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Using the general form of the generalized Bethe-Salpeter wave functions for four-quark states describing
the meson-meson molecular structure given in our previous work, we obtain the general formulas for the
decay widths of molecular states composed of two vector mesons with arbitrary spin and parity into two
photons. Then, this general formalism is applied to investigate the radiative two-photon decay of the
observed Xð3915Þ state, in which this exotic state Xð3915Þ is considered as a mixed state of two
components D�0D̄�0 and D�þD�−. The numerical result of decay mode Xð3915Þ → γγ is consistent with
the experimental values.
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I. INTRODUCTION

In the framework of QCD, beyond the quark-antiquark
(qq̄) state, there should be other internal structures, such as
the tetraquark state, molecular state, etc., which have been
used to interpret exotic mesons [1–6]. It is most reasonable
and fascinating to study the structure of exotic meson from
QCD. In our previous works [7–9], we have carefully
investigated the molecular state composed of two vector
mesons as far as possible from QCD and obtained the
general form of generalized Bethe-Salpeter (GBS) wave
functions of molecular states as four-quark states. This
GBS wave function for the four-quark state was applied to
evaluate the strong decay width of a molecular state
composed of two heavy vector mesons into a heavy meson
plus a light meson in Ref. [9], while the radiative decay of a
molecular state has still not been investigated. In this paper,
we will emphatically investigate the two-photon decay of a
molecular state composed of two vector mesons.
Different from the previous works [1–3] about hadronic

molecule states, in our approach, the vector mesons in a
molecular state are considered as bound states composed of
a quark and an antiquark. Because of the spontaneous
breaking of chiral symmetry, the effective interaction

Lagrangian at low-energy QCD can be regarded as a
Lagrangian for the interaction of light mesons with quarks.
According to the effective theory at low-energy QCD, we
can investigate the exchanged meson interaction with
quarks in the vector meson and obtain the interaction
kernel between two vector mesons. Solving the Bethe-
Salpeter (BS) equation, we obtained the masses and BS
wave functions of molecular states composed of two vector
mesons [7,8]. From the molecule state model, we gave the
GBS wave function for the four-quark state [9]. The GBS
wave function derived from QCD is an essential prerequi-
site to accurately calculating the decay widths of a
molecular state containing strong and radiative decays.
When investigating the radiative decay of a molecular state

composed of two vector mesons, we still consider the internal
structure of these vector mesons. The decay interaction is
derived from the photon interaction with quarks in these
vectormesons. The photon-quark interaction canbedescribed
by the exact interaction LagrangianLI ¼ i n

3
eq̄γμqAμ, where

the value of n is determined by the flavor of the quark field.
In this work, we investigate the radiative two-photon decay
of the molecular state. The lowest-order approximation for
this decay mode is the second-order S-matrix element.
Considering this radiative decay interaction and using the
GBS wave function, we can obtain the general formulas for
the matrix elements of the charge current between the four-
quark state and vacuum. Finally, the two-photon decay width
of the molecular state can be evaluated.
Then, this approach is used to investigate a significant

process: the radiative two-photon decay ofXð3915Þ [10,11].
The experimental data of Xð3915Þ, once named Yð3940Þ
[12,13], introduces a new challenge to the ordinary cc̄

*Corresponding author.
chen_xzhao@sina.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 014009 (2020)

2470-0010=2020=101(1)=014009(14) 014009-1 Published by the American Physical Society

https://orcid.org/0000-0003-4550-2920
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.014009&domain=pdf&date_stamp=2020-01-14
https://doi.org/10.1103/PhysRevD.101.014009
https://doi.org/10.1103/PhysRevD.101.014009
https://doi.org/10.1103/PhysRevD.101.014009
https://doi.org/10.1103/PhysRevD.101.014009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


charmonium interpretation [14,15]. Moreover, the spin-
parity quantum numbers JP of Xð3915Þ are not unambig-
uously determined in experiment [16]. In this paper, we
assume that this exotic meson Xð3915Þ is a mixed state of
two components D�0D̄�0 and D�þD�− with JP ¼ 0þ or 2þ.
From the effective theory at low-energy QCD and the
Weinberg-Salam model, we comprehensively and system-
atically analyze the radiative two-photon decay of a mixed
state consisting of two components D�0D̄�0 and D�þD�−.
The matrix elements between the four-quark state and
vacuum and the radiative decay width can be calculated
without an extra parameter. The calculated decay width
ΓðXð3915Þ → γγÞ for 2þ is more consistent with the
experimental values. Therefore, our approach provides
further verification for the effective theory at low-energy
QCD and proves the reasonableness of the molecular
hypothesis for Xð3915Þ. Comparing our numerical results
with experimental data, we can further discriminate the
quantum numbers JP of the Xð3915Þ state. The Bethe-
Salpeter theory is a relativistic theory for a two-body bound
state in quantum field theory, and our approach is an
generalization of BS theory. So, our approach is in fact a
nonperturbativemethod, which can be applied to investigate
arbitrary meson-meson molecular structure.
The structure of this article is as follows. In Sec. II, the

GBS wave function of a molecular state as a four-quark
state is given. Section III gives the general formulas for the
matrix elements of the charge current between the four-
quark state and vacuum. In Sec. IV, our approach is used to
investigate the decay mode Xð3915Þ → γγ. Our numerical
results are presented in Sec. V, and we make some
concluding remarks in Sec. VI.

II. GBS WAVE FUNCTION FOR FOUR-QUARK
STATE

If a bound state with spin j and parity ηP is composed of
four quarks, its GBS wave function can be defined as [9]

χjPðx1; x3; x4; x2Þ ¼ h0jTQCðx1ÞQ̄Aðx3ÞQBðx4ÞQ̄Dðx2ÞjPi;
ð1Þ

where P is the momentum of the four-quark bound state,Q
is the quark operator, and its superscript is a flavor label.
From translational invariance, this GBS wave function can
be written as

χjPðx1;x3;x4;x2Þ¼
1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2EðPÞp eiP·XχjPðX0;x;x0Þ; ð2Þ

where EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, X ¼ η1ðη001x1 þ η003x3Þ þ

η2ðη004x4 þ η002x2Þ, X0 ¼ ðη001x1 þ η003x3Þ − ðη004x4 þ η002x2Þ,
x¼x1−x3, x0¼x2−x4, η1þη2¼1, η001;3¼mC;A=ðmCþmAÞ,
η002;4 ¼ mD;B=ðmD þmBÞ and mA;B;C;D are the quark

masses. Then, making the Fourier transformation, we
obtain the GBS wave function of the four-quark bound
state in the momentum representation

χjPðp1; p3; p4; p2Þ

¼
Z

d4x1d4x3d4x4d4x2χ
j
Pðx1; x3; x4; x2Þ

× e−ip1·x1e−ip3·x3e−ip4·x4e−ip2·x2

¼ 1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2EðPÞp ð2πÞ4δð4ÞðP − p1 − p3 − p4 − p2Þ

× χjðP; p; k; k0Þ; ð3Þ
where p1, p3, p4, and p2 are the momenta carried by the
fields QC, Q̄A, QB, and Q̄D; p, k, and k0 are the conjugate
variables to X0, x, and x0, respectively; and p ¼
η2ðp1 þ p3Þ − η1ðp4 þ p2Þ, k ¼ η003p1 − η001p3, and k0 ¼
η004p2 − η002p4. In the hadronic molecule structure, p is the
relative momentum between two mesons in the molecular
state, and k and k0 are the relative momenta between the
quark and antiquark in these two mesons, respectively,
shown in Fig. 1. This work aims to investigate the
molecular state composed of two vector mesons. In
Fig. 1, V represents the vector meson with mass M1, V̄ 0
represents the antiparticle of the vector meson V 0 with mass
M2, and MS represents the vector-vector molecular state.
In Fig. 1, there are three two-body systems in molecular

state: a meson-meson bound state and two quark-antiquark
bound states. We define the BS wave functions of these
two-body systems as χjPðp0

1; p
0
2Þ, χp0

1
ðp1; p3Þ, and

χp0
2
ðp4; p2Þ, respectively. According to the BS theory,

the BS wave function for the bound state of two vector
mesons has the form

χjPðp0
1;p

0
2Þλτ

¼ 1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2EðPÞp ð2πÞ4δð4ÞðP−p0
1−p0

2ÞχjλτðP;pÞ; ð4Þ

FIG. 1. Generalized Bethe-Salpeter wave function for the four-
quark state in the momentum representation. The solid lines
denote quark propagators, and the unfilled ellipses represent
Bethe-Salpeter amplitudes.
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and the BS wave functions of two vector mesons are

χp0
1
ðp1; p3Þλ ¼

1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eðp0
1Þ

p ð2πÞ4

× δð4Þðp0
1 − p1 − p3Þχλðp0

1; kÞ; ð5Þ

χp0
2
ðp4; p2Þτ ¼

1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eðp0
2Þ

p ð2πÞ4

× δð4Þðp0
2 − p4 − p2Þχτðp0

2; k
0Þ; ð6Þ

where p0
1 and p0

2 are the momenta of two vector mesons,
and we have p0

1 ¼ η1Pþ p, p0
2 ¼ η2P − p and η1;2 ¼

M1;2=ðM1 þM2Þ. Applying the Feynman rules and com-
paring with Eq. (3), we obtain the GBS wave function for
the four-quark state describing the molecular state com-
posed of two vector mesons with arbitrary spin and definite
parity [9],

χjðP; p; k; k0Þ ¼ ð2πÞ8χλðp0
1; kÞχjλτðP; pÞχτðp0

2; k
0Þ: ð7Þ

In Ref. [7], we considered a bound state composed of
two massive vector fields with spin j and parity ηP and
defined its BS wave function in the momentum represen-
tation χjλτðP; pÞ. The polarization tensor of the bound state
ημ1μ2���μj can be separated,

χjλτðP; pÞ ¼ ημ1μ2���μjχμ1μ2���μjλτðP; pÞ; ð8Þ

where the subscripts λ and τ are derived from these two
vector fields. The polarization tensor ημ1μ2���μj describes the
spin of the bound state, which is totally symmetric, trans-
verse, and traceless:

ημ1μ2��� ¼ ημ2μ1���; Pμ1ημ1μ2��� ¼ 0; ημ1μ1μ2��� ¼ 0: ð9Þ

From Lorentz covariance, we have

χμ1���μjλτ ¼ pμ1 � � �pμj ½gλτf1 þ ðPλpτ þ PτpλÞf2 þ ðPλpτ − PτpλÞf3 þ PλPτf4 þ pλpτf5�
þ ðpfμ2 � � �pμjgμ1gλpτ þ pfμ2 � � �pμjgμ1gτpλÞf6 þ ðpfμ2 � � �pμjgμ1gλpτ − pfμ2 � � �pμjgμ1gτpλÞf7
þ ðpfμ2 � � �pμjgμ1gλPτ þ pfμ2 � � �pμjgμ1gτPλÞf8 þ ðpfμ2 � � �pμjgμ1gλPτ − pfμ2 � � �pμjgμ1gτPλÞf9
þ pμ1 � � �pμjϵλτξζpξPζf10 þ pfμ2 � � �pμjϵμ1gλτξpξf11 þ pfμ2 � � �pμjϵμ1gλτξPξf12

þ ðpfμ2 � � �pμjϵμ1gλξζpξPζpτ þ pfμ2 � � �pμjϵμ1gτξζpξPζpλÞf13
þ ðpfμ2 � � �pμjϵμ1gλξζpξPζpτ − pfμ2 � � �pμjϵμ1gτξζpξPζpλÞf14
þ ðpfμ2 � � �pμjϵμ1gλξζpξPζPτ þ pfμ2 � � �pμjϵμ1gτξζpξPζPλÞf15
þ ðpfμ2 � � �pμjϵμ1gλξζpξPζPτ − pfμ2 � � �pμjϵμ1gτξζpξPζPλÞf16
þ pμ3 � � �pμjgμ1λgμ2τf17; ð10Þ

where fμ1;…; μjg represents symmetrization of the indices
μ1;…; μj. In fact, the relative momenta pμ1 ;…; pμj ; pλ; pτ

represent the orbital angular momenta. There should be 17
scalar functions fiðP · p; p2Þði ¼ 1;…; 17Þ in Eq. (10). In
Eq. (6) of Ref. [7], a tensor structure is omitted. In this
paper, the missing term is added as the last term in Eq. (10).
Using the subsidiary condition for the massive vector field
∂μAμðxÞ ¼ 0 and the equal-time commutation relation, we
can obtain

p0
1λχ

j
λτðP; pÞ ¼ p0

2τχ
j
λτðP; pÞ ¼ 0: ð11Þ

The proof has been given by Refs. [7,17]. Then, consid-
ering the properties of the BS wave function under space
reflection, we obtain the revised general form of the BS
wave functions for the bound states composed of two
massive vector fields with arbitrary spin and definite parity
(see details in Ref. [7]), for ηP ¼ ð−1Þj,

χj¼0
λτ ðP; pÞ ¼ 1

N j ðT1
λτϕ1 þ T2

λτϕ2Þ; ð12Þ

χj≠0λτ ðP;pÞ¼ 1

N jημ1���μj ½pμ1 � � �pμjðT1
λτϕ1þT2

λτϕ2Þ
þT3

μ1���μjλτϕ3þT4
μ1���μjλτϕ4þT5

μ1���μjλτϕ5�; ð13Þ

and for ηP ¼ ð−1Þjþ1,

χj¼0
λτ ðP; pÞ ¼ 1

N j ϵλτξζpξPζψ1; ð14Þ

χj≠0λτ ðP;pÞ¼ 1

N jημ1���μjðpμ1 ���pμjϵλτξζpξPζψ1þT6
μ1���μjλτψ2

þT7
μ1���μjλτψ3þT8

μ1���μjλτψ4þT9
μ1���μjλτψ5Þ; ð15Þ

where N j is the normalization, the independent tensor
structures Ti

λτ are given in the Appendix A, and ϕiðP ·p;p2Þ
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and ψ iðP · p; p2Þ are independent scalar functions. The
scalar functions fi in Eq. (10) are the linear combinations
of ϕi and ψ i. In Eq. (18) of Ref. [7], a tensor structure
is also omitted, and this error has been revised as
Eq. (13) in this paper. For the vector mesons, the authors
of Refs. [18–21] have obtained their BS amplitudes in
Euclidean space [20,21],

ΓV
λ ðp0

1; kÞ ¼
1

N V

�
γλ þ p0

1λ

γ · p0
1

M2
V

�
φVðk2Þ;

ΓV̄ 0
τ ðp0

2; k
0Þ ¼ 1

N V̄ 0

�
γτ þ p0

2τ

γ · p0
2

M2
V̄ 0

�
φV̄ 0 ðk02Þ; ð16Þ

where ΓV
λ ðp0

1; kÞ and ΓV̄ 0
τ ðp0

2; k
0Þ are transverse

(p0
1λΓV

λ ðp0
1; kÞ ¼ p0

2τΓV̄ 0
τ ðp0

2; k
0Þ ¼ 0), N V and N V̄ 0

are
the normalizations, and φVðk2Þ and φV̄ðk2Þ are scalar
functions fixed by providing fits to the observables. The
BS wave functions of vector mesons are [17]

χλðp0
1; kÞ ¼

−1
γC · p1 − imC

1

N V

�
γλ þ p0

1λ

γ · p0
1

M2
V

�

× φVðk2Þ
−1

γA · p3 − imA
;

χτðp0
2; k

0Þ ¼ −1
γB · p4 − imB

1

N V̄ 0

�
γτ þ p0

2τ

γ · p0
2

M2
V̄ 0

�

× φV̄ 0 ðk02Þ −1
γD · p2 − imD

: ð17Þ

III. GENERAL MATRIX ELEMENT BETWEEN
FOUR-QUARK STATE AND VACUUM

Because of the internal structure of the vector mesons in
the molecular state, we investigate the photon interaction
with quarks in vector mesons and consider that the quarks
in a vector meson have different flavors in this work.
The interaction Lagrangian for the coupling of quarks to
photon is

LIðxiÞ ¼ i
n
3
eQ̄ðxiÞγμQðxiÞAμðxiÞ

þ i
n0

3
eQ̄0ðxiÞγμQ0ðxiÞAμðxiÞ; ð18Þ

where e is the electron charge, e
2

4π ¼ 1
137

, the factors n and n0
are determined by the flavor of the quark, and Q and Q0
represent the quark field operators with different flavors. In
Fig. 2, the radiative two-photon decay of molecular state is
shown. The second-order S-matrix element between
molecular state and two photons can be obtained,

hγγjSð2ÞjMSi

¼ ð−iÞ2
2!

Z
d4xi

Z
d4xjhγγjTHIðxiÞHIðxjÞjMSi: ð19Þ

Owing to Eq. (18), there should be two terms on the right-
hand side of Eq. (19), and these two terms are equal by the
interchange of xi and xj. Then, the lowest-order transition
matrix element for the radiative two-photon decay of a
molecular state composed of two vector mesons becomes

hγγjSð2ÞjMSi ¼ nn0
�
e
3

�
2
Z

d4xi

Z
d4xj

× hγγjTQ̄ðxiÞγμQðxiÞAμðxiÞQ̄0ðxjÞ
× γνQ0ðxjÞAνðxjÞjMSi: ð20Þ

According to the S-matrix theory, we obtain

hγγjSð2ÞjMSi ¼ nn0
�
e
3

�
2
Z

d4xid4xj

×
1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffi
2jQ0jp εϱ

0�
μ ðQ0Þ

× e−iQ
0·xi

1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffi
2jQjp εϱ�ν ðQÞe−iQ·xj

× h0jTQ̄ðxiÞγμQðxiÞQ̄0ðxjÞγνQ0ðxjÞjPi;
ð21Þ

whereQ andQ0 are the momenta of two photons in the final
state, Q ¼ ðQ; ijQjÞ and Q0 ¼ ðQ0; ijQ0jÞ, and εϱ¼1;2

ν ðQÞ
and εϱ

0¼1;2
μ ðQ0Þ are their polarization vectors, respectively.

Then, the charge current in Eq. (21) is JμðxiÞJνðxjÞ ¼
Q̄ðxiÞγμQðxiÞQ̄0ðxjÞγνQ0ðxjÞ. Applying Mandelstam’s
approach in quantum field theory [22], we obtain the
general formulas for the matrix elements of charge current
JμJν between the four-quark state and vacuum

FIG. 2. General matrix element of the charge current between
the four-quark state and vacuum in the coordinate representation.
The filled ellipse represents the irreducible part of the Green’s
function.
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h0jTJμðxiÞJνðxjÞjPi

¼
Z

d4x1d4x3d4x4d4x2Tðxi; xj; x1; x3; x4; x2Þ

× χjPðx1; x3; x4; x2Þ; ð22Þ

where Tðxi; xj; x1; x3; x4; x2Þ is the irreducible part of the
Green’s function, shown as in Fig. 2. The filled ellipse in
Fig. 2 represents the irreducible part of the Green’s
function, which is, in fact, a matrix element of a time-
order product of Heisenberg field operators. From the GBS
wave function of the four-quark bound state defined in
Eq. (1) and the charge current JμJν, it is straightforward to
derive the two-particle irreducible Green’s function

Tðxi; xj; x1; x3; x4; x2Þ
¼ h0jTQ̄ðxiÞγμQðxiÞQ̄0ðxjÞγνQ0ðxjÞ
× Q̄Cðx1ÞQAðx3ÞQ̄Bðx4ÞQDðx2Þj0iT: ð23Þ

Since the electromagnetic interaction does not change the
quark flavor, we obtain

Tðxi; xj; x1; x3; x4; x2Þ
¼ h0jTQ̄AðxiÞγAμQAðxiÞQ̄CðxjÞγCνQCðxjÞ
× Q̄Cðx1ÞQAðx3ÞQ̄Aðx4ÞQCðx2Þj0iT: ð24Þ

In quantum field theory, the matrix element in the
Heisenberg picture cannot be calculated, so one has to
transform it into the interaction picture, which can be
analyzed in terms of perturbation theory. In the interaction
picture, the two-particle irreducible Green’s function
becomes [22]

Tðxi; xj; x1; x3; x4; x2Þ
¼ ð0jTQ̄A

ipðxiÞγAμQA
ipðxiÞQ̄C

ipðxjÞγCνQC
ipðxjÞ

× Q̄C
ipðx1ÞQA

ipðx3ÞQ̄A
ipðx4ÞQC

ipðx2ÞSj0ÞT; ð25Þ

where Qip represents the interaction picture field operator
and j0Þ is the unperturbed free field vacuum. The operator S
in the right-hand side of Eq. (25) is

S ¼ T exp

�
−i

Z
∞

−∞
d4zHip

I ðzÞ
�
; ð26Þ

where Hip
I ðzÞ represents the interaction Hamiltonian den-

sity in the interaction picture. By means of perturbation
theory, Tðxi; xj; x1; x3; x4; x2Þ can be expressed as shown
in Fig. 3.
In this work, we investigate the radiative decay of the

molecular state. Because of the small electron charge, it is
reasonable to consider that the lowest-order term of the
irreducible part of the Green’s function is dominant. The
lowest-order term in the expansion of the right-hand side of
Eq. (25) is shown as Fig. 3(a), and the lowest-order value of
Tðxi; xj; x1; x3; x4; x2Þ is

T0ðxi;xj;x1;x3;x4;x2Þ
¼ δð4Þðx3−xiÞγAμ δð4Þðxi−x4Þδð4Þðx2−xjÞγCν δð4Þðxj−x1Þ:

ð27Þ

Substituting Eq. (27) into (22), we obtain the lowest-order
matrix elements of JμJν between the four-quark state and
vacuum,

h0jTJμðxiÞJνðxjÞjPi ¼ γAμ γ
C
ν χ

j
Pðxj; xi; xi; xjÞ: ð28Þ

From Eq. (3), the result (28) can be transformed to

h0jTJμðxiÞJνðxjÞjPi ¼
1

ð2πÞ16
Z

d4p1d4p3d4p4d4p2γ
A
μ γ

C
ν χ

j
Pðp1; p3; p4; p2Þeip1·xjeip3·xieip4·xieip2·xj

¼ 1

ð2πÞ12
1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2EðPÞp
Z

d4p1d4p3d4p4d4p2γ
A
μ γ

C
ν

× δð4ÞðP − p1 − p3 − p4 − p2ÞχjðP; p; k; k0Þeiðp1þp2Þ·xjeiðp3þp4Þ·xi ; ð29Þ

where χjðP; p; k; k0Þ is the GBS wave function for the four-quark state expressed as Eq. (7), p1 ¼ η001ðη1Pþ pÞ þ k,
p2 ¼ ðη2P − pÞ − ½P −Q − η003ðη1Pþ pÞ þ k�, p3 ¼ η003ðη1Pþ pÞ − k, p4 ¼ P −Q − η3

00ðη1Pþ pÞ þ k and k0 ¼
η4

00ðη2P − pÞ − ½P −Q − η3
00ðη1Pþ pÞ þ k�.

(a) (b)

FIG. 3. Perturbation expansion of the two-particle irreducible
Green’s function. Diagram (a) represents the lowest-order term.
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Using the matrix elements of JμJν between the four-quark state and vacuum in Eq. (29), we can obtain the computable
form of the S-matrix element between the molecular state and two photons in the momentum representation,

hγγjSð2ÞjMSi ¼ nn0
�
e
3

�
2 1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffi
2jQ0jp 1ffiffiffiffiffiffiffiffiffi

2jQjp 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðPÞp 1

ð2πÞ3 ε
ϱ0�
μ ðQ0Þεϱ�ν ðQÞ

× ð2πÞ4δð4ÞðP −Q −Q0Þ
Z

d4kd4p
1

ð2πÞ8 γ
A
μ γ

C
ν χ

jðP; p; k; k0Þ: ð30Þ

This matrix element is represented graphically in Fig. 4. It
is necessary to note that the two-photon decay of a
molecular state has two possibilities by the interchange
of two final photons, and we find that the matrix element in
Eq. (30) is invariant under the substitutions Q ⇌ Q0 and
εϱðQÞ ⇌ εϱ

0 ðQ0Þ. Therefore, the total matrix element for
the radiative two-photon decay of the molecular state
composed of two vector mesons is

hγγjSð2Þtot jMSi ¼ 2hγγjSð2ÞjMSi: ð31Þ

IV. DECAY MODE Xð3915Þ → γγ

As an application, we investigate the radiative two-
photon decay of the exotic state Xð3915Þ in this section.
Here, the isoscalar Xð3915Þ, once named Yð3940Þ, is
considered as a mixed state of two S-wave molecule states
D�0D̄�0 and D�þD�−. The BS wave function of the
Xð3915Þ state is a linear combination of these two
components as

χXð3915Þ;jλτ ðP; pÞ ¼ 1ffiffiffi
2

p χD
�0D̄�0;j

λτ ðP; pÞ þ 1ffiffiffi
2

p χD
�þD�−;j

λτ ðP; pÞ;

ð32Þ

where

χD
�0D̄�0;j

λτ ðP;pÞ ¼ χjλτðP;pÞ
�
−
����12 ;−

1

2

��
D�0

⊗
����12 ;

1

2

�
D̄�0

;

χD
�þD�−;j

λτ ðP;pÞ ¼ χjλτðP;pÞ
����12 ;

1

2

�
D�þ

⊗
�
−
����12 ;−

1

2

��
D�−

;

ð33Þ

and P becomes the total momentum of the Xð3915Þ state
and χjλτðP; pÞ is the component wave function in the
momentum representation; ð−j 1

2
;− 1

2
iÞ ⊗ j 1

2
; 1
2
i and

j 1
2
; 1
2
i ⊗ ð−j 1

2
;− 1

2
i) are the isospin wave functions of pure

molecule states D�0D̄�0 and D�þD�−, respectively; and

χD
�0D̄�0;j

λτ and χD
�þD�−;j

λτ represent the BS wave functions for
the bound states of two vector mesons, which are the
eigenstates of the Hamiltonian without considering the
coupled-channel terms. These eigenstates have the same
quantum numbers. Since the C parity of Xð3915Þ is even,
one can have JP ¼ 0þ or 2þ for this S-wave D�D̄� system
[23]. In Ref. [7], we only considered the neutral component
D�0D̄�0 to evaluate the mass and BS wave function of the
molecular state. In this paper, we reconsider the mixed
states of neutral component D�0D̄�0 and charged compo-
nent D�þD�− with JP ¼ 0þ and 2þ.
For the neutral component, V and V̄ 0 in Fig. 4 represent

D�0 and D̄�0, respectively; the flavor labels A ¼ B and
C ¼ D in Eqs. (17) and (30) represent the u quark
and c quark, respectively. For the charged component, V
and V̄ 0 becomeD�þ andD�−, respectively; the flavor labels
A ¼ B and C ¼ D become the d quark and c quark,
respectively. According to the Weinberg-Salam model,
the interaction Lagrangian for the coupling of quarks to
photon becomes

Lem
I ðxiÞ ¼ ie

�
2

3
ūðxiÞγμuðxiÞ −

1

3
d̄ðxiÞγμdðxiÞ

−
1

3
s̄ðxiÞγμsðxiÞ þ

2

3
c̄ðxiÞγμcðxiÞ

�
AμðxiÞ: ð34Þ

Then, the lowest-order matrix element for this decay
process becomesFIG. 4. The lowest-order matrix element between the four-

quark state and vacuum in the momentum representation.
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hγγjSð2Þtot jXð3915Þi ¼
2ffiffiffi
2

p 1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffi
2jQ0jp 1ffiffiffiffiffiffiffiffiffi

2jQjp 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðPÞp 1

ð2πÞ3 ε
ϱ0�
μ ðQ0Þεϱ�ν ðQÞð2πÞ4δð4ÞðP −Q −Q0Þ

×
Z

d4kd4p
1

ð2πÞ8 γ
A
μ γ

C
ν

�
4e2

9
χj
D�0D̄�0ðP; p; k; k0Þ − 2e2

9
χjD�þD�−ðP; p; k; k0Þ

�
: ð35Þ

Let D�
l denote one of D

�0 and D�þ, and l ¼ u, d represents the u or d antiquark in the heavy vector meson D�0 or D�þ,
respectively; D̄�

l denotes the antiparticle ofD
�
l . From Eqs. (7) and (17), we obtain the GBS wave function for the four-quark

state [9,24]

χjD�
l D̄

�
l
ðP; p; k; k0Þ ¼ ð2πÞ8 −1

γC · p1 − imc

1

N D�
l

�
γλ þ p0

1λ

γ · p0
1

M2
D�

l

�
φD�

l
ðk2Þ −1

γA · p3 − iml
χjλτðP; pÞ

×
−1

γA · p4 − iml

1

N D̄�
l

�
γτ þ p0

2τ

γ · p0
2

M2
D̄�

l

�
φD̄�

l
ðk02Þ −1

γC · p2 − imc
; ð36Þ

where mc;l are the constituent quark masses, φD�
l
ðk2Þ ¼

φD̄�
l
ðk2Þ ¼ expð−k2=ω2

D� Þ, ωD� ¼ 1.50 GeV [21], and the
momentum of the Xð3915Þ state is set as P ¼ ð0; 0; 0; iMÞ
in the rest frame. As in heavy-quark effective theory [25],
we consider that the heaviest quark carries all the heavy-
meson momentum, and these momenta in Eq. (29) become

p1 ¼P=2þpþk; p2¼Q−P=2−p−k;

p3 ¼−k; p4¼−k0;

p0
1 ¼P=2þp; p0

2¼P=2−p; k0 ¼Q−P−k: ð37Þ

Now, we determine the normalizations N D�0
and N D�þ

.
The component wave functions χjλτðP; pÞ with JP ¼ 0þ

and 2þ are given in Secs. IV. A and IV. B, respectively.
From Eq. (17), the BS wave function of the D�

l meson can
be written as

χλðK; kÞ ¼ −1
γ · ðK þ kÞ − imc

1

N D�
l

�
γλ þ Kλ

γ · K
M2

D�
l

�
φD�

l
ðk2Þ

×
−1

γ · ð−kÞ − iml
; ð38Þ

where K is set as the momentum of the heavy meson in the
rest frame, k denotes the relative momentum between the
c quark and l antiquark, and k and K are not the momenta
presented in the decay process. For l ¼ u, N D�

l ¼ N D�0

represents the normalization of the BS wave function for
the heavy vector meson D�0; for l ¼ d, N D�

l ¼ N D�þ

represents the normalization of the BS wave function for

the heavy vector meson D�þ. The authors of Refs. [20,21]
employed the ladder approximation to solve the BS
equation for quark-antiquark state, and the reduced nor-
malization condition for the BS wave function ofD�

l meson
given by Eq. (38) is

2K0 ¼
−i

ð2πÞ4
1

3

Z
d4kχ̄λðK; kÞ

×
∂

∂K0

½SðK þ kÞ−1�Sð−kÞ−1χλðK; kÞ; ð39Þ

where the factor 1=3 appears because of the sum of three
transverse directions.

A. Molecular state with JP = 0+

In Ref. [7], the BS equation for the bound state
composed of two heavy vector mesons was treated in
the ladder approximation, and the BS wave function of pure
molecule state D�

l D̄
�
l with 0þ was obtained:

χ0
þ

λτ ðPDD̄;pÞ

¼ 1

N 0þ
DD̄

½T1
λτF 1ðPDD̄ ·p;p2ÞþT2

λτF 2ðPDD̄ ·p;p2Þ�: ð40Þ

PDD̄ represents the momentum of the pure molecule state in
the rest frame, the fourth component of which is different
from the one of P. These scalar functions F 1 and F 2

should satisfy two individual equations [7]

F 1ðPDD̄ · p; p2Þ ¼ 1

ðPDD̄=2þ pÞ2 þM2
1 − iϵ

1

ðPDD̄=2 − pÞ2 þM2
2 − iϵ

Z
d4q0

ð2πÞ4 V1ðp; q0;PDD̄ÞF 1ðPDD̄ · q0; q02Þ; ð41Þ
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ðPDD̄=2 − pÞ2F 2ðPDD̄ · p; p2Þ ¼ 1

ðPDD̄=2þ pÞ2 þM2
1 − iϵ

1

ðPDD̄=2 − pÞ2 þM2
2 − iϵ

×
Z

d4q0

ð2πÞ4 V2ðp; q0;PDD̄ÞðPDD̄=2 − q0Þ2F 2ðPDD̄ · q0; q02Þ; ð42Þ

where V1ðp; q0;PDD̄Þ and V2ðp; q0;PDD̄Þ are derived from
the interaction kernel between D�

l D̄
�
l . Considering the

internal structure of vector mesonD�
l and SU(3) symmetry,

we constructed the interaction kernel between two vector
mesons derived fromone lightmeson (σ,ω, ρ0,ϕ) exchange,
shown as Eq. (35) in Ref. [7]. To avoid confusion, the
momentum of the exchanged meson is denoted by a in this
paper. In instantaneous approximation, we set the momen-
tum of the exchanged meson as a ¼ ða; 0Þ; Eqs. (41) and
(42) in this paper become two relativistic Schrödinger-like
equations shown as Eqs. (41) and (44) in Ref. [7], respec-
tively. Solving these two equations, we obtained the wave
functions Ψ0þ

1 ðpÞ ¼ R
dp0F 1ðPDD̄ · p; p2Þ and Ψ0þ

2 ðpÞ ¼R
dp0ðPDD̄=2 − pÞ2F 2ðPDD̄ · p; p2Þ in Ref. [7]. And then,

the masses and wave functions of pure molecule states
D�0D̄�0 and D�þD�− with JP ¼ 0þ can be obtained.
Considering one light meson (ρþ and ρ−) exchange, we

obtained the cross-terms between two pure molecule states
D�0D̄�0 and D�þD�−, shown as the first term of Eq. (16) in
Ref. [8]. And then, the matrix elements between two pure
molecule states were obtained in the instantaneous approxi-
mation shown as Eq. (43) in Ref. [8]. Using the coupled-
channel approach (see details in Ref. [8]), we can calculate
the mass of the Xð3915Þ state with JP ¼ 0þ. Since the
mixing of component wave functions causes the change of
energy, the fourth component of PDD̄ in the original BS
wave function becomes the total energy of mixed state, and
χ0

þ
λτ ðPDD̄; pÞ in Eq. (40) becomes

χ0
þ

λτ ðP; pÞ ¼
1

N 0þ ½T1
λτF 1ðP · p; p2Þ þ T2

λτF 2ðP · p; p2Þ�:
ð43Þ

The reduced normalization condition for χ0
þ

λτ ðP; pÞ is

2P0 ¼
−i

ð2πÞ4
Z

d4pχ̄λτðP;pÞ

×
∂

∂P0

½ΔFλλ0 ðP=2þpÞ−1ΔFττ0 ðP=2−pÞ−1�χλ0τ0 ðP;pÞ;

ð44Þ

where ΔFβα0 ðpÞ−1 is the inverse propagator for the vector
field with mass m, ΔFβα0 ðpÞ−1 ¼ iðδβα0 − pβpα0

p2þm2Þðp2 þm2Þ
[9]. To fix the normalization N 0þ , we require the scalar
functions F 1 and F 2, which can be obtained from Ψ0þ

1 and
Ψ0þ

2 , respectively. After determining the normalization
N 0þ , we automatically obtain the normalized BS wave
function for the mixed state of two componentsD�0D̄�0 and
D�þD�− given by Eq. (32).
Substituting Eq. (43) into (36), we obtain the GBS wave

function for four-quark state χ0D�
l D̄

�
l
ðP; p; k; k0Þ with

JP ¼ 0þ. Then, the lowest-order transition matrix element
for the radiative two-photon decay of Xð3915Þ expressed as
Eq. (35) can be calculated,

hγγjSð2Þtot jXð3915Þi ¼
2ffiffiffi
2

p 1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffi
2jQ0jp 1ffiffiffiffiffiffiffiffiffi

2jQjp 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðPÞp 1

ð2πÞ3 ε
ϱ0�
μ ðQ0Þεϱ�ν ðQÞ

× ð2πÞ4δð4ÞðP −Q −Q0Þ
�
4e2

9
MD�0D̄�0

νμ −
2e2

9
MD�þD�−

νμ

�
; ð45Þ

where

M
D�

l D̄
�
l

νμ ¼
Z

d4kd4p
1

p2
1 þm2

c

1

N D�
l

φD�
l
ðk2Þ

k2 þm2
l

1

N D̄�
l

φD̄�
l
ðk02Þ

k02 þm2
l

1

p2
2 þm2

c

1

N 0þ

× Trfγν½γ · p1 þ imc�f½ðp0
1 · p

0
2Þγτ − ðγ · p0

2Þp0
1τ�F 1ðP · p; p2Þ þ ½p02

1 p
02
2 γτ

þ ðp0
1 · p

0
2Þðγ · p0

1Þp0
2τ − p02

2 ðγ · p0
1Þp0

1τ − p02
1 ðγ · p0

2Þp0
2τ�F 2ðP · p; p2Þg

× ½γ · ð−kÞ þ iml�γμ½γ · ð−k0Þ þ iml�γτ½γ · p2 þ imc�g: ð46Þ

CHEN, LÜ, SHI, GUO, and WANG PHYS. REV. D 101, 014009 (2020)

014009-8



In Eq. (46), the trace of the product of eight γ-matrices
contains 105 terms, and the resulting expression has been
given in Appendix B of Ref. [9]. In our approach, the p
integral is computed in the instantaneous approximation.

To calculate this tensor M
D�

l D̄
�
l

νμ , we have given a simple

method in Ref. [9]. It is obvious that the tensorM
D�

l D̄
�
l

νμ only

depends on P and Q, so in Minkowski space, M
D�

l D̄
�
l

νμ can
be expressed as

M
D�

l D̄
�
l

νμ ¼ gνμU1ðP;QÞ þ PνQμU2ðP;QÞ þ PνPμU3ðP;QÞ
þQνPμU4ðP;QÞ þQνQμU5ðP;QÞ; ð47Þ

where UiðP;QÞði ¼ 1;…; 5Þ are the scalar functions. The
above expression is multiplied by these tensor structures
gνμ, PνQμ, PνPμ, QνPμ, and QνQμ, respectively, and a set
of equations is obtained,

gνμM
D�

l D̄
�
l

νμ ¼ U0
1 ¼ 4U1 þ ðP ·QÞU2 þ P2U3 þ ðP ·QÞU4 þQ2U5;

PνQμM
D�

l D̄
�
l

νμ ¼ U0
2 ¼ ðP ·QÞU1 þ P2Q2U2 þ P2ðP ·QÞU3 þ ðP ·QÞ2U4 þQ2ðP ·QÞU5;

PνPμM
D�

l D̄
�
l

νμ ¼ U0
3 ¼ P2U1 þ P2ðP ·QÞU2 þ P2P2U3 þ P2ðP ·QÞU4 þ ðP ·QÞ2U5;

QνPμM
D�

l D̄
�
l

νμ ¼ U0
4 ¼ ðP ·QÞU1 þ ðP ·QÞ2U2 þ P2ðP ·QÞU3 þQ2P2U4 þQ2ðP ·QÞU5;

QνQμM
D�

l D̄
�
l

νμ ¼ U0
5 ¼ Q2U1 þQ2ðP ·QÞU2 þ ðP ·QÞ2U3 þQ2ðP ·QÞU4 þQ2Q2U5; ð48Þ

where U0
i are numbers. Subsequently, we numerically calculate U0

i and solve this set of equations. The values of Ui can be
obtained.
Finally, we obtain the radiative two-photon decay width of Xð3915Þ with JP ¼ 0þ,

Γ0þ ¼
Z

d3Qd3Q0ð2πÞ4δð4ÞðP −Q −Q0Þ2 1

2jQ0j
1

2jQj
1

2EðPÞ
1

ð2πÞ6

×
X2
ϱ0¼1

X2
ϱ¼1

����εϱ0μ ðQ0ÞεϱνðQÞ
�
4e2

9
MD�0D̄�0

νμ −
2e2

9
MD�þD�−

νμ

�����
2

; ð49Þ

where P¼ð0;0;0;iMÞ, Q¼ðQγ;ijQγjÞ, Q0 ¼ð−Qγ;ijQγjÞ,
and jQγj ¼ M=2. To derive Eq. (49), we use the transverse
condition of electromagnetic field εϱðQÞ ·Q ¼ 0 and the
completeness relation.

B. Molecular state with JP = 2+

Because we consider the S-wave molecule state com-
posed of D�

l D̄
�
l with J

P ¼ 2þ, the tensor structure in its BS
wave function cannot contain the relative momenta
pμ1 ;…; pμj . This is because the relative momentum rep-
resents the orbital angular momentum. In Eq. (13), only one
term describes the S-wave vector-vector system,

χ2
þ

λτ ðPDD̄; pÞ ¼ 1

N 2þ
DD̄

ηςμ1μ2gμ1λgμ2τG5ðPDD̄ · p; p2Þ

¼ 1

N 2þ
DD̄

ηςλτG5ðPDD̄ · p; p2Þ; ð50Þ

where ης¼1;2;3;4;5
λτ is the polarization tensor of the molecular

state with JP ¼ 2þ. In Ref. [7], Eq. (22) is wrong, it is
revised as (50) in this paper. This BS wave function should
satisfy the equation

χ2
þ

λτ ðPDD̄; pÞ ¼ −
Z

d4q0

ð2πÞ4ΔFλαðp0
1ÞVαθ;βκðp; q0;PDD̄Þ

× χ2
þ

θκ ðPDD̄; q0ÞΔFβτðp0
2Þ; ð51Þ

where Vαθ;βκ is the interaction kernel and ΔFλαðp0
1Þ and

ΔFβτðp0
2Þ are the propagators for the spin 1 fields. The

interaction kernel between D�
l and D̄�

l derived from one
light meson (σ, ω, ρ0, ϕ) exchange was constructed in
Ref. [7]. Comparing the terms ηςλτ in the left and right sides
of Eq. (51), we obtain

G5ðPDD̄ ·p;p2Þ¼ 1

ðPDD̄=2þpÞ2þM2
1− iϵ

×
1

ðPDD̄=2−pÞ2þM2
2− iϵ

×
Z

d4q0

ð2πÞ4V5ðp;q0;PDD̄ÞG5ðPDD̄ ·q0;q02Þ;

ð52Þ
whereV5ðp; q0;PDD̄Þ contains all coefficients of the term ηςλτ
in the right side of (51). Setting Ψ2þðpÞ ¼ R

dp0G5ðPDD̄ ·
p; p2Þ and adopting instantaneous approximation, we obtain
the Schrödinger-type equation (see details in Ref. [7])
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�
b2ðMÞ
2μR

−
p2

2μR

�
Ψ2þðpÞ ¼

Z
d3a
ð2πÞ3 V

2þðp; aÞΨ2þðp; aÞ

ð53Þ

and the potential betweenD�
l and D̄

�
l up to the second order

of the p=MH expansion

V2þðp; aÞ ¼ −F1ða2Þ
g2σ

a2 þm2
σ
F1ða2Þ

− F2ða2Þ
�

g2ρ
a2 þm2

ρ0
þ g21
a2 þm2

ω
þ g28
a2 þm2

ϕ

�

× F2ða2Þ
�
1þ 4p2 þ a2

4E1E2

�
; ð54Þ

where a is the momentum of the exchanged meson;
b2ðMÞ ¼ ½M2 − ðM1 þM2Þ2�½M2 − ðM1 −M2Þ2�=ð4M2Þ;
μR ¼E1E2=ðE1þE2Þ¼ ½M4− ðM2

1−M2
2Þ2�=ð4M3Þ; E1 ¼

ðM2 −M2
2 þM2

1Þ=ð2MÞ; E2 ¼ ðM2 −M2
1 þM2

2Þ=ð2MÞ;
the meson-quark coupling constants gσ , gρ, g1, and g8 are
obtained within the QCD sum rules approach; and F1ða2Þ
and F2ða2Þ are the form factors of heavy meson D�

l
describing the heavymeson structure. These two form factors
correspond to one light scalar and vector meson exchanges,
respectively, which have been given in our previous work
[17]. The values of themeson-quark coupling constants have
been given in Refs. [7,17]. Numerically solving the equa-
tion (53), we can obtain the masses and wave functions of
pure molecule states D�0D̄�0 and D�þD�− with JP ¼ 2þ.

Using Eqs. (52) and (53), we can obtain G5ðPDD̄ · p; p2Þ
from the wave function Ψ2þðpÞ.
Similarly, considering the cross-terms between two

pure molecule states D�0D̄�0 and D�þD�− and using the
coupled-channel approach, we can obtain the mass of the
Xð3915Þ state with JP ¼ 2þ. The component wave func-
tion χjλτðP; pÞ can be obtained:

χ2
þ

λτ ðP; pÞ ¼
1

N 2þ η
ς
λτG5ðP · p; p2Þ: ð55Þ

The reduced normalization condition for χ2
þ

λτ ðP; pÞ
becomes

2P0 ¼
1

5

X5
ς¼1

−i
ð2πÞ4

Z
d4pχ̄λτðP;pÞ

×
∂

∂P0

½ΔFλλ0 ðP=2þpÞ−1ΔFττ0 ðP=2−pÞ−1�χλ0τ0 ðP;pÞ;

ð56Þ

where the factor 1=5 appears because of the sum of five
transverse directions.
Substituting Eq. (55) into (36), we obtain the GBS

wave function for four-quark state χ2D�
l D̄

�
l
ðP; p; k; k0Þ with

JP ¼ 2þ. Then, the lowest-order transition matrix element
for the radiative two-photon decay of Xð3915Þ expressed as
Eq. (35) becomes

hγγjSð2ÞjXð3915Þi ¼ 2ffiffiffi
2

p 1

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffi
2jQ0jp 1ffiffiffiffiffiffiffiffiffi

2jQjp 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðPÞp 1

ð2πÞ3 ε
ϱ0�
μ ðQ0Þεϱ�ν ðQÞ

× ð2πÞ4δð4ÞðP −Q −Q0Þ
�
4e2

9
MD�0D̄�0

νμλτ −
2e2

9
MD�þD�−

νμλτ

�
ηςλτ; ð57Þ

where

M
D�

l D̄
�
l

νμλτ ¼
Z

d4kd4p
1

p2
1 þm2

c

1

N D�
l

φD�
l
ðk2Þ

k2 þm2
l

1

N D̄�
l

φD̄�
l
ðk02Þ

k02 þm2
l

1

p2
2 þm2

c

1

N 2þ G5ðP · p; p2Þ

× Tr

	
γν½γ · p1 þ imc�

�
γλ þ p0

1λ

γ · p0
1

M2
D�

l

�
½γ · ð−kÞ þ iml�γμ½γ · ð−k0Þ þ iml�

×

�
γτ þ p0

2τ

γ · p0
2

M2
D̄�

l

�
½γ · p2 þ imc�



: ð58Þ

Applying the same method mentioned in Sec. IV. A, we can calculate the tensorM
D�

l D̄
�
l

νμλτ (see details in Appendix B). Finally,
the radiative two-photon decay width of Xð3915Þ with JP ¼ 2þ should be

Γ2þ ¼
Z

d3Qd3Q0ð2πÞ4δð4ÞðP −Q −Q0Þ2 1

2jQ0j
1

2jQj
1

2EðPÞ
1

ð2πÞ6

×
1

5

X2
ϱ0¼1

X2
ϱ¼1

X5
ς¼1

����εϱ0μ ðQ0ÞεϱνðQÞ
�
4e2

9
MD�0D̄�0

νμλτ −
2e2

9
MD�þD�−

νμλτ

�
ηςλτ

����
2

: ð59Þ
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To calculate the normalization N 2þ and the decay width
Γ2þ , we use the spin projector given in Ref. [26],

X5
ς¼1

ηςλτη
ς�
λ0τ0 ¼

1

2
ðΔλλ0Δττ0 þ Δλτ0Δτλ0 Þ −

1

3
ΔλτΔλ0τ0 ; ð60Þ

where Δλτ ¼ δλτ þ PλPτ=M2.

V. NUMERICAL RESULT

Since the isospin conservation, we have the constituent
quark masses mu ¼ md ¼ 0.33 GeV, and mc ¼ 1.55 GeV
[6] and the meson masses MD�0 ¼ MD�þ ¼ 2.007 GeV
[16]. Taking ωD� ¼ 1.50 GeV as in Ref. [21] and using
the approach given in Ref. [7], we recalculate the masses
and wave functions of pure molecule states D�0D̄�0 and
D�þD�− with JP ¼ 0þ and 2þ. Considering the cross-terms
between these two pure molecule states D�0D̄�0 and
D�þD�− and using the coupled-channel approach, we

obtain the masses of the mixed states with JP ¼ 0þ and
2þ. Then, by doing the numerical calculation, we obtain the
radiative two-photon decay widths ΓðXð3915Þ → γγÞ for
JP ¼ 0þ and 2þ. In Ref. [9], we introduced a method to
evaluate the decay width of the molecular state into a heavy
meson plus a light meson. Applying this method given in
Ref. [9], we recalculate the strong Xð3915Þ → J=ψω decay
widths for JP ¼ 0þ and 2þ. Our numerical results are
presented in Tables I and II.
In our approach, we require the meson-quark coupling

constants and the parameters ωH in BS amplitudes of heavy
vector mesons to calculate the mass and decay widths of
Xð3915Þ. These parameters are determined by providing
fits to observables, which cannot be adjusted freely. Our
approach also involves the constituent quark masses mu,
md, and mc. According to the spontaneous breaking of
chiral symmetry, the light quarks (u, d, and s) obtain their
constituent masses because the vacuum condensate is not
equal to zero, and the heavy quark masses (c, b, and t) are
irrelevant to the vacuum condensate. The constituent
masses of light quarks have not been exactly determined,
while the large uncertainty should not exist for heavy
quarks. Normally, the value slightly greater than a third of
the nucleon mass is employed as the constituent mass of the
light quark. Taking different values for constituent masses
of light quarks mu;d, we do the numerical calculation again
and obtain the uncertainties given in Tables I and II. These
numerical results imply that in our approach the calculated
masses and decay widths depend on the values of con-
stituent quark masses, but not sensitively.
In experiments, the observation of narrow state Xð3915Þ

has been reported by a series of works collected in Table III.
Comparing our numerical results with experimental data,
we find that the calculated masses of mixed states con-
sisting of two components D�0D̄�0 and D�þD�− with
JP ¼ 0þ and 2þ are consistent with experimental data,
as mentioned in Ref. [11]. However, for the strong decay
and radiative two-photon decay of a mixed state consisting
of D�0D̄�0 and D�þD�−, we find that the numerical
results for JP ¼ 2þ are more consistent with the latest
experimental data [10,11] than the ones for JP ¼ 0þ.
In particular, the calculated radiative two-photon decay
width of the mixed state with JP ¼ 2þ is in good agreement

TABLE I. Mass and widths of mixed state of two S-wave
molecule states D�0D̄�0 and D�þD�− with 0þ. We vary constitu-
ent quark masses to estimate the uncertainties.

Quantity mu;d¼0.32GeV mu;d¼0.33GeV mu;d¼0.34GeV

Mass (GeV) 3.920 3.926 3.933
ΓðX→J=ψωÞ
(MeV)

44 49 64

ΓðX → γγÞ
(eV)

28 34 26

TABLE II. Mass and widths of mixed state of two S-wave
molecule states D�0D̄�0 and D�þD�− with 2þ. We vary constitu-
ent quark masses to estimate the uncertainties.

Quantity mu;d¼0.32GeVmu;d¼0.33GeVmu;d¼0.34GeV

Mass (GeV) 3.934 3.941 3.949
ΓðX→J=ψωÞ
(MeV)

5 6 8

ΓðX→γγÞ
(eV)

10 12 9

TABLE III. Experimental data on the mass and decay widths of Xð3915Þ, given in chronological order. B is the branching fraction.

Year Experiment Mass (MeV) ΓðX → J=ψωÞ (MeV) ΓðX → γγÞ × BðX → J=ψωÞ (eV)
2005 Belle [12] 3943� 11� 13 87� 22� 26
2008 BABAR [13] 3914.6þ3.8

−3.4 � 2.0 34þ12
−8 � 5

2010 Belle [10] 3915� 3� 2 17� 10� 3 61� 17� 8 for JP ¼ 0þ

18� 5� 2 for JP ¼ 2þ
2012 BABAR [11] 3919.4� 2.2� 1.6 13� 6� 3 52� 10� 3 for JP ¼ 0þ

10.5� 1.9� 0.6 for JP ¼ 2þ
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with the latest experimental data, which provide further
verification for the discrimination of the Xð3915Þ quantum
numbers.
We summarize the numerical results as follows: the strong

decay width is ΓðXð3915Þ → J=ψωÞ ¼ 6 MeV, the radia-
tive two-photon decaywidth isΓðXð3915Þ → γγÞ ¼ 12 eV,
and the quantum numbers of theXð3915Þ state are JP ¼ 2þ.
To investigate the radiative decay of amixed state consisting
of two components, we consider the photon interaction
with quarks, which can be described by the exact interaction
Lagrangian. Therefore, this work provides a further
verification for the molecular hypothesis of Xð3915Þ and
predicts the exact value of radiative two-photon decay
width ΓðXð3915Þ → γγÞ.
Up to now, a systematical and accurate theoretical

approach from QCD to investigate the molecular state
composed of two heavy vector mesons has been estab-
lished. Applying the general form of the Bethe-Salpeter
wave functions for the bound states composed of two
vector fields, we calculated the mass of molecular state and
obtained its BS wave function [7]. Then, using the general
form of the GBS wave functions for four-quark states
describing the meson-meson molecular structure, we cal-
culated the decay width of the molecular state into a heavy
meson plus a light meson [9]. In this work, we investigate
the radiative two-photon decay of the molecular state. From
the effective theory at low-energy QCD, we investigate the
molecular state consisting of two vector mesons, which is
the main difference between our approach and these other
works about hadronic molecule states.

VI. CONCLUSION

The general form of the GBS wave functions for four-
quark states describing the molecular structure is applied to
investigate the radiative two-photon decay of a molecular
state composed of two vector mesons, and the general

formulas for the two-photon decay widths of molecular
states is obtained. Then, assuming that the exotic state
Xð3915Þ is a mixed state of two components D�0D̄�0 and
D�þD�−, we carefully consider the internal structure
of the vector mesons in the molecular state and numerically
calculate the decay widths ΓðXð3915Þ → γγÞ with JP ¼ 0þ

and 2þ. Comparing our numerical results with experimen-
tal data, we deduce that the quantum numbers of the
Xð3915Þ state are JP ¼ 2þ. From the effective theory at
low-energy QCD and the Weinberg-Salam model, we have
systematically investigated the strong and radiative decay
modes of a molecular state composed of two heavy vector
mesons. In the future, to contain more inspiration of QCD,
we will introduce the nonperturbative contribution from
vacuum condensates into the GBS wave function for the
four-quark state and the irreducible part of the Green’s
function.
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APPENDIX A: THE TENSOR STRUCTURES
IN THE GENERAL FORM OF THE

BS WAVE FUNCTIONS

The tensor structures in Eqs. (12)–(15) are given
below [7]:

T1
λτ ¼ ðη1η2P2 − η1P · pþ η2P · p − p2Þgλτ − ðη1η2PλPτ þ η2Pλpτ − η1pλPτ − pλpτÞ;

T2
λτ ¼ ðη21P2 þ 2η1P · pþ p2Þðη22P2 − 2η2P · pþ p2Þgλτ

þ ðη1η2P2 − η1P · pþ η2P · p − p2Þðη1η2PλPτ − η1Pλpτ þ η2pλPτ − pλpτÞ
− ðη22P2 − 2η2P · pþ p2Þðη21PλPτ þ η1Pλpτ þ η1pλPτ þ pλpτÞ
− ðη21P2 þ 2η1P · pþ p2Þðη22PλPτ − η2Pλpτ − η2pλPτ þ pλpτÞ;

T3
μ1���μjλτ ¼

1

j!
pfμ2 � � �pμjgμ1gλðη21P2 þ 2η1P · pþ p2Þ½ðη22P2 − 2η2P · pþ p2Þðη1Pþ pÞτ

− ðη1η2P2 − η1P · pþ η2P · p − p2Þðη2P − pÞτ�
− pμ1 � � �pμj ½ðη22P2 − 2η2P · pþ p2Þðη21PλPτ þ η1Pλpτ þ η1pλPτ þ pλpτÞ
− ðη1η2P2 − η1P · pþ η2P · p − p2Þðη1η2PλPτ − η1Pλpτ þ η2pλPτ − pλpτÞ�;
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T4
μ1���μjλτ ¼

1

j!
pfμ2 � � �pμjgμ1gτðη22P2 − 2η2P · pþ p2Þ½ðη1η2P2 − η1P · p

þ η2P · p − p2Þðη1Pþ pÞλ − ðη21P2 þ 2η1P · pþ p2Þðη2P − pÞλ�
− pμ1 � � �pμj ½ðη21P2 þ 2η1P · pþ p2Þðη22PλPτ − η2Pλpτ − η2pλPτ þ pλpτÞ
− ðη1η2P2 − η1P · pþ η2P · p − p2Þðη1η2PλPτ − η1Pλpτ þ η2pλPτ − pλpτÞ�;

T5
μ1���μjλτ ¼ ðη21P2 þ 2η1P · pþ p2Þðη22P2 − 2η2P · pþ p2Þpμ3 � � �pμjgμ1λgμ2τ

−
1

j!
pfμ2 � � �pμjgμ1gτðη22P2 − 2η2P · pþ p2Þðη1Pþ pÞλ þ

1

j!
pfμ2 � � �pμjgμ1gλðη21P2 þ 2η1P · pþ p2Þðη2P − pÞτ

− pμ1 � � �pμjðη1η2PλPτ − η1Pλpτ þ η2pλPτ − pλpτÞ;
T6
μ1���μjλτ ¼ ðη2P · p − η1P · p − 2p2Þpfμ2 � � �pμjϵμ1gλτξpξ þ ð2η1η2P · pþ η2p2 − η1p2Þpfμ2 � � �pμjϵμ1gλτξPξ

þ pfμ2 � � �pμjϵμ1gλξζpξPζpτ þ pfμ2 � � �pμjϵμ1gτξζpξPζpλ;

T7
μ1���μjλτ ¼ ðP · pÞpfμ2 � � �pμjϵμ1gλτξpξ − p2pfμ2 � � �pμjϵμ1gλτξPξ þ pfμ2 � � �pμjϵμ1gλξζpξPζpτ − pfμ2 � � �pμjϵμ1gτξζpξPζpλ;

T8
μ1���μjλτ ¼ ðη2P2 − η1P2 − 2P · pÞpfμ2 � � �pμjϵμ1gλτξpξ þ ð2η1η2P2 þ η2P · p − η1P · pÞpfμ2 � � �pμjϵμ1gλτξPξ

þ pfμ2 � � �pμjϵμ1gλξζpξPζPτ þ pfμ2 � � �pμjϵμ1gτξζpξPζPλ;

T9
μ1���μjλτ ¼ P2pfμ2 � � �pμjϵμ1gλτξpξ − ðP · pÞpfμ2 � � �pμjϵμ1gλτξPξ þ pfμ2 � � �pμjϵμ1gλξζpξPζPτ − pfμ2 � � �pμjϵμ1gτξζpξPζPλ:

APPENDIX B: CALCULATION OF TENSOR M
D�

l D̄
�
l

νμλτ IN THE DECAY WIDTH
OF Xð3915Þ WITH JP = 2+

Because the tensor M
D�

l D̄
�
l

νμλτ in Eq. (58) also depends on P and Q, it can be expressed as

M
D�

l D̄
�
l

νμλτ ¼ gνμgλτR1 þ gνλgμτR2 þ gντgμλR3 þ gνμPλPτR4 þ gνμPλQτR5 þ gνμQλPτR6 þ gνμQλQτR7

þ gνλPμPτR8 þ gνλPμQτR9 þ gνλQμPτR10 þ gνλQμQτR11 þ gντPμPλR12 þ gντPμQλR13 þ gντQμPλR14

þ gντQμQλR15 þ gμλPνPτR16 þ gμλPνQτR17 þ gμλQνPτR18 þ gμλQνQτR19 þ gμτPνPλR20 þ gμτPνQλR21

þ gμτQνPλR22 þ gμτQνQλR23 þ gλτPνPμR24 þ gλτPνQμR25 þ gλτQνPμR26 þ gλτQνQμR27

þ PνQμQλQτR28 þ PμQνQλQτR29 þ PλQνQμQτR30 þ PτQνQμQλR31 þ PνPμQλQτR32 þ PνPλQμQτR33

þ PνPτQμQλR34 þ PμPλQνQτR35 þ PμPτQνQλR36 þ PλPτQνQμR37 þ PμPλPτQνR38 þ PνPλPτQμR39

þ PνPμPτQλR40 þ PνPμPλQτR41 þ PνPμPλPτR42 þQνQμQλQτR43; ðB1Þ

where RiðP;QÞði ¼ 1;…; 43Þ are the scalar functions.
There are 43 tensor structures in the above expression.
Then, Eq. (B1) is multiplied by these 43 tensor structures
respectively; and a system of 43 equations is obtained.
Subsequently, we numerically calculate the products of
Eq. (B1) and these 43 tensor structures, respectively,

and solve this system of equations. The values of Ri can

be obtained. Obviously, the expression of tensor M
D�

l D̄
�
l

νμλτ

given in Eq. (B1) is a general formalism, which can be
used to evaluate the strong decay width of Xð3915Þ
with JP ¼ 2þ.
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