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We revisit the Uð1ÞA anomaly in the holographic model of low-energy QCD by Witten, Sakai, and
Sugimoto, presenting a new and direct derivation of the Witten-Veneziano mechanism for generating the
mass of the η0 through an anomalous mixing of the Ramond-Ramond C1 field with the singlet component
of the pseudoscalar mesons. The latter turns out to have a kinetic mixing with the normalizable modes of
the C1 field representing pseudoscalar glueballs, yielding additional vertices for their production and their
decay that dominate over those of the unmixed case considered previously in the Witten-Sakai-Sugimoto
model. The leading channel is predicted to be a decay into two vector mesons, followed in importance by
decay into three pseudoscalar mesons. The issue of production of pseudoscalar glueballs in radiative J=ψ
decays and in double diffractive processes is also discussed briefly.
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I. INTRODUCTION

In QCD, the Uð1ÞA part of the tree-level flavor symmetry
UðNfÞL × UðNfÞR is broken by the axial anomaly, leading
to only N2

f − 1 pseudoscalar Goldstone bosons in the
spontaneous breaking of Uð1ÞV × SUðNfÞL × SUðNfÞR →
UðNfÞV with masses determined by the Gell-Mann-Oakes-
Renner relation, while one isoscalar pseudoscalar boson,
the η0, is found to be too heavy to be a Goldstone boson [1].
Its mass is determined by nonperturbative effects involving
the axial anomaly, and it was suggested by ’t Hooft [2,3]
that these are due to instantons. However, in the limit of
large number of colors Nc the effects of a dilute gas of
instantons is exponentially suppressed. A different mecha-
nism was proposed by Veneziano [4] and Witten [5], who
showed that the nontrivial θ dependence of large-Nc pure
Yang-Mills theory implies a mass term for the singlet η0
according to m2

0 ¼ 2Nfχg=f2π , where χg is the topological
susceptibility of pure Yang-Mills theory.
In [6,7] it was shown that this mechanism is indeed

realized in the AdS=CFT framework. In the Witten model
[8] of low-energy QCD, which is based on a supersymmetry-
breaking circle compactification of Nc D4-branes in type-
IIA supergravity, this was initially discussed in a model with
flavor D6-branes [7] and subsequently also in the chiral

Witten-Sakai-Sugimoto (WSS) model [9,10], which is based
on D8-branes and which realizes a fully non-Abelian chiral
symmetry breaking.
A more detailed discussion of the Witten-Veneziano

mechanism in the WSS model was recently given by
Bartolini et al. in [11]. In the present paper we present
an alternative, more direct derivation, which moreover
allows us to reanalyze the possible mixing of the singlet
η0 with the pseudoscalar glueball G̃. In the bottom-up
V-QCD model of Ref. [12], where the Veneziano limit of
Nc → ∞ with Nf=Nc fixed is employed, such mixing in
the context of the Witten-Veneziano relation has been
discussed in [13]. In the WSS model, one of us with F.
Brünner has found [14] a vanishing mass mixing of η0 and
G̃ which led to the conclusion of a very narrow pseudo-
scalar state, because to leading order in the WSS model
only vertices involving jointly the scalar glueball and η0
appeared to be present. Our new derivation reveals the
presence of a kinetic (derivative) mixing which leads to
additional decay modes of pseudoscalar glueballs that are
dominating those considered in Ref. [14] or in the phe-
nomenological model of Ref. [15].
The importance of gluonic contributions for the physics

of η0 mesons is already evidenced by the Witten-Veneziano
mechanism. It has also been emphasized by the analysis of
Ref. [16], who have however left open the question whether
this involves a coupling to physical pseudoscalar glueball
excitations (see also [17–19]). Possible pseudoscalar
glueball-meson mixing scenarios have been discussed
widely in the literature [20–27], but exclusively in the
form of mass mixings. The mixing scenario that we obtain
in the WSS model leads to a dominance of the couplings
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that are induced by the Chern-Simons term, in particular to
two vector mesons. Inclusion of quark masses leads to
additional couplings such as to three pseudoscalar mesons.
Assuming that the couplings obtained in the WSS model

are more reliable than the results for the glueball masses,
which for tensor and pseudoscalar glueballs are much lower
than those predicted by lattice QCD, we consider a range of
pseudoscalar glueball masses, with the result that a pseu-
doscalar glueball of around 2.6 GeV as indicated by
(quenched) lattice QCD [28,29] appears to be a rather
broad resonance instead of a narrow state, which may
hinder its experimental identification. On the other hand, its
relatively strong coupling to vector mesons should enhance
its production cross section in central exclusive production
as well as in radiative J=ψ decays. The decay patterns
derived in this paper might help to identify a pseudoscalar
glueball in experimental studies.
So far, the experimental search for glueballs in the hadron

spectrum has led to two candidates for the lightest scalar
glueball, f0ð1500Þ and f0ð1710Þ. Different phenomeno-
logical models are split on the question of which of the two
would have the largest glueball component, and the WSS
results for glueball decay patterns of Refs. [30,31] favor
f0ð1710Þ. For the tensor glueball there are several candidates
above 1900 MeV, with theWSS model indicating [32] that it
should be a relatively broad resonance, if the mass is around
2.4 GeV as indicated by both quenched and unquenched
lattice QCD [28,29,33–35]. Prior to the first lattice QCD
studies, where the pseudoscalar glueball has been found to
be heavier than the tensor glueball, the pseudoscalar meson
ιð1440Þ, now interpreted as two states ηð1405Þ and ηð1475Þ
(see however [36]), was regarded as a strong glueball
candidate; in fact, the ηð1405Þ is still often considered as
such [37]. In the Witten model, the pseudoscalar glueball is
heavier than the tensor glueball. The kinetic mixing obtained
by us when quarks are included increases the mass of the
pseudoscalar glueball somewhat, while leaving unchanged
(to leading order) the ηð0Þ mesons, which suggests that the
pseudoscalar glueball is still to be discovered with a mass
that is above that of the tensor glueball.
In Sec. II we review the WSS model, in particular the

role of the Ramond-Ramond field C1 which determines the
θ parameter of the dual theory, and how the Uð1ÞA anomaly
and theWitten-Veneziano mechanism is realized. In Sec. III
we derive the mixing of η0 and the pseudoscalar glueball
modes contained in the normalizable C1 modes, and we
work out its consequences for glueball-meson vertices and
decay patterns of the pseudoscalar glueball in Sec. IV,
followed by a discussion and an outlook in Sec. V.

II. WITTEN-SAKAI-SUGIMOTO MODEL AND
WITTEN-VENEZIANO MECHANISM

A. The Witten model of low-energy QCD

The WSS model is based on the Witten model of low-
energy QCD [8] provided by the near-horizon geometry of

a large number (Nc) of coincident D4-branes in type-IIA
superstring theory wrapped on a circle of circumference
R4 ¼ 2πM−1

KK with antiperiodic boundary conditions for
fermions. Since gauginos are massive at tree level and
adjoint scalars acquire masses through loops, the dual
theory at energies much smaller than MKK is pure non-
supersymmetric Yang-Mills theory at large ’t Hooft
coupling λ ¼ Ncg2YM. In the supergravity approximation,
where the Kaluza-Klein mass scale MKK is kept finite, the
background can be obtained from the dimensional reduc-
tion of an 11-dimensional doubly Wick-rotated black-hole
geometry in AdS7 × S4,

ds211 ¼
r2

L2
½fðrÞdx24 þ ημνdxμdxν þ dx211�

þ L2

r2
dr2

fðrÞ þ
L2

4
dΩ2

4;

fðrÞ ¼ 1 −
r6KK
r6

; ð1Þ

where μ; ν ¼ 0;…; 3, ημν ¼ diagð−1; 1; 1; 1Þ, together with
a nonzero 4-form field strength F4 ¼ 3ðL=2Þ3ω4, where ω4

is the volume form of a unit 4-sphere with volume V4 ¼
8π2=3. A regular Euclidean black hole is produced by iden-
tifying τ≡ x4 ≃ x4 þ 2πR4 with R4¼M−1

KK¼L2=ð3rKKÞ.
Dimensional reduction from 11-dimensional supergrav-

ity [38] with κ211 ¼ ð2πlPÞ9=ð4πÞ and lP ¼ g1=3s ls through
x11 ≃ x11 þ 2πR11, with R11 ¼ gsls, and

ds211 ¼ GM̂ N̂dx
M̂dxN̂ ¼ e−2Φ=3gMNdxMdxN

þ e4Φ=3ðdx11 þ AMdxMÞ2; ð2Þ

where eΦ ¼ ðr=LÞ3=2 and hatted (unhatted) indices refer to
11 (10) dimensions, leads to type-IIA supergravity with
string-frame action

S ¼ SNS þ SR þ SCS; ð3Þ
where

SNS ¼
1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2Φ

×

�
Rþ 4∂MΦ∂MΦ −

1

2
jdB2j2

�
;

SR ¼ −
1

4κ210

Z
d10x

ffiffiffiffiffiffi
−g

p ðjF2j2 þ jF4j2Þ;

jFpj2 ¼
1

p!
FM…FM…;

SCS ¼ −
1

4κ210

Z
B2 ∧ F4 ∧ F4: ð4Þ

In order to have a standard form of D-brane actions with

prefactors μp¼ð2πÞ−pl−ðpþ1Þ
s for both theDirac-Born-Infeld
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(DBI) and Chern-Simons (CS) parts, we absorb
the factor g2s originally contained in 2κ210 ¼ 2κ211=ð2πR11Þ
by rescaling F2;4 ¼ gsF10D

2;4 and e−Φ ¼ gse−Φ10D , upon
which we drop the 10D labels on the fields and
redefine 2κ210 ¼ ð2πÞ7l8s .
In the coordinates used in [9,10],

U ¼ r2

2L
; KðZÞ≡ 1þ Z2 ¼ r6

r6KK
¼ U3

U3
KK

; ð5Þ

the 10-dimensional metric reads

ds210 ¼
�

U
RD4

�
3=2

½ημνdxμdxν þ fðUÞdx24�

þ
�
RD4

U

�
3=2

�
dU2

fðUÞ þ U2dΩ2
4

�
ð6Þ

with fðUÞ ¼ 1 − ðUKK=UÞ3 and RD4 ≡ L=2; the dilaton
and 4-form field strength are given by

eΦ ¼ gsðU=RD4Þ3=4 ð7Þ

and

F4 ¼ dC3 ¼
3R3

D4

gs
ω4: ð8Þ

[Here and in the following we stick to the usual normali-
zation of the Ramond-Ramond fields in the string-theory
literature [38]. In [9,10] these fields are rescaled according
to Cp ¼ ð2πÞp−1lps CSS

p .] The 4-form field strength is related
to the number Nc of D4-branes by

ð2πÞ2l3s
Z
S4
F4 ¼ 2πNc; ð9Þ

which implies R3
D4 ≡ ðL=2Þ3 ¼ πgsNcl3s .

The parameters1 of the dual boundary theory, which
upon dimensional reduction through the circle Sτ with
radius M−1

KK becomes pure 3þ 1-dimensional Yang-Mills
theory

L ¼ −
1

2g2YM
TrjFYMj2 þ

θ

8π2
TrFYM ∧ FYM; ð10Þ

can be identified from the UV limit U → ∞ of the D4-
brane action

SD4 ¼ −μ4Tr
Z

d4xdτe−Φ
ffiffiffiffiffiffiffiffiffiffi
−gð5Þ

p
×

�
1þ 1

2
ð2πα0

�
2

jFYMj2 þ…Þ

þ μ4ð2πα0Þ2
Z

C1 ∧ FYM ∧ FYM þ…; ð11Þ

with μ4 ¼ ð2πÞ−4l−5s and α0 ¼ l2s . This gives

g2YM ¼ 2πgslsMKK; θ þ 2πk ¼ 1

ls

Z
Sτ

C1 ð12Þ

with k an integer.
The Witten background reviewed above has a vanishing

one-form field Cτ and thus corresponds to the theory with
vanishing θ parameter, or sufficiently small θ=Nc such that
the backreaction on the background can be neglected, in the
k ¼ 0 branch. (The fully backreacted case has been worked
out in Ref. [40].)
The holographic dictionary thus relates nonnormalizable

fluctuations of Cτ to a local, possibly x-dependent θ
parameter. Normalizable modes are instead interpreted as
pseudoscalar (JPC ¼ 0−þ) glueball excitations [41].
The relevant quadratic action for these fields is

SR ⊃ −
1

4κ210

Z
d10x

ffiffiffiffiffiffi
−g

p ðjF2j2Þ

¼ −
2πR4V4

64κ210

Z
d4x

Z
∞

rKK

dr

×

�
r3L
fðrÞ η

μν∂μCτ∂νCτ þ
r7

L3
ð∂rCτÞ2

�
: ð13Þ

The resulting field equations have the nonnormalizable
solution

Cð0Þ
τ ¼ ls

2πR4

fðrÞϑðxÞ for □ϑðxÞ ¼ 0: ð14Þ

In the Witten model of pure Yang-Mills theory, ϑ ¼ θ, but
since this connection will be modified when quarks are
included, we have providently introduced a different
symbol.
Inserting (14) in the action gives

SR ¼ −
χg
2

Z
d4xθ2; χg ¼

λ3M4
KK

4ð3πÞ6 ; ð15Þ

with χg being the topological susceptibility.
The normalizable solutions will be expanded in mass

eigenfunctions, with radial eigenvalue equations

∂r

�
r7

L3
∂rC

ð2Þ
τ

�
þ r3L
fðrÞM

2
GC

ð2Þ
τ ¼ 0; ð16Þ

1Following the notation of [9,10,39], g2YM differs by a
factor two from the usual particle physics convention so that
αs ¼ g2YM=ð2πÞ.
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subject to boundary conditions Cð2Þ
τ ðr ¼ ∞Þ ¼ Cð2Þ

τ ðr ¼
rKKÞ ¼ 0, ∂rC

ð2Þ
τ ðr ¼ rKKÞ ≠ 0. This determines the

mass of the lightest pseudoscalar glueball as MG ¼
1.885… ×MKK.

B. Inclusion of quarks and Uð1ÞA anomaly

Sakai and Sugimoto have extended the Witten
model by introducing left- and right-handed chiral quarks
through Nf pairs of D8 and D8 probe branes localized at
separate points on the circle Sτ at the holographic boundary.
Chiral symmetry breaking UðNfÞL×UðNfÞR→UðNfÞLþR

emerges from the fact that the D8- and D8-branes have to
join in the cigar-shaped background geometry. Choosing
antipodal points on Sτ leads to embedding functions
with constant x4 ≡ τ and a joining of the branes at
the tip of the cigar at rKK (or UKK). In this case one can
extend the coordinate Z introduced in (5) to the range
−∞…∞ in order to cover the radial extent of joined D8-
and D8-branes.
The action for these flavor branes is given by SD8 ¼

SD8DBI þ SD8CS with

SD8DBI ¼ −μ8
Z
D8

e−Φ eTr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgð9Þ þ 2πα0F þ B2Þ

q
; ð17Þ

where eTr denotes symmetrized trace, μ8 ¼ ð2πÞ−8l−ð9Þs , and
F ¼ dAþA ∧ A is the field strength tensor for the
non-Abelian flavor gauge fields living on the D8-branes.
[B2 is the bulk Kalb-Ramond 2-form field; its normalizable
modes contain the pseudovector (1þ−) glueballs of the dual
gauge theory [41,42].]
The even and odd radial mode functions of Aμ are

associated with the towers of vector and axial-vector meson
fields, with the lowest mass eigenvalue (m2

v1 ≈ 0.669M2
KK)

being identified as the ρ meson mass such that MKK ¼
949 MeV.
The massless pseudoscalar Goldstone bosons are

described by

UðxÞ ¼ P exp i

�Z
∞

−∞
dZ AZðZ; xÞ

�
¼ expðiΠaλa=fπÞ;

ð18Þ

where f2π ¼ 1
54π4

λNcM2
KK and λa are Gell-Mann matrices

supplemented by λ0¼ðNf=2Þ−1=21. Setting fπ ¼92.4MeV
fixes λ ≈ 16.63 for Nc ¼ 3. A smaller value of about 12.55
would be found by matching instead the large-Nc lattice
result [43] for the string tension. As in [32] we shall
consider the range λ ¼ 16.63…12.55 in order to obtain a
theoretical error band for our quantitative predictions.
The 9-dimensional Chern-Simons term of the flavor

brane is given by

SD8CS ¼ μ8
X
q

Z
D8

ffiffiffiffiffiffiffiffiffiffiffi
ÂðRÞ

q
Tr expð2πα0F þ BÞ ∧ Cq; ð19Þ

where the so-called A-roof genus factor involves ÂðRÞ¼
1þ 1

192π2
TrR∧Rþ… with RMN ¼ 1

2
RKL

MNdxKdxL. The
term involving C3 contains the Wess-Zumino-Witten term
of the dual gauge theory because F4 ¼ dC3 is nonzero in
the background [9,44].
The Chern-Simons term is also involved in the

Uð1ÞA anomaly of the dual gauge theory, because the
C7 term modifies the equations of motion of the C1 field
which is responsible for the θ parameter. Using Hodge
duality, dC7 ¼ F8 ¼ ⋆F2, and integrating by parts, one
finds that

SCS ⊃ μ82πα
0
Z
D8

TrðF 2 ∧ C7Þ

¼ μ82πα
0
Z

TrðA1Þ ∧ ⋆F2 ∧ ωτ

¼ μ82πα
0
Z

dx10
ffiffiffiffiffiffiffiffiffi
jg10j

p
½δðτÞ þ δðτ − πÞ�

× ðTrðArÞgrrgττ∂rCτ þ gμνgττTrðAμÞ∂νCτÞ; ð20Þ

where ωτ ¼ ½δðτÞ þ δðτ − πÞ�dτ has been introduced to
extend the integration to the entire bulk spacetime. Thus the
flavor probe branes induce a mixing term of the Abelian
part of the flavor gauge field Â ≔ N−1

f TrA living on the
D8-brane with the field Cτ. The linear equations of motion
for Cτ get an additional term localized on the D8-brane,

1

32κ210
∂r

�
r7

L3
∂rCτ

�
¼ 2πα0μ8∂rð

ffiffiffiffiffiffi
−g

p
grrgττTrðArÞÞ

× ðδðτÞ þ δðτ − πÞÞ

¼ 2πα0μ8∂r

�
r7

24L3
NfÂr

�
× ðδðτÞ þ δðτ − πÞÞ; ð21Þ

which we solve by introducing the localized fluctuation

CðδÞ
τ according to

∂rC
ðδÞ
τ ¼ 4πα0κ210μ8NfÂrðδðτÞ þ δðτ − πÞÞ; ð22Þ

where we have assumed □CðδÞ
τ ¼ 0 with respect to

Minkowski space coordinates and ∂μÂ
μ ¼ 0. Switching

to Z2 ¼ ðr=rKKÞ6 − 1 and with

ÂZðZ; xÞ ¼
ffiffiffi
2

pffiffiffiffiffiffi
Nf

p
πfπ

1

1þ Z2
η0ðxÞ; ð23Þ
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we thus obtain

CðδÞ
τ ¼

Z
Z

0

dZ∂ZC
ðδÞ
τ

¼ 4πα0κ210μ8
ffiffiffiffiffiffi
Nf

p ffiffiffi
2

p

πfπ
arctanðZÞη0ðxÞ

× ½δðτÞ þ δðτ − πÞ�: ð24Þ
The “anomalous” part CðδÞ

τ contributes to the θ
parameter,

θ ¼ l−1s

Z
Sτ

C1 ¼ l−1s

Z
cigar

F2 ¼ l−1s

Z
drdτ∂rðCð0Þ

τ þ CðδÞ
τ Þ

¼ ϑðxÞ þ 2πα04κ210μ8
ffiffiffiffiffiffi
Nf

pffiffiffi
2

p
fπls

η0ðxÞ ¼ ϑðxÞ þ
ffiffiffiffiffiffiffiffiffi
2Nf

p
fπ

η0ðxÞ:

ð25Þ
In the presence of flavor branes, the θ parameter is therefore
no longer given by ϑ alone, but also involves η0.
In the remainder of this work we will set the θ para-

meter to 0, which corresponds to nonvanishing ϑðxÞ
according to

ϑðxÞ ¼ −
ffiffiffiffiffiffiffiffiffi
2Nf

p
fπ

η0ðxÞ: ð26Þ

The meson field η0 therefore also appears in the non-

normalizable mode Cð0Þ
τ , which is a fundamental ingredient

in the realization of theWitten-Veneziano mechanism in the
WSS model.
Note that, in the chiral case, a constant θ can be absorbed

simply in a field redefinition η0 → η0 þ fπθ=
ffiffiffiffiffiffiffiffiffi
2Nf

p
, since

only derivatives of η0 appear in the effective action
produced by SD8DBI. However, introducing mass terms for
quarks either through world-sheet instantons or non-
normalizable modes of bifundamental fields corresponding
to open-string tachyons [45–50] produces the additional
term

LM
m ∝

Z
d4xTrðMUðxÞ þ H:c:Þ; ð27Þ

where such a redefinition changes the phase of the
quark mass matrix M ¼ diagðmu;md;msÞ according to
M → Meiθ=Nf .
Both, in the chiral limit and in the case with nonzero

quark masses, the singlet η0 receives an extra mass term that
is determined by the topological susceptibility of pure
Yang-Mills theory obtained in (15),

m2
0 ¼

2Nf

f2π
χg; ð28Þ

in accordance with the Witten-Veneziano formula [4,5].

III. PSEUDOSCALAR GLUEBALL-MESON
MIXING

With the additional term CðδÞ
τ ∝ η0 we have solved the

anomalous equations of motion.2 Now we will determine
the field redefinitions that are necessary to obtain a dia-
gonal action for the Minkowski space fields η0 and G̃. In
doing this we encounter divergent terms proportional to
δð0Þ in analogy to the Hořava-Witten calculation [51]. By
adding to the Lagrangian terms beyond the probe approxi-
mation one would presumably be able to cancel these
divergences. In the following we will however just drop

terms proportional to δð0Þ, i.e., the ðCðδÞ
τ Þ2 term in SR and

the CðδÞ
τ term in SCS.

Let us start with the effective kinetic terms coming from
the first part of (13),

SðkinÞR ¼ −
π3

12κ210MKK

Z
∞

rKK

dr
Z

d4x
r3L
fðrÞ η

μν∂μCτ∂νCτ:

ð29Þ
With Cτ ¼ Cð0Þ

τ þ CðδÞ
τ þ Cð2Þ

τ and Cð2Þ
τ ðr; xÞ ∝ G̃ðxÞ we

write them as

SðkinÞR ¼
Z

d4x

�
ζ1∂μη0∂μη0 þ ζ2∂μη0∂μG̃ −

1

2
∂μG̃∂μG̃

�
;

ð30Þ
where we have fixed the normalization of the radial mode

functions in Cð2Þ
τ by requiring

π3

12κ210MKK

Z
∞

rKK

dr
r3L
fðrÞ ðC

ð2Þ
τ =G̃Þ2 ¼ 1

2
: ð31Þ

For the constant ζ1 which corresponds to a wave function
renormalization of η0 we obtain

ζ1 ¼ −
π3

12κ210MKK

Z
∞

rKK

dr
r3L
fðrÞ ðC

ð0Þ
τ þ 2CðδÞ

τ ÞCð0Þ
τ =η20

≕
Nf

Nc
ζ̄1; ð32Þ

where ζ̄1 is divergent, since it is obtained by integrating
non-normalizable modes, but ζ1 is suppressed by a factor
Nc=Nf compared to the kinetic term for η0 contained in
SD8DBI. The constant ζ2 which is associated with a kinetic
mixing of η0 and pseudoscalar glueball modes is finite and
given by

2As stated after (22), we had to assume□CðδÞ
τ ¼ 0with respect

to Minkowski coordinates. With η0 picking up the mass m2
0, this

assumption is violated, but only at higher order in Nf:

□CðδÞ
τ ∼ N1=2

f □η0 ∝ N3=2
f . (With nonzero quark masses, this

seems safe as long as their contributions to the masses of the
pseudoscalar mesons are much smaller than m0.)
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ζ2 ¼ −
π3

12κ210MKK

Z
∞

rKK

dr
r3L
fðrÞ ðC

ð0Þ
τ þ CðδÞ

τ ÞCð2Þ
τ =ðη0G̃Þ

¼ 0.011180…

ffiffiffiffiffiffi
Nf

Nc

s
λ ð33Þ

for the lowest pseudoscalar glueball. (The next-to-lightest,
excited pseudoscalar glueball has ζ2 ¼ −0.014314…ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf=Nc

p
λ.)

The remaining terms from the background action (13)
and the CS action (20)

SðmassÞ
R ¼ −

1

4κ210

Z
d10x

ffiffiffiffiffiffi
gS4

p 1

24
r7

L3
ð∂rCτÞ2

þ μ82πα
0
Z

d10xðδðτÞ þ δðτ − πÞÞ

·
ffiffiffiffiffiffiffiffiffi
jg10j

p
TrðArÞgrrgττ∂rCτ ð34Þ

give the effective mass terms

SðmassÞ
R ¼ −

1

2
m2

0η
2
0 −

1

2
M2

GG̃
2 þ ζ3η0G̃; ð35Þ

with the values already determined above,

m2
0 ¼

πV4

κ210MKK

Z
∞

rKK

dr
1

24
r7

L3
ð∂rC

ð0Þ
τ =η0Þ2 ¼

λ2Nf

27π2Nc
M2

KK

ð36Þ

and (for the lightest pseudoscalar glueball mode)

M2
G ¼ πV4

κ210MKK

Z
∞

rKK

dr
1

24
r7

L3
ð∂rC

ð2Þ
τ =G̃Þ2 ¼ 3.5539M2

KK:

ð37Þ

The terms involving ∂rC
ðδÞ
τ ∂r½Cð0Þ

τ þ Cð2Þ
τ � cancel by the

equation of motion (22) with the CS term. The mass mixing
term η0G̃ vanishes because

ζ3 ∝
Z

∞

rKK

drr7∂rC
ð0Þ
τ ∂rC

ð2Þ
τ ∝

Z
∞

rKK

dr∂rC
ð2Þ
τ ¼ 0; ð38Þ

as already pointed out in [14].
However, the term involving CðδÞ

τ Cð2Þ
τ in (33) has

produced a nontrivial kinetic mixing term of order
ðNf=NcÞ1=2. To get rid of such mixing terms one has to
perform a nonunitary field redefinition. In the present case,
one has to make the substitutions

η0 → ð1þ ζ1Þη0 þ ζ2G̃;

G̃ →

�
1þ 1

2
ζ22

�
G̃; ð39Þ

which yield

Lbilin
η0;G̃

¼ −
1

2
ð∂μη0Þ2 −

1

2
ð∂μG̃Þ2

þ ∂μη0∂μG̃

�
2ζ1ζ2 þ

1

2
ζ32

�
−
1

2
M2

Gð1þ ζ22ÞG̃2

−
1

2
m2

0η
2
0 −m2

0ζ2η0G̃þOðN2
f=N

2
cÞ

¼ −
1

2
ð∂μη0Þ2 −

1

2
ð∂μG̃Þ2 −

1

2
M2

Gð1þ ζ22ÞG̃2

−
1

2
m2

0η
2
0 þOðN3=2

f =N3=2
c Þ; ð40Þ

where we have taken into account that ζ2 ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf=Nc

p
while ζ1, m2

0 ∝ Nf=Nc. The field redefinitions (39) thus
diagonalize the bilinear terms up to and including order
Nf=Nc, yielding also a small positive contribution to the
pseudoscalar glueball mass term,

M2
G ¼ ð1789.0 MeVÞ2 → ð1þ ð0.01118λÞ2Nf=NcÞM2

G

¼ ð1819.7…1806.5 MeVÞ2 ð41Þ

for λ ¼ 16.63…12.55.
Dropping all terms of order ðNf=NcÞ3=2 and higher, we

see that the divergent coefficient ζ1 can be ignored and that
(39) reduces to

η0 → η0 þ ζ2G̃ ¼ η0 þ 0.01118

ffiffiffiffiffiffi
Nf

Nc

s
λG̃;

G̃ → G̃: ð42Þ

Note that this is very different from the mixing scenario
proposed by Rosenzweig et al. in [20,21] and also con-
sidered in [25]. In that scenario it is assumed that the chiral
anomaly is not saturated by η0 alone, but only together with
the pseudoscalar glueball field.3 This leads to a non-
diagonal mass matrix for η0 and the pseudoscalar glueball
which can be diagonalized by an orthogonal matrix. The
field redefinition (39), on the other hand, is nonunitary. It is
needed to remove the kinetic mixing term (30), but
originally there is no mass mixing term because of (38);
a mass mixing term appears after the field redefinition in
(40), but only at the order N3=2

f =N3=2
c which is beyond the

probe approximation.4

3According to [20], this additional field could however also be
interpreted as a radial excitation of η0.

4In [22,25,26] a unitary mixing of η0 and pseudoscalar glue-
balls has been considered from a phenomenological point of
view, which has an important impact on the determination of the
pseudoscalar mixing angle θP when there is significant η0-G̃
mixing. By contrast, the nonunitary transformation (42) that we
obtained does not have this effect (to leading order).
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In Ref. [14], where (in view of the vanishing mass
mixing term) the interactions of the unmixed pseudoscalar
glueball were considered, it was found that those are given
either by pairs of pseudoscalar glueballs interacting with
scalar or tensor glueballs or by a vertex connecting a
pseudoscalar glueball with η0 and a scalar glueball. The
latter, which is relevant for the decay of a pseudoscalar
glueball, is due to the fact that the integral (38) for the η0G̃
mass mixing term no longer vanishes when metric fluctua-
tions dual to a scalar glueball are inserted. Assuming that
this is the dominant vertex, a very narrow pseudoscalar
glueball was predicted whose decays had to involve η or η0
together with the decay products of a scalar glueball.
Through the shift (42) a pseudoscalar glueball acquires

also all types of vertices that the singlet η0 possesses. In the
DBI part of the D8-brane action, such vertices are con-
tained only in terms involving F to fourth and higher
power, which are suppressed by higher powers of α0. In the
chiral limit, the dominant interactions come from the CS
part of the D8-brane. With quark masses introduced
according to (27), further interactions arise from (assuming
M ¼ M†)

TrðMðU þ U†ÞÞ → TrðMðU þ U†ÞÞ
þ iζ2f−1π

ffiffiffiffiffiffiffiffiffiffiffi
2=Nf

q
G̃TrðMðU −U†ÞÞ:

ð43Þ

The additional term in (43) also contains a bilinear term
involving G̃ and η0;8,

ΔLð2Þ
m ¼−

2ζ2ffiffiffi
3

p G̃

�
1ffiffiffi
3

p
�
m2

Kþ
1

2
m2

π

�
η0−

ffiffiffi
2

3

r
ðm2

K −m2
πÞη8

�
:

ð44Þ

It implies a further mixing of G̃ with η0;8 which turns out to
be negligible as concerns the masses of η, η0, and G̃ when
the mass matrix of the G̃-η0-η8 sector is diagonalized. Due
to the large mass of the pseudoscalar glueball, the correc-
tions to the masses of η, η0, and G̃ are only about −0.015%,
−0.008%, andþ0.09%, respectively, and thus can be safely
neglected. Also the vertices induced by the kinetic mixing
of G̃ and η0 receive only small corrections of the order
ζ2m2

K=m
2
G ≪ ζ2. However, the small mixing of G̃ with η8

gives rise to new types of vertices from the DBI action.
In the next section we shall consider the consequences of

all these additional interactions in turn.

IV. PSEUDOSCALAR GLUEBALL DECAY MODES

A. Decay into two vector mesons

The dominant decay channel of the pseudoscalar glue-
ball turns out to be a decay into two vector mesons. This

decay mode arises from the Chern-Simons term and is
mediated by the mixing of η0 with the glueball G̃ according
to (42). Before the field redefinition we have the interaction
term

SD8CS ⊃ μ8
ð2πα0Þ3

3!

Z
TrðF ∧ F ∧ F ∧ C3Þ

⊃ μ8
ð2πα0Þ3
2gs

L3π2ϵμνρσ
Z

TrðÂZ∂μAν∂ρAσÞ; ð45Þ

with ÂZ ∝ η0, which after the field redefinition yields the
term

SD8CS ⊃ k1G̃ϵμνρσTr∂μvν∂ρvσ; ð46Þ

with the coupling constant

k1 ¼ ζ2
1ffiffiffiffiffiffi
Nf

p UKKμ8
ð2πα0Þ3
2gs

L3π2
Z

dZϕ0ψ
2
1

¼ ζ2 × 877.39λ−3=2N−1=2
f N−1=2

c M−1
KK

¼ 9.8092M−1
KKN

−1
c λ−

1
2; ð47Þ

for the lowest vector meson mode ψ1. For the lowest axial-
vector mesons with radial mode function ψ2 and mass
square eigenvalue m2

a1 ≈ 1.57M2
KK ≈ ð1190 MeVÞ2, which

is quite close to the experimental value of 1230 MeV
of the lightest a1 axial-vector meson,5 we obtain instead
k2 ¼ 4.8888M−1

KKN
−1
c λ−

1
2.

Performing the polarization sums we obtain the ampli-
tude squared

X
ϵ1;ϵ2

jMðG̃ → vvÞj2 ¼ 8k21M
2

�
M2

4
−m2

�
; ð48Þ

TABLE I. Partial decay widths in MeV for the decay of a
pseudoscalar glueball in two vector mesons with λ ¼
16.63…12.55 and MG given by the WSS result (41) and also
when extrapolated to the lattice prediction of 2600 MeV with
reduced mixing (see text).

ΓpðMG ¼ 1813� 7 MeVÞ ΓpðMG ¼ 2600 MeVÞ
ρρ 36.8…45.0 190…248
ωω 11.4…13.8 62…81

K�K̄� 2.7…1.8 189…246

ϕϕ 29…38
a1a1 3.1…4.0P

vv 51…61 473…618

5In Table I we ignore the slightly heavier f1 and K1 axial-
vector mesons, which would start contributing significantly only
for MG well above 2600 MeV.

WITTEN-VENEZIANO MECHANISM AND PSEUDOSCALAR … PHYS. REV. D 101, 014006 (2020)

014006-7



whereM andm are the masses of G̃ and v (and similarly for
the heavier vector and axial-vector modes when M is large
enough).
The partial widths for decays into the various vector

mesons are listed in Table I for λ ¼ 16.63…12.55 and
glueball mass MG given alternatively by the WSS result
(41) and by an (admittedly speculative) extrapolation to the
lattice prediction of 2600 MeV, where we have assumed
that the mixing parameter ζ2 and thus k1 (which has inverse
mass dimension) scales likeM−1

G when the glueball mass is
raised. (Keeping the mixing parameter as is, the widths for a
2600 MeV glueball would all be a factor of about 2 larger.)
Also with the assumed reduction of k1, a 2600 MeV
pseudoscalar glueball is thus projected to be a rather broad
resonance.

B. Decay into three pseudoscalar mesons

In Ref. [52], Gounaris and Neufeld have proposed that a
pure pseudoscalar glueball decays predominantly through
an interaction Lagrangian involving iG̃TrðMðU −U†ÞÞ in
order to explain that the pseudoscalar glueball candidate
at the time, ιð1460Þ,6 seemed to decay mainly into KK̄π.
Decays into ηππ would thus be suppressed by a factor
ðmπ=mKÞ4.
In Sec. III we have found that such an interaction

Lagrangian is in fact generated in the WSS model with
nonzero quark masses by the kinetic mixing of η0 and
pseudoscalar glueball modes. Explicitly, it reads

ΔLm ¼ iζ2
fπ

2
ffiffiffiffiffiffiffiffiffi
2Nf

p G̃TrM̄ðU −U†Þ; ð49Þ

with

M̄ ¼ diagðm2
π; m2

π; 2m2
K −m2

πÞ ð50Þ

in the isospin symmetric case mu ¼ md. This contains
vertices of the pseudoscalar glueball with KK̄π, KK̄ηð0Þ,
and ηð0Þ3 of the order of ζ2m2

K=f
2
π , and vertices with ηð0Þππ

proportional to ζ2m2
π=f2π .

In Table II we list the resulting partial decay widths for a
pseudoscalar glueball with mass M ¼ 1813� 7 MeV
according to (41) and, as above, with mass extrapolated
to 2600 MeV as predicted by quenched lattice QCD.
In chiral perturbation theory, a well-known problem

is that the leading-order Lagrangian severely underesti-
mates the decay η0 → ηππ whose leading-order ampli-
tude is proportional to m2

π , to wit, jMðη0 → ηππÞj ¼
j2 ffiffiffi

2
p

cosð2θPÞ − sinð2θPÞjðmπ=fπÞ2=6. This accounts for
only about 3% of the experimental result. Higher-order
terms in chiral perturbation theory which are not present in
the WSS model have been shown to give contributions
which are much larger [54,55]. By the same token, the
partial decay rates of a pseudoscalar glueball into three
pseudoscalar mesons that result from its mixing with η0 can
be expected to be strongly underestimated by (49), in
particular the amplitudes for decay into ηππ, which are
proportional to m2

π . The other decay amplitudes are of the
order of m2

K , but since mK is small compared to mG,
formally higher-order contributions could again be much
more important. However, even if we assume that these
partial decay widths are underestimated by an order of
magnitude, they are still much smaller than the decays into
two vector mesons.

TABLE II. Partial decay widths in MeV for the decay of a pseudoscalar glueball in three pseudoscalar mesons
resulting from (49) with λ ¼ 16.63…12.55. The results for G̃ → KK̄π do not yet include the decays
G̃ → KK� → KK̄π) discussed in Sec. IV C, and those for G̃ → PPηð0Þ with P a pseudoscalar meson neglect
G̃ → f0ð1710Þηð0Þ → PPηð0Þ. For comparison, the decay modes for an unmixed pseudoscalar glueball via G̃ →
f0ð1710Þηð0Þ as obtained in Ref. [14] are evaluated in the last entry of the table for the same set of parameters. These
latter results are however incomplete in the mixed case (see text).

ΓpðMG ¼ 1813� 7 MeVÞ ΓpðMG ¼ 2600 MeVÞ
KK̄π (w/o KK�) 0.398…0.387 0.558… 0.550

KK̄η (w/o f0ð1710Þη etc.) 0.0263…0.0064 0.1092…0.0285
KK̄η0 0.3303…0.3570
ππη 0.0048…0.0061 0.0049…0.0061
ππη0 0.0011…0.0007 0.0021…0.0013
ηηη 0.0039…0.0007 0.0337…0.0064
ηηη0 0.0564…0.0277
ηη0η0 0.0047… 0.0048

PPηð0Þ (w/o f0ð1710Þηð0Þ) 0.036…0.014 0.540…0.431

f0ð1710Þηð0Þ → PPηð0Þ [14] 0.0068…0.015 2.5…4.3

6This is now listed as two states ηð1405Þ and ηð1475Þ by the
Data Particle Group [53], of which the lighter one is still
considered occasionally as a glueball candidate [37] in view of
its supernumerary nature with respect to the quark model, while
others question the existence of two separate states and argue for
a single ηð1440Þ [36].
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In Ref. [14], one of us with F. Brünner has calculated the
decays of an unmixed pseudoscalar glueball into three
pseudoscalar mesons in the WSS model, which necessarily
involves η0 and a scalar glueball. If the latter is identified
with f0ð1710Þ, which decays predominantly into kaons
(as is predicted [30,31] by the WSS model when scalar
glueballs have no or negligible decay width into ηη0), the
dominant channel is G̃ → f0ð1710Þη → KK̄η, whereas
KKπ decays are excluded. With mixing, additional
amplitudes for G̃ → PPηð0Þ arise from Gscalarη

2
0 and

Gscalar;tensorð∂μη0Þ2 terms in the DBI action and also from

the additional terms involving CðδÞ
τ in SR. They would

have to be included in a complete calculation of PPηð0Þ
decays. To give an idea of the magnitude of the contribu-
tions from G̃ → f0ð1710Þηð0Þ → PPηð0Þ, in Table II we
have included the partial widths of these decay modes
as obtained in the unmixed case in [14]. While such
contributions are moderate for the pseudoscalar glueball
mass (41), they become important for MG extrapolated to
the mass predicted by lattice which is well above the
threshold for f0ð1710Þ þ η decays. However, also these
contributions are always much smaller than those for the
decays G̃ → vv.

C. Decay into one pseudoscalar meson together
with one or two vector mesons

The very small mixing of a pseudoscalar glueball with η8
that is induced by the quark mass term (44) also gives rise
to vertices with one pseudoscalar meson and one or two
vector mesons due to the terms involving Trð∂μΠ; ½Vμ;Π�Þ
and Trð½Vμ;Π�½Vμ;Π�Þ in the Yang-Mills part of the effec-
tive action. When the glueball mass is above the respective
threshold, this gives rise to decay modes

G̃ → KK�; πK�K�; KK�ρ; KK�ω; KK�ϕ; ηð0ÞK�K�; ð51Þ

where KK� is short for K̄K�; KK̄� etc. The corresponding
amplitudes are proportional to ζ2ðm2

K −m2
πÞ=m2

G ∼ 10−2

times a factor gρππ ∝ λ−1=2N−1=2
c or gρρππ ∝ λ−1N−1

c .

In Table III the resulting partial decay widths are listed.
While the partial widths for decays of the pseudoscalar
glueball into K�, one further vector meson and one
pseudoscalar meson are rather small, the partial width
for G̃ → KK� (and subsequently → KKπ) turns out to be
comparable to that of the direct decay G̃ → KKπ evaluated
above. Since we assume that the latter may be under-
estimated significantly, we have not carried out a full
calculation of G̃ → KKπ combining coherently both
amplitudes.
In summary, we are finding a rich pattern of decays of the

pseudoscalar glueball in three or more mesons, which
involve vertices which are proportional to pseudoscalar
meson masses. The by far dominant decay modes are
however given by two vector mesons.

V. DISCUSSION AND OUTLOOK

If the mass of the pseudoscalar glueball is as given by
the WSS model, (41), the pseudoscalar glueball is
predicted to be a rather narrow resonance with relative
width Γ=M ≈ 0.03…0.04. However, the WSS model
appears to underestimate significantly the mass of heavier
glueballs. The tensor glueball comes out as 1487 MeV,
while it is predicated as around 2400 MeV by both
quenched and unquenched lattice QCD [28,29,33–35].
Extrapolating our results to a significantly higher pseu-
doscalar glueball mass as indicated by (quenched) lattice
QCD, 2.6 GeV, the prediction is instead that of a very
broad resonance. In Fig. 1 we display two possible
extrapolations, one with unchanged vertices and mixing
when the glueball mass is increased in the final formulas,
which leads to an extremely large total width, and the
somewhat more moderate scenario (underlying the above
tables) where the mixing parameter ζ2 is assumed to be

TABLE III. Partial decay widths in MeV for the decay of a
pseudoscalar glueball into one pseudoscalar meson and one or
two vector mesons.

ΓpðMG ¼ 1813� 7 MeVÞ ΓpðMG ¼ 2600 MeVÞ
KK� 0.381…0.288 0.302…0.225

πK�K� 0.0113…0.0112
KK�ρ ð2.50…2.47Þ × 10−3

KK�ω ð0.799…0.787Þ × 10−3

KK�ϕ ð0.253…0.249Þ × 10−3

ηK�K� ð0.097…0.026Þ × 10−3

1.8 2.0 2.2 2.4 2.6
0.0

0.1

0.2

0.3

0.4

0.5

M[GeV]

/M

FIG. 1. Relative pseudoscalar glueball decay width Γ=M for
λ ¼ 16.63 (blue) and 12.55 (orange) with two different extrap-
olations to larger masses: same vertices and mixing (full lines) or
when the mixing parameter ζ2 is assumed to be decreasing like
MWSS=M (dashed lines).
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decreasing like MWSS=M. (The latter extrapolation could
also be interpreted as a corresponding increase of the
mass parameter MKK which sets the scale of the glueball
masses.7)
The rather large decay width of a pseudoscalar glueball

to two vector mesons that we obtained from the WSS
model also implies a significant coupling to photons
because of the vector meson dominance that is inherent
in the WSS model [10]. This also applies to the scalar and
tensor glueballs studied before in [32]. Radiative glueball
decays will be studied in detail in forthcoming work, as
well as the contribution of glueballs to hadronic light-by-
light scattering, which is of relevance to the theoretical
prediction for the muon g − 2, where holographic QCD has
been argued to provide a promising framework for quanti-
tative predictions [60].
An important implication of the mixing-induced

vertices determined in this work is that contrary to
the unmixed case [32] the WSS model predicts sizeable
vertices for the production of single pseudoscalar glue-
balls in double diffractive scattering. While Regge
regime hadronic scattering requires extensions and
extrapolations of the WSS model [61–63], the structure
of the vertices with Reggeons and Pomerons are
completely determined by the Chern-Simons action
and the mixing of the pseudoscalar glueball with η0.
For Reggeons, the vertices have the form (46), while

Pomeron vertices can be derived from the A-roof genus
factor in (19) as in [61]. This leads to8

LCS ⊃ ζ2G̃ϵμνρσ½κa∂νPαμ∂σPα
ρ

þ κbϵ
μνρσ∂ν∂αPμβð∂σ∂βPαρ − ∂σ∂αP

β
ρÞ� ð52Þ

with ζ2κaMKK, ζ2κbM3
KK ∝ λ−1=2N−2

c . The results for the
unmixed case of Ref. [32] instead implied that central
exclusive production of pseudoscalar glueballs required the
formation of pairs G̃ G̃, ηð0ÞG̃, or Gscalar;tensorG̃ with vertices

of order λ−1N−2
c , N1=2

f N−5=2
c , or λ−1NfN−3

c , respectively.
The possibility of production of single pseudoscalar glue-
balls of course lowers the threshold significantly.
Similarly, the kinetic mixing of the pseudoscalar glueball

with η0 allows the production of single pseudoscalar glue-
balls in radiative J=ψ decays with rates of the parametric
order N−1

c times that of the decay rate for J=ψ → γηc.
However, the (semi-)quantitative results that we obtained

within the WSS model suggest that the experimental
identification of the pseudoscalar glueball may be made
difficult by a very large decay width if its mass is around
2.6 GeVas indicated by (quenched) lattice results. In future
work we intend to further explore these predictions in the
context of radiative J=ψ decays and central exclusive
production in the Regge regime.
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