

the cluster expansion model (CEM) of Ref. [20]. The CEM
describes the available lattice data on bk within errors, the
asymptotic behavior of the Fourier coefficients in this model
matches the general form given in Eq. (35) with α ¼ 1. This
model predicts μRbr=T ¼ ln jb̂1ðTÞ=b̂2ðTÞj with b̂1;2ðTÞ
being the lattice data for the two leading Fourier coefficients
scaled by the high-temperature Stefan-Boltzmann limiting
values. The CEMpredictions agree quitewell with fit results
performed for α ¼ 1, especially at larger temperatures, as
seen by comparing the open and full circles in Fig. 4.

IV. DISCUSSION AND CONCLUSIONS

We have determined properties of the cluster expansion
in fugacities that are associated with a presence of a phase
transition and a critical point at finite baryon density. This
has been achieved through the trivirial model (TVM)—a
model which does contain a phase transition of a liquid-gas
type and where one can evaluate the cluster expansion
coefficients explicitly [Eq. (22)].
The nontrivial behavior of bk associated with the phase

transition present in the TVM is encoded in the properties of
Hermite polynomials. The asymptotic behavior of bk
changes qualitatively as one traverses the critical temper-
ature: at T < Tc one observes a monotonic behavior

characterized by an exponential suppression of bk at large
k [Eq. (32)], which is superimposed on a power-law
damping. At T ¼ Tc the behavior is similar, with a modi-
fication to the power-law exponent [Eq. (33)]. The magni-
tude of the exponential suppression at T ¼ Tc is determined
by the value of the critical chemical potential μc which
corresponds to the critical point, bk ∼ e−kμc=Tc . At T > Tc
the thermodynamic branch points move into the complex μB
plane, which leads to an emergence of an oscillatory
behavior in addition to the exponential and power-law
decays in magnitude [Eq. (34)]. An appearance of negative
values of bk above a certain temperature may therefore
signal reaching the crossover temperature region, T > Tc.
In all cases, the asymptotic behavior of bk is determined

in the TVM by the location of the phase transition branch
points, and is given in most general case by Eq. (35). Given
the universality of the critical behavior, our results obtained
in the framework of the TVM are expected to be qualita-
tively generic for any critical endpoint of a phase transition.
In Appendix B we supplement these results with similar
findings obtained within a Nambu-Jona-Lasinio description
in a mean-field approximation.
In QCD, the cluster expansion properties are particularly

interesting in the context imaginary chemical potentials.
There, the cluster expansion coefficients become Fourier
expansion coefficients of net baryon density. First-principle
lattice QCD simulations are free of sign problem at
imaginary μB, and a calculation of a number of the leading
Fourier coefficients appears to be feasible. In fact, the four
leading coefficients have already been computed on the
lattice for temperatures 135 < T < 230 MeV, although the

FIG. 4. Results of the fits to the lattice data on the four leading Fourier coefficients with the ansatz (40). Left panel depicts the lattice
data for ln jbkj (orange symbols), as well as fit results using α ¼ 1 (black lines), α ¼ 3=2 (blue lines), and α ¼ 2 (red lines), for three
different temperatures (from bottom to top): T ¼ 135, 170, and 215 MeV. The full and open symbols corresponds to positive and
negative values of bk, respectively. The right panel shows the temperature dependence of the extracted values of μRbrðTÞ for the three
values of α. Predictions for μRbr from the cluster expansion model [20] are shown by the open black symbols for comparison. For
presentation purposes, the error bars are shown only for α ¼ 1, for all other cases they are of similar magnitude.
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error bars at the smaller temperatures of that range are still
quite large.
According to Eq. (35), the magnitude of bk drops

exponentially with k, with the slope proportional to the
real part μRbr=T of the chemical potential of the phase
transition branch point, be it a spinodal point at T < Tc,
a critical point at T ¼ Tc, or a crossover branch point at
T > Tc. An analysis of this exponential suppression
appears to be a fairly reliable way to extract the value of
μRbr=T, even just four leading Fourier coefficients might be
sufficient, as we show in Sec. III. Our analysis of the
available lattice data suggests μRbr=T ≤ 2–3 at T >
135 MeV, with decreasing values at higher temperatures
(see Fig. 4). These values can serve as a reliable lower bound
on the critical point location at T > 135 MeV. Furthermore,
given that the available lattice data contains negative Fourier
coefficients bk < 0 at all temperatures where the data are
available (135 < T < 230 MeV), this disfavors the exist-
ence of the critical point at these temperatures. At T ≳
200 MeV the μRbr=T values are small, in some cases even
vanishing. This might serve as an indication of the Roberge-
Weiss transition at purely imaginary μB.
In summary, we have presented an analysis of a

hypothetical phase transition and a critical point at finite
baryon density using the coefficients of the cluster expan-
sion in fugacities. This provides a complementary approach
in the hunt for the QCD critical point, in addition to the
commonly used methods based on conserved charges
susceptibilities, which are either calculated at μB ¼ 0 in
lattice QCD or measured at nonzero μB in heavy-ion
collisions. The results obtained are useful for future lattice
QCD simulations at imaginary μB, which will hopefully
yield more accurate values of Fourier coefficients at
temperatures where the QCD critical point can be expected.
Analysis of the structure of these Fourier coefficients will
be able to yield new bounds on the possible location (or
even existence) of the QCD critical point.
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APPENDIX A: TRIVIRIAL MODEL AS AN
EQUATION OF STATE OF A REAL GAS

The TVM introduced in this paper (Sec. II) can be
viewed as a variant of a real gas equation of state,

constructed for a system of particles with short-range
repulsive (excluded volume) and intermediate range attrac-
tive (mean field) interactions. A generic framework of real
gas models, including the effects of quantum statistics, was
developed in Ref. [46] and applied to model the nuclear
matter. The free energy of a real gas in this framework is the
following:

FðT; V; NÞ ¼ FidðT; VfðηÞ; NÞ þ NuðnÞ: ðA1Þ
Here fðηÞ is an available volume fraction. It models the
short-range repulsive interactions in a form of a generalized
excluded volume procedure. η≡ ðbNÞ=4V and b is the
excluded volume parameter. uðnÞ with n≡ N=V is an
attractive mean-field. Comparing Eq. (A1) with the free
energy expression (10) in the TVM allows to obtain the
explicit TVM expressions for fðηÞ and uðnÞ:

ftvmðηÞ ¼ exp ð−4η − 8η2Þ; ðA2Þ

utvmðnÞ ¼ −an: ðA3Þ

The real gas formulation of the TVM brings new possible
applications. For example, the TVM can be used to model
nucleon-nucleon interactions and the nuclear liquid-gas
transition. Following the generic procedure described in
Ref. [46] one can fix the parameters a and b of nucleons to
reproduce the saturation density n0 ¼ 0.16 fm−3 and the
binding energy per nucleon E=A ¼ −16 MeV, yielding

atvm ≃ 349 MeV fm3; btvm ≃ 4.28 fm3 ðA4Þ

for the TVM. The model predicts a critical point of nuclear
matter at

T tvm
c ≃ 18.3 MeV; ntvmc ≃ 0.07 fm−3;

μtvmc ≃ 910 MeV; ðA5Þ

which is in a reasonable agreement with empirical estimates
[47]. The TVM can also be used to incorporate the baryon-
baryon interactions and the associated nuclear liquid-gas
criticality into a hadron resonance gas model, in a similar
way as it was done in Ref. [48] for the vdW equation.

APPENDIX B: FOURIER COEFFICIENTS IN
AN NJL MODEL

This Appendix presents the behavior of Fourier coef-
ficients in an NJL model [49,50]. The NJL model is a low-
energy effective theory of QCD [51], which has been used
in the past to study the phase structure of QCD, in particular
that associated with the critical behavior [52,53]. The
model exhibits a chiral critical point and a first-order phase
transition at finite net quark number densities. Therefore, it
can be interesting to consider the behavior the Fourier
coefficients in NJL, in particular to verify the asymptotic
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behavior (32)–(34) of bk associated with the critical point,
which was obtained in the framework of the TVM and
which we expect to be model-independent.
We take a mean-field variant of the NJL model for 2

flavors and 3 colors and neglect the vector repulsion. The
quark chemical potential μq plays the role of the chemical
potential μ. The grand potential reads [51]

ΩðT; μ;MÞ ¼ −
12

2π2

Z
Λ

0

k2dk

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p

þ T ln

�
1þ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
− μ

T

��

þ T ln

�
1þ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
þ μ

T

���

þ ðM −m0Þ2
4GS

: ðB1Þ

The model parameters are the momentum cutoff Λ, the
bare quark mass m0, and the scalar coupling GS. The
constituent quark massM at given T and μ is determined by
minimizing the grand potential. This is defined by the gap
equation:

∂Ω
∂M ¼ 0: ðB2Þ

Two solutions of the gap equation may merge at a branch
point. The branch points are defined from

∂2Ω
∂M2

¼ 0; ðB3Þ

and have the same physical meaning as the thermodynamic
branch points introduced in Sec. II within the TVM. The
branch point coordinates at a given temperature can be
determined in the NJL model by solving numerically
Eqs. (B2) and (B3).
Two branch points merge at the critical point. This

corresponds to

∂3Ω
∂M3

¼ 0: ðB4Þ

Equations (B2)–(B4) determine the location of the critical
point in the NJL model. Here we take the parameter set 3
from Ref. [51], namely Λ ¼ 569.3 MeV, GS ¼ 2.81=Λ2,
and m0 ¼ 5.5 MeV. The critical point location is

Tc ¼ 120 MeV; μc ¼ 348 MeV: ðB5Þ

The behavior of Fourier coefficients bk is studied by
computing the Fourier integrals of net quark number
density at imaginary μ through a numerical integration:

bkðTÞ ¼
2

π

Z
π

0

Im

�
ρðT; iθTÞ

T3

�
sinðkθÞdθ: ðB6Þ

The evaluation of the net quark number density ρðT; μÞ at
imaginary μ is done in two steps. First, the effective massM
at a given μ is computed by minimizing the grand potential
Ω. This is achieved by solving the gap equation (B2). Then,
the density is computed as ρðT; μÞ ¼ −ð∂Ω=∂μÞT .
Calculation results for bk are depicted in Fig. 5, for three

different temperatures: a supercritical temperature of T ¼
360 MeV, the critical temperature, T ¼ Tc ¼ 120 MeV,
and a subcritical temperature of T ¼ 100 MeV. The coef-
ficients are scaled by the expected asymptotic power-law
and exponential factors from Eqs. (32)–(34), for which we
determine μRcrs, μc, and μsp1 numerically, by solving
Eqs. (B2) and (B3): μRcrs ≃ 47.3 MeV for T ¼ 360 MeV,
μc ≃ 348 MeV for T ¼ Tc ¼ 120 MeV, and μsp1 ≃
368 MeV for T ¼ 100 MeV. The scaled coefficients
quickly flatten for T < Tc and T ¼ Tc (the two lower
panels in Fig. 5) whereas at T > Tc they show an oscillatory
behavior (dashed line in Fig. 5), as predicted by the TVM
[Eq. (34)]. The numerical NJL model results thus confirm
the analytic TVM predictions for the asymptotic behavior
of bk.

FIG. 5. Behavior of the Fourier coefficients bk in an NJL
model for three different temperatures (from top to bottom): a
supercritical temperature of T ¼ 360 MeV, the critical temper-
ature, T ¼ Tc ¼ 120 MeV, and a subcritical temperature of
T ¼ 100 MeV. The coefficients are scaled by the expected
power-law and exponential factors. The dashed line in the top
panel shows the fit of the scaled bk coefficients with an oscillatory
function from Eq. (34) with θcrs ≡ μIcrs=T ≃ 1.03.
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