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We study the dynamics of non-Abelian vortex strings supported in N ¼ 2 supersymmetric QCD with
the UðNÞ gauge group and Nf ¼ N quark flavors deformed by the mass μ of the adjoint matter. In the limit
of large μ the bulk four-dimensional theory flows to N ¼ 1 supersymmetric QCD. The dynamics of
orientational zero modes of the non-Abelian string is described by the world sheet CPðN − 1Þ model. At
μ ¼ 0 this model has N ¼ ð2; 2Þ supersymmetry while at large μ it flows to the nonsupersymmetric
CPðN − 1Þ model. We solve the world sheet model in the large N approximation and find a rich phase
structure with respect to the deformation parameter μ and quark mass differences. The phases include two
strong coupling phases and two Higgs phases. In particular, the Higgs phase at small μ supports CPðN − 1Þ
model kinks representing confined monopoles of the bulk QCD, while in the large-μ Higgs phase
monopoles disappear.
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I. INTRODUCTION

Non-Abelian vortex strings were first found in N ¼ 2
supersymmetric QCD (SQCD) with gauge group UðNÞ and
Nf ¼ N flavors of quark hypermultiplets [1–4]; see [5–8]
for reviews. When this theory is in the Higgs phase
for scalar quarks (in the quark vacuum), non-Abelian
strings are formed. They give rise to the confinement of
monopoles at weak coupling and to the so-called “instead-
of-confinement” phase for quarks at strong coupling; see
[9] for a review. This picture gives a non-Abelian gener-
alization of the Seiberg-Witten scenario of the Abelian
quark confinement in the monopole vacuum of N ¼ 2
SQCD [10,11].
Besides translational zero modes typical for Abrikosov-

Nielsen-Olesen (ANO) strings [12] non-Abelian strings
have orientational zero modes. Their internal dynamics
is described by the two-dimensional N ¼ ð2; 2Þ

supersymmetric CPðN − 1Þ model living on the string
world sheet [1–4].
A lot of work has been done to generalize the con-

struction of non-Abelian strings to QCD-like theories with
less supersymmetry, in particular toN ¼ 1 SQCD [13–16];
see [7] for a review. One promising approach is to deform
N ¼ 2 SQCD by the mass μ of the adjoint matter (μ-
deformed SQCD) and study what happens to non-Abelian
strings upon this deformation. This deformation breaks
N ¼ 2 supersymmetry, and in the limit of μ → ∞ the bulk
theory flows to N ¼ 1 SQCD. In Ref. [16] the world
sheet theory living on the non-Abelian string in the
μ-deformed SQCD was found, and it was shown that it
flows to the nonsupersymmetric CPðN − 1Þ model in the
limit of large μ.
Since the bulk SQCD is in the Higgs phase for scalar

quarks, monopoles are confined by non-Abelian strings.
However, the monopoles cannot be attached to the string
end points. In fact, in the UðNÞ theories confined monop-
oles are junctions of two distinct elementary non-Abelian
strings. From the point of view of the CPðN − 1Þ model
living on the string world sheet, confined monopoles are
seen as kinks interpolating between different vacua of the
CPðN − 1Þ model [3,4,17] (see [7] for a review).
In this paper we present a large N solution of the world

sheet theory for the non-Abelian string in the μ-deformed

*Corresponding author.
ievlevea@thd.pnpi.spb.ru

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 014013 (2020)

2470-0010=2020=101(1)=014013(24) 014013-1 Published by the American Physical Society

https://orcid.org/0000-0002-5935-4706
https://orcid.org/0000-0003-4669-686X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.014013&domain=pdf&date_stamp=2020-01-21
https://doi.org/10.1103/PhysRevD.101.014013
https://doi.org/10.1103/PhysRevD.101.014013
https://doi.org/10.1103/PhysRevD.101.014013
https://doi.org/10.1103/PhysRevD.101.014013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


SQCD. The large N approximation was first used by
Witten to solve both nonsupersymmetric and N ¼ ð2; 2Þ
supersymmetric two-dimensional CPðN − 1Þ models [18].
In particular, the large-N Witten’s solution shows that an
auxiliary U(1) gauge field Aμ introduced to formulate
the CPðN − 1Þ model becomes physical. The N ¼ ð2; 2Þ
supersymmetric CPðN − 1Þ model has N degenerate vacua
as dictated by its Witten index. The order parameter which
distinguishes between these vacua is the vacuum expect-
ation value (VEV) of the scalar superpartner σ of the gauge
field Aμ [18].
In the nonsupersymmetric CPðN − 1Þmodel these vacua

are split with splittings proportional to 1=N and become
quasivacua. The theory has a single true vacuum.1 The
order parameter that distinguishes between these quasiva-
cua is the value of the constant field strength of the gauge
field Aμ which is massless in the nonsupersymmetric case
[18]; see also [19] and review [7].
In this paper we use the largeN approximation to study a

phase structure of the world sheet theory on the non-
Abelian string in μ-deformed SQCD with respect to the
deformation parameter μ and quark mass differences Δm.
We find a rich phase structure which includes two strong
coupling phases and two Higgs phases.
Strong coupling phases appear at small Δm. The first

strong coupling phase appears at small μ. It is qualitatively
similar to the N ¼ ð2; 2Þ supersymmetric phase at μ ¼ 0.
Although N vacua are split and become quasivacua, the
order parameter is still the VEVof the field σ. In the second
strong coupling phase at large μ quasivacua are distin-
guished by the value of the constant electric field. This
phase is qualitatively similar to the nonsupersymmetric
CPðN − 1Þ model.
At large Δm we find two weakly coupled Higgs phases.

At small μ,N vacua present in theN ¼ ð2; 2Þ case split and
become quasivacua. Still we have kinks interpolating
between them. As we increase μ above a certain critical
value, these lifted quasivacua disappear one by one, so we
have a cascade of phase transitions. In the end we are left
with a single vacuum and no kinks at all.
From the point of view of the bulk SQCD we interpret

this as follows. At large Δm and small μ we have
monopoles confined by non-Abelian strings while as we
increase μ monopoles disappear.
The paper is organized as follows. In Sec. II we review

nonsupersymmetric and N ¼ ð2; 2Þ supersymmetric
CPðN − 1Þ models and their large-N solutions. We also
formulate the world sheet CPðN − 1Þ model for non-
Abelian string in μ-deformed SQCD. In Sec. III we derive
the effective potential of this model in the large N
approximation. Section IV is devoted to the discussion
of the two strong coupling phases at small Δm, while in
Sec. V we study Higgs phases at large Δm. In Sec. VI we

make brief comments on the brane picture of non-Abelian
strings and 2d-4d correspondence, i.e., a map between
certain quantities in the bulk and world sheet theories.
Section VII contains the description of the phase diagram
of the world sheet model and our conclusions.

II. REVIEW OF CP(N − 1) SIGMA MODELS

In this section we define basic CPðN − 1Þ models that
are of interest to us. First, we will briefly review the
nonsupersymmetric and the N ¼ ð2; 2Þ supersymmetric
models, which were considered before; see, for example,
[18,20–22]. After that, we will introduce the model that we
will be working with, namely the μ-deformed CPðN − 1Þ
model which is an effective theory living on the world sheet
of non-Abelian string in μ-deformed SQCD [16].

A. Nonsupersymmetric model

Throughout this paper wewill be working with the gauge
formulation [18] of the CPðN − 1Þ models. In this formal-
ism, the model is formulated viaN complex scalar fields ni,
i ¼ 1;…; N, interacting with auxiliary U(1) gauge field Aμ.
The Lagrangian is written as

L¼j∇μnij2þiDðn̄ini−2β0Þþ
X
i

j
ffiffiffi
2

p
σ−mij2jnij2; ð2:1Þ

where∇μ ¼ ∂μ − iAμ. Fields σ andD come without kinetic
energy and are also auxiliary. They can be eliminated via
their equations of motion. In particular, integrating out D
imposes the constraint

n̄ini ¼ 2β0; ð2:2Þ

which together with gauge invariance reduces the number
of real degrees of freedom (d.o.f.) of the ni field down
to 2ðN − 1Þ.
This is the nonsupersymmetric version of the CPðN − 1Þ

model, and it arises as a world sheet theory on the non-
Abelian string in a nonsupersymmetric QCD-like theory;
see [19] and review [7]. The mass parameters mi are equal
to quark masses in the four-dimensional theory.
Throughout this paper we will consider the masses

placed uniformly on a circle,

mk ¼ m − Δm exp

�
2πik
N

�
; k ¼ 0;…; N − 1: ð2:3Þ

Herem ∈ R is the average mass, and Δm > 0 is effectively
the mass scale of the model. Note that by a shift of σ one
can always add a constant to all mi. In particular, one can
get rid of the average mass m.
The bare coupling constant β0 in quantum theory

becomes a running coupling β. It is asymptotically free
and defines the scale ΛCP via1We assume below that the θ angle is zero.
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Λ2
CP ¼ M2

uv exp

�
−
8πβ0
N

�
; ð2:4Þ

where Muv is the ultraviolet (UV) cutoff.
Let us review phases of this theory. It is known that in the

case of vanishing masses Δm ¼ 0 this nonsupersymmetric
CPðN − 1Þ model is at strong coupling with vanishing
VEV hnii ¼ 0. It can be solved by means of the 1=N
expansion [18]. It turns out that at the quantum level
spontaneous breaking of the global SU(N) (flavor) sym-
metry present at the classical level disappears. There are no
massless Goldstone bosons in the physical spectrum. The
ni fields acquire mass of the order of ΛCP.
Moreover, a composite d.o.f.—the would-be auxiliary

photon Aμ—acquires a kinetic term at the one-loop level
and becomes dynamical. The presence of a massless photon
ensures long range forces in the nonsupersymmetric
CPðN − 1Þ model. The Coulomb potential is linear in
two dimensions, namely

VðrÞ ∼ Λ2
CP

N
r; ð2:5Þ

where r is the separation between the charges. This leads to
the Coulomb/confinement phase [18]. Electric charges are
confined. The lightest electric charges are the ni quanta
which become kinks at strong coupling [18]. The confine-
ment of kinks means that they are not present in the
physical spectrum of the theory in isolation. They form
bound states, kink-antikink “mesons.”
Masses of kinks are of order of ΛCP while the confining

potential is weak, proportional to 1=N. Therefore kink and
antikink in the meson are well separated forming a
quasivacuum inside the meson. Thus, beside the single
ground state, there is a family of quasivacua with energy
splittings of order ∼Λ2

CP=N. The order parameter which
distinguishes different quasivacua is the value of the
constant electric field or topological density

Q ¼ i
2π

εμν∂μAν ¼ 1

8πβ
εμν∂μn̄i∂νni: ð2:6Þ

The picture of confinement of n’s is shown on Fig. 1.
The kinks interpolate between the adjacent vacua. They

are confinedmonopoles of the bulk theory. Since the excited
string tensions are larger than the tension of the lightest one,
these monopoles, besides four-dimensional confinement,

are confined also in the two-dimensional sense: a monopole
is necessarily attached to an antimonopole on the string to
form a mesonlike configuration [19,23].
On the other hand, at large mass scales Δm ≫ ΛCP the

coupling constant is small, frozen at the scale Δm, and
semiclassical calculations are applicable. The field ni

develops a nonzero VEV, and there is no massless photon
and no long-range interactions. That is why this phase is
usually called the “Higgs phase” as opposed to the
Coulomb/confinement strong coupling phase. More exactly
the CPðN − 1Þ model in this phase gives a low energy
description of a Higgs phase below the scale of the photon
mass. Essentially this weakly coupling Higgs phase is
similar to the “classical phase” described by the classical
Lagrangian (2.1).
It was shown that at intermediate mass scales Δm ∼ ΛCP

there is a phase transition between the Higgs and Coulomb
phases; see [19,21,24,25].

B. N = (2;2) model

Supersymmetric generalization of the above model
[18,20] has additional fermionic field ξi, i ¼ 1;…; N,
which are superpartners of the ni fields. The Euclidean
version of the full N ¼ ð2; 2Þ Lagrangian is

L¼ 1

e20

�
1

4
F2
μνþj∂μσj2þ

1

2
D2þ λ̄iσ̄μ∂μλ

�
þ iDðn̄ini−2β0Þ

þ j∇μnij2þ ξ̄iiσ̄μ∇μξ
iþ2

X
i

����σ− miffiffiffi
2

p
����2jnij2

þ i
ffiffiffi
2

p X
i

�
σ−

miffiffiffi
2

p
�
ξ̄Riξ

i
L− i

ffiffiffi
2

p
n̄iðλRξiL−λLξ

i
RÞ

þ i
ffiffiffi
2

p X
i

�
σ̄−

m̄iffiffiffi
2

p
�
ξ̄Liξ

i
R− i

ffiffiffi
2

p
niðλ̄Lξ̄Ri− λ̄Rξ̄LiÞ;

ð2:7Þ

where mi are twisted masses and the limit e20 → ∞ is
implied. Moreover, σ̄μ ¼ f1; iσ3g. Fermions ξL and ξR are,
respectively, left and right components of the ξ field. Here
again one can add a uniform constant to all the mi by
shifting the σ field.
The gauge field Aμ, complex scalar superpartner σ, real

scalar D, and a two-component complex fermion λ form a
vector auxiliary supermultiplet. In particular, integrating
over D and fermion λ give the constraints

n̄ini ¼ 2β0; ð2:8Þ

n̄iξi ¼ 0; ξ̄ini ¼ 0 ð2:9Þ

in the limit e0 → ∞.
This model was derived as a world sheet theory

on the non-Abelian string in N ¼ 2 SQCD. The ni fields

FIG. 1. Linear confinement of the n-n̄ pair. The solid straight
line represents the ground state (k ¼ 0 vacuum). The dashed line
shows the vacuum energy density in the first quasivacuum.
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parametrize the orientational moduli of the non-Abelian
string [1–4]. The mass parameters mi are in fact masses of
the bulk quark fields. The bare coupling constant β0 is
related to the bulk gauge coupling constant g2 normalized at
the scale of the bulk gauge bosonmassmG ∼ g

ffiffiffiffiffiffiffi
μm

p
via (see

e.g., [7])

2β0 ¼
4π

g2ðmGÞ
¼ N

2π
ln

mG

ΛCP
: ð2:10Þ

In order to keep the bulk theory at weak couplingwe assume
that mG ≫ ΛCP.
Witten solved this model in the large N approximation in

the zero mass case [18]. The large-N solution of this model
at nonzero masses shows two different regimes at weak and
strong couplings [26]. At small mass scales Δm < ΛCP the
theory is in the strong coupling phase with zero VEV
hnii ¼ 0 and with a dynamical photon (Witten’s phase).
However, the photon now is massive due to the presence of
the chiral anomaly. There are no long-range forces and no
confinement of kinks.
In both strong and weak coupling regimes the theory has

N degenerate vacuum states as dictated by its Witten index.
They are labeled by the VEV of σ [26]. At Δm < ΛCP we
have

ffiffiffi
2

p
σ¼ exp

�
2πik
N

�
×ΛCP; k¼ 0;…;N−1: ð2:11Þ

This result can be understood as follows. The chiral
anomaly breaks U(1) R-symmetry present at zero masses
down to Z2N which is then broken spontaneously down to
Z2 by VEVof the σ field (which has R charge equal to two).
In particular, from the large-N solution it follows that VEV
of

ffiffiffi
2

p jσj ¼ ΛCP. Then Z2N symmetry ensures the presence
of N vacua as shown in Eq. (2.11).
At large masses located on a circle [see (2.3)] the Z2N

symmetry is still unbroken. This leads to the similar
structure of the σ VEVs at Δm > ΛCP, namely

ffiffiffi
2

p
σ ¼ exp

�
2πik
N

�
× Δm; k ¼ 0;…; N − 1: ð2:12Þ

The above formulas show a phase transition at Δm ¼
ΛCP. As follows from the large-N solution the model above
this point is in the Higgs phasewith a nonzero VEV for, say,
the zero component of n, hn0i ≠ 0. In both phases there is no
confinement, in contrast to the nonsupersymmetric case.
In fact, the above phase transition is a consequence of

the large-N approximation. At finite N the transition
between two regimes is smooth. This follows from the
exact effective superpotential known for the N ¼ ð2; 2Þ
CPðN − 1Þ model [20].

C. μ-Deformed CP(N − 1) model

Now let us pass on to the case of interest, namely, the
μ-deformed CPðN − 1Þ model. This model appears as a
world sheet theory on a non-Abelian string in N ¼ 2
SQCD deformed by the adjoint field mass μ. It was derived
in [16] in two cases, for small and large values of the
deformation μ. Here and throughout this paper we will take
the mass parameters to lie on the circle (2.3), and we also
assume that the deformation parameter is real and pos-
itive, μ > 0.
The first effect derived in [16] is that ni fields entering

the N ¼ ð2; 2Þ CPðN − 1Þ model (2.7) develop an addi-
tional potential upon μ deformation which depends on mass
differences. This potential in the small μ limit was first
found in [27]. The second effect is that superorientational
modes of the non-Abelian string are lifted. In other words
the two-dimensional fermions ξi (fermionic superpartners
of ni) were massless in the supersymmetric version of the
model at μ ¼ 0. However, at small μ they acquire a mass
λðμÞ ∼ μ [16]. At large deformations they become heavy
and decouple.
In order to capture these features, we write the following

Lagrangian for the deformed CPðN − 1Þ model:

L¼ j∇μnij2þ ξ̄iiσ̄μ∇μξ
iþ iDðn̄ini−2βÞ

þ
X
i

j
ffiffiffi
2

p
σ−mij2jnij2þυðμÞ

X
i

ℜΔmi0jnij2

þ i
X
i

ð
ffiffiffi
2

p
σ−mi−λðμÞÞξ̄RiξiL− i

ffiffiffi
2

p
n̄iðλRξiL−λLξ

i
RÞ

þ i
X
i

ð
ffiffiffi
2

p
σ̄− m̄i−λðμ̄ÞÞξ̄LiξiR− i

ffiffiffi
2

p
niðλ̄Lξ̄Ri− λ̄Rξ̄LiÞ;

ð2:13Þ

where Δmi0 ¼ mi −m0, mi are quark masses i ¼ 1;…; N,
and m0 is the mass with the smallest real part.
The coefficient functions υðμÞ and λðμÞ were derived in

[16] at the classical level for small and large values of μ:

υðμÞ ¼
8<
:

4πμ
2β ; μ → 0;

1
2β

8πμ

lng
2μ
m

; μ → ∞;
ð2:14Þ

λðμÞ ¼
� λ0

μ
2β ; μ → 0;

const g
ffiffiffiffiffiffiffi
μm

p ∼mG; μ → ∞:
ð2:15Þ

Here g2 is the four-dimensional bulk coupling constant.
The numerical value for λ0 is λ0 ≈ 3.7 [16]. Note that
although we can get rid of the explicit dependence on the
average quark mass m in (2.13) by a shift of σ, the above
formulas show that it enters indirectly through definitions
of parameters of μ-deformed CPðN − 1Þ model (2.13) in
terms of parameters of the bulk SQCD.
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This model interpolates between the supersymmetric and
the nonsupersymmetricmodels briefly described above. In the
limit μ → 0 supersymmetry is restored toN ¼ ð2; 2Þ, andwe
obtain (2.7). At large deformations the fermions can be
integratedout, and the theory flows to the bosonicmodel (2.1).
Our main tool for investigating this model in the

quantum level will be the 1=N expansion. In order to have
a smooth large N limit, our parameters should scale as

g2 ∼ 1=N; β ∼ N; μ ∼ N;

m ∼ 1; υðμÞ ∼ 1; λðμÞ ∼ 1: ð2:16Þ
Below in this paper we will use three independent

physical parameters to describe our four-dimensional bulk
model. The first one is the bulk gauge boson mass

m2
G ¼ 2g2μm; ð2:17Þ

which plays a role of the physical UV cutoff in the world
sheet CPðN − 1Þ model on the non-Abelian string; see [7].
The second one is the quarkmass differences (mi −mj), and
the third parameter is the physical mass of the adjoint matter

madj ¼ g2μ ¼ μ
N
8π2

ln mG
Λ4d

≡ μ̃; ð2:18Þ

which will be our actual deformation parameter. All three
parameters scale as N0 in the large N limit. Here Λ4d is the
scale of the N ¼ 2 bulk SQCD.
Thus, in fact, the average quark mass m is not an

independent parameter. It can be written as

m ¼ m2
G

2μ̃
: ð2:19Þ

At the scale of the gauge boson mass (2.17) the world
sheet coupling constant for small μ is given by [2,3]
[cf. (2.10)]

2β ¼ 4π

g2
¼ N

2π
ln

mG

Λ4d
: ð2:20Þ

For large μ the world sheet coupling normalized at the
scale mG becomes [16]

2β ¼ const
μ

m
1

ln2 g2μ
m

: ð2:21Þ

Expressed in terms of the invariant parameters it reads

2β ¼ const
N
π

μ̃2

m2
G

ln mG

ΛN¼1
4d

ln2 2μ̃
mG

; ð2:22Þ

where we take into account that at large μ̃ our bulk theory
flows to N ¼ 1 SQCD with the scale ðΛN¼1

4d Þ2N ¼ μ̃NΛN
4d.

In terms of the independent parameters the coefficient
functions υ and λ become

υðμ̃Þ ¼
� μ̃; μ̃ → 0;

m2
G
μ̃ ln 2μ̃

mG
; μ → ∞;

ð2:23Þ

λðμ̃Þ ¼
�
λ̃0μ̃; μ̃ → 0;

mG; μ̃ → ∞;
ð2:24Þ

where λ̃0 ¼ λ0=4π ≈ 0.3.
As we already mentioned, the value of the bulk gauge

boson mass mG plays a role of the UV cutoff of our world
sheet theory. Below mG our model is asymptotically free
[cf. (2.4)] with

2βðEÞ ¼ N
2π

ln
E
Λ2d

ð2:25Þ

at the scale E. This fixes the scale Λ2d in terms of the
parameters of the bulk theory. At small μ̃ we have

Λ2dðμ̃ → 0Þ ¼ Λ4d; ð2:26Þ
while at large μ̃

Λ2d ¼ ΛN¼1
4d exp

�
−const

μ̃2

m2
G
·

1

ln 2μ̃
mG

�
: ð2:27Þ

Note that at μ̃ → ∞ the scale (2.27) of our model
becomes exponentially small and the model enters the
strong coupling regime only at extremely small energies.
We will see below that phase transitions with respect to μ̃
appear at rather small values of μ̃ where the scale Λ2d is
close to its supersymmetric value Λ4d. Since the fermion
decoupling occurs at very large μ̃ ≫ mG, we can use small
μ̃ approximation formulas (2.23) and (2.24) while inves-
tigating the phase transition.
In the following sections we are going to investigate

different phases and vacuum structure of the world sheet
theory. There are two parameters that we can vary—the
SUSY breaking parameter μ̃ and the mass scale Δm. As we
already mentioned, our model (2.13) exhibits a rich phase
structure in the ðΔm; μ̃Þ plane.

III. ONE-LOOP EFFECTIVE POTENTIAL

In this section we proceed with solving the theory (2.13)
via the 1=N expansion. As we already mentioned, theN ¼
ð2; 2Þ model as well as the nonsupersymmetric CPðN − 1Þ
model (withoutmass parameters)was solved byWitten [18].
This method was also generalized for the case of the
heterotic N ¼ ð0; 2Þ model [28] and for the twisted mass
case [21,26]. Our derivationwill closely follow these papers.

A. Derivation of the effective potential

We want to start by deriving the one-loop effective
potential. Our action (2.13) is well suited for that since it is
quadratic with respect to the dynamical fields ni and ξi.
However, we do not integrate over all of them a priori due
to the following reason.
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As was stated in the previous section, our model (2.13)
is, in a sense, an intermediate case between the N ¼ ð2; 2Þ
and the nonsupersymmetric CPðN − 1Þ models, which
were studied before. Therefore we can use the insights
derived from these models in order to better understand
our case. First of all, we expect that our theory has at least
two phases, the strong and weak couplings. The order
parameter distinguishing between these two phases is the
expectation value of the ni fields. At the weak coupling (the
so-called Higgs phase [21]) one of the ni develops a VEV,
hni0i ¼ 2β. In the strong coupling regime (the so-called
Coulomb phase), VEVs of all the ni fields vanish.
So, we will use the following strategy. We integrate over

N − 1 fields ni with i ≠ 0 (and over the corresponding
fermions ξi). The resulting effective action is a functional of
n0 ≡ n,D, and σ. To find the vacuum configuration, wewill
minimize the effective action with respect to n, D, and σ.
Note that this functional also depends on Aμ and the

fermions ξ0L;R and λL;R, but the Lorenz invariance implies
that these fields have zero VEVs. We also choose to allow
n0 field to have a nonzero VEV because the associated
massm0 has the minimal real part [see (2.3)] and as we will
see later hn0i ≠ 0 corresponds to the true vacuum in the
Higgs phase rather then a quasivacuum.
Integrating out the ni and ξi fields, we arrive at the

following determinants:Q
N−1
i¼1 detð−∂2

k þ j ffiffiffi
2

p
σ −mi − λðμÞj2ÞQ

N−1
i¼1 detð−∂2

k þ iDþ υðμÞΔmi0 þ j ffiffiffi
2

p
σ −mij2Þ

; ð3:1Þ

which gives for the effective potential:

Veff ¼
Z

d2xðiDþ j
ffiffiffi
2

p
σ −m0j2Þjnj2 − 2β

Z
d2xiD

þ
XN−1

i¼1

Tr ln ð−∂2
k þ iDþ υðμÞΔmi0 þ j

ffiffiffi
2

p
σ −mij2Þ

−
XN−1

i¼1

Tr lnð−∂2
k þ j

ffiffiffi
2

p
σ −mi − λðμÞj2Þ: ð3:2Þ

The next step is to calculate the traces entering this
expression. At μ̃ → 0, the supersymmetry is restored, and

this expression is well defined. However, at a nonvanishing
deformation, this expression diverges quadratically, and a
regularization needs to be performed. Below we proceed
with the Pauli-Villars regularization (a similar procedure
was carried out in [29]). We introduce regulator fields with
masses ba, fa, a ¼ 1; 2, and write the regularized effective
potential as

Veff ¼
Z

d2xðiDþ j
ffiffiffi
2

p
σ −m0j2Þjnj2 − 2β

Z
d2xiD

þ
XN−1

i¼1

Tr lnð−∂2
k þ iDþ υðμÞΔmi0 þ j

ffiffiffi
2

p
σ −mij2Þ

þ
X2
a¼1

XN−1

i¼1

BaTr ln ð−∂2
k þ b2aÞ

−
XN−1

i¼1

Tr lnð−∂2
k þ j

ffiffiffi
2

p
σ −mi − λðμÞj2Þ

−
X2
a¼1

XN−1

i¼1

FaTr ln ð−∂2
k þ f2aÞ; ð3:3Þ

where the coefficients satisfy

X2
a¼0

Ba ¼ −1;
X2
a¼0

Bab2a ¼ −m2
bos: ð3:4Þ

These equations imply

B1 ¼
b22 −m2

bos

b21 − b22
; B2 ¼ −

b21 −m2
bos

b21 − b22
: ð3:5Þ

The regulator masses play the role of the UV cutoff. Similar
relations hold for the fermionic regulator coefficients.
Moreover, we need to properly normalize our traces by

subtracting the contributions in the trivial background,
namely Tr lnð−∂2

kÞ from the bosonic and the fermionic
traces. After this procedure we arrive at

Veff ¼
Z

d2xðiDþ j
ffiffiffi
2

p
σ −m0j2Þjnj2 − 2β

Z
d2xiD −

1

4π

XN−1

i¼1

�
ðþiDþ υðμÞΔmi0 þ j

ffiffiffi
2

p
σ −mij2Þ

× ln ðþiDþ υðμÞΔmi0 þ j
ffiffiffi
2

p
σ −mij2Þ − ðþiDþ υðμÞΔmi0 þ j

ffiffiffi
2

p
σ −mij2Þ

b21 ln b
2
1 − b22 ln b

2
2

b21 − b22

�

þ 1

4π

XN−1

i¼1

�
j

ffiffiffi
2

p
σ −mi − λðμÞj2 ln j

ffiffiffi
2

p
σ −mi − λðμÞj2 − j

ffiffiffi
2

p
σ −mi − λðμÞj2 f

2
1 ln f

1
1 − f22 ln f

2
2

f21 − f22

�
: ð3:6Þ

This is a quite complex expression. In order to simplify it, let us take the limit [29]

b21 ¼ xM2
uv; b22 ¼ M2

uv; f21 ¼ xM2
uv; f22 ¼ M2

uv; x → 1; ð3:7Þ
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where Muv is the UV cutoff. Moreover, recall from Sec. II C that the bare coupling constant can be parametrized as

2βðMuvÞ ¼
N
4π

ln
M2

uv

Λ2
: ð3:8Þ

Here, Λ≡ Λ2d is the scale of our model. Then the density of the effective potential becomes

Veff ¼ ðiDþ j
ffiffiffi
2

p
σ −m0j2Þjnj2 þ

1

4π

XN−1

i¼1

iD

�
1 − ln

iDþ υðμÞℜΔmi0 þ j ffiffiffi
2

p
σ −mij2

Λ2

�

þ 1

4π

XN−1

i¼1

ðυðμÞℜΔmi0 þ j
ffiffiffi
2

p
σ −mij2Þ

�
1 − ln

iDþ υðμÞℜΔmi0 þ j ffiffiffi
2

p
σ −mij2

M2
uv

�

−
1

4π

XN−1

i¼1

j
ffiffiffi
2

p
σ −mi − λðμÞj2

�
1 − ln

j ffiffiffi
2

p
σ −mi − λðμÞj2

M2
uv

�
: ð3:9Þ

Note that our regularized effective potential depends on
the UV cutoff scale Muv. We cannot make a subtraction to
get rid of it in the model at hand for the following reason.
First, when we consider our μ̃-deformed CPðN − 1Þ model
(2.13) as an effectiveworld sheet theory on the non-Abelian
string the UV cutoff has a clear physical meaning, namely

Muv ¼ mG; ð3:10Þ

where mG is the mass of the bulk gauge boson. Moreover,
the fermion mass λðμÞ in (3.9) interpolates from zero at
μ̃ ¼ 0 to mG ¼ Muv at μ̃ → ∞; see (2.24). Thus Muv is in
fact a physical parameter in our model, and there is no need
to get rid of it.
The renormalized coupling constant is

2βren ¼
1

4π

XN−1

i¼1

ln
iDþυðμÞℜΔmi0þj ffiffiffi

2
p

σ−mij2
Λ2

: ð3:11Þ

B. Vacuum equations

To find the vacuum configuration we minimize the
effective potential (3.9). Varying with respect to D we
arrive at

jnj2 ¼ 2βren ¼
1

4π

XN−1

i¼1

ln
iDþ υðμÞℜΔmi0 þ j ffiffiffi

2
p

σ −mij2
Λ2

:

ð3:12Þ

Variation with respect to n̄ yields the second equation:

ðiDþ j
ffiffiffi
2

p
σ −m0j2Þn ¼ 0: ð3:13Þ

Finally, the third equation is obtained by minimizing over
the σ field,

− ð
ffiffiffi
2

p
σ −m0Þjnj2 þ

1

4π

XN−1

i¼1

ð
ffiffiffi
2

p
σ −miÞ

× ln
iDþ υðμÞℜΔmi0 þ j ffiffiffi

2
p

σ −mij2
m2

G

¼ 1

4π

XN−1

i¼1

ð
ffiffiffi
2

p
σ −mi − λðμÞÞ ln j

ffiffiffi
2

p
σ −mi − λðμÞj2

m2
G

;

ð3:14Þ

where here and below we replaced Muv by the physical
mass mG.
These three equations comprise our master set. In addi-

tion, the vacuum configurations must satisfy the constraint

βren ≥ 0; ð3:15Þ

which comes from 2βren ¼ jnj2 ≥ 0.
From (3.12) and (3.13) it immediately follows that either

n ¼ βren ¼ 0 ð3:16Þ

or

iDþ j
ffiffiffi
2

p
σ −m0j2 ¼ 0: ð3:17Þ

The first option corresponds to the strong coupling regime
where the VEVof n and the renormalized coupling constant
vanish. The second option is realized in the Higgs regime,
where the n field develops a VEV. In the following sections
we will study each of these regimes in detail.

IV. STRONG COUPLING REGIME

In this section we will begin the investigation of our
model in the strong coupling regime, which is defined by
the condition (3.16). This phase occurs when the mass scale
of the modelΔm≲ Λ; see, e.g., [21,26]. To start off we will
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first investigate a simple case Δm ¼ 0. The behavior of our
model is different at different values of the deformation
parameter: at intermediate μ̃ we will see a phase transition,
while in the limit of large fermion mass λ → mG we will
confirm that the model (2.13) flows to the nonsupersym-
metric CPðN − 1Þ model (2.1) as expected. Next, we will
generalize our results to the case of distinct masses mi.

A. Equal mass case, small deformations

We start by investigating the simplest case of equal mass
parameters,

m0 ¼ m1 ¼ � � � ¼ mN−1 ≡m: ð4:1Þ
Under this assumption the potential proportional to υðμÞ is
zero, and the only deformation we are left with is the
fermion mass λ. For now we will not write its dependence
on μ̃ explicitly.
To simplify the equations, let us denote

τ ¼
ffiffiffi
2

p
σ −m0: ð4:2Þ

Then the effective potential becomes

Veff ¼
N
4π

iD

�
1− ln

iDþjτj2
Λ2

�
þ N
4π

jτj2
�
1− ln

iDþjτj2
m2

G

�

−
N
4π

jτ−λðμÞj2
�
1− ln

jτ−λðμÞj2
m2

G

�
þΔVðarg τÞ;

ð4:3Þ

where τ ¼ jτjei arg τ. Here we added a new term ΔVðarg τÞ
absent in (3.9). It takes into account the chiral anomaly and
appears already in the N ¼ ð2; 2Þ CPðN − 1Þ model at
μ̃ ¼ 0. As was shown by Witten [18] the photon become
massive due to the chiral anomaly with mass equal to 2Λ.
The complex scalar σ is a superpartner of the photon and
also acquires mass 2Λ. In particular, its argument arg τ
becomes massive.
This effect is taken into account by the additional

potential ΔVðarg τÞ in (4.3). It is constructed as follows.
At small μ̃ VEVs of τ are approximately given by their
supersymmetric values,

τSUSYk ¼ −Λ exp

�
2πik
N

�
; k ¼ 0;…; N − 1; ð4:4Þ

cf. (2.11). We divide 2π into N patches centered at vacuum
values, arg τSUSYk ¼ 2πk=N þ π, k ¼ 0;…; ðN − 1Þ, and
define the potential ΔVðarg τÞ to be quadratic in each
patch. Namely, we have

ΔVðarg τÞ ¼ N
4π

m2
arg τ

2
ðarg τ − arg τSUSYk Þ2;

2πðk − 1
2
Þ

N
< arg τ − π <

2πðkþ 1
2
Þ

N
; ð4:5Þ

where marg τ is the mass of arg τ. We present its calculation
in Appendix A, in particular showing corrections [see
Eq. (B7)] to Witten’s result [18]

mSUSY
arg τ ¼ 2Λ: ð4:6Þ

Without the additional potential ΔVðarg τÞ N discrete
vacua (4.4) disappear immediately as we switch on μ̃ due to
the lifting of quasivacua. We show below that with
ΔVðarg τÞ taken into account quasivacua are still present
at small μ̃ and disappear only at certain finite critical μ̃crit
which we identify as a phase transition point. Note that
possible higher corrections to the quadratic potential (4.5)
are suppressed in the large N limit because the width of
each patch is small, proportional to 1=N.

1. Vacuum energies

As we turn on the deformation parameter μ̃, the mass of
the ξi fermion λðμ̃Þ is no longer zero. This breaks explicitly
both chiral symmetry and two-dimensional supersymmetry.
As a result the ZN symmetry is broken and VEVs of σ are
no longer located at a circle. Moreover, at μ̃ ¼ 0 our model
has N degenerate vacua given by (4.4). When we switch on
μ̃, the corresponding vacuum energies split, and all vacua
except the one at k ¼ 0 become quasivacua. The only true
vacuum is the one at k ¼ 0; see Fig. 2. As we discussed in
Sec. II A, this leads to the confinement of kinks.
It turns out that there are two mechanisms responsible for

the vacuum energy splitting. One is due to the effective
potential (4.3) and dominates at small μ̃. The other one is
typical for the nonsupersymmetric CPðN − 1Þ model; see
Sec. II A. It is due to the constant electric field of kinks
interpolating between neighboring quasivacua and domi-
nates at large μ̃. We will now study the former mechanism,
while the latter one will be considered in the next
subsection.
Energy splittings in the small μ̃ limit can be derived using

the small λðμÞ expansion of the effective potential (4.3),

Veff ¼ VSUSY þ δV; ð4:7Þ

where VSUSY is the supersymmetric effective potential
corresponding to λ ¼ 0, while

δV ≈
N
4π

· 2ℜτ · λ ln
m2

G

jτj2 ð4:8Þ

is the OðλÞ deformation. We can immediately infer lifted
vacuum energies by plugging unperturbed VEVs (4.4) into
(4.8). As we already mentioned, the ground state (true
vacuum) is located at

τ0 ¼ −Λ ¼ Λeiπ; ð4:9Þ

while the first quasivacuum is at
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τ1 ¼ −Λ exp

�
2πi
N

�
≈ −Λ − Λ

2πi
N

þ Λ
2π2

N2
: ð4:10Þ

Plugging this into (4.8) we get for the vacuum splitting2

E1 − E0 ¼
2π

N
λΛ ln

mG

Λ
: ð4:11Þ

This signifies that kinks interpolating between these vacua
are now confined, as opposed to the supersymmetric case.

2. Corrections to the VEVs

Now let us derive corrections to the unperturbed VEVs
(4.4). Minimizing the potential (4.3) we get

2βren ¼ ln
iDþ jτj2

Λ2
¼ 0 ⇒ iDþ jτj2 ¼ Λ2; ð4:12Þ

jτj ln jτ − λðμ̃Þj2
Λ2

þ cosðarg τÞλðμ̃Þ lnm
2
G

Λ2
¼ 0; ð4:13Þ

−sinðarg τÞλjτjlnm
2
G

Λ2
þm2

arg τ

2
ðarg τ−arg τSUSYk Þ¼0: ð4:14Þ

The approximate solution in the limit of small μ̃ is given by

jτj ≈ Λ − cosðarg τSUSYk Þ 1
2
λ ln

m2
G

Λ2
; ð4:15Þ

arg τ ≈ arg τSUSYk þ sinðarg τSUSYk Þ 2λΛ
m2

arg τ
ln
m2

G

Λ2
: ð4:16Þ

In particular, for the τ0 ¼ −Λ we get the corrected value

τground ≈ −Λ −
1

2
λ ln

m2
G

Λ2
; ð4:17Þ

while for the first quasivacuum (4.10)

jτ1j ≈ jτgroundj ≈ Λþ 1

2
λ ln

m2
G

Λ2
;

arg τ1 ≈
�
π þ 2π

N

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
unperturbed

−
2π

N
λ

2Λ
ln
m2

G

Λ2
; ð4:18Þ

where we used (4.6) for the nonperturbed mass of σ. These
results agree with numerical calculations; see Fig. 3.
Note that when

λ

Λ
ln
mG

Λ
¼ 1; ð4:19Þ

we have in our approximation arg τ1 ¼ τground ¼ π, and the
quasivacuum at τ1 effectively disappears. This signifies that
around the point (4.19) a phase transition might take place.
This will turn out to be true; see Sec. IV C below.
The quasivacuum with the highest energy is located at

τhigh ≈ Λ −
1

2
λ ln

m2
G

Λ2
: ð4:20Þ

Further analysis of Eq. (4.13) shows that this solution
disappears at

λ ¼ 2Λ

e ln m2
G

Λ2

; ð4:21Þ

which is consistent with (4.22). This suggests that around
the critical value of the deformation

(a) (b)

FIG. 2. Effective potential (4.3) on the complex τ ¼ ffiffiffi
2

p
σ −m0 plane, with D integrated out.

2Formula (4.11) has a correction coming from the energy-
momentum trace anomaly, but this correction is of the next order
in the small parameter λ

Λ ln
Muv
Λ .
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λcrit ∼
Λ

ln m2
G

Λ2

ð4:22Þ

all quasivacua have decayed [cf. (4.19)].

B. Effective action

As we already mentioned, there are two mechanisms of
the energy splitting of quasivacua at nonzero μ̃. Both lead to
the confinement of kinks. The first one is due to μ̃
corrections present in the effective potential (4.3). These
corrections lift σ quasivacua and lead to the splitting
described by Eq. (4.11). The second mechanism is due
to the constant electric field of kinks interpolating between
quasivacua. The photon Aμ becomes dynamical on the
quantum level [18]. We will see below that, as we turn on
the deformation parameter μ̃, the photon acquires a mass-
less component. A linear Coulomb potential is generated,
but the vacuum energy splitting due to the electrical field is
much smaller than the one in (4.11). At sufficiently large μ̃
all N − 1 σ quasivacua decay, and the splitting is saturated
by the electric field only. We identify this change of the
regime and associated discontinuity in (the derivative of)
(E1 − E0) as a phase transition.

1. Derivation of the effective action

Consider now the effective action of our μ̃-deformed
CPðN − 1Þmodel (2.13) obtained by integrating out ni and
ξi fields in the large-N approximation. Relaxing the
condition that σ and D are constant fields assumed in
Sec. III A we consider the one-loop effective action as a
functional of fields of the vector supermultiplet.

Considering the vicinity of the true vacuum where
ℑhσi ¼ 0 we write down the bosonic part of the action
in the form (Minkowski formulation3)

Seff ¼
Z

d2x

�
−

1

4e2γ
F2
μν þ

1

e2ℑσ
j∂μℑσj2

þ 1

e2ℜσ

j∂μℜσj2 − VðσÞ −
ffiffiffi
2

p
bγ;ℑσℑσF�



; ð4:23Þ

where F� is the dual gauge field strength,

F� ¼ −
1

2
εμνFμν: ð4:24Þ

This effective action was first presented forN ¼ ð2; 2Þ and
N ¼ ð0; 2Þ supersymmetric CPðN − 1Þ models in [28].
Here we generalize it for the μ̃-deformed CPðN − 1Þmodel
(2.13). The potential VðσÞ here can be obtained from (3.9)
by eliminating D by virtue of its equation of motion.
Coefficients in front of Aμ and σ kinetic terms are

finite after renormalization reflecting Witten’s observation
that these fields become physical [18]. The last term in
(4.23) is Aμ − σ induced by the chiral anomaly. Because of
this mixing, the would-be massless photon and the phase of
σ acquire a mass (4.6) already in unperturbed theory at
μ̃ ¼ 0. This term is also present when we switch on the
deformation.

(a) (b)

FIG. 3. Numerical results for the minima τground and τ1 obtained by directly minimizing (4.3). (a) The green dashed line shows the
approximate formula (4.17), the solid blue line is the numerical values of jτgroundj, while jτ1j is shown by red “þ.” (b) The approximate
correction to arg τ1 [(4.18), the last term] and the numerical results for this quantity.

3In this subsection we will use the Minkowski formulation
with gμν ¼ diagfþ;−g, and for the Levi-Civita symbol
ε01 ¼ −ε01 ¼ þ1.
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Coefficients in this effective action come from loops. We
take the low-energy limit when the external momenta are
small. There are several contributions. Photon wave func-
tion renormalization comes from the diagram on Fig. 4(a)
and a similar graph with a bosonic loop. Wave function
renormalizations for ℜσ and ℑσ come from the diagram on
Fig. 4(b) and also a similar graph with a bosonic loop.
Finally, the mixing term is given by the diagram on
Fig. 4(c). For the mass distribution (2.3) and the vacuum
with ℑhσi ¼ 0, the normalization factors are

1

e2ℜσ

¼ 1

4π

XN−1

k¼0

�
1

3

M2
ξk
þ 2ðℑmkÞ2
M4

ξk

þ 2

3

ð ffiffiffi
2

p hσi −ℜmkÞ2
m4

nk

�
;

1

e2ℑσ
¼ 1

4π

XN−1

k¼0

�
1

3

3M2
ξk
− 2ðℑmkÞ2
M4

ξk

þ 2

3

ðℑmkÞ2
m4

nk

�
;

1

e2γ
¼ 1

4π

XN−1

k¼0

�
1

3

1

m2
nk

þ 2

3

1

M2
ξk

�
;

bγ;ℑσ ¼
1

2π

XN−1

k¼0

ffiffiffi
2

p hσi −mk − λðμ̃Þ
M2

ξk

: ð4:25Þ

Here, M2
ξk
and m2

nk are the masses of the ξk and nk fields,
respectively:

M2
ξk
¼ j

ffiffiffi
2

p
hσi −mk − λðμ̃Þj2;

m2
nk ¼ ihDi þ υðμ̃ÞΔmk þ j

ffiffiffi
2

p
hσi −mkj2: ð4:26Þ

We present details of this calculation in Appendix A.
Next we diagonalize the photon-σ mass matrix in (4.23);

see Appendix B. As we already mentioned, this diagonal-
ization shows that the photon acquires a massless compo-
nent as soon as we switch on μ̃. This component is
responsible for the presence of the constant electric field

in quasivacua. This constant electric field gives rise to a
second mechanism of quasivacua splitting; see (B10). This
effect is small at small μ̃ but becomes dominant at larger μ̃
above the phase transition point. This result can also be
derived in a different way which we consider in the next
subsection.

2. Coulomb potential and vacuum energies

In this section we study the formation of a constant
electric field in a quasivacuum generalizing a method
developed by Witten in [18] for the N ¼ ð2; 2Þ super-
symmetric CPðN − 1Þ model.
Let us start with the effective action (4.23) taking into

account the presence of the trial matter charges,

Seff ¼
Z

d2x

�
−

1

4e2γ
F2
μν−

ffiffiffi
2

p
bγ;ℑσℑσF� þ jμAμ



: ð4:27Þ

Consider a stationary pointlike kink at x ¼ x0 with electric
charge þ1 described by the current jμ ¼ ðδðx − x0Þ; 0Þ
and F� ¼ − 1

2
εμνFμν ¼ ∂0A1 − ∂1A0.

We have the equation of motion for the photon,

−
1

e2γ
∂xE −

ffiffiffi
2

p
bγ;ℑσ∂xℑσ ¼ −j0; ð4:28Þ

where

E ¼ F01 ð4:29Þ

is the electric field strength. Integrating over the spatial
coordinate we obtain

1

e2γ
ðEð∞Þ − Eð−∞ÞÞ þ

ffiffiffi
2

p
bγ;ℑσðℑσð∞Þ − ℑσð−∞ÞÞ ¼ 1:

ð4:30Þ

In the supersymmetric case μ̃ ¼ 0 the photon is massive, so
there is no constant electric field, Eð∞Þ ¼ Eð−∞Þ ¼ 0.
Therefore we have

ffiffiffi
2

p
bγ;ℑσðℑσð∞Þ − ℑσð−∞ÞÞ ¼ 1: ð4:31Þ

Since

bγ;ℑσ ¼
1

2π

N
Λ

ð4:32Þ

[see Eq. (4.25)] for μ̃ ¼ 0 we get

ffiffiffi
2

p
ðℑσð∞Þ − ℑσð−∞ÞÞ ¼ 2π

Λ
N
; ð4:33Þ

which, if we set τð−∞Þ ¼ −Λ for the true vacuum, is an
approximation of

(a) (b)

(c)

FIG. 4. Contributions to the effective action.
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τð∞Þ ¼ −Λe2πi
N ð4:34Þ

for the value of σ VEV in the first quasivacuum; see (4.10).
This result for the N ¼ ð2; 2Þ case has been derived long
ago by Witten [18] showing the presence of N vacua and
kinks interpolating between them.
Now, consider small deformations in the Eq. (4.30) for a

kink interpolating between the ground state (4.17) at x ¼
−∞ and the first quasivacuum (4.18) at x ¼ þ∞. Setting
Eð−∞Þ ¼ 0 we get from (4.30)

1

e2γ
Eð∞Þ þ

ffiffiffi
2

p
bγ;ℑσðℑσð∞Þ − πÞ ¼ 1: ð4:35Þ

Using (4.18) and (4.32) we obtain for the electric field
strength

Eð∞Þ ¼ e2γ
λ

Λ
ln
mG

Λ
: ð4:36Þ

We see that the kink produces a constant electric field now.
This gives the contribution to the energy density splitting
between the first quasivacuum and the true vacuum

ðE1 − E0ÞjE ¼ 1

2e2γ
E2 ¼ 2π

N

�
λ ln

mG

Λ

�
2

: ð4:37Þ

This coincides with the result (B10) obtained from the
photon-σ diagonalization. This contribution is small com-
pared to the σ splitting given by (4.11) at small μ̃.

C. Second order phase transition

As we learned so far, the vacuum energy (or, rather,
energy splitting between the ground state and the first
quasivacuum) has two contributions, which depend on the
parameter

ω ¼ λðμ̃Þ
Λ

ln
mG

Λ
: ð4:38Þ

The first contribution is the splitting of different quasi-
minima σi of the effective potential (4.11). When we turn
on ω (i.e., supersymmetry breaking parameter μ̃), this
contribution at first grows linearly with ω, and then drops
to zero when the σ quasiminima disappear.
The second contribution comes from the electric field of

charged kinks interpolating between the quasivacua; see
(B10) and (4.37). This contribution at first grows as ω2, and
at the point when the first σ quasivacuum disappears, the
electric field jumps up to saturate (4.30).4

The jumping point is the same for these two contribu-
tions, and it is where a phase transition occurs. The
corresponding critical value is ωc ∼ 1; i.e., [cf. (4.22)
and (4.19)]

λcrit ¼ λðμ̃critÞ ∼
Λ

ln m2
G

Λ2

: ð4:39Þ

Full vacuum energy is the sum of these two contribu-
tions, and on general grounds we expect that it does not
jump. Rather, its first derivative is discontinuous, and the
phase transition must be of the second order. Numerical
calculations confirm this; see Fig. 5. At the point where the
quasivacuum disappears, the two contributions to the
vacuum energy jump, and the magnitudes are just right
for the total sum to stay continuous. However, we must
point out that we do not have enough accuracy for the
detailed study of the vicinity of the transition point. The
point is that we can trust our formula for the arg τ potential
(4.5) only in the vicinities of the minima (4.4), and we do
not know the exact form of this potential in regions between
any of two adjacent minima.
At small deformations, the main contribution to the

vacuum energy is σ-quasivacua splitting (4.11). After the
transition point, vacuum energy is determined solely by
the kink electric field. As we reviewed in Sec. II A, it is the
electric field that is responsible for the quasivacuum energy
splittings in the nonsupersymmetric CPðN − 1Þ model.
This is consistent with our results, since at large μ̃ above the
phase transition point our model flows to the nonsuper-
symmetric CPðN − 1Þ model.
To conclude this section we note that parameter ω

relevant for the quasivacua splitting is enhanced by the
large logarithm lnmG=Λ ≫ 1. Hence the phase transi-
tion point occurs at μ̃c ∼ λc given by (4.39), much
smaller than μ̃ ∼ Λ. These are even smaller values of
μ̃ as compared to mG since we assume mG ≫ Λ in order
to keep the bulk theory at weak coupling. At these small
values of μ̃ we are way below the scale of adjoint matter
decoupling in the bulk theory which occurs at μ̃ ≫ mG.
In particular, the scale Λ of the world sheet theory is
close to Λ4d rather than to its large-μ̃ asymptotic
values (2.27).

D. Large deformations

As we increase the deformation parameter μ̃, the
fermion mass λ approaches the UV cutoff scale mG, and
we can expect that the fermions become very heavy and
decouple, effectively taking no part in the dynamics.
Therefore, our theory should become the nonsupersym-
metric CPðN − 1Þ model (2.1). The VEV of the τ field
should become zero.
We can check this directly using our effective potential

(4.3). Indeed, assume that τ ≪ λ ∼mG. Then we can
expand (4.3) to obtain

4This jumping is not seen from the propagator considerations
(B10) since it holds only perturbatively near the true vacuum and
does not take into account the presence of σ quasivacua.
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Veff ¼
N
4π

iD

�
1 − ln

iDþ jτj2
Λ2

�
þ N
4π

jτj2
�
1 − ln

iDþ jτj2
m2

G

�

−
N
4π

· 2ℜτ · λ ln
λ2

m2
G
−

N
4π

λ2
�
1 − ln

λ2

m2
G

�
: ð4:40Þ

Minimizing this potential we obtain

τ ≈ −λ
lnðmG=λÞ
lnðmG=ΛÞ

: ð4:41Þ

This formula turns out to be pretty good compared to the
exact numerical solution; see Fig. 6(a). As λ approaches the
UV cutoff scalemG, the VEVof τ vanishes. The first term in
(4.40) reduces to the effective potential for the nonsuper-
symmetric CPðN − 1Þ model, while the last term gives a
vacuum energy shift. At λ ¼ mG, the vacuum energy is

Evac;UV ¼ N
4π

ðΛ2 −m2
GÞ: ð4:42Þ

This is in agreement with the Appelquist-Carazzone decou-
pling theorem [30], which states that the effect of heavy
fields is limited to the renormalization of physical quantities.
Note that since the supersymmetry is explicitly broken in the

world sheet theory by fermionmasses, the vacuum energy is
not positively defined.
The vacuum energy above is a quantum correction to the

classical expression for the non-Abelian string tension in
the bulk theory. The latter was derived in [16], and together
with (4.42) it can be written as

T ¼ 2π

ln m2
G

m2

m2
G

g2
þ N
4π

ðΛ2 −m2
GÞ: ð4:43Þ

We see that the second term here is just anOðg2Þ correction
to the classical formula.
At intermediate values of λ we were able to study this

model only numerically. The results are presented on
Fig. 6. They show the dependence of hσi and Evac on
the heavy fermion mass λ. One can see that indeed the
VEV of τ vanishes at very large λ. Note that we will have
hiDi < 0 in a wide range of λ, but this does not lead to an
instability because, according to (4.12), the mass of the n
field is always positive.

E. Split mass case

The results obtained in the previous section can be
generalized to the case Δmi0 ≠ 0. Consider the masses on a

FIG. 5. Different contributions to the vacuum energy. The vertical axis is labeled by the rescaled energy splitting E1 − E0. Values of
the deformation parameter μ̃ are on the lower horizontal axis (in the units of Λ), while the upper horizontal axis represents the parameter
ω (4.38). Green circles denote the contribution from the electric field [solution of (4.30), given by (4.37) below the phase transition
point], þ signs represent the splitting from the potential (4.3) [the blue dashed line is the approximation (4.11)]. The solid red line is the
sum of these two contributions. Phase transition occurs at ω ≈ 1where the full energy displays a discontinuity of the first derivative. Our
model does not allow us to obtain exact results in the vicinity of the phase transition point, and we have to extrapolate from the left and
from the right (red dotted line continuing the solid red curve).
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circle (2.3), with the radius Δm as the mass scale of
our model.
If we fix some Δm and start increasing μ̃ [and, therefore,

λðμ̃Þ], our model exhibits similar behavior as in the case
Δm ¼ 0. At μ̃ ¼ 0 the supersymmetry is unbroken, and
there are N degenerate vacua. When we switch on the
deformation, the degeneracy is lifted, and eventually all
lifted quasivacua decay, which signifies a phase transition.
The set of the phase transition points represents a curve on
the ðμ;ΔmÞ plane; see Fig. 7.

Qualitatively, we see nothing new. However, whenΔm is
large enough, the theory goes through the phase transition
from the strong coupling phase into a weak coupling phase,
the so-called “Higgs” phase. This will be the subject of the
next section.

V. HIGGS REGIME

When the mass difference Δm exceeds some critical
value, the theory appears in the Higgs phase. This phase is
characterized by a nonzero VEV of n. At very weak
coupling, we can use the classical Lagrangian (2.13) to
find the vacuum solution,

n20 ¼ 2β;
ffiffiffi
2

p
σ ¼ m0; iD ¼ 0: ð5:1Þ

The vacuum energy is classically zero.
In the supersymmetric case μ̃ ¼ 0 the solution for σ is

exact at large N. Moreover, at very large Δm the coupling
constant 1=β is small (frozen at the scale Δm) and quantum
corrections to the classical vacuum solution (5.1) are small.
However, at nonzero μ̃ and for Δm≳ Λ, things become

more complicated, as we can no longer rely on the classical
equations.Generally speaking, solution (5.1) receivesΛ=Δm
and μ̃=Λ corrections. We have to work with the quantum
equations (3.12)–(3.14), and most of the results presented in
this section were obtained from numerical calculations.
First of all, we wish to check that the one-loop potential

that we derived (3.9) is compatible with the classical limit.
Consider the limit of large Δm ≫ Λ with some μ̃ fixed. We
can expand the vacuum Eqs. (3.12)–(3.14) in powers of
Λ=Δm and easily derive an approximate solution for the
ground state VEV,

(a) (b)

FIG. 6. Numerical results for the VEVof τ and vacuum energy at large deformations λ ≫ 1. (a) We have VEVof τ. The dashed line
shows the approximate solution (4.41), while the solid line is the result of numerics. One can see that τ indeed vanishes at λðμ̃Þ ¼ mG.
(b) We have Evac. The dashed line shows its asymptotic value EUV given by (4.42). In the numerical procedure we had setmG=Λ ¼ 1010.

FIG. 7. Phase transition line between two strong coupling
regimes (shown in solid blue). The dashed line is the phase
transition line between the Strong coupling and Higgs regimes;
see Sec. V B. This plot is a result of numerical calculations for
N ¼ 16.
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ffiffiffi
2

p
σ −m0 ≈ −λðμ̃Þ ln

mG
Δm

ln Δm
Λ
: ð5:2Þ

Figure 8 presents our results for the VEV of σ. One
can see that the formula (5.2) gives a very good approxi-
mation [see also Fig. 10(a)]. At large Δm we indeed
have

ffiffiffi
2

p
σ ≈m0.

A. Quasivacua

Solution (5.1) is just one of the possible vacuum states in
the Higgs phase. In the supersymmetric case μ̃ ¼ 0 there
are N degenerate vacua as dictated by the Witten index. In
[26] it was shown that the theory at largeΔm is in the Higgs
phase where different components of the N-plet ni develop
a VEV. These vacua are characterized by

h
ffiffiffi
2

p
σi¼mi0 ; hjni0 j2i¼ 2β; i0¼ 0;…;N−1: ð5:3Þ

Moreover, there are kinks interpolating between these
vacua.
As we switch on the deformation parameter μ̃, these

vacua split, and at small μ̃ we have one true ground state
(5.1) and N − 1 quasivacua. Let us first consider this
picture from the classical Lagrangian (2.13). The classical
potential is

Vclðn; σ; DÞ ¼ iDðn̄ini − 2βÞ þ
X
i

j
ffiffiffi
2

p
σ −mij2jnij2

þ υðμÞ
X
i

ℜΔmi0jnij2: ð5:4Þ

Let us derive the mass spectrum in the vicinity of a vacuumffiffiffi
2

p
σ ¼ mi0 for some i0. Then ni; i ≠ i0 are small, while

ni0 ¼
ffiffiffiffiffi
2β

p
þ δni0 : ð5:5Þ

From the D-term condition

δni0 ≈ −
1

2 · 2β

X
i≠i0

jnij2; ð5:6Þ

and the potential (5.4) becomes

Vcl ≈
X
i≠i0

jmi −mi0 j2jnij2 þ υðμÞ

×
X
i≠i0

ℜðmi −m0Þjnij2 − υðμÞℜðmi0 −m0Þ
X
i≠i0

jnij2

¼
X
i≠i0

jnij2½jmi −mi0 j2 þ υðμÞℜðmi −mi0Þ� ð5:7Þ

so that the mass of the ni particle is

M2
i ¼ jmi −mi0 j2 þ υðμÞℜðmi −mi0Þ: ð5:8Þ

If M2
i were to turn negative for some i, this would signify

that the vacuum under consideration is unstable. This
happens for all i0 ≠ 0 if the deformation is large enough
because there are always some i with ℜðmi −mi0Þ < 0.
To be more concrete, consider our choice of the masses

(2.3). Then for the vacuum i0 ¼ 0 we have ℜðmi −m0Þ >
0 for all i ≠ 0, and this vacuum is stable. However, the
vacua 0 < i0 < N=2 can be shown to become unstable
when the deformation parameter hits the critical value

υðμcrit;i0Þ¼ 2Δm
1− cosð2πN Þ

cosð2πði0−1ÞN Þ−cosð2πi0N Þ
≈
4π

N
Δm

sinð2πi0N Þ :

ð5:9Þ

The last step is the large N approximation. A similar
statement holds for the quasivacua N=2 < i0 < N, while
the quasivacuum number i0 ¼ N=2 (for even N) decays
when υðμcrit;N=2Þ ¼ 2Δm. When μ̃ is above this critical
value, the theory has a unique vacuum, and there are no
kinks left.
These quasivacua are seen from the one-loop potential as

well. Following [26], we can study these quasivacua as
follows. Recall that deriving the effective potential (3.9) we
assumed that n≡ n0 can develop a VEV. Now to study
quasivacua we assume that ni0 is nonzero and integrate out
the other components of ni. Numerical calculations show
that the resulting effective potential has a minimum for
small deformations, but this minimum fades away at large
μ̃; see Fig. 9. On the plot of Fig. 9(a), this corresponds to the
fact that jnj2 rapidly drops near the phase transition point.
Figure 9(b) shows that the quasivacua are degenerate when
supersymmetry is unbroken, and that the quasivacuum
energy is indeed higher than that of the true ground state.

FIG. 8. The VEV of τ ¼ ffiffiffi
2

p
σ −m0 as a function of Δm. The

solid line is the exact result of numerical calculation, while stars
represent the approximate formula (5.2). Here μ̃ ¼ Λ. In numeri-
cal calculations we used N ¼ 16. One can see that indeed, as Δm
grows, the VEV of

ffiffiffi
2

p
σ goes to its classical value m0.
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Figure 11 shows the phase transition curve. One can see
that the classical formula (5.9) is valid only if we set λ ¼ 0
in (2.13), but it is completely inadequate when the fermions
gain extra mass. As we see from Fig. 11(b) massive
fermions magnify the effect.
Let us derive a better theoretical formula for the phase

transition curve. Consider, for example, the first quasivac-
uum i0 ¼ 1. Then in the expression for βren (3.12) we will

have Δmi1 ¼ mi −m1 instead of Δmi0. Then ℜΔm01 < 0,
and for the phase transition point we can take roughly the
point when βren → −∞, i.e.,

iDþ υðμ̃ÞℜΔm01 þ j
ffiffiffi
2

p
σ −m0j2 ¼ 0: ð5:10Þ

Using (2.23), (2.24), (5.2), and an analog of (3.13), one can
show that the phase transition occurs at the point

(a) (b)

FIG. 9. Example of kinks-nokinks phase transition for Δm=Λ ¼ 10. The blue solid line refers to the true ground state i0 ¼ 0, the
orange dashed line represents the first quasivacuum i0 ¼ 1. The value of the deformation parameter μ̃ is on the horizontal axis (in the
units of Λ), the phase transition point is indicated by an arrow. Both figures are the result of numerical calculations at
Δm=Λ ¼ 10, N ¼ 16.

(a) (b)

FIG. 10. The VEVof
ffiffiffi
2

p
σ −m0 at different scales. (a) Small μ̃. The solid blue line is the result of numerical calculations, and the green

stars show the approximate formula (5.2). (b) Large-μ̃ behavior (in double log scale). One can see that as μ̃ → mG we indeed haveffiffiffi
2

p hσi → m0. The plots were made for fixed Δm=Λ ¼ 10, mG=Λ ¼ 1010, N ¼ 16
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μ̃crit ≈
2Δm

1þ λ̃0
lnmG=Δm
lnΔm=Λ

: ð5:11Þ

At very large values of μ̃ all but one vacua have
decayed, and the world sheet theory flows to the non-
supersymmetric model. In this limit the VEVof

ffiffiffi
2

p
σ again

tends to m0. Indeed, at large μ̃ we can solve the vacuum
equations (3.12)–(3.14) approximately, and using the
expression for Λ (2.27), we find that

ffiffiffi
2

p
σ −m0 ∼

Δmm2
G

μ̃2
ln

μ̃

Δm
ln

μ̃

mG
; ð5:12Þ

which vanishes at large values of μ̃. This is supported by
numerical calculations; see Fig. 10(b).

B. Strong-Higgs phase transition

It was found in [21,26] that for the nonsupersymmetric
CPðN − 1Þ model (2.1) and for the supersymmetric
CPðN − 1Þ model (2.7) a phase transition between strong
coupling and Higgs phases occurs at the point Δm ¼ Λ. At
large Δm the theory is weakly coupled and in the Higgs
phase, while at small Δm we have a strong coupling phase.
We expect similar behavior in our deformed model (2.13).
Following [21,26] we identify the Higgs–strong coupling

phase transition with a curve where jn20j ¼ 2βren turn neg-
ative. Thus we are looking for the solutions of the equation

βren ¼ 0; ð5:13Þ

where βren is given by (3.12), see Fig. 12(a). See also Fig. 13
for the behavior of the ground state energy.
In N ¼ ð2; 2Þ the supersymmetric model at μ̃ ¼ 0 a

phase transition is at Δm ¼ Λ [26]. The case μ̃ ≠ 0 is more
complicated. We were not able to solve the vacuum
equations (3.12)–(3.14) exactly, but an approximate cal-
culation can be done in regions of small and very large μ̃.
First consider the region μ̃ ≲ Λ and assume that the VEV

of σ is real valued (this assumption is correct for the true
ground state anyway). Then, using (3.13) and the identity

YN−1

k¼1

sin

�
πk
N

�
¼ N

2N−1 ; ð5:14Þ

we can rewrite (3.12) as

2βren ¼
2ðN − 1Þ

4π

�
ln
Δm
Λ

þ 1

N − 1
lnN

þ 1

2
ln

�
1þ υðμ̃Þ − 2ð ffiffiffi

2
p

σ −m0Þ
2Δm

��
: ð5:15Þ

Equating this to zero yields

υðμ̃Þ−2ð
ffiffiffi
2

p
σ−m0Þ¼2Δm

��
Λ
Δm

�
2

N− 2
N−1−1

�
: ð5:16Þ

At small deformations we can use the approximation
υðμ̃Þ ≈ μ̃; see (2.23). Moreover, in the strong coupling
phase at fixed μ̃, the VEVof σ does not depend on Δm [this
is exactly true in the supersymmetric and pure

(a) (b)

FIG. 11. Kinks-nokinks phase transition line. Δm on the horizontal axis, and μ̃ on the vertical axis. The solid blue line is the result of
the numerical calculation of the curve where all quasivacua have decayed leaving the single true ground state. Orange circles represent
the classical formula (5.9), green þ are the quantum approximation (5.11). (a) If we set λ̃0 ¼ 0, we indeed get good agreement with the
classical formula (5.9). However, the real scenario (b) is better described by formula (5.11).
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nonsupersymmetric CPðN − 1Þ models], and we can use
Δm ¼ 0 approximation (4.17) right up until the phase
transition point, see Fig. 12(b). Then, from (5.16) we can
actually derive the equation for the phase transition curve:

μ̃crit ¼
2 Λ2

ΔmN
− 2
N−1 − Λ − Δm

1þ 2λ̃0 ln
mG
Λ

; ð5:17Þ

or, sending N → ∞,

μ̃crit ¼
ð2Λþ ΔmÞðΛ − ΔmÞ
Δmð1þ 2λ̃0 ln

mG
Λ Þ : ð5:18Þ

These formulas give a good approximation for the phase
transition curve; see Fig. 14. We see that with μ̃crit growing,

FIG. 13. Strong-Higgs phase transition: energy. The red thick
line is a numerical result for the ground state vacuum energy. The
solid blue line to the right of the phase transition point is a
numerical continuation of the strong coupling vacuum energy
into the Higgs regime. Vice versa, the dashed green line below the
phase transition is a numerical continuation of the Higgs regime
vacuum energy into the strong coupling (corresponds to the
unphysical “state” with formally jnj2 < 0). At the phase tran-
sition point these two curves touch, and jnj2 ¼ 0. This plot is
qualitatively the same as in the pure nonsupersymmetric (2.1) and
supersymmetric (2.7) models; see [21,26]. In the numerical
procedure we have set μ̃=Λ ¼ 0.03, N ¼ 16.

FIG. 14. Strong-Higgs phase transition line. Δm on the hori-
zontal axis, μ̃ on the vertical axis. The solid black line is the
numerical result for N ¼ 16. The dotted red line is the N ¼ 16
approximate formula (5.17). The dashed blue line is the N → ∞
approximate formula (5.18).

(a) (b)

FIG. 12. Strong—Higgs phase transition: VEVs. The curves show an example of the phase transition for fixed μ̃=Λ ¼ 0.03, N ¼ 16.
Mass scale Δm is on the horizontal axis. Location of the phase transition point is indicated with an arrow. (b) The position approximate
strong coupling VEV (4.17) is signified on the vertical axis by a blue dashed line. One can see that the character of the phase transition is
qualitatively the same as in the pure nonsupersymmetric (2.1) and supersymmetric (2.7) models; see [21,26].
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Δmcrit monotonically decreases. Moreover, comparing
(5.17) and (5.18), we can test the validity of our numerical
calculations compared to the large-N limit, as the numerics
is done, of course, for a finite N.5

In the region of large deformations, μ̃ ≫ mG. We have

2βren ∼
N
4π

ln
υðμcritÞΔmcrit þ Δm2

crit

Λ2
2d

¼ 0; ð5:19Þ

where Λ2d is exponentially small given by (2.22). From
(2.23) and (2.27) we derive up to logarithmic factors

Δmcrit ∼
ðΛN¼1

4d Þ2μ̃crit
m2

G
exp

�
−const

μ̃2crit
m2

G

�
; ð5:20Þ

where we assumed that Δm ≪ m. Here we see again that
Δmcrit monotonically decreases as μ̃crit becomes larger.

VI. COMMENTS ON 2D-4D CORRESPONDENCE

A. Brane picture and 2d-4d matching conditions

So far we have considered the μ-deformed 2d CPðN−1Þ
model per se, which is self-consistent. Let us now briefly
comment on the requirements for the self-consistent treat-
ment of this 2d theory considered as the world sheet theory
of the non-Abelian string in N ¼ 2 supersymmetric QCD,
deformed by a mass term μ for the adjoint matter. At μ ¼ 0
the 2d-4d correspondence is seen from a different perspec-
tive. At the quantum level the situation is rather subtle since
the 4d instantons interfere with the 2d world sheet theory,
whichmakes the problem quite nontrivial. Fortunately it has
been shown that 2d-4d correspondence is seen in the
matching of renormalization group flows of 2d and 4d
coupling constants, the coincidence of the spectra of
Bogomol'nyi-Prasad-Sommereld (BPS) states [3,4,31],
and the conformal dimensions at Argyres-Douglas critical
points [32]. A general discussion concerning the decoupling
limits when the 4d d.o.f. do not influence the world sheet
theory can be found in [33].
In the brane engineering ofN ¼ 2 supersymmetric QCD

the matching is nothing but the claim that one and the same
object cannot change if we look at it as 4d or 2d observers.
The standard IIA picture involves two parallel NS5 branes,
N parallel D4 branes stretched between them, andNf flavor
branes which can be realized as semi-infinite D4’ branes
or equivalently as Kaluza-Klein (KK) monopoles [34].
When lifted to the M-theory the whole configuration gets
identified as the single M5 brane wrapped around the
Seiberg-Witten curve in the KK monopole background.
The non-Abelian string is represented by the D2 brane

stretched between two NS5 branes along some internal
coordinate, say x7. Its length in this direction δx7 coincides
with the 4d Fayet-Iliopoulos (FI) term and yields the
tension of the dynamical non-Abelian string. The 4-4
strings yield the 4d gauge bosons, the 4-4’ strings yield
the chiral fundamental multiplets, while 2-4’ strings yield
the hypers in 2d theory. The 4d gauge coupling constant
gets identified with the distance between NS5 branes δx6 ∝
1
g2
4d
and exactly the same geometric variable coincides with

the FI term in 2d theory. That is why the β functions in 4d
and 2d theories coincide and geometrically reflect the
backreaction of D4 and D4’ branes on NS5 branes. The
matching of the spectrum of BPS states in 4d and 2d
theories has the geometrical origin as well. The BPS dyons
are represented as properly embedded into the brane
geometry D2 branes which geometrically are seen as the
dyonic kinks on the world sheet of the non-Abelian string.
If we switch on the μ deformation, one of the NS5 branes

world sheet gets rotated. Now the M5 brane is wrapped
around holomorphic curve w ¼ W0ðvÞ in ðv; w; tÞ space
where x4 þ ix5 ¼ v, x8 þ ix9 ¼ w, x6 þ ix10 ¼ t, andW is
the superpotential of the 4d theory. The embedding of theD2
or M2 brane representing the non-Abelian string has been
discussed in [35]. It was argued that the M2 brane stretched
between two M5 branes has a single possible stable
embedding which fits with the single vacuum in 2d theory.
In this paper we consider a bit different solution when the

tension of the string is fixed not by the FI term but by the
mass of adjoint T ∝ μm. This means that there is no
immediate identification of the string tension with the
distance between NS branes, and therefore the 4d and 2d
couplings cannot be immediately identified in the brane
geometry as it was done in the N ¼ 2 case. As expected
from the brane picture the β functions in 4d and 2d theories
indeed are not identical now and the nonperturbative scales
are related in a complicated manner [16]. It is better to use
in this case the IIB picture where the non-Abelian string is
represented by a D3 brane with world volume coordinates
ðx; t; DÞ where D is the disk in the internal space whose
area yields the tension of the string.
One more input from the brane picture can be recognized

if we lookmore carefully at the backgroundwhere the probe
M2 brane is placed. Apart from theM5 boundary conditions
at the ends the background involves the Nf KK monopoles
in M theory. Asymptotically the geometry involves the
factors C2=ZNF

due to the Taub-NUT metric induced by
flavor branes. Fortunately we can use some results concern-
ing M2 probes in geometry involving Taub-NUT factors
[36]. The terms of interest are the Chern-Simons terms with
opposite levels for UðNÞk ×UðNÞ−k for N M2 branes. In
our case we have the Uð1Þ ×Uð1Þ gauge group for the
nondynamical gauge field. As was argued in [36] a kind of
Higgs mechanism works and only the diagonal Uð1Þ
survives. What is the remnant of the 3d Chern-Simons

5In the numerical calculations for this paper, we took N ¼ 16.
a rough estimate of the accuracy from (5.17) and (5.18) is
1 − N−1=ðN−1Þ ≈ 0.17; i.e., qualitatively we can trust our results.
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(CS) terms in the 2d world sheet theory? We can define the
field aðxÞ as

expðiaðxÞÞ ¼ exp
Z

Azðx; zÞdz; ð6:1Þ

where z is the compact world volume coordinate of the
M2 brane. The 3d CS term induces the axion on the string
world sheet

δL ¼ Nf

Z
d2xaðxÞ � F: ð6:2Þ

Note that the CS term on the M2 brane emerges as a
result of the one-loop integration over the world sheet
fermions which do not decouple completely; therefore
it cannot be seen in the classical approximation. If we
consider the representation of the non-Abelian string via the
D3 brane in IIB string theory, the effective axion on the
world sheet emerges as well in a similar manner. However,
the possible appearance of the effective axion in 2d theory
should be clarified accurately.We cannot exclude that theCS
and axion term disappear in the limit of complete decoupling
of 4d d.o.f.

B. Bulk criticality and world sheet theory

One could question if the bulk criticality can be
recognized in the world sheet theory. Consider the first
large N limit ofN ¼ 2 supersymmetric QCD withN ¼ Nf
and assume that all quark masses are equal. It was shown in
[37] making use of the exact Seiberg-Witten solution that
there is a second order phase transition at m ¼ 2Λ. In
particular, it was shown that there is a jump of the derivative
of the prepotential at this point. We could question if there
are traces of this bulk phase transition in our string world
sheet theory at Δm ¼ 0. InN ¼ 2 theory the 4d-2d duality
works well; hence the phase transition in the world sheet
could be expected indeed. However, in the N ¼ 2 limit of
our UðNÞ SQCD the average quark mass can be shifted
away; therefore we cannot compare our results with that of
Ref. [37]. The only hope is that we can identify remnants of
this phase transition at nonzero μ. The 4d phase transition
cannot disappear if we switch on small parameter μ;
however, in order to consider strings semiclassically we
restrict ourselves to the weak coupling regime in 4d theory
which implies that the parameter which fixes the string
tension ξ ∝ μm is large. Therefore at small μ we are forced
to assume very large m and the phase transition point m ¼
2Λ is far beyond our approximation. Nevertheless it would
be very interesting to investigate the fate of the phase
transition found in [37] at large μ.
One more example of bulk criticality occurs if the

average mass m is very large but Δm ∝ Λ. This is an
example of the 4d Argyres-Douglas (AD) point when the
theory becomes superconformal. It was shown in [32] that
4d and 2d AD points match perfectly and there is a

matching of the critical exponents as well. Our critical
point at μ ¼ 0 separating strong coupling and Higgs phases
matches with a point Δm ¼ Λ on the curve (wall) of
marginal stability. This curve forms a circle jΔmj ¼ Λ in
the large N limit [38], and the 2d AD point is a point on this
circle with a nonzero phase. If we switch on μ we expect
that the 2d AD point survives and at small μ evolves
smoothly. The clear-cut example of such smooth interpo-
lation of the AD point has been elaborated for μ-deformed
SUð2Þ gauge group with Nf ¼ 1 in [39] where it was
identified as the deconfinement phase transition.
The final remark concerns the holographic picture which

is possible since we consider the large N SQCD in the
Veneziano limit. Instead of the D3 brane in the background
of NS5 and D5 branes in IIB supergravity holographically
we consider the D3 brane in peculiar 10d geometry with
additional dilaton and form fields. The corresponding
geometry has been identified for a pure N ¼ 1 limit at
μ → ∞ in [40,41] and, in particular, it reproduces the
correct Novikov-Shifman-Vainshtein-Zakharov beta func-
tion. For the generic μ the exact metrics is unknown but we
expect that the mass term amounts to the effective wall at
the corresponding value of the radial coordinate. A very
illuminating example of how the bulk phase transition is
seen on the probe string in the holographic framework has
been found in [42] forN ¼ 2� theory. In this case the exact
holographic background is known and coincides with the
Pilch-Warner solution in IIB supergravity. The bulk theory
enjoys the phase transition at strong coupling at the mass of
adjointM ¼ Λ. It turns out that this phase transition indeed
can be identified as criticality in the world sheet theory of
electric probe string at the second order in the perturbation
theory in the inverse t’Hooft coupling at strong coupling.
This clearly demonstrates that the 2d-4d matching of bulk
and world sheet criticality is highly nontrivial in the
holographic picture. It would be interesting to investigate
the non-Abelian magnetic string in the background found
in [40,41].

VII. CONCLUSIONS: PHASE DIAGRAM

In this paper we have studied dynamics of the μ-
deformed CPðN − 1Þ model (2.13). It arises as a world
sheet theory of the non-Abelian string in N ¼ 2 super-
symmetric QCD, deformed by a mass term μ for the adjoint
matter. When μ̃ is small, the two-dimensional theory is the
N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ model. As we
increase the deformation parameter, the bulk theory flows
to N ¼ 1 SQCD, while the world sheet theory becomes a
nonsupersymmetric μ-deformed CPðN − 1Þ model. This
happens because fermion zero modes present in the bulk of
the N ¼ 2 theory are lifted when we switch on μ̃. As a
consequence, at large μ̃ world sheet fermions become
heavy and decouple, leaving us with the pure bosonic
CPðN − 1Þ model. In this paper we studied this transition
in detail using the large N approximation.
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The μ-deformed CPðN − 1Þ model has two N-indepen-
dent parameters, the deformation μ̃ [see (2.18)] and the
mass scale Δm which is the scale of the quark mass
differences in the bulk theory. We obtained a nontrivial
phase diagram in the ðΔm; μ̃Þ plane, with two strong
coupling phases and two Higgs phases separated by three
critical curves with two tricritical points. This phase
diagram is shown in Fig. 15.
When μ̃ goes to zero, the supersymmetry is unbroken,

and the theory is either in the strong coupling phase (at
small Δm) or in the Higgs phase (large Δm, weak

coupling). In both phases there are N degenerate vacua,
and kinks interpolating between neighboring vacua are not
confined. In the strong coupling phase at small Δm the
photon becomes dynamical and acquires mass due to the
chiral anomaly.
As we switch on the deformation parameter degenerate

vacua split. At strong coupling we get a unique ground state
and N − 1 quasivacua, while the photon develops a small
massless component. Kinks are now confined. When the
deformation μ̃ is small, the confinement is due to the
splitting of the σ-quasivacua energies. As μ̃ gets larger,
eventually we cross the critical line where original σ
quasivacua decay. Now the quasivacua splitting and con-
finement of kinks is only due to the constant electric field.
In the Higgs phase at large Δm the theory is at weak

coupling. The n field develops a VEV, and the photon is
unphysical and heavy due to the Higgs mechanism. When μ̃
is small enough, energies of N degenerate vacua split, and
kinks interpolating between the neighboring quasivacua are
confined. However, as we increase μ̃, it crosses critical lines
where [see, e.g., (5.9)] quasivacua decay one by one leaving
the theory with a single ground state, and thus without kinks.
In this paper we have shown that results obtained in [16]

for the μ-deformed bulk theory agree with the world sheet
considerations. We can either go to the world sheet in the
N ¼ 2 theory and then take the large μ̃ limit or first apply
the large deformation in the bulk and then go to the world
sheet theory. In other words, the following diagram is
commutative:

ð7:1Þ

We note, however, that a derivation of the world sheet
theory at intermediate values of μ̃ is still absent.
As we already discussed we interpret kinks of the

world sheet theory as confined monopoles of the four-
dimensional SQCD. Our results show, in particular, that at
large μ̃, when the bulk theory basically becomes N ¼ 1
SQCD, monopoles survive only in the strong coupling phase
at very small mass differences below the critical line (5.20).
In the Higgs phase quasivacua decay at large μ̃ which means
that confined monopole and antimonopole forming a
“meson” on the string (see Fig. 1) annihilate each other
and disappear. This confirms a similar conclusion in [16].
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curves corresponds to the disappearance of kinks between the
ground state and quasivacua. Dashed lines are drawn based on a
general argument, since the 1=N expansion gives a poor approxi-
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APPENDIX A: COEFFICIENTS OF THE
EFFECTIVE ACTION

In this appendix we give a brief overview of the
derivation of the effective action (4.23). Consider bosonic
loops. In the Lagrangian (2.13) we can expand the σ − n
interaction term as

j
ffiffiffi
2

p
σ−mij2jnij2

≈ j
ffiffiffi
2

p
hσi−mij2jnij2þ2ℜð

ffiffiffi
2

p
δσÞ · ð

ffiffiffi
2

p
hσi−ℜmiÞjnij2

−2ℑð
ffiffiffi
2

p
δσÞ ·ℑmijnij2; ðA1Þ

where δσ are the vacuum fluctuations around the vacuum
with ℑσ ¼ 0. The diagram for the ℜσ kinetic term is then
proportional to ð ffiffiffi

2
p hσi −ℜmiÞ2, while the kinetic term for

ℑσ is proportional to ðℑmiÞ2. The calculation of the
diagrams itself is straightforward.
The calculation of the fermion loops is a bit trickier. The

fermion mass matrix can be read off from (2.13). Say, for
the flavor number i,

Mi ¼ ð
ffiffiffi
2

p
hσi −ℜmiÞ · Idþ iðℑmiÞ · γchir; ðA2Þ

where Id is the 2 × 2 identity matrix and γchir is the two-
dimensional analogue of the γ5. This γchir interferes with the
traces over the spinorial indices. Say, the fermionic con-
tribution to the ℜσ kinetic term coming from the diagram
on Fig. 4(b) is

ðA3Þ

where jMij2 ¼ ð ffiffiffi
2

p hσi −ℜmiÞ2 þ ðℑmiÞ2. Calculation of
the integral itself is straightforward. The rest of the
diagrams with fermionic loops are treated the same way.
In the end we arrive at (4.25).
Note that in the limit μ̃ → 0 supersymmetry is restored.

In this case, in the vacuum D ¼ 0, ℑσ ¼ 0 we have

M2
ξk
¼ m2

nk ¼ j
ffiffiffi
2

p
hσi −mkj2; ðA4Þ

and the coefficients (4.25) reduce to

1

e2ℜσ

¼ 1

e2ℑσ
¼ 1

e2γ
¼ 1

4π

XN−1

k¼0

1

j ffiffiffi
2

p hσi −mkj2
; ðA5Þ

bγ;ℑσ ¼
1

2π

XN−1

k¼0

1ffiffiffi
2

p hσi −mk

: ðA6Þ

APPENDIX B: PHOTON MASS

In this appendix we diagonalize the photon-σ
mass matrix in (4.23) to find the photon mass. In order to
do that, let us write down bare propagators for ℑσ and Aμ

that follow immediately from (4.23) (in the Minkowski
notation):

G0
γ ¼ −ie2γ

gμν − kμkν

k2

k2
; G0

ℑσ ¼ −
i
2
e2ℑσ

1

k2 − δm2
ℑσ

; ðB1Þ

where we use the Landay gauge, while δm2
ℑσ is the

contribution to the mass of the ℑσ field coming from the
potential VðσÞ in (4.23). In the vicinity of the true ground
state (4.17) we have

δm2
ℑσ ≈ 4λΛ ln

mG

Λ
: ðB2Þ

At large μ̃, δm2
ℑσ ∼ λ2 lnmG=Λ; see Sec. IVD.

Consider the photon propagator. Iterating the scalar ℑσ
insertions shown in Fig. 16, we obtain the full photon
propagator,

FIG. 16. Contributions to the photon propagator.
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Ĝγ ¼ G0
γ

1

1 −
e2γe2ℑσb

2
γ;ℑσ

k2−δm2
ℑσ

¼ −ie2γ
�
gμν −

kμkν

k2

�
k2 − δm2

ℑσ

k2ðk2 − δm2
ℑσ − e2γe2ℑσb

2
γ;ℑσÞ

¼ −ie2γ
�
gμν −

kμkν

k2

��
A
1

k2
þ ð1 − AÞ

×
1

k2 − δm2
ℑσ − e2γe2ℑσb

2
γ;ℑσ

�
; ðB3Þ

where the coefficient

A ¼ δm2
ℑσ

δm2
ℑσ þ e2γe2ℑσb

2
γ;ℑσ

ðB4Þ

increases from 0 to 1 as μ̃ runs from zero to infinity. What
we see here is that at nonzero μ̃, the photon acquires a
massless component. In the SUSY case (zero μ̃) the
coefficient A vanishes, and we have only the massive
component. Note that the number of physical states do not
change since the massless photon has no physical d.o.f. in
two dimensions. At large μ̃ the massive component
becomes heavy and decouples (A → 1). We are left with
the massless photon much in the same way as in the
nonsupersymmetric CPðN − 1Þ model.
If we do a similar calculation for the ℑσ propagator, we

will get simply

Ĝℑσ ¼ G0
ℑσ

1

1 −
e2γe2ℑσb

2
γ;ℑσ

k2−δm2
ℑσ

¼ −ie2ℑσ
1

k2 − δm2
ℑσ − e2γe2ℑσb

2
γ;ℑσ

: ðB5Þ

Just as in [18], we see that the would-be massless phase of
the σ field acquires a mass

m2
arg τ ¼ δm2

ℑσ þ e2γe2ℑσb
2
γ;ℑσ: ðB6Þ

This effect is taken into account by the additional term (4.5)
in the effective potential (4.3). At μ̃ ¼ 0, δm2

ℑσ ¼ 0 and the
mass of the phase of σ reduces to (4.6). Consider the
leading correction at small λ. For the ground state (4.17) at
Δm ¼ 0 we have

1

e2ℑσ
≈

N
4πΛ2

�
1 − 2

λ

Λ
ln
mG

Λ

�
;

1

e2γ
≈

N
4πΛ2

�
1 −

4

3

λ

Λ
ln
mG

Λ

�
;

bγ;ℑσ ≈ −
N
2πΛ

�
1 −

λ

Λ
ln
mG

Λ

�
;

and, therefore,

m2
arg τ ≈ 4Λ2

�
1þ 7

3

λ

Λ
ln
mG

Λ

�
: ðB7Þ

Let us look more closely at the photon propagator (B3) in
the small μ̃ limit. We have

A ≈
λ

Λ
ln
M
Λ
; ðB8Þ

and for the massless part of the photon propagator,

Ĝγ;massless ¼ −i
gμν − kμkν

k2

k2
4π

N
λΛ ln

M
Λ
: ðB9Þ

From this Green function we calculate the electric field
produced by a kink with electric chargeþ1 and find for the
vacuum energy splitting

E1 − E0 ¼
1

2e2γ
F2
01 ¼

2π

N

�
λ ln

M
Λ

�
2

: ðB10Þ
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