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Radiative decay of hadronic molecule state for quarks
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Using the general form of the generalized Bethe-Salpeter wave functions for four-quark states describing
the meson-meson molecular structure given in our previous work, we obtain the general formulas for the
decay widths of molecular states composed of two vector mesons with arbitrary spin and parity into two
photons. Then, this general formalism is applied to investigate the radiative two-photon decay of the
observed X(3915) state, in which this exotic state X(3915) is considered as a mixed state of two
components D**D*® and D** D*~. The numerical result of decay mode X(3915) — yy is consistent with

the experimental values.

DOI: 10.1103/PhysRevD.101.014009

I. INTRODUCTION

In the framework of QCD, beyond the quark-antiquark
(qq) state, there should be other internal structures, such as
the tetraquark state, molecular state, etc., which have been
used to interpret exotic mesons [1-6]. It is most reasonable
and fascinating to study the structure of exotic meson from
QCD. In our previous works [7-9], we have carefully
investigated the molecular state composed of two vector
mesons as far as possible from QCD and obtained the
general form of generalized Bethe-Salpeter (GBS) wave
functions of molecular states as four-quark states. This
GBS wave function for the four-quark state was applied to
evaluate the strong decay width of a molecular state
composed of two heavy vector mesons into a heavy meson
plus a light meson in Ref. [9], while the radiative decay of a
molecular state has still not been investigated. In this paper,
we will emphatically investigate the two-photon decay of a
molecular state composed of two vector mesons.

Different from the previous works [1-3] about hadronic
molecule states, in our approach, the vector mesons in a
molecular state are considered as bound states composed of
a quark and an antiquark. Because of the spontaneous
breaking of chiral symmetry, the effective interaction
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Lagrangian at low-energy QCD can be regarded as a
Lagrangian for the interaction of light mesons with quarks.
According to the effective theory at low-energy QCD, we
can investigate the exchanged meson interaction with
quarks in the vector meson and obtain the interaction
kernel between two vector mesons. Solving the Bethe-
Salpeter (BS) equation, we obtained the masses and BS
wave functions of molecular states composed of two vector
mesons [7,8]. From the molecule state model, we gave the
GBS wave function for the four-quark state [9]. The GBS
wave function derived from QCD is an essential prerequi-
site to accurately calculating the decay widths of a
molecular state containing strong and radiative decays.

When investigating the radiative decay of a molecular state
composed of two vector mesons, we still consider the internal
structure of these vector mesons. The decay interaction is
derived from the photon interaction with quarks in these
vector mesons. The photon-quark interaction can be described
by the exact interaction Lagrangian £; = i% egy,qA,, where
the value of 7 is determined by the flavor of the quark field.
In this work, we investigate the radiative two-photon decay
of the molecular state. The lowest-order approximation for
this decay mode is the second-order S-matrix element.
Considering this radiative decay interaction and using the
GBS wave function, we can obtain the general formulas for
the matrix elements of the charge current between the four-
quark state and vacuum. Finally, the two-photon decay width
of the molecular state can be evaluated.

Then, this approach is used to investigate a significant
process: the radiative two-photon decay of X(3915) [10,11].
The experimental data of X(3915), once named Y (3940)
[12,13], introduces a new challenge to the ordinary cc
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charmonium interpretation [14,15]. Moreover, the spin-
parity quantum numbers J? of X(3915) are not unambig-
uously determined in experiment [16]. In this paper, we
assume that this exotic meson X(3915) is a mixed state of
two components D**D*0 and D** D*~ with J* = 0% or 27.
From the effective theory at low-energy QCD and the
Weinberg-Salam model, we comprehensively and system-
atically analyze the radiative two-photon decay of a mixed
state consisting of two components D**D* and D**D*~.
The matrix elements between the four-quark state and
vacuum and the radiative decay width can be calculated
without an extra parameter. The calculated decay width
I'(X(3915) - yy) for 2% is more consistent with the
experimental values. Therefore, our approach provides
further verification for the effective theory at low-energy
QCD and proves the reasonableness of the molecular
hypothesis for X(3915). Comparing our numerical results
with experimental data, we can further discriminate the
quantum numbers J of the X(3915) state. The Bethe-
Salpeter theory is a relativistic theory for a two-body bound
state in quantum field theory, and our approach is an
generalization of BS theory. So, our approach is in fact a
nonperturbative method, which can be applied to investigate
arbitrary meson-meson molecular structure.

The structure of this article is as follows. In Sec. II, the
GBS wave function of a molecular state as a four-quark
state is given. Section III gives the general formulas for the
matrix elements of the charge current between the four-
quark state and vacuum. In Sec. IV, our approach is used to
investigate the decay mode X(3915) — yy. Our numerical
results are presented in Sec. V, and we make some
concluding remarks in Sec. VL.

II. GBS WAVE FUNCTION FOR FOUR-QUARK
STATE

If a bound state with spin j and parity #p is composed of
four quarks, its GBS wave function can be defined as [9]

Zp(¥1, %3, %4, %2) = (0]TQC (x1) Q% (x3) Q° (x4) @ (x2) |P).
(1)

where P is the momentum of the four-quark bound state, Q
is the quark operator, and its superscript is a flavor label.
From translational invariance, this GBS wave function can
be written as

. 1 1 ) i
)(}(xl,x3,x4,x2)zwmem“xf;()ﬂx,x’), (2)

where  E(p) = /p?+m? X =n(n{x; +nixs) +
ma(nyxs +myx2), X' = (n{x) +n5x3) = (yxa + n3x2),
x=x1—X3, X' =X=X4, m+p=1, 0 3=mc s/ (mc+my),
Ny4 =mpg/(mp-+mp) and mypcp are the quark

masses. Then, making the Fourier transformation, we
obtain the GBS wave function of the four-quark bound
state in the momentum representation

20 (P1. P32 Pas P2)

= / d*xd*xsd xyd* xo) (X1 X3, X4 X5)

X @~ IP1X1 p=IP3X3 p=iP4Xy p=iP2Xy

1 1
= WT(P) (27)*8W (P — py — p3 — ps — p2)
X (P, p.k.K). (3)

where p;, p3, ps, and p, are the momenta carried by the
fields Q€, Q4, QF, and QP; p, k, and k' are the conjugate
variables to X', x, and x/, respectively; and p =
m(p1+ p3) =m(pa+ p2), k=nipy —nips and k' =
74 p> — 115 p4. In the hadronic molecule structure, p is the
relative momentum between two mesons in the molecular
state, and k and k' are the relative momenta between the
quark and antiquark in these two mesons, respectively,
shown in Fig. 1. This work aims to investigate the
molecular state composed of two vector mesons. In

Fig. 1, V represents the vector meson with mass M, V’
represents the antiparticle of the vector meson V’ with mass
M,, and MS represents the vector-vector molecular state.

In Fig. 1, there are three two-body systems in molecular
state: a meson-meson bound state and two quark-antiquark
bound states. We define the BS wave functions of these
two-body systems as  yp(pi.ph), xp(p1,p3), and
;(p/z( D4, P2), respectively. According to the BS theory,
the BS wave function for the bound state of two vector
mesons has the form

)ﬂ/" (pll ) Pé)gf
1 1 '
=Gy g Y PP pa(Pp). (4)
1,(P,K)
p,=n,"p,"+k

,,,,,,,,,,, p,=n,P+p
|4
P
p,=n,"p,K MS
I7|
p,=n,P-p
D np, K .
1P, k')

L.(P.p)

FIG. 1. Generalized Bethe-Salpeter wave function for the four-
quark state in the momentum representation. The solid lines
denote quark propagators, and the unfilled ellipses represent
Bethe-Salpeter amplitudes.
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and the BS wave functions of two vector mesons are

1 1

x 89 (p\ = p1 = pa)ra(ph k). (5)
| 1
X, (P4 P2); = RN (27)*

x 8@ (ph — py — p2)x(ph. K, (6)

where p| and p) are the momenta of two vector mesons,
and we have p| =mP+p, ph=mP—p and 5, =
M,,/(M, + M,). Applying the Feynman rules and com-
paring with Eq. (3), we obtain the GBS wave function for
the four-quark state describing the molecular state com-
posed of two vector mesons with arbitrary spin and definite
parity [9],

K (P, p.kK) = )P, s (P plre(ph k). (7)

In Ref. [7], we considered a bound state composed of
two massive vector fields with spin j and parity 7p and
defined its BS wave function in the momentum represen-
tation y)_(P, p). The polarization tensor of the bound state
My pya; CAN be separated,

XQT(P’ p) = ’7/41/42“'/41')(/41/42"‘/4]‘17<P’ p)’ (8)

where the subscripts 4 and 7 are derived from these two
vector fields. The polarization tensor 7, ,,..,,, describes the

spin of the bound state, which is totally symmetric, trans-
verse, and traceless:

P

i My = 0, ”Z:MZ'“ =0. (9)

My = Moy oo

From Lorentz covariance, we have

Zﬂl-nﬂj/lr =Dy, 'p;tj[g/lrfl + (Plpr + Prpﬁ)fZ + (Plpr - Prpﬂ)f3 + P1P7f4 + pﬁprfS]
+ (p{ﬂz e pﬂjg;tl}/lpr + Piu, pngﬂl}fp/l)fﬁ + (p{yz T pﬂjgu]}/lp'r — Dy, png;tl}fp/l)f7
+ (P, - Pu9uyaPe + Py, p,,jg,,]}TPi)fg + (Piy, - Py Guyale = P, pﬂ,gﬂl}fpi)f9

T Puy e Pu€aec PP 10+ Pl o Puy€uazePef 1t Py, o Puy€uyinePef 12

T (Pl Puy€uyaecPePele + Pluy P yeePePepi) 13
T (Pl Pu€uaee PePePe = Py, Puy€uyyese PePepi) f1a
T (Pl Puy€uaee PePePr + Py -+ Puy€uyyeee PePePa) s
+ (Pl Pp€uaze PP P = Ply -+ Puy€uyyeee PePePi) i

+ Puy p,ujg/ll/lg/lz‘[fl79

where {4, ..., ;} represents symmetrization of the indices
His .. ;. In fact, the relative momenta p,, , ..., Py Pis Pz
represent the orbital angular momenta. There should be 17
scalar functions f;(P - p, p?)(i =1,...,17) in Eq. (10). In
Eq. (6) of Ref. [7], a tensor structure is omitted. In this
paper, the missing term is added as the last term in Eq. (10).
Using the subsidiary condition for the massive vector field
d,A,(x) = 0 and the equal-time commutation relation, we
can obtain

Pixh(P.p) = bl (P.p) = 0. (11)

The proof has been given by Refs. [7,17]. Then, consid-
ering the properties of the BS wave function under space
reflection, we obtain the revised general form of the BS
wave functions for the bound states composed of two
massive vector fields with arbitrary spin and definite parity
(see details in Ref. [7]), for p = (=1)/,

(10)

- 1

1(Pp) = N (Thetp1 + T5.). (12)
#0 1 1 2

yra (P’p) 7./\7’7/4['"/4/ [pﬂl o 'pyj (T11¢1 +T,17¢2)

+ Tz] “'MMT¢3 + Tf“ 4.%,,11454 + TZ] __,ﬂthﬁs] N (13)

and for np = (=1)/*,
- 1
2w (P.p) = mﬁrggpgpgll/h (14)

; 1
#0 _ 6
At (P,p) *Nlnﬂy--ﬂj (p/ll '”pﬂjeﬂffé‘ngCWI +Tﬂ]~~~/4/ﬂ‘rl/]2

T s+ Ty et Th L ows), (15)

where A/ is the normalization, the independent tensor
structures T*_are given in the Appendix A, and ¢;(P- p, p?)
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and y;(P - p, p*) are independent scalar functions. The
scalar functions f; in Eq. (10) are the linear combinations
of ¢; and ;. In Eq. (18) of Ref. [7], a tensor structure
is also omitted, and this error has been revised as
Eq. (13) in this paper. For the vector mesons, the authors
of Refs. [18-21] have obtained their BS amplitudes in
Euclidean space [20,21],

1 7D
IWOA‘FP/M le oy (k?),

i 1 7/ p
LY (phi k) :]\T< + ), e 2) @i (K?), (16)

Y (pi:k)

where T} (p|;k) and IV (ph; k') are  transverse
(P13 (P1:K) = pa Y (ph: k') = 0), NV and NV are
the normalizations, and @y (k?) and ¢y (k*) are scalar

functions fixed by providing fits to the observables. The
BS wave functions of vector mesons are [17]

-1 1 v P1
Zz(Pﬁ,k):va <7/1+P/u e
-1
X¢V(k2) A —,
Yoo P3 T imy
2elph k) = L (o, 2
oy J’B'P4—imB/\/V’ M2,
-1
X @i (kK?) —— 17
o ( )VD'Pz—imD (17)

III. GENERAL MATRIX ELEMENT BETWEEN
FOUR-QUARK STATE AND VACUUM

Because of the internal structure of the vector mesons in
the molecular state, we investigate the photon interaction
with quarks in vector mesons and consider that the quarks
in a vector meson have different flavors in this work.
The interaction Lagrangian for the coupling of quarks to
photon is

+ i%te(xi)VuQ/(xi>Aﬂ(xi)’ (18)

where e is the electron charge, £ 4ﬂ m, the factors n and »n’
are determined by the flavor of the quark, and Q and Q'
represent the quark field operators with different flavors. In
Fig. 2, the radiative two-photon decay of molecular state is
shown. The second-order S-matrix element between

molecular state and two photons can be obtained,

FIG. 2. General matrix element of the charge current between
the four-quark state and vacuum in the coordinate representation.
The filled ellipse represents the irreducible part of the Green’s
function.

(rr|S®|MmS)

d4x,»

d4xj<7}’|TH1(xi)H1(xj)|MS>- (19)

Owing to Eq. (18), there should be two terms on the right-
hand side of Eq. (19), and these two terms are equal by the
interchange of x; and x;. Then, the lowest-order transition
matrix element for the radiative two-photon decay of a
molecular state composed of two vector mesons becomes

(yy|S@|MS) —nn<> /d“ /d4

X <}’}’|TQ<xi)7ﬂQ(xi) ﬂ(xi)Ql(xj)
x 7, Q' (x))A, (x;)|MS). (20)

According to the S-matrix theory, we obtain

o\ 2
{yy|SP|MS) = nn’ <§> /d4xl-d4xj

Xl (Q)
27)*2\/21Q71 "

1 1
(22)°2/2Q]
x (0T Q(x;)r, Q(x) Q (x))r, Q' (x))|P),
(21)

x 70

Q* (Q)e—iQ»xj

where Q and Q' are the momenta of two photons in the final

state, Q = (Q.i|Q[) and @' = (Q".i[Q]). and ££~"*(Q)
and 8() '2(Q') are their polarization vectors, respectively.
) Then the charge current in Eq. (21) is J,,(x;)J,(x;) =
Q(x)y,Q(x;)Q (x;)7, 2 (x;). Applying Mandelstam’s
approach in quantum field theory [22], we obtain the
general formulas for the matrix elements of charge current
J,J, between the four-quark state and vacuum

014009-4
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(1T, (x:)J, (x;)|P)

4o ghy A 4
/d xyd*x3d*x,d*x, T (x;, X3 X1, X3, X4, X3)

x;(,’;(xl,x3,x4,x2), (22)

where T'(x;, x;; X1, X3, X4, Xp) is the irreducible part of the
Green’s function, shown as in Fig. 2. The filled ellipse in
Fig. 2 represents the irreducible part of the Green’s
function, which is, in fact, a matrix element of a time-
order product of Heisenberg field operators. From the GBS
wave function of the four-quark bound state defined in
Eg. (1) and the charge current J,J,, it is straightforward to
derive the two-particle irreducible Green’s function

T(x

17 j9-x17-x37'x47-x2)

= (01T Q(x1)r, Q(x;) Q' (x)r, Q' (x;)
x Q(x) QM (x3) Q% (x4) Q° (x2)[0)7.  (23)

Since the electromagnetic interaction does not change the
quark flavor, we obtain

T(xl,xj,xl,x3,x4,x2)
= (01T Q" (x;)ry Q" (x;) Q° (x;)r Q°(x))
x QF(x1) Q" (x3) @4 (x4) Q% (%) 0) - (24)

In quantum field theory, the matrix element in the
Heisenberg picture cannot be calculated, so one has to
transform it into the interaction picture, which can be
analyzed in terms of perturbation theory. In the interaction
picture, the two-particle irreducible Green’s function
becomes [22]

T(x;,Xxj5X1,X3, X4, %)
= (01T Qf, ()7, Qf) (xi) QF, (x;)r QF, (x))
x QF, (x1) Q4 (x3) Q4 (x4) QF, (x2)S[0)7,  (25)
where Q;, represents the interaction picture field operator

and |0) is the unperturbed free field vacuum. The operator S
in the right-hand side of Eq. (25) is

OIT1,(x)J, (x))|P) = ﬁ
1

1 1
= (1) (zﬂ)s/z FE

X 5(4)(P - pP1—

/wmfmfmf

p3— pa— p)) (P.p. k. K)ell

(@)

FIG. 3. Perturbation expansion of the two-particle irreducible
Green’s function. Diagram (a) represents the lowest-order term.

S = Texp [—i/_oo d*zHP (z)} (26)

where H}(z) represents the interaction Hamiltonian den-
sity in the interaction picture. By means of perturbation
theory, T(x;,x;; Xy, X3,%4,X;) can be expressed as shown
in Fig. 3.

In this work, we investigate the radiative decay of the
molecular state. Because of the small electron charge, it is
reasonable to consider that the lowest-order term of the
irreducible part of the Green’s function is dominant. The
lowest-order term in the expansion of the right-hand side of
Eq. (25) is shown as Fig. 3(a), and the lowest-order value of
T(xl,x],xl,x3,x4,x2) is

To(x;,Xj5X1,X3,X4,X2)

=5 (x3 —xi)7ﬁ5(4) (x; —X4)5(4) (X2 —Xj)755(4) (xj—x1).

(27)
Substituting Eq. (27) into (22), we obtain the lowest-order

matrix elements of J,J, between the four-quark state and
vacuum,

(OIT T, (x) I (x))|P) = virSxp(xjoxis %1, x;). (28)

From Eq. (3), the result (28) can be transformed to

A, C,J

IDy X iDAX: QDA Xs Do X s
P2YaVoXp(P1s D3 Pan py)e'PrielPstielPatielPa

/ d*p\d*pyd* pyd* payiyS

Pi+p2)%; oilpatpa)xi (29)

where y/(P, p,k,k') is the GBS wave function for the four-quark state expressed as Eq. (7), p; = n{(m P + p) + k,

P2 = (P —p)—=[P—Q—n5(mP+ p) +k,
ny (mP—p)—[P—-Q—n"(mP+p)+Kk|.

p3 =n3(mP+p)

-k, P4=P—Q—773”(771P+p)+k and K =

014009-5
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Using the matrix elements of J,J, between the four-quark state and vacuum in Eq. (29), we can obtain the computable

u

form of the S-matrix element between the molecular state and two photons in the momentum representation,

|MS) = nn'

1 1 1

(rr|S¢

This matrix element is represented graphically in Fig. 4. It
is necessary to note that the two-photon decay of a
molecular state has two possibilities by the interchange
of two final photons, and we find that the matrix element in
Eq. (30) is invariant under the substitutions Q = Q' and
€2(Q) = €% (Q'). Therefore, the total matrix element for
the radiative two-photon decay of the molecular state
composed of two vector mesons is

(r7|S%IMS) = 2(yy|SD|MS). (31)

IV. DECAY MODE X (3915) - yy

As an application, we investigate the radiative two-
photon decay of the exotic state X(3915) in this section.
Here, the isoscalar X(3915), once named Y(3940), is
considered as a mixed state of two S-wave molecule states
D*D*® and D**D*~. The BS wave function of the
X(3915) state is a linear combination of these two
components as

1 D* OD*O

\/E)(lr

X(3915),) 1 D*tD*j
(P, p) = (P, p) +\/—§m (P, p),

(32)

FIG. 4. The lowest-order matrix element between the four-
quark state and vacuum in the momentum representation.

e\?2 1 1
(5) (27)*2 /21Q7\/2IQ[ 2E(P) (27
x (28O (P - Q- Q') / dkdp

)3851’*<Q'>es*<Q>

1 .
(271_)8 y}é?f)(] (P7 p’ k? k/) (30)

0 70
DB . 1 1\\?° |1 1\?
P.p)=+ (P N .
)(/I‘r ( ’p) %ﬁr( vp)< ‘23 2>> ® 272 s

. 1 1\ P 1 1\\?~
D*"D*".j .
Xoe (P.p) =y}, (P. p)’2 2> ®< ‘2, 2>> ,

and P becomes the total momentum of the X(3915) state
and yj (P,p) is the component wave function in the
momentum  representation; (—[},—1)) ® |3.1) and

1.3 ® (=|3.—1)) are the isospin wave functions of pure

molecule states D"OD*0 and D**D*~, respectively; and
)(ZOD "7 and )(z DT represent the BS wave functions for
the bound states of two vector mesons, which are the
eigenstates of the Hamiltonian without considering the
coupled-channel terms. These eigenstates have the same
quantum numbers. Since the C parity of X(3915) is even,
one can have J* = 0F or 2% for this S-wave D*D* system
[23]. In Ref. [7], we only considered the neutral component
D*9D*9 to evaluate the mass and BS wave function of the
molecular state. In this paper, we reconsider the mixed
states of neutral component D**D*? and charged compo-
nent D**D*~ with J¥ = 0" and 2*.

For the neutral component, V and V' in Fig. 4 represent
D* and D*0, respectively; the flavor labels A = B and
C=D in Egs. (17) and (30) represent the u quark
and ¢ quark, respectively. For the charged component, V
and V' become D** and D*~, respectively; the flavor labels
A=B and C =D become the d quark and c¢ quark,
respectively. According to the Weinberg-Salam model,
the interaction Lagrangian for the coupling of quarks to
photon becomes

£ (x) = ie |2 )ryu(e) = 5 A0x)r,d(x)

[SSII )

[\

5(x;)7,s(xi) +5¢(x)7uc(x;) [Au(xi). (34)

|
W =
W |

Then, the lowest-order matrix element for this decay
process becomes

014009-6
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1 1 1
(7|8 1X(3915))

4¢?
A, C
(Qr)8 7 { 9

x / d*kd*p

2
V2 (217 \/21Q] \/21Q] \/2E(P) (27)

. 2e .
Appopo(Pyps koK) ==y (P p kK |

L (016 (0) 2n)'s9 (P - 0 - @)

2

9 (35)

Let D} denote one of D** and D**, and [ = u, d represents the u or d antiquark in the heavy vector meson D** or D*™,
respectively; D denotes the antiparticle of D;. From Egs. (7) and (17), we obtain the GBS wave function for the four-quark

state [9,24]

-1 1 7P
(P p kK = (21)® x I i p.
;HDD( p.k.k') = (2x) N S—— Y] <n+pu W, >¢D( )y .p3_1mm( p)
-1 1 v P -1
X _ / _ k/2 , 36
yt e py—im NI (yf—f—perz v; )}’C'Pz—imc (36)

where m,; are the constituent quark masses, ¢p: (k*) =
@p: (k) = exp(—k* /@), @p = 1.50 GeV [21], and the
momentum of the X(3915) state is set as P = (0,0, 0, iM)
in the rest frame. As in heavy-quark effective theory [25],
we consider that the heaviest quark carries all the heavy-
meson momentum, and these momenta in Eq. (29) become

p1=P/2+p+k, p,=0—-P/2—p—k,

p3:_k’ p4:_k/,
=P/2+p, ph=P/2-p, K=0-P—k  (37)
Now, we determine the normalizations N2 and NP,

The component wave functions y/ (P, p) with J* = 0"
and 2" are given in Secs. IV. A and IV.B, respectively.
From Eq. (17), the BS wave function of the D} meson can
be written as

-1 1 v
K.k)= . K - (k2
XK. k) 7 (K + k) = im, ND; <7/,1+ AM%)?>¢D1( )
—1
X — 38
7 (=R = im, B

where K is set as the momentum of the heavy meson in the
rest frame, k denotes the relative momentum between the
c quark and / antiquark, and k and K are not the momenta
presented in the decay process. For [ = u, NPi = N Ch
represents the normalization of the BS wave function for
the heavy vector meson D*°; for [ =d, NP =NP”
represents the normalization of the BS wave function for
|

1 1

|
the heavy vector meson D**. The authors of Refs. [20,21]
employed the ladder approximation to solve the BS
equation for quark-antiquark state, and the reduced nor-
malization condition for the BS wave function of D} meson
given by Eq. (38) is

2K, = (_) 3/d k71(K. k)
aio [S(K +K)~1S(=k)~"xa(K k), (39)

where the factor 1/3 appears because of the sum of three
transverse directions.

A. Molecular state with J* =0+

In Ref. [7], the BS equation for the bound state
composed of two heavy vector mesons was treated in
the ladder approximation, and the BS wave function of pure
molecule state DD} with 0" was obtained:

DD
P b

)(M'( p)

— (T3 F (PPP-p,p?) + T3, F»(PPP-p,p?)].  (40)

1
J\/ 05
PPP represents the momentum of the pure molecule state in
the rest frame, the fourth component of which is different

from the one of P. These scalar functions F; and F,
should satisfy two individual equations [7]

Fi(PPP - p,p?) = ——
(PPP/2 + p)? + M3

—ie (PPP /2 — p)? + M3 —

d4q/ _
. /(2”)4‘/ (p q PDD)fl(PDD : ql’ q/2)’ (41)
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(PPP /2 — p)2F,(PPP - p, p?) =

1 1

4 1

| G

where V(p, ¢'; PPP) and V,(p, ¢'; PPP) are derived from
the interaction kernel between DjDj. Considering the
internal structure of vector meson D; and SU(3) symmetry,
we constructed the interaction kernel between two vector
mesons derived from one light meson (¢, w, p°, ¢) exchange,
shown as Eq. (35) in Ref. [7]. To avoid confusion, the
momentum of the exchanged meson is denoted by a in this
paper. In instantaneous approximation, we set the momen-
tum of the exchanged meson as a = (a,0); Egs. (41) and
(42) in this paper become two relativistic Schrodinger-like
equations shown as Egs. (41) and (44) in Ref. [7], respec-
tively. Solving these two equations, we obtained the wave
functions ¥)" (p) = [ dpoF,(PPP - p, p?) and ¥ (p) =
[ dpo(PPP /2 = p)>F,(PPP - p, p) in Ref. [7]. And then,
the masses and wave functions of pure molecule states
D*°D* and D**D*~ with J¥ = 0% can be obtained.
Considering one light meson (p* and p~) exchange, we
obtained the cross-terms between two pure molecule states
D**D*0 and D**D*~, shown as the first term of Eq. (16) in
Ref. [8]. And then, the matrix elements between two pure
molecule states were obtained in the instantaneous approxi-
mation shown as Eq. (43) in Ref. [8]. Using the coupled-
channel approach (see details in Ref. [8]), we can calculate
the mass of the X(3915) state with J* = 0". Since the
mixing of component wave functions causes the change of
energy, the fourth component of PPP in the original BS
wave function becomes the total energy of mixed state, and

(PPP/2+ p)* + M} -

ie (PPP /2 — p)* + M3 —

Vao(p.q's PPP)(PPP 2 — ¢')2F,(PPP - ¢, q?). (42)

[
[T} Fi(P-p.p?) + T3 F>(P- p.p?).

(43)

Xﬂr (P p) N0+

The reduced normalization condition for 40" (P, p) is

—i )
2Py = / d*pj;.(P.p)

(@n)*

a8 (P24 p) Ao (P2~ p) s (P.p),

(44)

! is the inverse propagator for the vector

= (S — 2L (p? + m?)

[9]. To fix the normalization N°", we require the scalar
functions F; and JF,, which can be obtained from ‘I‘?+ and

where Apgy (p)~
field with mass m, Ay (p)

‘I’(Zﬁ, respectively. After determining the normalization
N?", we automatically obtain the normalized BS wave
function for the mixed state of two components D*°D*? and
D**D*~ given by Eq. (32).

Substituting Eq. (43) into (36), we obtain the GBS wave
function for four-quark state )(%7 b; (P, p,k, k") with

JP = 0. Then, the lowest-order transition matrix element
for the radiative two-photon decay of X(3915) expressed as

29 (PPP | p) in Eq. (40) becomes Eq. (35) can be calculated,
J
? 2 1 1 1 1 (S
s21x(3915)) = — €
<)/}’| tt| ( )> \/E 271_ 3/2 \/2‘Q/ \/2|Q|\/2EP (27[3 H (Q) (Q)
< (2n)'5(p - - 0) (P -2ty ), (43)
where
1 1 oo () 1 op(k?) 1 1
M%D’:/dé‘kd‘lp 2 2 ND; 2Dl( 2 b 12)1( )2 2 2 N0
pi + mi NPk + mi NPT K + m7 p5 + mz N©
x Tr{y,ly - p1 + im (P - Py = (v - PAYPLIF (P p. p?) + [PEP5Y-
+ (P P17 - PP = PE(r - P)Ph = PR (r - Py P Fo(P - . p?)}
X[y (=k) +im]y,ly - (=K') + imy.[y - po + im.]}. (46)
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In Eq. (46), the trace of the product of eight y-matrices
contains 105 terms, and the resulting expression has been
given in Appendix B of Ref. [9]. In our approach, the p
integral is computed in the instantaneous approximation.

. D:D* . .
To calculate this tensor M, ', we have given a simple
. . . D*D*
method in Ref. [9]. It is obvious that the tensor M,,; ' only

. . . DD
depends on P and Q, so in Minkowski space, M, ' can
be expressed as

D;D;

11
GuuMu

D"

P,Q, My

D;

MPh = g,,U\(P, Q) + P,Q,Us(P, Q) + P,P,Us(P, Q)

+ QuPﬂU4(Pv Q) + QuQ;tUS(P’ Q)’ (47)

where U;(P, Q)(i = 1,...,5) are the scalar functions. The
above expression is multiplied by these tensor structures
o> P,Oys PPy, Q P, and Q,0,, respectively, and a set
of equations is obtained,

=U, =4U, + (P- Q)U, + P*U3 + (P - Q)U, + Q*Us,
=Uy=(P-Q)U, + P?Q*U, + P*(P- Q)Us + (P- Q)*Us + Q*(P- Q)Us,

PP, M1 = Uy = P2U, + PX(P - Q)U, + P2P2Us + PX(P - Q)U, + (P - Q)*Us,

0P, M = U, = (P-Q)U, + (P- 02Uy + P2(P- Q)Us + Q*P*U, + Q*(P - Q)Us,

0,0,M0" = UL = QU + Q*(P - Q)U, + (P QU3 + Q*(P - Q)U, + Q*Q*Us,

(48)

where U’ are numbers. Subsequently, we numerically calculate U’ and solve this set of equations. The values of U; can be

obtained.

Finally, we obtain the radiative two-photon decay width of X(3915) with J* = 0%,

= / P Od*Q'(2n)*sW(P - Q- Q')2

2 2
>3l
o'=1o=1
where P=(0,0,0,iM), 0=(Q,.i|Q,|), 0'=(-Q,.i|Q,]|),

and |Qy| = M /2. To derive Eq. (49), we use the transverse
condition of electromagnetic field e?(Q) - Q =0 and the
completeness relation.

B. Molecular state with J¥ =2+

Because we consider the S-wave molecule state com-
posed of D?Df with J® = 27, the tensor structure in its BS
wave function cannot contain the relative momenta
Puys-oos Py This is because the relative momentum rep-
resents the orbital angular momentum. In Eq. (13), only one
term describes the S-wave vector-vector system,

_ 1 _
13, (PPP p) = e Wiz G, 191,95 (PP - p. p?)
DD
1 _
= - 1395(PPP - p. p?), (50)
N2
DD
c=12345 . o
where 775 is the polarization tensor of the molecular

state with J* = 2%, In Ref. [7], Eq. (22) is wrong, it is
revised as (50) in this paper. This BS wave function should
satisfy the equation

42

(T
2|Q'|2|Q|2E(P) (21)°

D00 2¢? D D 2 49
MG =S MG, : (49)
[
2+ PDD — d4q/ A Y /. PDD
Xz ( ’ p) (271_)4 Fﬂa(pl) 119,/}K(p7 q; )
X Ko (P22, q)) Appe(Ph), (51)

where V94 is the interaction kernel and A, (p}) and
Apg.(p5) are the propagators for the spin 1 fields. The
interaction kernel between D} and D; derived from one
light meson (o, o, 20, @) exchange was constructed in
Ref. [7]. Comparing the terms 75, in the left and right sides
of Eq. (51), we obtain

1
(PPP/2+ p)? + M3 —ie
1
X —
(PPP/2=p)*+M;3—ie

d4q/ _ _
X/W‘G(P,CII;PDD)QS(PDD'4/761/2)’

Gs(PPP - p,p?) =

(52)

where Vs (p. ¢'; PPP) contains all coefficients of the term 05
in the right side of (51). Setting ¥?" (p) = [ dp,Gs(PPP -
p. p?) and adopting instantaneous approximation, we obtain
the Schrodinger-type equation (see details in Ref. [7])

014009-9
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b3 (M 2

(=P v = [
2ug 2ug

and the potential between D} and D; up to the second order
of the p/ M expansion

dPa

2 V2 (p.a)¥* (p.a)

(53)

2
2+ _ 2 9s 2
4 (P,a)——Fl(a>a2+mgF1(a)
2 2 2
g 9 g3
- F a2 /4
2( )<a2+mzo+a2+m§, az—&—m;))

4E\E, |’

where a is the momentum of the exchanged meson;
b*(M) = [M? = (M, + My)*|[M? = (M, = M,)*]/(4M°);
pr=E\Ey/(E) +Ey) = [M*— (M] - M3)’]/(4M°); E, =
(M? = M3+ M})/(2M);  Ey = (M? = M} + M3)/(2M);
the meson-quark coupling constants g,, g,, g1, and gg are
obtained within the QCD sum rules approach; and F,(a?)
and F,(a®) are the form factors of heavy meson Dj
describing the heavy meson structure. These two form factors
correspond to one light scalar and vector meson exchanges,
respectively, which have been given in our previous work
[17]. The values of the meson-quark coupling constants have
been given in Refs. [7,17]. Numerically solving the equa-
tion (53), we can obtain the masses and wave functions of
pure molecule states D*°D*? and D**D*~ with JP =2+,

x Fy(a?) [1 + (54)

Using Egs. (52) and (53), we can obtain Gs(PPP - p, p?)
from the wave function ¥?' (p).

Similarly, considering the cross-terms between two
pure molecule states D**D** and D**D*~ and using the
coupled-channel approach, we can obtain the mass of the
X(3915) state with J¥ = 2%. The component wave func-

tion ;{ﬁT(P, p) can be obtained:
Gs(P - p.p).

25 (P.p) = (55)

N2+ rlﬁf

The reduced normalization condition for y?, (P, p)

becomes
iy [ pip.p)
0— 5 g=1 (2”)4 p)(/l‘r 9p

0
XaTDO[AFM(P/2+P)_1AF11’(P/2—P)_I]ZA’T’(P,P)’

(56)

where the factor 1/5 appears because of the sum of five
transverse directions.
Substituting Eq. (55) into (36), we obtain the GBS

wave function for four-quark state ;(D* (P p,k, k') with

JP = 2%, Then, the lowest-order transmon matrix element
for the radiative two-photon decay of X(3915) expressed as
Eq. (35) becomes

2 1 1 1 1 1,
S@|x(3915)) = — 2(0)el”
#0 Fy! 2@2 *4 yx—
<enar-0-0)(* 53’?" -2 M Vi (57)
where
D’*D;—/d“kd“ 1 1 fﬂD;(kz) 1 (PD,*(k/Z) 1 1 Gs(P- 2)
wile = pp%—i—m%./\/'mk2+m2,/\/5*k’2+m,2p§+m3./\/2+ s\ psp
. 7-p
el imd (14 le)[y (~4) + imly,ly - () + i)
rp .
(yﬁp’z, jYe 2) [y pz+lmc]}- (58)

Applying the same method mentioned in Sec. IV. A, we can calculate the tensor MPi

(see details in Appendix B). Finally,

uﬂ‘[

the radiative two-photon decay width of X(3915) with J¥ = 2% should be

1 1 1 1
r2*=/d3 PO 2r)*sM(P-0-0)2
Qd°Q'(2x)*6 (P -0 - Q') 31Q2/Q| 2E(P) (2)°
1 2 2 , , 4 2 00 2 2 R 2
DSl (@) (g M 2 M i (59)
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To calculate the normalization A" and the decay width
I'>", we use the spin projector given in Ref. [26],

5

E : S SF
7]1177/1/1/ —

¢=1

where A,, = 6,, + P,P,/M>.

1
(AM’ATT' + AM’AT/V) - g A/lTA/l’T’v (60)

N[ =

V. NUMERICAL RESULT

Since the isospin conservation, we have the constituent
quark masses m, = my; = 0.33 GeV, and m, = 1.55 GeV
[6] and the meson masses Mpo = Mp-+ = 2.007 GeV
[16]. Taking wp- = 1.50 GeV as in Ref. [21] and using
the approach given in Ref. [7], we recalculate the masses
and wave functions of pure molecule states D**D*° and
D**D*~ with J® = 0% and 2*. Considering the cross-terms
between these two pure molecule states D*°D** and
D**D*~ and using the coupled-channel approach, we

TABLE 1. Mass and widths of mixed state of two S-wave
molecule states D*°D* and D**D*~ with 0*. We vary constitu-
ent quark masses to estimate the uncertainties.

Quantity m, ,=0.32GeV m, ;=0.33GeV m, ,=0.34GeV
Mass (GeV) 3.920 3.926 3.933
IN'X-J/yw) 44 49 64
MeV)
(X - yy) 28 34 26
(eV)
TABLE II. Mass and widths of mixed state of two S-wave

molecule states D*°D*0 and D*+D*~ with 2*. We vary constitu-
ent quark masses to estimate the uncertainties.

obtain the masses of the mixed states with J¥ = 0 and
2. Then, by doing the numerical calculation, we obtain the
radiative two-photon decay widths I'(X(3915) — yy) for
JP = 0% and 2%. In Ref. [9], we introduced a method to
evaluate the decay width of the molecular state into a heavy
meson plus a light meson. Applying this method given in
Ref. [9], we recalculate the strong X(3915) — J/ww decay
widths for J¥ = 0" and 2*. Our numerical results are
presented in Tables I and II.

In our approach, we require the meson-quark coupling
constants and the parameters wy in BS amplitudes of heavy
vector mesons to calculate the mass and decay widths of
X(3915). These parameters are determined by providing
fits to observables, which cannot be adjusted freely. Our
approach also involves the constituent quark masses m,,,
mg, and m,. According to the spontaneous breaking of
chiral symmetry, the light quarks (u, d, and s) obtain their
constituent masses because the vacuum condensate is not
equal to zero, and the heavy quark masses (c, b, and 1) are
irrelevant to the vacuum condensate. The constituent
masses of light quarks have not been exactly determined,
while the large uncertainty should not exist for heavy
quarks. Normally, the value slightly greater than a third of
the nucleon mass is employed as the constituent mass of the
light quark. Taking different values for constituent masses
of light quarks m,, ,, we do the numerical calculation again
and obtain the uncertainties given in Tables I and II. These
numerical results imply that in our approach the calculated
masses and decay widths depend on the values of con-
stituent quark masses, but not sensitively.

In experiments, the observation of narrow state X(3915)
has been reported by a series of works collected in Table III.
Comparing our numerical results with experimental data,
we find that the calculated masses of mixed states con-
sisting of two components D*°D*® and D**D*~ with
JP = 0% and 2* are consistent with experimental data,
as mentioned in Ref. [11]. However, for the strong decay

Quantity  m, ;=0.32GeV m, ;=0.33GeV m, ;=0.34GeV ot : dec
' ' ’ and radiative two-photon decay of a mixed state consisting
Mass (GeV) 3.934 3.941 3.949 of D*D*Y and D*'D*", we find that the numerical
IX-J/yw) 5 6 8 P ot . i
(MeV) results for J© = 2% are more consistent with the latest
T(X—7y) 10 12 9 experimental data [10,11] than the ones for J” = 0.
eV) In particular, the calculated radiative two-photon decay
width of the mixed state with J* = 27 is in good agreement
TABLE III.  Experimental data on the mass and decay widths of X(3915), given in chronological order. 1 is the branching fraction.
Year Experiment Mass (MeV) I'X - J/yw) MeV) ['(X - yy) x B(X - J/yw) (eV)
2005 Belle [12] 39043 + 114+ 13 87 +22+26
2008 BABAR [13] 3914.6°3% +2.0 34t 45
2010 Belle [10] 3915+3+£2 17£10+£3 61 +£17 £ 8 for J/ = 0F
18 £5+2 for JP =2+
2012 BABAR [11] 39194 +224+1.6 13£6+3 52+ 1043 for J© = 0*

10.54+ 1.9+ 0.6 for J* =27

014009-11



CHEN, LU, SHI, GUO, and WANG

PHYS. REV. D 101, 014009 (2020)

with the latest experimental data, which provide further
verification for the discrimination of the X(3915) quantum
numbers.

We summarize the numerical results as follows: the strong
decay width is I'(X(3915) —» J/yw) = 6 MeV, the radia-
tive two-photon decay widthis ['(X(3915) — yy) = 12 eV,
and the quantum numbers of the X (3915) state are J© = 2.
To investigate the radiative decay of a mixed state consisting
of two components, we consider the photon interaction
with quarks, which can be described by the exact interaction
Lagrangian. Therefore, this work provides a further
verification for the molecular hypothesis of X(3915) and
predicts the exact value of radiative two-photon decay
width T'(X(3915) — yy).

Up to now, a systematical and accurate theoretical
approach from QCD to investigate the molecular state
composed of two heavy vector mesons has been estab-
lished. Applying the general form of the Bethe-Salpeter
wave functions for the bound states composed of two
vector fields, we calculated the mass of molecular state and
obtained its BS wave function [7]. Then, using the general
form of the GBS wave functions for four-quark states
describing the meson-meson molecular structure, we cal-
culated the decay width of the molecular state into a heavy
meson plus a light meson [9]. In this work, we investigate
the radiative two-photon decay of the molecular state. From
the effective theory at low-energy QCD, we investigate the
molecular state consisting of two vector mesons, which is
the main difference between our approach and these other
works about hadronic molecule states.

VI. CONCLUSION

The general form of the GBS wave functions for four-
quark states describing the molecular structure is applied to
investigate the radiative two-photon decay of a molecular
state composed of two vector mesons, and the general

|

formulas for the two-photon decay widths of molecular
states is obtained. Then, assuming that the exotic state
X(3915) is a mixed state of two components D**D*? and
D**D*~, we carefully consider the internal structure
of the vector mesons in the molecular state and numerically
calculate the decay widths I'(X(3915) — yy) with J¥ = 0
and 2. Comparing our numerical results with experimen-
tal data, we deduce that the quantum numbers of the
X(3915) state are J* =2". From the effective theory at
low-energy QCD and the Weinberg-Salam model, we have
systematically investigated the strong and radiative decay
modes of a molecular state composed of two heavy vector
mesons. In the future, to contain more inspiration of QCD,
we will introduce the nonperturbative contribution from
vacuum condensates into the GBS wave function for the
four-quark state and the irreducible part of the Green’s
function.
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APPENDIX A: THE TENSOR STRUCTURES
IN THE GENERAL FORM OF THE
BS WAVE FUNCTIONS

The tensor structures in Egs. (12)—-(15) are given
below [7]:

T), = (mmP*> —mP-p+mP-p—p*) g, — (mmP,P.+mP,p. —mp;P. — pip.).

T3, = (WP +2mP - p+ p*)3P* = 2mP - p + p*)gs.

+ (mmP* =mP - p+mP-p—p*)(mmP,P, —mPp. +mpP. — p,p:)
— (BP*=2mP - p+ p*)(iiP,P. + mPyp, +nip,P. + p,p.)
— (MP*+2mP - p+ p*)(BP,P. = mP,p, — mp,P. + pip.),

1
T} e = P P, Guya (P> +2m P - p + p*)[(13P* = 2P - p + p*)(m P + p),

— (mmP*=mP-p+mP-p—p*)(mP-p),]

— Py, Pl (1BP* = 2mP - p + p*) (1P, Py + M Pype + 11 paPe + pip:)
— (mmP* =mP-p+mP-p—p*)mmP,P, —niPp. +n:p, P — p;p.)].
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1
T e = P PGy (P2 = 2mP - p + p)[(mmaP* =mP - p

+mP-p—p*)(mP+p),— uiP>+2mP-p+ p*) (P - p),
— Py Py [P+ 21 P - p + p*)(13P, P = 12 Pype = 2P Pe + pap:)
— (mmP* =mP-p+mP-p—p*)mmP,P, —niPp, +n:p,Pr — p;p.)].

Tie = P2 +2mP - p+ p?)(3P? = 212P - p + P*) Py, Py G, 29pe

1 1
~ P  Pu, Gy (P2 = 2mP - p + p*)(m P + p); + P Py, Guya (T P? + 2 P - p + p?)(maP = p),

= Pu, P, (mm Py Pe = Pype +map,Pe = pype),
Ty e = PP =P p =2 )y, Py €uyicePe + 2mmaP - p +mp> = mip*) Py, Py €uinePe

TP PuuyagcPePePe + Py, P yeec PePePas
Tie = (P P)Pluy* Pu€uyinePe = PPl PpyCuntieePe T Piyy** Pris€yaze PePePe = Pls *** Py yeee PePe o
T ie = P> = mP> =2P - p)py, -+ Py €uyicePe + 2mmaP? +mP - p =P p)Py, - Py yincPe

+ Pl Pu€uyaze PePcPe + Py, - D€ yeee PePe Py
T e = P2Dguy - DuyCuyiniPe = (P PPy Pu€uyinePe + Py Puy€unyiae PePePe = Plyy - Py yoie PePePo-
D;D;

APPENDIX B: CALCULATION OF TENSOR M "' IN THE DECAY WIDTH

vuAt

OF X(3915) WITH J* =2+
in Eq. (58) also depends on P and Q, it can be expressed as

D; by

Because the tensor M, /-

fjfj = 9uu9iR1 + 909 R2 + 909 R3 + 9 PiP Ry + 9, PO Rs + 9,0, PR + 9,0, 0.R;
+ 9P, PRy + 9,,P, 0. Ry + 9,,0,P.Rio + 9,,0,0.R11 + G,.P,P;R12 + 9,.P,Q;R13 + G,,0,P;R14
+ 9,:0,0,R5 + guP,P.Rig + §uP,O:R17 + §u QP Rig + 9,00 R19 + 9y PLP 1 Roy + 9P O R
+ 9 QPR + 9. 0,03 R»3 + 95 PPy Ry + 93: POy Rys + 95: 0 PRy + 9,:0,0,R;
+P,0,0,0.Rs + P,0,0,0.Ry9 + P,0,0,0.R30 + P.0,0,0,R3; + P,P,0,0.R3y + P,P,0,0.R3;
+P,P.0,0;R34 + P,P;0,0.R35+ P,P.0,Q;R3s6 + P;,P.0,0,R37 + P,P,P.O,Rsg + P,P;P.Q, Rz

+ PuPyPTQﬂR40 + PDPyPAQrRAH + PVPMP2P1R42 + QuQﬂQlQTR%’ (Bl)

where R;(P,Q)(i =1,...,43) are the scalar functions.
There are 43 tensor structures in the above expression.
Then, Eq. (B1) is multiplied by these 43 tensor structures
respectively; and a system of 43 equations is obtained.
Subsequently, we numerically calculate the products of
Eq. (B1) and these 43 tensor structures, respectively,

and solve this system of equations. The values of R; can
be obtained. Obviously, the expression of tensor M,Z’;l:;
given in Eq. (B1) is a general formalism, which can be
used to evaluate the strong decay width of X(3915)

with JP =27,

014009-13
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