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We present estimates of the hyperon elastic form factors for the baryon octet and the Ω− baryon for large
four-momentum transfer squared q2 in the timelike region (q2 > 0). Experimentally, those form factors can
be extracted from the eþe− → BB̄ and pp̄ → BB̄ processes, where B stands for a general baryon. Our
results are based on calculations of the elastic electromagnetic form factors in the spacelike region
(Q2 ¼ −q2 > 0) within a covariant quark model. To connect the results in the spacelike region to those in
the timelike region, we use asymptotic relations between the two regions which are constraints derived
from analyticity and unitarity. We calculate the effective form factors jGðq2Þj and compare them with the
integrated cross section data σBornðq2Þ from BABAR, BES III, and CLEO. The available data are at the
moment restricted to Λ, Σ0, Σ−, Ξ−, Ξ0, and Ω− as well as to eþe− → ΛΣ̄0 and eþe− → Σ0Λ̄ reactions. Our
results provide useful reference for future experiments and seem to indicate that the present data are still in
the nonperturbative QCD region, while the onset for the asymptotic constraints from analyticity and
unitarity happens much before the region of the perturbative QCD falloff of the form factors.
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I. INTRODUCTION

The understanding of internal structure of hadrons has
been a great challenge after the discovery that the proton is
not a pointlike particle. In the last decades, great progress
has been made in the study of the nucleon electromagnetic
structure, particularly through the scattering of electrons
with nucleon targets (γ�N → N transition),which probes the
spacelike momentum transfer kinematic region (Q2 ≥ 0)
[1–4]. For hyperons (B), however, it is difficult to get
information on the internal structure based on the γ�B →
B process due to their very short lifetimes. The available
information is restricted at the moment only to the magnetic
moments of a few hyperons (determined at Q2 ¼ 0).
The other possibility of disclosing the electromagnetic

structure of baryons is eþe− scattering. It enables us to
access the timelike region (q2 ¼ −Q2 > 0) and was pro-
posed a long time ago by Cabibbo and Gatto [5]; however,
it became possible only recently. The eþe− → BB̄ (and the
inverse) reactions open a new opportunity to study the
role of valence quark effects, clusters of two-quark pairs
(diquarks), and different quark compositions [6–12].

The timelike region form factors appear as a viable tool
to determine the hyperon structure, near the threshold as
well as in the large-q2 region, where in the latter perturba-
tive effects are expected to dominate [4,5,11–16]. A
significant amount of data are already available for the
proton (eþe− → pp̄) [4,13]. In the present study, we focus
on the reactions involving hyperons in the final states. Data
associated with hyperon electromagnetic form factors in the
timelike region also became available in facilities such as
BABAR [17], BES-III [18,19], and CLEO [11,12]. The
available data cover the high-q2 region where we can
expect to probe perturbative QCD (PQCD) physics.
From the theoretical side, there have been only a few

different attempts in interpreting the hyperon timelike
electromagnetic form factor data [20–27]. Although results
from eþe− and pp̄ annihilation experiments are already
available or being planned in the near future, e.g., by the
PANDA experiment at FAIR-GSI [28], theoretical calcu-
lations of hyperon electromagnetic timelike form factors
are scarce. The results presented here intend to fill that gap.
In the large-q2 region, one can expect the behavior

predicted by PQCD [29–33]. However, some of the aspects
from PQCD, including the q2 dependence of the form
factors, can be seen only at very high q2. In the region
covered by the present experiments, finite corrections for
the large-q2 behavior may be still relevant.
One of the goals of the present work is to provide

calculations to be compared with the recent experimental
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determinations of the eþe− → BB̄ cross sections from
CLEO, BABAR, and BES-III and to use them to guide
new experiments also for larger q2. The results presented
here can be used to study the onset of the region for the
validity of asymptotic behavior.
Our estimates are based on the results of a relativistic

quark model for the spacelike region [34,35]. In this work,
we focus on the general properties of the integrated cross
section σBornðq2Þ and the effective form factor jGðq2Þj for
large q2. Based on these, we test model-independent
asymptotic relations between the form factors in the
spacelike and the timelike regions [4]. We use those
relations to calculate the magnetic and electric form factors
in the timelike region and give estimates for the effective
form factor Gðq2Þ of the Λ, Σþ, Σ0, Σ−, Ξ0, Ξ−, and Ω−

baryons. An interesting aspect that emerges from our
results and the comparison with the data is that the region
of q2 where these model-independent relations may start to
hold, differ from the (even larger) q2 region of PQCD. This
result is discussed and interpreted in terms of the physical
scales included in our model.
In addition to the effective form factor Gðq2Þ, we

calculate also the individual form factors jGMj and jGEj
and determine their relative weights for the effective form
factor. Most existing studies are based on the approxima-
tion GM ≡GE equivalent to Gðq2Þ ¼ GMðq2Þ. However, it
is important to notice that although by definition GM ¼ GE

at the threshold of the timelike region (q2 ¼ 4M2
B, where

MB is the mass of the baryon), there is no proof that this
relation holds for higher values of q2. Therefore, in the
present work we compare the result of the approximation
G ¼ GM with the exact result. The difference between the
two results is a measure of the impact of GE in the
magnitude of the effective form factor G.
It is worth mentioning that, at present, calculations of the

timelike form factors based on a formulation in Minkowski
space (q2 ¼ q20 − q2) are very important, since the timelike
region, in practice, is still out of reach of the methods
as lattice QCD simulations. Also, most of the Dyson-
Schwinger-equation-based approaches formulated in the
Euclidean space are still restricted to mass conditions
compatible with singularity-free kinematic regions. Their
extension to regions where singularities can be crossed
requires elaborate contour deformation techniques [36].
This article is organized as follows: In the next section,

we describe the general formalism associated with the
eþe− → BB̄ processes and their relation with the form
factorsGðq2Þ. In Sec. III, we review in detail the relativistic
quark model used here, which was previously tested in
calculations of several baryon elastic form factors in the
spacelike region. The model-independent relations used for
the calculations in the large-q2 region are discussed in
Sec. IV. The numerical results for the timelike form factors
are presented and compared with the experimental data in

Sec. V. The outlook and conclusions are given in Sec. VI.
Additional details are included in the Appendixes.

II. FORMALISM

We start our discussion with the formalism associated
with spin-1=2 baryons with positive parity (1=2þ). In the
following, we represent the mass of the baryon by MB and

use the notation τ ¼ q2

4M2
B
.

Within the one-photon-exchange approximation (equiv-
alent to the impulse approximation in the spacelike region),
one can interpret the eþe− → BB̄ reaction as the two-step
process eþe− → γ� → BB̄, and the integrated cross section
in the eþe− center-of-mass frame becomes [12,13,37]

σBornðq2Þ ¼
4πα2βC
3q2

�
1þ 1

2τ

�
jGðq2Þj2; ð2:1Þ

where Gðq2Þ is an effective form factor for the baryon B
(spin-1=2 and positive parity), α ≃ 1=137 is the fine-
structure constant, β is a kinematic factor defined by

β ¼
ffiffiffiffiffiffiffiffiffiffi
1 − 1

τ

q
, and C is a factor which depends on the

charge of the baryon. The factor C is equal to 1 for neutral
baryons. For charged baryons C, it takes into account
the Coulomb effects near the threshold [3,12,13,38] given
by the Sommerfeld-Gamow factor C ¼ y

1−expð−yÞ, with

y ¼ πα
β

2MBffiffiffiffi
q2

p . In the region of interest of the present study,

at large q2 (τ ≫ 1), one has C ≃ 1.
The magnitude of the effective form factor G is defined

by the combination of the electric and magnetic form
factors [12,13,37] as

jGðq2Þj2 ¼
�
1þ 1

2τ

�
−1
�
jGMðq2Þj2 þ

1

2τ
jGEðq2Þj2

�
;

¼ 2τjGMðq2Þj2 þ jGEðq2Þj2
2τ þ 1

: ð2:2Þ

Equations (2.1) and (2.2) are very useful, since they
mean that one can describe the integrated cross section
σBorn from the knowledge of a unique effective function
Gðq2Þ defined by the magnetic and the electric form
factors. Note that the form factors GM and GE are complex
functions of q2 in the timelike region. The relations (2.1)
and (2.2) are particularly practical to calculate σBornðq2Þ,
because they enable us to estimate the integrated cross
section without taking into account the relative phases
between the form factors GM and GE.
Assuming charge invariance of the electromagnetic

interaction, namely, that the spacelike and timelike
photon-nucleon vertices γpp and γpp̄ are the same, we
can estimate the timelike form factors in the timelike region
from the form factors in the spacelike (SL) region
GSL

M ð−q2Þ and GSL
E ð−q2Þ by applying the large-jq2j

model-independent relations [4],
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GMðq2Þ ≃GSL
M ð−q2Þ; ð2:3Þ

GEðq2Þ ≃GSL
E ð−q2Þ; ð2:4Þ

and therefore, restricting our results to the very-large-q2

region, where the form factors are real functions to fulfill the
Schwarz reflection principle. These asymptotic relations are
a consequence of general physical and mathematical prin-
ciples: unitarity as well as the Phragmén-Lindelöf theorem,
which is valid for analytic functions (proved in Ref. [4]).
They are exact in the mathematical q2 → ∞ limit, and they
imply that the imaginary part of the form factors in the
timelike region goes to zero in that limit.
In the present work, we use a quark model developed in

the spacelike region [34,35] to estimate the magnetic and
electric form factors in the timelike region based on
Eqs. (2.3) and (2.4). The discussion on how these relations
can be corrected for finite q2 is made in Sec. IV. Deviations
from those estimates may indicate that the imaginary parts
of the form factors in the considered timelike region cannot
be neglected.
We will investigate, by comparing with the data, the

degree of validity of those relations for finite q2. Increasing
the value of q2, we can tentatively look for the onset of the
region where they may start to be a fairly good approxi-
mation. It turns out that this happens much below the region
where the PQCD falloff of the form factors starts to emerge,
as our results will show. We also provide estimates for
q2 > 20 GeV2 for comparison with future experiments.
The formalism used in the discussion of 1=2þ baryons

can also be extended to 3=2þ baryons based on the effective
form factor (2.2) reinterpreting GM as a combination of the
magnetic dipole and magnetic octupole form factors,
and GE as a combination of the electric charge and electric
quadrupole form factors [20]. The expressions associated
with GM and GE for 3=2þ baryons are presented in
Appendix A. Using those expressions, we calculate our
results for the Ω− baryon.
Before presenting the results of the extension of our

model to the timelike region, we present a review of the
covariant spectator quark model in the spacelike regime
that sustains the application here.

III. COVARIANT SPECTATOR QUARK MODEL

We restrict our study to baryons with one or more strange
quarks (hyperons). In our estimates, we use the covariant
spectator quark model. The covariant spectator quark
model has been applied to the studies of the electromag-
netic structure of several baryons, including nucleon, octet
baryons, and decuplet baryons (including Ω−) in the
spacelike region [34,35,39–53].
The model is based on three basic ingredients:
(1) The baryon wave function ΨB rearranged as an

active quark and a spectator quark pair is represented

in terms of the spin-flavor structure of the individual
quarks with SUSð2Þ × SUFð3Þ symmetry [35,39].

(2) By applying the impulse approximation, after in-
tegrating over the quark-pair degrees of freedom, the
three-quark system transition matrix element can be
reduced to that of a quark-diquark system para-
metrized by a radial wave function ψB [35,39,40].

(3) The electromagnetic structure of the quark is para-
metrized by the quark form factors, j1 (Dirac) and j2
(Pauli) according to the flavor content, which encode
the substructure associated with the gluons and
quark-antiquark effects and are parametrized using
the vector meson dominance (VMD) mechanism
[35,46,49].

Concerning the first two points above, the literature
emphasizes the role of diquarks in the baryons [6–11]. Our
model, although based on a quark-diquark configuration,
cannot be interpreted as a quark-diquark model in the usual
sense, i.e., a diquark as a pole of the quark-quark amplitude
[35,39,40]. In our model, the internal quark-quark motion is
integrated out at the level of impulse approximation, but its
spin structure signature survives [39]. Therefore, the electro-
magnetic matrix element involves an effective quark-diquark
vertex where the diquark is not pointlike [40].
Another difference between our model and the usual

quark-diquark models is that we explicitly symmetrize in all
quark pairs applying the SUð3Þ flavor symmetry [34,35].
Since it is well known that the exact SUð3Þ flavor symmetry
models are expected to fail due to the mass difference
between the light quarks (u and d) and the strange quarks,
we break SUð3Þ flavor symmetry in two levels.We break the
symmetry at the level of the radial wave functions by using
different forms for those functions for systems with a
different number of strange quarks (Ns ¼ 0, 1, 2 for the
baryon octet and Ns ¼ 0, 1, 2, 3 for the baryon decuplet)
[34,35]. We break the SUð3Þ flavor symmetry also at the
level of the quark current by considering different Q2

despondence for the different quark sectors (isoscalar,
isovector, and strange quark components).

A. Octet baryon wave functions

The octet baryon wave functions associated with a
quark-diquark system in the S-wave configuration can be
expressed in the form [34,52]

ΨBðP; kÞ ¼
1ffiffiffi
2

p ½ϕ0
SjMAi þ ϕ1

SjMSi�ψBðP; kÞ; ð3:1Þ

where P (k) are the baryon (diquark) momentum, ϕ0;1
S are

the spin wave functions associated with the components
S ¼ 0 (scalar) and S ¼ 1 (vector) of the diquark states, and
jMAi, and jMSi are the mixed antisymmetric and mixed
symmetric flavor states of the octet. The explicit expres-
sions for jMAi and jMSi and for ϕ0;1

S are included in
Appendix B. For more details, see Refs. [34,39,52].

HYPERON ELECTROMAGNETIC TIMELIKE ELASTIC FORM … PHYS. REV. D 101, 014014 (2020)

014014-3



Since the baryons are on shell and the intermediate
diquark in the covariant spectator model is taken also to be
on shell, the radial wave functions ψB can be written in a
simple form using the dimensionless variable χB:

χB ¼ ðMB −mDÞ2 − ðP − kÞ2
MBmD

; ð3:2Þ

where mD is the diquark mass [39]. One can now write the
radial wave functions in the Hulthen form according to
[34,39]

ψBðP; kÞ ¼
NB

mDðβ1 þ χBÞðβi þ χBÞ
; ð3:3Þ

whereNB is a normalization constant, and βi (i ¼ 1, 2, 3, 4)
are momentum-range parameters (in units MBmD). The
form of our baryon wave functions (3.3) was judiciously
chosen to produce at large Q2 the same behavior of the
form factors as PQCD [39,50] as discussed in Sec. III D.
In Eq. (3.3), β1 is the parameter which establishes the

long-range scale (β1 < β2, β3, β4) common to all the octet
baryons, and βi (i ¼ 2, 3, 4) are parameters associated
with the short-range scale, varying with the different
quark flavor contents. The short-range scale is determined
by β2 (N), β3 (Λ and Σ), and β4 (Ξ).
The magnitudes of βi establish the shape of the radial

wave function and determine the falloff of the baryon
form factors. Heavier baryons have slower falloffs [34].
According to the uncertainty principle, the values of the
parameters βi (i ¼ 2, 3, 4) can also be interpreted in terms
of the compactification in space of the baryons. The relative
ordering β2 > β3 > β4 specifies that Λ and Σ0;� are more
compact than the nucleon, and that Ξ0;− are more compact
than Λ and Σ0;�.

B. Electromagnetic current

The contribution of the valence quarks for the transi-
tion current in relativistic impulse approximation is
expressed in terms of the quark-diquark wave functions
ΨB by [34,39]

JμB ¼ 3
X
Γ

Z
k
ΨBðPþ; kÞjμqΨBðP−; kÞ; ð3:4Þ

where jμq is the quark current operator, Pþ, P−, and k are the
final, initial, and diquark momenta, respectively, and Γ
labels the diquark scalar and vector diquark polarizations.
The factor 3 takes into account the contributions associated
with the different diquark pairs, and the integral symbol
represents the covariant integration in the on-shell diquark
momentum.

In Eq. (3.4), the quark current has a generic structure

jμq ¼ j1ðQ2Þγμ þ j2ðQ2Þ iσ
μν

2MN
; ð3:5Þ

whereMN is the nucleon mass, and ji (i ¼ 1, 2) are SUð3Þ
flavor operators.
The components of the quark current ji (i ¼ 1, 2) can be

decomposed as the sum of operators acting on the third
quark in the SUð3Þ flavor space

jiðQ2Þ¼ 1

6
fiþðQ2Þλ0þ

1

2
fi−ðQ2Þλ3þ

1

6
fi0ðQ2Þλs; ð3:6Þ

where

λ0 ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

λs ≡
0
B@

0 0 0

0 0 0

0 0 −2

1
CA ð3:7Þ

are the flavor operators. These operators act on the quark
wave function in flavor space q ¼ ð uds ÞT . The functions
fiþ, fi− (i ¼ 1, 2) represent the quark isoscalar and
isovector form factors, respectively, based on the combi-
nations of the quarks u and d. The functions fi0 (i ¼ 1, 2)
represent the structure associated with the strange quark.
The explicit form for the quark form factors is included in
Appendix B.
For the discussion of the results of this paper, it is

relevant that the parametrization of these form factors is
based on the VMD picture. The dressed photon-quark
coupling is tied to the vector meson spectra. Therefore, the
isoscalar and the isovector form factors include contribu-
tions from the ρ and ω mass poles in the light quark sector.
As for the strange quark form factors, we include a
dependence on the ϕ mass pole. In both cases, we include
also a contribution of an effective heavy meson with mass
2MN in order to take into account shorter-range effects in
the quark current. The parametrization of the current for the
three quark sectors includes five parameters (coefficients of
the vector meson terms) in addition to the three quark
anomalous magnetic moments.

C. Model for the nucleon and decuplet baryons

The model was first applied to the study of the
electromagnetic structure of the nucleon. The free param-
eters of the model (in the quark current and in the radial
wave functions) were calibrated by the electromagnetic
form factor data for the proton and the neutron [39]. The
nucleon data are well described without an explicit inclu-
sion of pion cloud contributions.
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Taking advantage of the VMD form of the quark current
and of the covariant form of the radial wave function, the
model was extended to the lattice QCD regime [35,46,49].
This extension was performed by replacing the vector
meson and nucleon masses in the VMD parametrization of
the current and in the baryon wave functions by the nucleon
and vector meson masses from the lattice. This extension is
valid for the region of the large pion masses, where there is
a suppression of the meson cloud effects.
The extension has proved to be very successful in the

description of the lattice QCD data for the nucleon and
γ�N → Δð1232Þ transition for pion masses above 400MeV
[46,49]. In the case of the γ�N → Δð1232Þ transition, the
lattice data enabled us to fix the valence quark contribution,
and after the extrapolation to the physical pion mass limit,
indirectly infer from the physical data the meson cloud
effects [46,54]. The meson cloud effects were then seen to
be significant in the case of the Δð1232Þ due to the vicinity
of its mass to the pion-nucleon threshold [45–47].
The formalism was later applied to all baryons of the

decuplet using an SUFð3Þ extension of the model for the
Δð1232Þ [45,46,51] constrained by the scarce available
lattice data for the decuplet baryon electromagnetic form
factors and the experimental magnetic moment of the Ω−

[35]. The strange quark component of the current and the
decuplet radial wave functions were then determined by the
fit to the data (lattice QCD and experimental Ω− magnetic
moment). No meson cloud contributions were considered
in this description of the baryon decuplet since those effects
are suppressed in lattice calculations. Also, the only
physical information on the meson cloud comes from
the Δð1232Þ calibrated in the previous works [46], and
for the Ω−. In this last case, meson cloud effects are
expected to be very small, since pion excitations are
suppressed due to the content of the valence quark core
(only strange quarks) implying reduced kaon excitations
given the large mass of the kaon [35,48].
The model for the Ω− was later recalibrated with the first

lattice QCD calculation of the Ω− form factors at the
physical mass point, which we used to determine the
electric quadrupole and magnetic octupole moments [48].

D. Model for the octet baryons

Using the SUð3Þ quark current determined in the studies
of the nucleon and decuplet baryon systems, the covariant
spectator quark model was also extended to the octet
baryon systems. However, different from the decuplet case,
where a fair description of the data can be obtained based
exclusively on the valence quark degrees of freedom, in the
case of the octet, there is evidence that the pion cloud
effects are significant [52]. Therefore, in the model for the
baryon octet, in addition to the valence quarks, we consider
also explicit pion cloud contributions based on the SUð3Þ
pion-baryon interaction [34,52].

The valence quark contributions regulated by the radial
wave functions (3.3) were fixed by lattice QCD data. The
pion cloud contributions were calibrated by the physical
data (nucleon electromagnetic form factors and octet
magnetic moments). Compared to the previous studies of
the nucleon [39], we readjusted the values of the momen-
tum-range parameters β1 and β2 of the radial wave
functions (3.3) and the quark anomalous moments κu
and κd in order to take into account the effects of the pion
cloud. More details can be found in Appendixes B 3
and B 4.
We discuss now the contributions from the valence

quarks to the form factors. From the structure for the
quark current and radial wave functions, we obtain the
following expressions for the valence quark contributions
to the octet baryon form factors:

F1BðQ2Þ ¼ BðQ2Þ

×

�
3

2
jA1 þ 1

2

3 − τ

1þ τ
jS1 − 2

τ

1þ τ

MB

MN
jS2

�
; ð3:8Þ

F2BðQ2Þ¼BðQ2Þ

×

��
3

2
jA2 −

1

2

1−3τ

1þ τ
jS2

�
MB

MN
−2

1

1þ τ
jS1

�
; ð3:9Þ

with τ ¼ Q2

4M2
B
, and

BðQ2Þ ¼
Z
k
ψBðPþ; kÞψBðP−; kÞ; ð3:10Þ

the overlap integral between the initial and final scalar
wave functions. The function BðQ2Þ is independent of the
diquark mass [39].
The coefficients jA;Si (i ¼ 1, 2) are combinations of the

quark form factors dependent on the baryon quark content.
The explicit expressions are included in Appendix B. One
concludes that the results are an interplay of both the
structure of the quark form factors and of the radial wave
functions.
The results for the electric and magnetic form factors are

then determined by

GEB ¼ F1B − τF2B; GMB ¼ F1B þ F2B: ð3:11Þ

The asymptotic behavior of the form factors GE and GM
is determined by the asymptotic results for F1B and F2B
from Eqs. (3.8) and (3.9). The terms between brackets
depend only on the quark form factors and for largeQ2, and
contribute to F1B and Q2F2B with constants. As a conse-
quence, the results for GE and GM are determined at very
large Q2 by the function BðQ2Þ, which in turn exclusively
depends on the radial wave functions and their overlap.
In Ref. [50], it was shown that if we use the radial wave
functions (3.3), one has B ∝ 1=Q4 plus logarithmic
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corrections. We can conclude then that the combination of
the quark current with the radial structure induces falloffs
for the form factors consistent with the power law of the
PQCD result: GE ∝ 1=Q4 and GM ∝ 1=Q4, in addition to
logarithmic corrections [30,31,33,50].
The deviations of our results from the simple power law

1=Q4 are originated by contaminations from logarithmic
corrections or from the difference of the quark form factors
from their asymptotic result (jA;S1 , Q2jA;S2 → constant). The
latter is regulated by large momentum scales associated
with the VMD parametrization. But the different momen-
tum falloff tails of the baryon form factors also play a role
and relate to the difference in the flavor content of the
constituent valence quarks described by the wave functions,
as well as the VMD structure of the quark form factors.
As mentioned above, an accurate description of the

electromagnetic structure of the octet baryons is achieved
when we include an explicit parametrization of the pion
cloud contributions [34,44]. The consequence of the
introduction of the pion cloud effects is that the transition
form factors (3.8) and (3.9) have additional contributions,
which can be significant below Q2 < 2 GeV2, and that
the two contributions have to be normalized by a global
factor ZB < 1 (

ffiffiffiffiffiffi
ZB

p
is the factor associated with each wave

function).
In the large-Q2 region, the pion cloud contributions are

suppressed, and the form factors are then reduced to

GEB → ZBGEB; GMB → ZBGMB; ð3:12Þ

where GEB and GMB on the rhs represent the valence quark
estimate. From Eq. (3.12), we conclude that the pion cloud
dressing affects only the normalization of the form factors
at large Q2. The normalization factor ZB depends only on a
parameter associated with the pion cloud parametrization:
the parameter which determines the pion cloud contribution
to the proton charge (ZN). In Appendix B, we show that all
normalization factors can be determined by the normali-
zation of the nucleon wave functions ZN . The values of ZB
(between 0.9 and 1) are also presented in Appendix B.
Our calculations for the baryon octet presented in the

next sections for the Q2 > 5 GeV2 region depend essen-
tially on seven parameters: four momentum-range para-
meters (βi), two anomalous magnetic moments (κu and κd),
and one pion cloud parameter associated with the normali-
zation of the octet baryon wave functions. The paramet-
rization for the quark current was determined previously in
the studies of the nucleon and baryon decuplet systems.

IV. MODEL-INDEPENDENT RELATIONS
IN THE LARGE-q2 REGIME

In the present work, we test the results of extrapolating the
parametrizations in the spacelike region (q2 ¼ −Q2 < 0) to
the timelike region (q2 > 0). The calculation in the timelike

region is based also on themodel-independent relations (2.3)
and (2.4) results for large Q2.
Concerning the relations (2.3) and (2.4), they map the

region of q2: � −∞; 0� into the region ½0;þ∞½. Note,
however, that q2 ¼ 0 is not the center point of the reflection
symmetry that relates timelike and spacelike regions
because of the unphysical gap region �0; 4M2

B½ between
them. The reflection symmetry center point between the
two regions lies, in fact, inside this interval and can be
tentatively taken as q2 ¼ 2M2

B instead of q2 ¼ 0. This
consideration leads us to correct the relations (2.3) and
(2.4) by introducing finite corrections to q2,

GMðq2Þ ≃ GSL
M ð2M2

B − q2Þ; ð4:1Þ

GEðq2Þ ≃GSL
E ð2M2

B − q2Þ: ð4:2Þ

While the difference between using (2.3) and (2.4) and
(4.1) and (4.2) is naturally negligible for very large q2 and
is immaterial in the mathematical q2 → ∞ limit, it can be
non-negligible otherwise. In the next section, we check that
this is indeed the case when one gets to values in the
range q2 ¼ 10–20 GeV2.
In the calculations presented in the next section,

Eqs. (4.1) and (4.2) provide a central value for our results
of the form factors, Eqs. (2.3) and (2.4), a lower limit,
while the estimate where we replace GSL

l ð−q2Þ by
GSL

l ð4M2
B − q2Þ (l ¼ M, E) gives the upper limit.

An important point that is addressed in the next section is
to know how far the region of the asymptotic relations (4.1)
and (4.2) is from the PQCD region characterized by the
relations GM ∝ 1=q4 and GE ∝ 1=q4 [30,31,33].

FIG. 1. Timelike form factor G for the Λ. Data are from
Refs. [11,12,17,19]. The thick solid line is based on Eqs. (4.1)
and (4.2). The dashed lines represent the upper limit Glðq2Þ ¼
GSL

l ð4M2
B − q2Þ and the lower limit Glðq2Þ ¼ GSL

l ð−q2Þ (l ¼ M,
E). The thin solid line is obtained with the approximation
GE ¼ GM.
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V. RESULTS

In this section we present the results in the timelike
region for the Λ, Σ−, Σ0, Ξ−, and Ξ0 of the baryon octet and
also for the Ω− (baryon decuplet). The results for the
baryon octet are based on the model from Ref. [34]. The
results for the Ω− are based on the model from Ref. [48].

A. Octet baryons

The results of our model in the timelike region are
presented in Figs. 1–3 for the cases of Λ, Σ−, Σ0, Ξ−, and
Ξ0. The thick solid lines represent our best estimate based
on Eqs. (4.1) and (4.2). The dashed lines represent the
upper limit Glðq2Þ ¼ GSL

l ð4M2
B − q2Þ and the lower limit

Glðq2Þ ¼ GSL
l ð−q2Þ (l ¼ M, E). The thin solid line results

are those obtained with the approximation GE ¼ GM and
will be discussed later. Naturally, all curves get closer
together as q2 increases. In all cases, we use the exper-
imental masses or the averages (respectively, for Σ and Ξ).
We recall that in the present model, the SUð3Þ flavor

symmetry is broken by the radial wave functions and that
the quark electromagnetic structure is parametrized based
on a VMD representation.
Our estimates are compared with the world data for the

hyperon electromagnetic form factors in the timelike
region. The data for the Λ, Σ0, and ΛΣ̄0 (from eþe− →
ΛΣ̄0 and eþe− → Σ0Λ̄ reactions) for values of q2 up to
9 GeV2 are fromBABAR [17]. There are also data fromBES-
III for the Λ [19] below q2 ¼ 10 GeV2 and for Σ0, Σþ, Ξ−,
and Ξ0 for q2 ≃ 14.2 GeV2 [ψð3770Þ decay] [18]. Finally,
there are data from CESR (CLEO-c detector) [11,12] for the
baryon octet (Λ, ΛΣ̄0, Σ0, Σþ, Ξ−, and Ξ0) and Ω− for q2 ≃
14.2 and 17.4 GeV2 [ψð3770Þ and ψð4170Þ decays]. In the
near future, we expect results on the proton-antiproton
scattering from PANDA (pp̄ → BB̄) [28].
Contrary to the case of the proton form factor data in the

timelike region, which is about 2 times larger than those in
the spacelike region [6,55–57], the hyperon form factors
have about the same magnitude (central value lines in
the figures) in both regions (spacelike and timelike).

FIG. 2. Timelike form factor G for the Σþ (left) and Σ0 (right). Data are from Refs. [11,12,17,18]. See also caption of Fig. 1.

FIG. 3. Timelike form factor G for the Ξ0 (left) and Ξ− (right). Data are from Refs. [11,12,18]. See also caption of Fig. 1.
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Our results suggest that the available data may already be
within the asymptotic region where Eqs. (4.1) and (4.2) are
valid, with the deviations consistent with a variation of the
argument ofG from q2 (lower limit) up to q2 − 4M2

B (upper
limit), denoting that the reflection center point is within the
unphysical region. In the model of Ref. [58], this seems
also to be the case.
From the figures, we can conclude that our estimates

(central values) are close to the data for q2 > 8 GeV2 in
most cases. For the Λ case, our results underestimate the
data. For the Σþ and Ξ0 cases, our results overestimate the
data. However, in general, our results are reasonably close
to the data. To compare our results with the data for larger
values of q2 (q2 ≃ 14.2 and 17.4 GeV2 from CLEO-c
[11,12]), we show in Table I the average ratios of the
experimental values and our estimates. Note that for the Ξ0,
we have an underestimate of 40% (≈0.6), and for the Λ, an
overestimate of more than 100% (≈2.2). This feature is
similar to the proton case. When we average in the baryon
indices, however, we obtain a ratio of 1.12, meaning that the
baryon average value is very close to our model estimate.
Although our results corroborate the idea that the region

shown is close to the region where the relations (4.1)
and (4.2) hold, that does not mean that the region is close to
the PQCD region, where GE ∝ 1=q4 and GM ∝ 1=q4.
Calculations in the spacelike region where we consider
the leading order term of the asymptotic quark current
suggest that the first signs of the PQCD behavior GE ∝
1=Q4 and GM ∝ 1=Q4 (with log corrections) appear only
for q2 ≈ 100 GeV2. An example of the convergence for
jGMj and jGEj to the perturbative regime is presented in
Fig. 4 for the case of Σþ. The lines with the label “Model”
indicate the exact result; the lines with the label “LargeQ2”
indicate the calculation with the asymptotic quark current.
Similar behavior can be observed for the other hyperons.
The sharp minimum on jGEj is a consequence of the zero

crossing for Q2 ≃ 10 GeV2 (GE becomes negative above
that point). This case is similar to the case of the proton,
where there is the possibility of a zero crossing near Q2 ≃
9 GeV2 according to recent measurements at Jefferson Lab
[59]. The zero crossing is also expected for other hyperons.

That the leading order PQCD behavior of the form
factors only appears for higher q2 can be interpreted as the
interplay between the meson masses that enter the model
through the constituent quark electromagnetic form factors
(describing the photon-quark coupling) and the tail of the
baryon wave functions that enter the overlap integral. On
one hand, the quark electromagnetic form factors carry
information on the meson spectrum being parametrized
using the VMD mechanism in our model. Depending on
the hyperon flavor, one has different contributions from the
poles associated with light vector mesons (0.8–1.0 GeV)
and an effective heavy vector meson (1.9 GeV). Those
vector meson masses provide a natural scale, which
regulates the falloff of the hyperon electromagnetic form
factors. Note that the light vector meson masses (0.8–
1.0 GeV) correspond to a large scale compared to the low-
Q2 scale of QCD (∼0.3 GeV) and of the constituent quark
masses. On the other hand, the momentum falloff tail of the
wave functions of the heavy baryons is associated with
larger cutoffs. The same effect is observed in lattice QCD
simulations, where form factors associated with larger pion
masses exhibit slower falloffs in Q2 [46,49,60].
For a detailed comparison with the present and future

data, we present in Tables II and III our estimates for G at
larger values of q2. Note in particular that we present
predictions for Σ−, a baryon for which there are no data at
the moment. The results in the tables can be used to
calculate the ratios between the form factors associated
with different baryons.
From the previous analysis, we can conclude that the

effective form factor G for most of the octet baryons with
strange quarks (hyperons) is well described by our approxi-
mated SUFð3Þ model combined with the asymptotic
relations (4.1) and (4.2), since the data lie within the upper
and lower limits of the theoretical uncertainty.

TABLE I. Comparison between the ratios between the exper-
imental value (Gexp) and the model estimate of G (Gmod) for the
different baryons, for q2 ≃ 14.2 and 17.4 GeV2 [11,12]. The last
line indicates the average of all baryons.

B hGexp

Gmodi
Λ 2.19
Σþ 0.65
Σ0 1.08
Ξ− 1.08
Ξ0 0.60

Average 1.12

FIG. 4. Σþ form factors. Comparison between the results for
jGMj and jGEj for a model with an exact quark current (Model)
and the results where we consider only the leading order term in
Q2 for the quark current (Large Q2).
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1. Discussion

In the literature, there are a few estimates of hyperon form
factors based on vector meson dominance [20,22]. The first
calculation (1977) [20] was performed with no adjustable
parameters, before the first measurements (Orsay, 1990)
[61]. Those estimates differ from the recent measurements
by an order of magnitude [11,12]. An improved VMD
estimate (1993) [22] gave results closer to the Λ data under
the condition GM ¼ GE [11,14]. There are also recent
estimates for the Λ and Σ0 form factors based on phenom-
enological parametrizations of the baryon-antibaryon inter-
action [23], asymptotic parametrizations, and vector meson
dominance parametrizations of the form factors [25–27].
In our model, the SUFð2Þ symmetry is broken at the

quark level since we use different parametrizations for the
isoscalar and isovector quark form factors. The dependence
on the isovector component is more relevant for the case of
the neutron for which there are almost no data avail-
able [3,62,63], and for the eþe− → ΛΣ̄0 and eþe− → Σ0Λ̄
reactions, which we discuss at the end of the present section.
We now discuss the difference in magnitude between the

electric and magnetic form factors of the octet baryon

members. The absolute value of the magnetic form factor
jGMj is represented in Figs. 1–3 by the thin solid line,
which is, with no exception, just a bit above the central
(thick solid line). Those results mean that the magnetic
form factor is larger than the electric form factor
(jGEj < jGMj) for Λ, Σþ, Σ0, Ξ0, and Ξ−. This conclusion
is a consequence of the definition of jGðq2Þj2 given by
Eq. (2.2). If we express jGEj in terms of the ratio αG ¼ jGEj

jGM j,

we obtain jGj2 ¼ jG2
Mjð1þ α2G−1

1þ2τÞ. Since the thick solid line
is the result for the full jGðq2Þj function, and the thin solid
line is the result from assuming jGðq2Þj ¼ jGMðq2Þj, we
conclude that although jGEj < jGMj, the two form factors
have similar magnitudes.
Our model can also be applied for the ΛΣ̄0 and Λ̄Σ0 form

factors (eþe− → ΛΣ̄0 and eþe− → Λ̄Σ0 reactions). It is
important to notice, however, that the analysis of the
eþe− → ΛΣ̄0 and the eþe− → Λ̄Σ0 reactions is a bit more
intricate than the analysis for the eþe− → BB̄ reactions
associated with the elastic form factors. In this case, there
are two possible final states (ΛΣ̄0 and Λ̄Σ0). From the
experimental point of view, this implies that the back-
ground subtraction in the cross section analysis is also
more complex due to the proliferation of decay channels,
including the Λ and Σ0 decays and the decays of the
corresponding antistates.
From the theoretical point of view, the γ�Λ → Σ0

transition form factors in the spacelike region are difficult
to test due to the lack of experimental data: There are no
experimental constraints for the electric and magnetic form
factors, except for the transition magnetic moment. We do
not discuss here in detail our results for the γ�Λ → Σ0

transition form factors due to the experimental ambiguities
and also because the main focus of this work is the octet
baryon electromagnetic form factors. Still, we mention that
we predict the dominance of the meson cloud contributions
for GE and of the valence quark contributions for GM [44].
At large Q2, the magnetic form factor dominates over the
electric form factor. This dominance is then mirrored to the
timelike region. Our estimate of G in the timelike region
overestimates the data by about an order of magnitude,
suggesting that the magnetic form factor dominance is not
so strong in the timelike region. Another interesting
theoretical aspect related to the γ�Λ → Σ0 transition is
its isovector character. This property can be studied in the
near future once accurate timelike data for the neutron
become available at large q2. From the combination of
proton and neutron data, we can determine the isovector
component of the nucleon form factors. Then, those can be
used to study the γ�Λ → Σ0 transition form factors.

B. Ω− form factors

CLOE-c provided the first measurements of the Ω− form
factors for nonzero q2 [11,12]. Our results for the Ω− form

TABLE II. Estimates for the Σ effective form factor G in units
10−3.

q2 (GeV2) Σþ Σ0 Σ−

10 40.5 16.8 10.7
15 15.1 6.09 4.12
20 7.68 3.01 2.19
25 4.58 1.76 1.36
30 3.03 1.15 0.923
35 2.14 0.803 0.667
40 1.60 0.592 0.503
45 1.24 0.453 0.393
50 0.980 0.358 0.315
55 0.799 0.290 0.260
60 0.663 0.239 0.216

TABLE III. Estimates for the Λ and Ξ effective form factorG in
units 10−3.

q2 (GeV2) Λ Ξ0 Ξ−

10 13.4 41.4 24.9
15 4.90 13.6 7.99
20 2.43 6.41 3.75
25 1.43 3.65 2.13
30 0.927 2.33 1.36
35 0.648 1.61 0.933
40 0.476 1.17 0.679
45 0.365 0.893 0.514
50 0.288 0.700 0.402
55 0.233 0.564 0.323
60 0.192 0.463 0.264
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factors are very important, because theoretical studies of the
Ω− are scarce due to its unstable character. Fortunately, for
the Ω−, lattice QCD simulations at the physical point (i.e.,
physical strange quark mass) exist [64]. Since those
simulations are at the physical point and the meson cloud
contamination (kaon cloud) is expected to be small due
to the large kaon mass, the lattice QCD data may be
considered to describe the physical Ω−.
We consider a model where the Ω− is described by a

dominant S state and two different D-state components:
one with total quark spin-1=2, another with the total quark
spin-3=2 [45,48]. Each radial wave function is parame-
trized by a unique momentum-range parameter. The num-
ber of free parameters is then five: two D-state mixture
coefficients and three momentum-range parameters.
Our model for the Ω− [48] was calibrated by the Ω−

lattice QCD data from Ref. [64]. The free parameters of the
radial wave functions and D-state mixture coefficients of
our model were adjusted by the lattice QCD results for the
form factors GE0, GM1, and GE2 for Q2 < 2 GeV2. The
model was then used to estimate the functions GE2 (electric
qudrupole form factor) and GM3ðQ2Þ (magnetic octupole
form factor).
In the case of the electric quadrupole form factor (GE2),

one obtains a consistent description of the lattice QCD data,
which allows the determination of the electric quadrupole
moment fromGE2ð0Þ ¼ 0.680� 0.012. ForGM3, however,
the lattice QCD simulations are restricted to the result for
Q2 ¼ 0.23 GeV2,GM3 ¼ 1.25� 7.50 [48,65] (which has a
significant error bar). From the form factorsGE0,GM1,GE2,
andGM3, we calculate the functionG based on the results in
Appendix A. The results are presented in the left panel
of Fig. 5.
Our estimates for the electromagnetic form factors in the

timelike region of Ω− should be taken with caution, since
the model used for the radial wave functions was not

chosen in order to describe the large-Q2 region but rather
fitted to the Q2 < 2 GeV2 data. For that reason, the falloff
of GE0 and GM1 at large Q2 is determined by the 1=Q6

behavior and not by the falloff of PQCD (1=Q4).
From Fig. 5 (left panel), we conclude that our results for

G overestimate the data. In order to understand this result,
we examine the magnitude of the higher multipole form
factors GE2 and GM3. If we drop these contributions, we
obtain the results presented in the right panel of Fig. 5. In
this case, we observe a close agreement with the data. From
this analysis, we can conclude that the deviation from the
data comes from the form factors GE2 and GM3. We have
confirmed that it is the function GM3 that originates a
contribution that makes the total results differ from the data.
Our model givesGM3ð0Þ ≃ 15.5. The result presented in the
right panel of Fig. 5 is more compatible with GM3ð0Þ ≈ 1.
We then conclude that the timelike data are more consistent
with a small magnitude for the function GM3.
The value of GM3ð0Þ has been estimated based on

different frameworks. Light front QCD sum rules predict
GM3ð0Þ ¼ 64.3� 16.1 [66]. Estimates based on a non-
covariant quark model giveGM3ð0Þ ¼ 48.2 for a symmetric
SUFð3Þ quark model and GM3ð0Þ ¼ 12.1 when the sym-
metry is broken [67]. Our estimate is then close to the lower
estimate for GM3ð0Þ, and it is more consistent with the
estimate that breaks SUFð3Þ. The timlike data, however,
seem to indicate that GM3ð0Þ may be even smaller.
It is worth noting that the function GM3 is, at the

moment, poorly estimated. On the contrary, the functions
GE0, GM1, and GE2 are well determined by the lattice QCD
data. The present result suggests the need for a determi-
nation of GM3 by a combined study of more accurate lattice
QCD data with the very recent timelike region data forG in
the region q2 ≈ 16 GeV2 [11]. In future studies, the
expected PQCD falloff of the form factors for very large
q2 should also be taken into account.

FIG. 5. Timelike form factor G for the Ω−. We present the full result in the left panel (including GE2 and GM3). In the right panel, we
drop the higher order multipoles (GE2 and GM3). The model from Ref. [48] predicts a large magnitude for GM3. The timelike data
support the estimates with a much smaller GM3. Data are from Ref. [11]. See also caption of Fig. 1.
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VI. OUTLOOK AND CONCLUSIONS

A relativistic quark model which was successful in the
description of the baryon electromagnetic form factors in
the spacelike region was extended to the timelike region.
Our SUFð3Þ model provides a fair description of the data
both in the spacelike and timelike regions.
The extension of the model from the spacelike into the

timelike regions uses asymptotic reflection symmetry
relations connecting the electromagnetic elastic form fac-
tors in the two different regions. The theoretical uncertainty
in our predictions for the timelike region was presented.
An important conclusion is that the measured data are
consistent with the asymptotic relations of Eqs. (4.1) and
(4.2) originated from general principles as unitarity and
analyticity. Finite corrections for q2 still have a role in
the strength of the form factors for q2 ¼ 10–30 GeV2,
since within this range the differences between
the results obtained from GSL

l ð−q2Þ, GSL
l ð2M2

B − q2Þ,
and GSL

l ð4M2
B − q2Þ (l ¼ M, E) show that the strict

q2 → ∞ limit is not yet attained numerically within that
region. On the other hand, the fact that the data are within
the theoretical uncertainty of our model seems to indicate
that the reflection symmetry center point is inside the
unphysical region �0; 4M2

B½, where MB is the baryon mass.
Our model leads to the correct PQCD asymptotic power

law behavior of the electromagnetic form factors. But an
important conclusion of this work is that the PQCD
limit onset G ∝ 1=q4 is way above the region where the
reflection symmetry relations are valid. We found that only
beyond the region of q2: 30–50 GeV2, the PQCD power
law was observed. This was interpreted as an interplay of
the two scales entering the model: the meson mass scales
that determine the quark electromagnetic current and the
momentum-range scales determined by the extension of the
hyperons.
In the present work, our main focus was on the baryon

octet since the available data are mostly on that family of
baryons, and therefore, the comparison with the data
enabled us to better probe our model in the timelike region.
Our framework can also be applied to all baryons of the
decuplet, and as an example, we presented our results for
the Ω− baryon and compared them with the new data
from CLEO.
Under study is the possible extension of the present

model to charmed baryons. By this extension, the model
can be applied to the eþe− → Λþ

c Λ̄þ
c process to estimate the

Λþ
c timelike electromagnetic form factors, which were

recently measured at BES-III [68].
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APPENDIX A: 3=2+ BARYONS

As discussed in the main text, the relations (2.1) and
(2.2) can be used for 3=2þ baryons if the form factors GM
and GE are expressed as combinations of electric form
factors (electric charge GE0 and electric quadrupole GE2)
and magnetic form factors (magnetic dipole GM1 and
magnetic octupole GM3).
According to Ref. [20], we should use the following

replacements:

jGEj2 → 2jGE0j2 þ
8

9
τ2jGE2j2; ðA1Þ

jGMj2 →
10

9
jGM1j2 þ

32

5
τ2jGM3j2; ðA2Þ

where τ ¼ q2

4M2
B
.

APPENDIX B: DETAILS OF THE MODEL

Below we describe some details of the model, including
the spin and flavor wave functions, the explicit form of the
quark form factors, the parameters of the model, and the
values of the normalization factors due to the inclusion of
pion cloud contributions.

1. Baryon wave functions

In the covariant spectator quark model, the spin states
associated with Eq. (3.1) are represented by [34,39]

ϕ0
S ¼ uBðP; sÞ; ϕ1

S ¼ −ðε�λÞαðPÞUα
BðP; sÞ; ðB1Þ

where uB is the Dirac spinor of the baryon, s is the baryon
spin projection, λ represents the polarization of the diquark,
and

Uα
BðP; sÞ ¼

1ffiffiffi
3

p γ5

�
γμ −

Pα

MB

�
uBðP; sÞ: ðB2Þ

The wave function described by Eqs. (3.1) and (B1)
generalize the nonrelativistic wave function in a covariant
form [39]. The flavor states jMSi (mixed symmetric) and
jMAi (mixed antisymmetric) for all octet baryons are
presented in Table IV. Although the results for the nucleon
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are not discussed in the present work, we include the proton
and neutron states for completeness.

2. Quark form factors

To parametrize the quark current (3.6), we adopt the
structure inspired by the VMD mechanism as in
Refs. [35,39]:

f1� ¼ λq þ ð1 − λqÞ
m2

v

m2
v þQ2

þ c�
M2

hQ
2

ðM2
h þQ2Þ2 ;

f10 ¼ λq þ ð1 − λqÞ
m2

ϕ

m2
ϕ þQ2

þ c0
M2

hQ
2

ðM2
h þQ2Þ2 ;

f2� ¼ κ�

�
d�

m2
v

m2
v þQ2

þ ð1 − d�Þ
M2

h

M2
h þQ2

�
;

f20 ¼ κs

�
d0

m2
ϕ

m2
ϕ þQ2

þ ð1 − d0Þ
M2

h

M2
h þQ2

�
; ðB3Þ

where mv, mϕ, and Mh are the masses, respectively,
corresponding to the light vector meson mv ≃mρ ≃mω,
the ϕ meson (associated with an ss̄ state), and an effective
heavy meson with mass Mh ¼ 2MN to represent the short-
range phenomenology. The parameter λq is determined by
the study of deep inelastic scattering [39]. The relation
between the quark anomalous magnetic moments κu and κd
is κþ ¼ 2κu − κd and κ− ¼ 1

3
ð2κu þ κdÞ.

We consider the parametrization from Refs. [34,39] in
the study of the nucleon and decuplet systems, except for
the quark anomalous magnetic moments κþ and κ−. Those
coefficients are readjusted in our study of the octet baryon
electromagnetic form factors in order to take into account
the pion cloud effects. The value of κs is fixed by the
magnetic moment of the Ω−.
The parametrization from Eq. (B3) for the three sectors

includes the quark anomalous magnetic moments (three
parameters) and six extra parameters. Since the quark
anomalous magnetic moments can be fixed independently
by the proton, the neutron and the Ω− magnetic moments,
we have six parameters to adjust. We reduce the number to

five using the isospin symmetry for the Pauli form factor
(dþ ¼ d−). All parameters of the quark current are included
in Table V. The results in boldface indicate the values fixed
by the study of the octet baryons with pion cloud dressing.

3. Octet baryon form factors

The valence quark contributions to the octet baryon
electromagnetic form factors are then determined by the
combination of the quark form factors and the parametri-
zation of the radial wave functions according to Eqs. (3.8)
and (3.9).
The parameters associated with the radial wave func-

tions (3.2) are presented in Table VI. The coefficients jA;Si
(i ¼ 1, 2) depend on the quark form factors according to
the results from Table VII. Again, the expressions for the
nucleon are included for completeness.

4. Pion cloud dressing

In the low-Q2 region, it is necessary to include the effects
of the pion cloud dressing of the baryons. In the study of the
electromagnetic structure of the octet baryons, those effects
are taken into account in an effective way. There are two
main contributions to take into account: the contributions

TABLE IV. Flavor wave functions of the octet baryons.

B jMAi jMSi
p 1ffiffi

2
p ðud − duÞu 1ffiffi

6
p ½ðudþ duÞu − 2uud�

n 1ffiffi
2

p ðud − duÞd − 1ffiffi
6

p ½ðudþ duÞd − 2ddu�
Λ0 1ffiffiffiffi

12
p ½sðdu − udÞ − ðdsu − usdÞ − 2ðdu − duÞs� 1

2
½ðdsu − usdÞ þ sðdu − udÞ�

Σþ 1ffiffi
2

p ðus − suÞu 1ffiffi
6

p ½ðusþ suÞu − 2uus�
Σ0 1

2
½ðdsuþ usdÞ − sðudþ duÞ� 1ffiffiffiffi

12
p ½sðduþ udÞ þ ðdsuþ usdÞ − 2ðudþ duÞs�

Σ− 1ffiffi
2

p ðds − sdÞd 1ffiffi
6

p ½ðsdþ dsÞd − 2dds�
Ξ0 1ffiffi

2
p ðus − suÞs − 1ffiffi

6
p ½ðudþ duÞs − 2ssu�

Ξ− 1ffiffi
2

p ðds − sdÞs − 1ffiffi
6

p ½ðdsþ sdÞs − 2ssd�

TABLE V. Parameters associated with the quark current. In this
notation, κs ¼ κ0. For λq, we use λq ¼ 1.22 [39].

a κa ca da

þ 1.462 4.160 −0.686
− 1.756 1.160 −0.686
0 1.462 4.427 −1.860

TABLE VI. Parameters of the radial wave functions (3.2).
Recall that β1 is the global long-range parameter. The short-range
parameters are β2 (nucleon), β3 (Λ and Σ), and β4 (Ξ).

β1 β2 β3 β4

0.0440 0.9077 0.7634 0.4993
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associated with the photon coupling with the pion and the
contributions associated with the photon coupling with
intermediate octet baryon states. All these processes can be
parametrized based on an SUð3Þmodel for the pion-baryon
interaction using five independent couplings and two
cutoffs (regulate falloff of pion cloud contributions) [34].
The main consequence of the inclusion of the pion cloud

contributions is that the estimates ofGB
EB andGB

MB from the
valence quark contributions to the octet baryon form factors
are modified by the normalization of the wave function
which combine valence and pion cloud contributions (δGEB
and δGMB):

GEB ¼ ZB½GB
EB þ δGEB�; ðB4Þ

GMB ¼ ZB½GB
MB þ δGMB�: ðB5Þ

The explicit expressions for δGEB and δGMB can be found
in Refs. [34,42]. When we increase Q2, the pion cloud
contributions are strongly suppressed since they are regu-
lated by higher order multipoles with square cutoffs of the
order 0.8 and 1.2 GeV2 [34].

The parameters associated with the valence quark con-
tributions are determined by fits to the lattice QCD results
for the octet baryon electromagnetic form factors. The
parameters associated with the pion cloud contribution are
fixed by the physical data (nucleon electromagnetic form
factors and octet baryon magnetic moments).
In Eqs. (B4) and (B5), the factor ZB can be written as

[34,42,52]

ZB ¼ 1

1þ 3aBB1

; ðB6Þ

whereaB is a coefficient determined by theSUð3Þ symmetry,
and B1 is a parameter which determines the nucleon
normalization (ZN) based on the normalization aN ¼ 1.
The normalization constant for the nucleon ZN ¼

1=ð1þ 3B1Þ, meaning that the contribution from the
valence quarks for the proton charge is ZN and the
contribution from the pion cloud 3B1ZN . One concludes
then that the relative pion cloud contribution to the proton
electric form factor is 3B1, which implies that the nor-
malization ZN can be determined by the estimate of the
pion cloud contribution based on the comparison between
the valence quark contributions and the data, and vice versa
B1 ¼ 1

3
1−ZN
ZN

. The values of ZB based on the value for B1 and
aB are presented in Table VIII.
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