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We investigate the singularity structure of the ð−1ÞF graded partition function in QCD with nf ≥ 1

massive adjoint fermions in the large-N limit. Here, F is fermion number and N is the number of colors.
The large N partition function is made reliably calculable by taking space to be a small three-sphere S3.
Singularities in the graded partition function are related to phase transitions and to Hagedorn behavior in
the ð−1ÞF-graded density of states. We study the flow of the singularities in the complex “inverse
temperature” β plane as a function of the quark mass. This analysis is a generalization of the Lee-Yang-
Fisher-type analysis for a theory which is always in the thermodynamic limit thanks to the large N limit.
We identify two distinct mechanisms for the appearance of physical Hagedorn singularities and center-
symmetry changing phase transitions at real positive β, inflow of singularities from the β ¼ 0 point, and
collisions of complex conjugate pairs of singularities.
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I. INTRODUCTION

Singularities of partition functions play an important role
in the study of phase transitions. Important examples that
have been discussed in the literature are Lee-Yang zeros,
Fisher zeros and Hagedorn singularities. Lee and Yang
studied zeros of the partition function of a finite system in
the presence of an external field [1]. The nature of phase
transitions is controlled by the motion of singularities as the
system approaches the thermodynamic limit, along with the
limiting distribution of the Lee-Yang zeros. Fisher studied
zeros of the partition function as a function of a complex
temperature or interaction parameter [2]. Hagedorn singu-
larities are generally a signature of confinement in large N
gauge theories, see e.g., [3–5]. They are produced by
exponential growth in the number of states as a function
of energy, which is believed to be related to the excitation
spectrum of confining strings. The existence of these
singularities in the thermal partition function is tied to

the inevitability of a deconfinement phase transition as a
function of temperature in e.g., large N Yang-Mills (YM)
theory [6].
In this work we investigate the motion of partition

function singularities of large N gauge theories on com-
pactified spaces. There are several novel aspects compared
to the works of Lee, Yang and Fisher. First, gauge theories
with a large number of colors N can have phase transitions
even in a finite volume, because the large N limit is
basically a thermodynamic limit [7]. In the present work we
take advantage of this fact by using a finite spatial volume
to study phase transitions at weak gauge coupling. Wework
in Euclidean spacetime signature, take space to be a three-
sphere S3 with radius R, and assume that Euclidean time is
a circle S1 of circumference β. For an asymptotically free
theory with strong scale Λ, the limit RΛ ≪ 1 is a weak-
coupling limit. Gauge theories in this limit were first
studied in Refs. [8–10].
Our focus will be on the singularity structure of Yang-

Mills theory with nf flavors of Majorana adjoint fermions,
QCD(adj), for different values of the fermion mass m. We
take 1 ≤ nf ≤ 5, where the upper bound comes from the
requirement of asymptotic freedom, and assume that all of
the quarks have a common mass m. We will consider the
graded partition function

Z̃ðβÞ ¼ tr½e−βHð−1ÞF�; ð1Þ
whereH is the Hamiltonian and F is fermion number, and β
is the circle size. Adjoint QCD is interesting for many
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reasons, and has been studied extensively in recent years,
see e.g., [11–29]. Crucially, it has a ZN center symmetry
[30,31]. The existence of this symmetry makes the tran-
sition from confinement to deconfinement a sharply
defined notion. The deconfinement transition is associated
with spontaneous breaking of ZN center symmetry.
A number of aspects of the m dependence of large N

adjoint QCD on S3 × S1 was studied by Myers and
Hollowood [32], with a focus on the behavior of center
symmetry. Our analysis, which agrees with theirs on all
points of overlap, instead focuses on the behavior of flow
of Hagedorn singularities in the graded partition function.
The leading Hagedorn singularities are associated with
an inverse “temperature” scale1 βH. In general, βd > βH
[10,33], but in the RΛ → 0 regime on which we focus,
βd → βH. So studying the Hagedorn singularity structure of
the partition function is another way to study the fate of
color confinement in the theory.
The two features of adjoint QCD of prime importance for

our work are
(1) When m → ∞, the fermions decouple, and Z̃ðβÞ

reduces to the thermal partition function ZðβÞ ¼
tre−βH of pure Yang-Mills theory without matter,
nf ¼ 0:

ZYMðβÞ ¼ Z̃ðβ; m ¼ ∞Þ: ð2Þ

Then there is a thermal deconfinement transition at
β ∼ R when RΛ ≪ 1 [8–10], and β can be inter-
preted as inverse temperature.

(2) When m → 0, the bosonic and fermionic spectrum
of large N adjoint QCD becomes highly correlated
in such a way that there are no phase transition in Z̃
as a function of β [34–36]. The compactification in
this limit is nonthermal and β is interpreted as circle
size.

These two features are related to Hagedorn singularities.
To discuss these singularities, we define the parameter
q ¼ e−β=R. The large N partition function Z of pure Yang-
Mills has infinitely many poles qi in the domain q ∈ ½0; 1�
[8–10]. The inverse Laplace transform of Z is the density of
states ρðEÞ, and each pole qi ¼ e−βi=R in Z corresponds to
an exponential “Hagedorn” factor ρðEÞ ∼ eβiE in a large-E
expansion of ρðEÞ. This behavior implies that pure YM
theory must have a phase transition to a deconfined phase at
some β ≥ maxðβiÞ.
The behavior of the graded partition function Z̃ of adjoint

QCD with m ¼ 0 is quite different. To see why, note that
nf ¼ 1QCD(adj) isN ¼ 1 supersymmetric (SUSY) Yang-
Mills theory, and the supersymmetry of the theory on R4

suggests that bosonic and fermionic excitations should

cancel in the ð−1ÞF graded partition function. Despite the
subtlety that the supersymmetry of pure N ¼ 1 SYM is
broken by coupling to the curvature of S3, the remaining
cancellations remain strong enough that Z̃ðβÞ has no
singularities for q ∈ ½0; 1�. The graded partition function
is associated to a graded density of states, ρ̃ðEÞ ¼
ρBðEÞ − ρF ðEÞ. Despite the fact that both ρBðEÞ and
ρF ðEÞ exhibit Hagedorn growth, ρ̃ðEÞ does not. The
absence of Hagedorn behavior in ρ̃ðEÞ generalizes to
QCD(adj) with nf ≥ 2, implying that there are strong
Bose-Fermi cancellations even without supersymmetry
[34–36]. In particular, QCD(adj) with nf ≥ 1 massless
adjoint fermions has no phase transition on a small S3 × S1

for any β ∈ ½0;∞Þ [35,37].
This leads to an interesting issue which we study in this

paper. Consider turning on a small mass for the adjoint
fermion, m > 0. Since the YM thermal partition function
ZYMðβÞ ¼ Z̃ðβ; m ¼ ∞Þ has infinitely many singularities
in the physical domain q ∈ ½0; 1�, but Z̃ðβ; m ¼ 0Þ does not
have any singularities in the physical domain, the positive
real singularities must start to appear at some finite value
m ¼ mc. In this work we study the mechanism by which
this happens. In analogy with the Lee-Yang-Fisher analysis,
we show that the flow of complex Hagedorn singularities
q ¼ e−β=Rþit ∈ C is associated with center-symmetry
changing phase transitions in large N gauge theories on
S3. There are two basic scenarios that lead to the appear-
ance of real singularities, the collision of complex con-
jugate singularities, or the inflow of singularities from the
endpoint q ¼ 1.

II. SETTING AND GRADED PARTITION
FUNCTION

We now describe the setting for our analysis in more
detail. When Yang-Mills theories are placed on a spatial S3,
the gauge fields and fermions pick up effective masses due
to the curvature of S3 [10]. When RΛ ≪ 1, the curvature is
large, so the effective coupling λð1=RÞ becomes small, and
we can integrate out all of the nonzero modes of the gauge
fields at one loop, which amounts to working at λ ¼ 0. But
the part of the path integral associated with the holonomy

α ≔
1

VolðMÞ
Z
S3×S1

A0; ð3Þ

must be treated exactly, and the path integral reduces to a
matrix integral over α. One can diagonalize α using a global
gauge transformation,

αdiag ¼ β−1diagðθ1;…; θNÞ: ð4Þ

and then

Z̃ ¼
Z

Dαdiage−Seff ½αdiag� ð5Þ
1We put the word temperature in quotes because we are

discussing the ð−1ÞF-graded partition function, rather than the
thermal partition function.
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where Seff ½αdiag� includes a contribution from the Haar
measure. The calculation of the one-loop effective action
Seff is described in [10,32]. At large N, the difference
between SUðNÞ and UðNÞ gauge groups becomes negli-
gible for the purposes of this paper, but the effective action
of theUðNÞ theory is simpler. So we will work with Seff for
UðNÞ gauge theory. On small S3, this effective action takes
the form [10,32]

SeffðαÞ ¼
X∞
n¼1

fnðq;mÞ
n

jTrðPnÞj2; ð6Þ

where P ¼ eiβα is the Polyakov line, and

fnðqn;mRÞ ≔ 1 − zvðqnÞ þ nfzfðqn;mRÞ; ð7Þ

Here, zv and zf are single particle partition functions for
vector fields and fermions, and

zvðqÞ ¼ 2
X∞
l¼1

lðlþ 2Þe−βðlþ1Þ=R ¼ 6q2 − 2q3

ð1 − qÞ3 ; ð8Þ

When m ¼ 0, zf takes the simple form

zfðqÞ ¼ 2
X∞
l¼1

lðlþ 1Þe−βðlþ1=2Þ=R ¼ 4q3=2

ð1 − qÞ3 : ð9Þ

But when mR > 0, it is simpler to write zf as a function of
β=R ¼ − log q in the form [32]

zfðβ=R;mfRÞ

¼ 2
X∞
l¼1

lðlþ 1Þe−β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ1=2Þ2þm2

fR
2

p
=R

¼ 2m2
fR

3

β
K2ðmfβÞ −

mfR

2
K1ðmfβÞ

þ 4

Z
∞

mfR
dx

x2 þ 1=4
e2πx þ 1

sin
�
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −m2

fR
2

q
=R2

�
: ð10Þ

It is easy to verify that when q → 0ðβ → ∞Þ, all of the
coefficients fn are positive. This implies that Seff is
minimized if all moments ρn ¼ TrðPnÞðn ≥ 1Þ are zero,
and the theory is in the center-symmetric (that is, confining)
phase. The partition function is obtained by integrating
over the Gaussian modes ρn, which gives

Z̃ðqÞ ¼
Y∞
n¼1

1

fnðqn;mRÞ : ð11Þ

This expression is physically valid so long as all fn are
positive, which is in general only true for some range of
values of q in the real interval ½0; qc�; qc ≤ 1, with qc ¼
qcðmÞ. However, we find it useful to analytically continue

Z̃ to a function of q within the unit disk jqj < 1 in the
complex q plane, and in the rest of this paper Z̃ will denote
this analytically continued quantity.
It will be useful to compare the graded partition function

Z̃ to the standard thermal partition function Z. On small
S3 × S1, the thermal partition function is obtained by
replacing

fnðqn;mRÞ → bnðqn;mRÞ ð12Þ

where

bnðqn;mRÞ ¼ 1 − zvðqnÞ þ ð−1Þnnfzfðqn;mRÞ; ð13Þ

so that

Z ¼
Y∞
n¼1

1

bnðqn;mRÞ : ð14Þ

It is known since Refs. [10,32] that Z has infinitely many
poles in the interval q ∈ ½0; 1� for any nf ≥ 0, correspond-
ing to real positive solutions of bnðqn;mRÞ ¼ 0 for n ≥ 1
in this range. As discussed in [35,38], there are also
infinitely many complex poles within the unit disc
jqj ≤ 1, where q ∈ C, but for the Hagedorn growth of
the spectral density only the poles q ∈ ½0; 1� are relevant.

III. HAGEDORN TRANS-SERIES

To understand the connection between singularities in
the partition function and Hagedorn behavior of the density
of states, let us write the ð−1ÞF density of states ρ̃ðEÞ ¼
ρbosonicðEÞ − ρfermionicðEÞ as a trans-series expansion in
variable x ¼ 1=ðERÞ around the point x ¼ 0. A natural
ansatz for the form of ρ̃ðEÞ is

R−1ρ̃ðEÞ ¼ eβ1=x
X∞
n¼0

a1;nxn þ eβ2=x
X∞
n¼0

a2;nxn þ � � �

þ 1

2
ðeγ1=x þ eγ

�
1
=xÞ

X∞
n¼0

c1;nxn

þ i
2
ðeδ1=x − eδ

�
1
=xÞ

X∞
n¼0

d1;nxn þ � � � ð15Þ

where an;k; cn;k; dn;k; βn; γn; δn are dimensionless parame-
ters, βn ∈ R with β1 > β2 > � � �, and γn ∈ C with Reγ1 >
Reγ2 > � � � and Imγn ≠ 0 for all n (and similarly for δn).
The inverse Hagedorn temperature scales are βH;n ¼ βnR,
which are physical when βn > 0.
This is only the simplest ansatz for ρ̃ðEÞ which incor-

porates the phenomena we want to describe. Physically,
however, we expect the trans-series representation of ρ̃ðEÞ
to depend on more transmononomials of x, such as logðxÞ
and xb with b ∉ N. Determining the complete trans-series
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representation of ρðEÞ is a currently open problem even in
the simplest cases such as m ¼ 0 and m ¼ ∞, where Z̃
(and also Z) can be written as products of elliptic functions
[39,40]. It is likely that this problem can be solved using
the methods of Ref. [41], and it would be interesting to do
so in future work.
To see how this ansatz for the density of states relates to

the partition function, note that we can write

Z̃ðβÞ ¼ trð−1ÞFe−βH ¼
Z

∞

E0

dEρ̃ðEÞe−βE: ð16Þ

where E0 ¼ c=R with c ¼ 3=2. The cutoff on the energy
integral at E0 takes into account that the spectrum of 4d
adjoint UðNÞ QCD on small S3 is gapped with a gap that
interpolates between E0 at m ¼ 0 and 4=3E0 at m ¼ ∞.
So ρ̃ðEÞ must always vanish for E < E0. Evaluating the
integral gives

Z̃ðβÞ ¼ 1

β − β1

�
a1;0 þ

�
ca1;0 − a1;1ðγE þ log½cðβ − β1Þ�Þ

þ
X∞
n¼2

a1;n
cðn − 1Þ

�
ðβ − β1Þ

þ
�
c2

2
a1;0 þ ca1;1 þ a1;2ðγE − 1þ log½cðβ − β1Þ�Þ

þ
X∞
n¼3

an
cðn − 1Þ

�
ðβ − β1Þ2

�
þ…

þ 1

β − β2
½a2;0 þ…� þ… ð17Þ

This expression illustrates that exponentially-growing terms
in ρ̃ðEÞ generate singularities in Z̃ðβÞ. The coefficients βn,
an;k; γn; cn;k; δn; dn;k all depend on the quark mass m.
We note that the thermal partition function ZðβÞ and the

thermal (not graded) density of states ρðEÞ can be written in
the same form, but of course the numerical values of the
parameters entering the thermal density of states trans-
series are different from the ð−1ÞF-graded one.

IV. FLOW OF HAGEDORN SINGULARITIES

Let us now work out the flow of the Hagedorn para-
meters βn and γn as function of the quark mass m. One can
easily verify that fnðqn;m ¼ 0Þ is positive for all q ∈ ½0; 1�,
so there are no poles of Z̃ðqÞ for q ∈ ½0; 1� [35].
Correspondingly, there is no Hagedorn growth in the
graded density of states, ρ̃ðEÞ. This means that βn < 0
for all n at m ¼ 0, but it does not constrain γn. Physically,
these remarks imply that the infinitely large number of
Hagedorn-growing terms in both ρBðEÞ and ρF ðEÞ cancel
against each other, leaving a function with subexponential
growth in E. The main point of [34,36] is that this is not an
artifact of working at small RΛ. It is related to the fact that it

enjoys large N volume independence [11,21–23,27–29,
42–44]. In infinite volume, on R3 × S1 and N ¼ ∞, adjoint
QCD endowed with periodic boundary conditions does not
have any phase transitions. This implies that the physical
gauge-invariant bosonic and fermionic excitations of
adjoint QCD are very tightly correlated despite the manifest
absence of supersymmetry in adjoint QCD for nf > 1.
Now suppose m ≠ 0. As mentioned in the Introduction,

at m ¼ ∞ the fermions decouple from the spectrum of the
theory, so that

limm→∞ Z̃ðq;mÞ ¼ ZYMðqÞ: ð18Þ

Therefore, Z̃ðq; 0Þ is free of poles q ∈ ½0; 1�, but Z̃ðq;∞Þ
has infinitely many poles. So when m → ∞, β1 along with
an infinite subset of the βn coefficients are positive. In the
free limit, the Hagedorn temperature β1 corresponds to a
center-symmetry changing phase transition.
Combining these observations, we see that asm is varied

in [0;∞) a pole on the real interval [0, 1] has to appear
at some critical mass mc. Tracking the motion of the
Hagedorn singularities is a difficult task in general, but at
small RΛ it can be done explicitly thanks to the fact that the
theory is weakly coupled.
We find two distinct types of Hagedorn singularity flow.

FIG. 1. Plots of fnðqÞ as a function of real q ∈ ½0; 1� for nf ¼ 1.
The top panel shows mfR ¼ 1.20, below the critical mass. The
bottom panel shows mfR ¼ 1.27, above the critical mass.
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V. ADJOINT QCD WITH nf = 1

This is the only value of nf at which the m ¼ 0 limit of
the theory has N ¼ 1 supersymmetry on R3 × S1. Perhaps
not coincidentally, we find that the flow of the Hagedorn
singularities at nf ¼ 1 is quite different from the flow at
higher nf. For nf ¼ 1, we show the functions fnðqÞ along
the real interval q ∈ ½0; 1� in Fig. 1, while the singularities
in the complex q-plane are shown in Fig. 2. Both plots
show the behavior just below and just above the critical
mass mcR ≃ 1.22.
One can see that as m increases pass mc, all fnðqÞ

change sign for some value of q and stay negative as q → 1.
A related observation is that the zeros in fnðqÞ appear from
q ¼ 1 limit as m is increased. This is reflected in the
complex q-plane, where singularities of Z̃ flow in from
the point q ¼ 1 once m > mc. The distribution of these
singularities approaches the distribution of the singularities
of the partition function of pure YM theory (obtained in the
limit m → ∞) by moving inward along the real axis. The
singularities on q ∈ ½0; 1Þ have an interpretation as terms
that scale as eβnE with βn > 0, in the graded density of
states.
For m < mc, the theory preserves the full ZN center-

symmetry at any value of β=R. Form > mc, the ZN center-
symmetry is broken completely—that is, it is broken to Z1.

However, asmc is lowered from∞ tomc, the center-breaking
scale of one-flavor adjoint QCD increases smoothly from
the deconfinement temperature of pure YM theory, TYM,
to β−1 ¼ ∞, connecting a thermal phase transition to a
quantum phase transition.

VI. ADJOINT QCD WITH nf ≥ 2

We have checked that the behavior for nf ¼ 2 and higher
nf is qualitatively identical, so for simplicity we focus our
discussion on the case nf ¼ 2. The function fnðqÞ and the
singularities in the complex q-plane are shown in Figs. 3
and 4. The critical value of m is now mcR ≃ 3.20.
Whenm < mc the functionsfnðqÞ donot cross thefn ¼ 0

line, but have minima that approach it as m → mc. This is
reflected by complex conjugate pairs of singularities in the
q-plane that approach, but do not cross, the positive real
axis. The theory preserve the fullZN center-symmetry at any
value of β=R when m < mc. However, when m > mc, the
pairs of singularities collide andmove onto the positive realq
axis. This corresponds to a deconfining phase transition,
which we now examine.
The first big difference one can see from the plots in

Figs. 3,4 is that the ZN changing phase transition scale is
finite if m approaches mc from above. This should be
contrasted with what we saw when nf ¼ 1, when the ZN

FIG. 3. Plots of fnðqÞ as a function of real q ∈ ½0; 1� for nf ¼ 2.
Top panel: mfR ¼ 3.18. Bottom panel: mfR ¼ 3.25.

FIG. 2. Complex q-plane for Nf ¼ 1 nearmf ¼ m�
f. Top panel:

Nf ¼ 1; mfR ¼ 1.2. Bottom panel: Nf ¼ 1; mfR ¼ 1.3.
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changing transition scale β → 0 when m approaches mc
from above.
Next, let us understand the properties of the transition in

more detail. Suppose that m ≫ mc (large mass limit) and
lower β=R starting from β=R ¼ ∞ [32]. The theory starts
out in the center-symmetric phase. At a critical value of
β=R there is a phase transition to a phase where ZN → Z1.
As β=R is reduced further, f1 eventually becomes positive,
while fn≥2 are still negative. Hence, the center partially
restores to Z2. In fact, as β=R is reduced, in the large N
limit we observe the pattern

ZN → Z1 → Z2 → Z3 → Z4…: ð19Þ
In the phase where the center-symmetry breaking pattern is
ZN → Zk, the gauge structure becomes ½UðN=kÞ�k where
eigenvalues of Wilson line split into k bunches each of
which has N=k coincident eigenvalues.
An interesting structure appears for ðm −mcÞR ¼ ϵ

small and positive. Reducing β=R, we observe center-
symmetry breaking ZN → Z1 at the location where f1 ¼ 0.
But f1 turns around and becomes positive again while all
other fn≥2 are still positive. Continuing to decrease β, f2
switches sign, and repeats the same pattern. Hence, there
are “pockets” of restored ZN symmetry, with the pattern

ZN → Z1 → ZN → Z2 → ZN → Z3…: ð20Þ

As ϵ is increased, these pockets of full-center restoration
close, and the pattern turns into that of Eq. (19).

VII. PHASE TRANSITION AND GRADED
DENSITY OF STATES

In the trans-series discussion, we provided a general
form for the Hagedorn trans-series (15). It is instructive to
study the phase transition in terms of the graded density of
states ρ̃ðEÞ, and to investigate how the trans-series structure
for ρ̃ðEÞ changes as a function of mass parameter. We
consider the case nf ≥ 2. As m → mc, infinitely many
complex conjugate poles coalesce on the real axis
q ∈ ½0; 1�. For m ¼ mc þ 0þ, we can enumerate the poles
on the positive real axis Rþ

β as βH1
> βH2

> βH3
> …,

where eβH1
E is the leading Hagedorn growth in the density

of states. To get a feeling for the physics, let us study a
simplified toy model where the partition function only has
the two most dominant poles at β ¼ βH1

; βH2
.

The density of states is the inverse Laplace transform of
the partition function. A toy model describing the collision
of the two poles is defined by

Z̃ðβ; mÞ ¼

8>><
>>:

ðβ − βH1
Þ−1ðβ − βH2

Þ−1 m > mc

ðβ − βH1
Þ−2 m ¼ mc

ðβ − βHÞ−1ðβ − β�HÞ−1 m < mc

ð21Þ

where βH ¼ βHR
þ iβHI

∈ C. When m is large, there are
two isolated real poles at β ¼ βH1

and βH2
. But when m is

decreased towardm ¼ mc the two isolated real poles merge
into a double pole, and move into the complex plane as
complex conjugate poles for m < mc. The inverse Laplace
transform is

ρ̃ðEÞ ¼

8>>><
>>>:

eβH1
E−eβH2

E

βH1
−βH2

m > mc

EeβH1
E m ¼ mc

β−1HI
eβHR

E sinðβHI
EÞ m < mc

ð22Þ

In the regime where the center symmetry is completely
broken, the Hagedorn growth eβH1

E is the dominant
contribution to ρ̃ðEÞ. In the domain where center is intact,
ρ̃ðEÞ is oscillatory, consistent with the general trans-series
structure (15). The frequency of oscillation is controlled by
the imaginary part of the Hagedorn temperature, and in
the limit where βHI

→ 0, the oscillations disappear.
Oscillations of the spectral density in the limit m → 0
were studied in [35]. These authors noted that Bose-Fermi
cancellations are responsible for the disappearance of the
Hagedorn growth in the graded density of states. This
cancellation, unlike supersymmetry, does not take place
level-by-level. Instead, the cancellations involve many
neighboring levels, in a pattern essentially identical to that

FIG. 4. Complex q-plane for Nf ¼ 2 nearmf ¼ m�
f. Top panel:

Nf ¼ 2; mfR ¼ 3.1. Bottom panel: Nf ¼ 2; mfR ¼ 3.3.
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of “misaligned supersymmetry” in string theory [45–47].
Eventually, once m > mc, the Bose-Fermi balance breaks
down and Hagedorn growth emerges.

VIII. OUTLOOK

In this work we have studied to motion of Hagedorn
singularities in the complexified q ¼ expð−β=RÞ plane of
large N Yang-Mills theory with nf adjoint fermions
compactified on S3 × S1 in the large N limit. The large
N limit is crucial to our analysis, because it allows us to
study phase transitions in finite spatial volume. We took
advantage of the small S3 limit RΛ → 0 to study the
partition function using perturbation theory, following
Refs. [8–10,32]. The flow of singularities carries informa-
tion about the appearance of Hagedorn behavior and a
confinement/deconfinement phase transition as the graded
partition function is deformed into the thermal partition
functions of pure Yang-Mills theory.
We observed two basic mechanisms for the transition.

In the nf ¼ 1 theory (SUSY YM) singularities flow in
from q ¼ 1, corresponding to β ¼ 0. For nf > 1 singu-
larities appear as complex conjugate pairs which collide
on the real line and then turn into two real singularities
that move apart asm is increased beyond the critical value.
These two singularities have opposite residues, so that the
associated Hagedorn growth cancels at the critical mass.
Note that in either case the critical value of mcR is finite,
so that the mechanism which leads to intriguing Bose-
Fermi cancellation and absence of Hagedorn growth in
ρ̃ðEÞ persists for mR < mcR. The fact that mc in nf ¼ 2

theory is larger than the one in the nf ¼ 1 theory implies
that Bose-Fermi cancellation is more robust in the non-
supersymmetric theory than the supersymmetric one
under mass deformation.
An obvious question is what happens to the physics we

have discussed as RΛ is increased from zero. This amounts
to studying what happens when the ’t Hooft coupling (at the
scale 1=R) is increased. In the case of N ¼ 4 super-Yang-
Mills theory the complete λ dependence of the Hagedorn
temperature was studied in Refs. [48,49], while for pure
YM theory and nonsupersymmetric theories with adjoint

matter, the first corrections in perturbation theory in λ
were evaluated in Refs. [33,50]. In future work, it may
be interesting to leverage these results to quantitatively
explore the behavior of singularities in adjoint QCD as a
function of ΛR, but we can already make some qualitative
observations.
In this paper, we have interpreted the Hagedorn singu-

larities as being related to deconfinement. This is only
possible in the limit RΛ → 0, because (as we already
mentioned in the Introduction) the Hagedorn temperature
βH and the deconfinement temperature βd are only equal in
the zero-coupling limit RΛ → 0. For generic RΛ, βd > βH,
and the deconfinement phase transition is first-order.
Heuristically this is due to the fact that deconfinement is
driven by a change in the sign of the coefficient of N2 in the
free energy of the quark-gluon plasma as a function of
temperature, rather than by the dynamics of the confined
phase. As a result, the interpretation of βH is that it
corresponds to the scale of the spinodal instability of the
large N confined phase: the maximal temperature to which
the confined phase can be super-heated before local
instabilities develop. So at finite RΛ a study of the large
N complex-temperature plane singularities of the confined-
phase partition function remains interesting, but its physical
interpretation changes.
A related question concerns the fate of the phase

transitions as a function of mc explored in this paper as
RΛ is increased from zero. We found that in general, mc ∼
1=R ∼ Λ=ðRΛÞ when RΛ → 0. When RΛ → ∞, it is
known that the large N critical value of m is actually
m=Λ ¼ 0 in the infinite volume limit [36]. As a result, it is
tempting to guess that mc goes to zero monotonically with
1=ðRΛÞ. It would be nice to check this hypothesis by an
explicit calculation.
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