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Recent studies reveal that at high energies, collisions of a small system such as pþ p gives signatures
similar to that widely observed in heavy ion collisions hinting toward the possibility of forming a medium
with collective behavior. With this motivation, we have used the Glauber model, which is traditionally
applied to heavy ion collisions, in a small system using the anisotropic and inhomogeneous density profile
of a proton and found that the proposed model reproduces the charged particle multiplicity distribution of
pþ p collisions at LHC energies very well. Collision geometric properties such as the mean impact
parameter, the mean number of binary collisions (hNcolli), and the mean number of participants (hNparti) at
different multiplicities are determined. Having estimated hNcolli, we have calculated the nuclear
modificationlike factor (RHL) in pþ p collisions. We also estimated eccentricity and elliptic flow as a
function of charged particle multiplicity using the linear response to the initial geometry.
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I. INTRODUCTION

Results of relativistic proton proton (pþ p) collisions are
used as a reference or base line for interpreting various results
of heavy ion collisions at relativistic energies, which are
aimed at creation and characterization of phases of strongly
interacting matter governed by quantum chromodynamics
(QCD). At high temperature/density, a deconfined thermal-
ized state of quarks and gluons called quark-gluon plasma
(QGP) hasbeenpredicated by latticeQCDbased calculations
[1,2]. Values of the ratio of a certain observable measured in
heavy ion collisions, such as the number of produced strange
particles, production of J=ψ , to those measured in the pþ p
collision are interpreted as a signature of thepartonicmedium
formation in heavy ion collisions; e.g., the enhancement of
the number of strange particles and suppression in the
number of J=ψ in collisions of the heavy ion with respect
to that of pþ p (approximately scales by binary collisions)
are taken as signatures ofQGP formation in relativistic heavy

collisions [3–11]. Apart from taking values of such a ratio as
confirmation for the creation of QGP in such collisions, they
are also used in characterizing QGP as well as in verifying
and constraining different theoretical models. For such
interpretations, it is assumed that, in pþ p collisions, no
partonic medium is formed. However, recent results show
that such assumptions may not be correct for high multi-
plicity pþ p collisions [12–14]. Understanding of pþ p
collisions is crucial for characterization of the QCDmedium
formed in a heavy ion collision.
The evolution of matter formed in relativistic heavy ion

collisions is critically dependent on the initial conditions.
The extraction of the signals of the QGP is strongly
dependent on the initial conditions [15–17]. For example,
the elliptic flow (v2) of hadrons are calculated using the
transverse momentum (pT) spectrum of hadrons. The pT
spectra are estimated using the hydrodynamical models.
To solve the hydrodynamical equations, initial conditions
and equations of state are required as inputs. Therefore, the
shear viscosity of the system extracted through v2 will be
sensitive to initial conditions, i.e., any uncertainties in the
initial condition will be reflected in the extracted value of
shear viscosity [18].
In high energy heavy-ion collisions, the interpretation of

results relies on the use of a model based on initial matter
distribution resulting from the overlap of the two colliding
nuclei at a given impact parameter (b). Indeed, for estimating
quantities such as the following: (i) the centrality dependence
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of any observable expressed by the number of participating
nucleons in the collision, NpartðbÞ; (ii) the number of binary
nucleon-nucleon collisions, NcollðbÞ used to derive the
nuclear modification factor (RAA) from the ratio of AA over
pp spectra; (iii) the elliptic and triangular flow parameters
(v2) and (v3) normalized by the eccentricity ϵ2ðbÞ and
triangulation ϵ3ðbÞ of the overlap region; and (iv) the average
surface area,AðbÞ; and (v) path length,LðbÞof the interaction
region, knowing the nuclear overlap function TAAðbÞ is
important. And, this overlap function depends on a realistic
model of the collision geometry [19].
Similar to heavy ion collisions, it is imperative to

understand the initial condition of the medium formed in
pþ p collisions for high multiplicity events. Apart from
this, knowing the proper initial condition can also give a
possible way to define centrality classes and the base
needed for properly defining suppression factors or ratios
for comparing results of event of different multiplicity
classes produced in pþ p collisions [20]. Appropriate
initial conditions can be chosen by considering that it
should reproduce certain aspects of results such as multi-
plicity distribution or centrality distribution of various
observables related to the events.
For constructing the proper initial conditions for pþ p

collisions, at first attempt, one follows the way similar to
that of heavy ion collisions. Initial conditions for heavy ion
collisions are modeled in two kinds of distinct approaches:
(i) one considers nucleonic or partonic collisions for energy
deposition in the collision zone, and those are based on
Glauber model [21–24], and (ii) QCD based calculations
are employed to estimate initial energy deposition by
gluonic fields originated from partonic currents of colliding
nuclei [25]. So these will also be obvious approaches for
modeling initial conditions in pþ p collisions. As models
based on Glauber modeling are very successful in repro-
ducing various results of relativistic heavy ion collisions,
one can consider models for initial conditions of pþ p
collisions which are based on a similar kind of assumptions
as used for the Glauber approach used in heavy ion
collisions.
The initial transverse shape of the nuclei as described by

the Glauber model for heavy-ion collisions depends on a
Wood-Saxon distribution, which is a two-parameter [half-
density radius (R) and diffusivity (a)] Fermi-like distribu-
tion (2 pF) extracted from fits to elastic lepton-nucleus
data [26,27], which describe the multinucleon interactions
occurring in the overlap region between the colliding nuclei
via a Glauber eikonal approach [28]. Whereas, in the
Monte Carlo Glauber (MCG) models [29–34], event-by-
event sampling of individual nucleons is done from a
Wood-Saxon distribution and the average over multiple
events is used to calculate properties related to collisions.
Presently, an available partonic Glauber model for pþ p
collisions does not consider the full anisotropic density
profile of protons, though radial homogeneity is assumed.

In this article, we present the results of Glauber-like
model calculations for NcollðbÞ, NpartðbÞ due to the quark
and gluon based proton density profile, which is a realistic
picture obtained by results of deep inelastic scattering that
reveals the structure of the proton [21], and we used it to
obtain charged particle multiplicity distribution in pþ p
collisions at

ffiffiffi
s

p ¼ 7 TeV. Calculated multiplicity distri-
bution is contrasted with ALICE data, a relation of an
impact parameter with multiplicity is calculated, and the
multiplicity distribution of eccentricity and flow harmonics
is estimated for pþ p collisions. In order to understand the
possibility of medium formation in high-multiplicity pþ p
collisions, we have estimated the nuclear modificationlike
factor, RHL, considering low multiplicity yields as the base.
The paper is organized as follows. In the next section we

discuss the formalism that is used in this work. In Sec. III, we
present the results, and Sec. IVis devoted to the summary and
discussions.

II. GLAUBER FORMALISM

In the literature, the density profiles such as hard sphere
and 2 pF functions are used traditionally to formulate the
Glauber model for a heavy ion and even for protons [34].
All these profiles can also be extended to the proton model
by considering the radially symmetric parton density. In
fact, in the case of a proton, several density profiles have
been considered to estimate the initial conditions, most of
them assume an azimuthally symmetric density profile, and
those are mainly different in the phenomenological para-
metrization of radial variations [35]. But the standard
model postulates that a proton consists of three effective
quarks (constituent) andgluonswithin it. Thus distributionof
such a configuration is less likely to be radially symmetric,
becausewe expect individual peaks in a wave function in the
quarks position inside a proton indicating its presence. The
necessary condition is, however, that the wave function of
each effective quark and gluon should decay rapidly around
the boundary of a proton (within the rootmean square (RMS)
area). In this regard we find only one previous work [21] to
consider the azimuthally asymmetric and inhomogeneous
density distribution of a proton [36,37], which is motivated
by the shape of the structure function obtained in deep
inelastic scattering, pointing out that multiplicity distribution
produced by different models can be used to discriminate
them, which can better reproduce experimental results. The
differences between the present work and that reported in
Ref. [21] are as follows: (i) We have considered different
possible configurations of a Gaussian-fluctuating model
thereby ensuring each collision as unique by assuming the
initial position vectors of the three quarks to be vertices of an
equilateral triangle in an xy plane, and then in order to
account for all possible configurations, position vectors of
the quarks are parametrized by varying azimuthal and polar
angles. This parametrization is done by considering tilts of
the quarks’ initial configuration by some angle along the

DEB, SARWAR, THAKUR, S., SAHOO, and ALAM PHYS. REV. D 101, 014004 (2020)

014004-2



x axis followed by the rotation of some other angles. A
similar approach is applied along the y axis as well. In this
process of parametrization, angles are chosen in such a way
that there is no repetition of the particular configuration.
(ii) For the estimation of charged particle multiplicity (Nch),
in Ref. [21], it is assumed thatNch for each event is in a linear
scaling with a number of binary collisions (Ncoll). But, in the
present work, we have considered the contribution of a
number of participants (Npart) along with (Ncoll) for the
estimation of charged particle multiplicity asNpart dominates
the low-pT region and the Ncoll contribution is higher in the
high-pT domain. A combination of both, which is our
approach, appears to bemore reasonable.We have calculated
elliptic flow using linear response to eccentricity.
In this study, we have used a model with fluctuating

proton orientation, and it has three effective quarks and
gluonic flux tubes connecting them as shown in Fig. 1. The
densities of quarks (ρq) and gluons (ρg) are taken as the
Gaussian type assuming a spherically symmetric distribu-
tion of quark densities from their respective centers and
cylindrically symmetric gluon densities about the line
joining two adjacent quarks as

ρqðr; rqÞ ¼
1

ð2πÞ3=2r3q
e
− r2

2r2q ; ð1Þ

ρgðr; rs; rlÞ ¼
1

ð2πÞ3=2r2srl
e
−x2þy2

2r2s
− z2

2r2
l ; ð2Þ

where rq is the radius of the quark and rs and rl are,
respectively, the radius and the length of the gluon tube.

The density function under study herewas taken to be [21]

ρG−fðr; r1; r2; r3Þ

¼ Ng
1 − κ

3

X3
k¼1

ρqðr − rk; rqÞ

þ Ng
κ

3

X3
k¼1

ρg

�
R−1½θk;ϕk�

�
r −

rk
2
; rq;

rk
2

�
; ð3Þ

where R½θ;ϕ� transforms vector (0,0,1) into ðcosϕ sin θ;
sinϕ cos θ; cos θÞ and rk ¼ rkðcosϕk sin θk; sinϕk cos θk;
cos θkÞ (where k ¼ 1, 2, and 3) is the position vector of
the kth effective quark. Ng is a collision energy dependent
normalization factor for the density function of proton and
accounts for the number of partons inside a proton. One can
obtain this number by confronting the estimations to exper-
imental observables. The free parameter κ allows one to
control the percentage of gluon body content, and here it is
taken to be 0.5 as a first approximation [21]. This is the
fraction of gluons (total number of gluons being κNg) out of
all partons inside a proton at a given collision energy.

A. Calculation of thickness function
and overlap function

The collision plane is taken to be in x − y; hence the
dependence along the z axis is integrated out as follows:

Tðx; yÞ ¼
Z

ρðx; y; zÞdz: ð4Þ

The calculated thickness function for the ρG−f is

Tðx; yÞ ¼
X3
k¼1

Ng

3

1 − κ

2πr2q
e−lk þ Ngκ

3

�
1

ð2πÞ3=2r2srl

×

ffiffiffi
π

2

r �
sin2θk
2r2s

þ cos2θk
2r2l

�
−1=2

�
e−akðx−

xk
2
Þ2

× e−bkðy−
yk
2
Þ2e−ckðx−

xk
2
Þðy−yk

2
Þ; ð5Þ

where rs ¼ rq and rl ¼ rk
2
; for the present studies, we have

taken rq ¼ rs ¼ 0.25 fm following Ref. [21],

lk ¼
ðx − xkÞ2 þ ðy − ykÞ2

2r2q
ð6Þ

and

ak ¼ −cos2ϕkPk þ
�
1

2r2s
ðsin2ϕk þ cos2ϕkcos2θkÞ

þ 1

2r2l
ðcos2ϕksin2θkÞ

�
; ð7Þ

FIG. 1. Depiction of effective quarks and gluonic flux tubes
connecting them within a proton [21].
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bk ¼ −sin2ϕkPk þ
�
1

2r2s
ðcos2ϕk þ sin2ϕkcos2θkÞ

þ 1

2r2l
ðsin2ϕk þ sin2θkÞ

�
; ð8Þ

ck ¼ −sin2ϕkPk

�
1 − 2

�
tan2θk
r2s

þ 1

r2l

��
; ð9Þ

and

Pk ¼
r2l − r2s

4ð r2l
cos2 θk

þ r2s
sin2 θk

Þ
: ð10Þ

The overlap function TppðbÞ for projectile proton (A) and
target proton (B) is defined as

TppðbÞ ¼
Z Z

TA

�
x −

b
2
; y

�
TB

�
xþ b

2
; y

�
dxdy: ð11Þ

Here Tpp is sum of four components, namely quark-quark,
quark-gluon, gluon-quark, gluon-gluon. Primed (unprimed)
indices indicate variables corresponding to B (A). In the
following, we provide an overlap function for all the possible
combinations of partons.

1. The quark-quark term

The overlap function for the interaction of two quarks:

ðTppÞqqðbÞ ¼
N2

gð1 − κÞ2
36πr2q

X3
k;k0¼1

× exp

�
−
ðb − xk − x0k0 Þ2 − ðyk − y0k0 Þ2

4r2q

��
:

ð12Þ
2. The gluon-gluon term

The overlap function for the interaction of two gluon
tubes:

ðTppÞggðbÞ ¼
X3
k;k0¼1

Ck;k0

ffiffiffiffiffiffiffiffi
π

λk;k0

r
e
−

γ2
k;k0

4λk;k0 ; ð13Þ

where

γk;k0 ¼
ck þ c0k0

4ðbk þ b0k0 Þ
½ckðbþ xkÞ − c0k0 ðb − xk0 Þ

þ 2ðbkyk − b0k0y
0
k0 Þ�; ð14Þ

λk;k0 ¼ ðak þ a0k0 Þ −
ck þ c0k0

4ðbk þ b0k0 Þ
; ð15Þ

Ck;k0 ¼AkA0
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

bkþb0k0

r

×exp

�½1
2
½ckðbþxkÞ−c0k0 ðb−x0k0 Þ�þðbkykþb0k0y

0
k0 Þ�2

4ðbkþb0k0 Þ
�

×exp

�
−
ak
4
ðbþxkÞ2−

a0k0
4
ðb−x0k0 Þ2

−
ckyk
4

ðbþxkÞþ
c0k0y

0
k0

4
ðb−x0k0 Þ

�
; ð16Þ

Ak ¼
Ngκ

3

1

ð2πÞ3=2r2srl

�
π

2

�
1=2

�
sin2θk
2r2s

þ cos2θk
2r2l

�
−1=2

:

ð17Þ
3. The quark-gluon term

The overlap function for the interaction of a quark and a
gluon tube:

ðTppÞqgðbÞ ¼
X3
k;k0¼1

Dk;k0

ffiffiffiffiffiffiffiffi
π

αk;k0

r
e

β2
k;k0

4αk;k0 ; ð18Þ

where

αk;k0 ¼
1

2r2q
þ a0k0 −

ðc0k0 Þ2
4ð 1

2r2q
þ b0k0 Þ

; ð19Þ

βk;k0 ¼ 2c0k0
�
yk
r2q

þ b0k0y
0
k0 −

c0k0
2
ðb − x0k0 Þ −

y0k0
4

�

−
b
2
þ xk
r2q

þ a0k0 ðb − x0k0 Þ; ð20Þ

Dk;k0 ¼ Ek;k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

1
2r2q

þ b0k0

s
exp

�
−

y2k
2r2q

−
b0k0 ðy0k0 Þ2

4

�

× exp

�
−
ðb
2
þ xkÞ2
2r2q

−
a0k0
4
ðb − x0k0 Þ2

�

× exp

�
1

4ð 1
2r2q

þ b0k0 Þ
�
yk
r2q

þ b0k0y
0
k0 −

c0k0
2
ðb − x0k0 Þ

�
2
�

× exp
�
c0k0y

0
k0

4
ðb − x0k0 Þ

�
; ð21Þ

Ek;k0 ¼
N2

gκð1 − κÞ
36π2r4qrk0

�
sin2θ0k0
2r2q

þ 2cos2θ0k0
r2k0

�
−1=2

: ð22Þ

4. The gluon-quark term

The overlap function for the interaction of a gluon tube
and a quark:
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ðTppÞgqðbÞ ¼
X3
k;k0¼1

Fk;k0

ffiffiffiffiffiffiffiffi
π

δk;k0

r
exp

�
η2k;k0

4δk;k0

�
; ð23Þ

where

δk;k0 ¼ ak þ
1

2r2q
−

c2k
4ð 1

2r2q
þ bkÞ

; ð24Þ

ηk;k0 ¼ akðbþ xkÞ −
1

r2q

�
b
2
− x0k0

�
−

2ck
4ð 1

2r2q
þ bkÞ

×

�
bkyk þ

y0k0
r2q

þ ck
2
ðbþ xkÞ

�
; ð25Þ

Fk;k0 ¼ Gk;k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

1
2r2q

þ bk

s
exp

�
1

4ð 1
2r2q

þ bkÞ
�
bkyk þ

y0k0
r2q

þ ck
2
ðbþ xkÞ

�
2
�
exp

�
−
ckyk
4

ðbþ xkÞ−
y0k0

2

2r2q
−
bky2k
4

�

× exp

�
−
ak
4
ðbþ xkÞ2 −

1

2r2q

�
b
2
− x0k0

�
2
�
; ð26Þ

Gk;k0 ¼
N2

gκð1 − κÞ
36π2r4qrk

�
sin2θk
2r2q

þ 2cos2θk
r2k

�
−1=2

: ð27Þ

Together the total overlap function is the sum of four
terms given by Eqs. (12), (13), (18), and (23),

TppðbÞ ¼ ðTppÞqqðbÞ þ ðTppÞggðbÞ þ ðTppÞqgðbÞ
þ ðTppÞgqðbÞ: ð28Þ

B. Calculation of Ncoll and Npart

We define the number of binary collisions (Ncoll) of
partons in a pþ p collision at a given impact parameter
(b) as follows:

NcollðbÞ ¼ σeffTppðbÞ; ð29Þ

where σeff is the effective partonic cross section. It should
be mentioned here that quark-quark, quark-gluon, and
gluon-gluon interaction cross sections will be different
due to different color factors of quarks and gluons [38].
However, we use a common partonic cross section here,
which is extracted from the fits to the data as in Ref. [39],
which avoids limitations of theoretical calculations at the
cost of losing the information regarding the difference in
individual types of interactions. In the absence of exper-
imental information and nonperturbative QCD based cal-
culations of the individual cross section (e.g., gg, qg, and
qq processes), we have taken a common cross section for
all partons as σeff . In line with the previous studies [21,40],
we fix σeff ¼ 4.3� 0.6 mb [39] with Ng ¼ 10 partons, so

as to reproduce the experimental value of inelastic cross
section, σpp ¼ 60 mb [41] for the pþ p collision atffiffiffi
s

p ¼ 7 TeV. This accounts for the only nontrivial depend-
ence of the Glauber calculation on the beam energy

ffiffiffi
s

p
.

Previous studies [21,39] have assumed linear scaling of
charged hadron (Nch) multiplicity with Ncoll only. In
contrast to this assumption, we have considered the
dependence of Nch on a number of participant partons
(Npart) andNcoll. Further, the relationship betweenNpart and
Ncoll is considered nonlinear as that of the heavy ion
collisions assuming a three-dimensional shape. Thus, the
number of participating partons at impact parameter b is
given as

NpartðbÞ ∝ N1=x
collðbÞ; ð30Þ

where x is a parameter.
By considering f as a fraction of charged hadron

multiplicity produced from binary collisions, we have a
two-component model for the estimation of a number of
charged particles given as

dNch

dη
¼ npp

�
ð1 − fÞNpart

2
þ fNcoll

�
; ð31Þ

where npp is a constant of proportionality, which represents
the charged particle multiplicity density in pseudorapidity
for pþ p collisions, and f is a free parameter.

III. RESULTS

Assuming initial position vectors of three quarks to be
vertices of the equilateral triangle in the xy plane as

r1 ¼ ðd
4
;

ffiffi
3

p
4
d; 0Þ, r2 ¼ ðd

4
;−

ffiffi
3

p
4
d; 0Þ, and r3 ¼ ð− d

2
; 0; 0Þ,

where d is the free parameter of the model which ensures
that the length of the gluon tubes connecting quarks are
fixed, i.e., (jr1j2 ¼ jr2j2 ¼ jr3j2Þ ¼ d2

4
). For the present

study, we have taken d ¼ 1.5 fm [21]. Now, in order to
account for all possible configurations, position vectors of
quarks are parametrized by varying azimuthal and polar
angles. The generalized configurations considering the tilt
by ψ along the x axis and the rotation by the angle α
r1 ¼ ðd

2
cosðπ

3
þ ψÞ; d

2
sinðπ

3
þ ψÞ cosα;− d

2
sinðπ

3
þ ψÞ sinαÞ,

r2 ¼ ðd
2
cosð5π

3
þψÞ; d

2
sinð5π

3
þψÞcosα;− d

2
ðsin π

3
þψÞ sinαÞ,

and r3 ¼ ðd
2
cosðψÞ; d

2
sinψ cos α;− d

2
sinψ sin αÞ, and con-

sidering the tilt by γ along the y axis and the rotation
by the angle β are r1 ¼ ðd

2
cosðπ

3
þ γÞ cos β; d

2
sinðπ

3
þ γÞ;

d
2
cosðπ

3
þ γÞ sin βÞ, r2 ¼ ðd

2
cosð5π

3
þ γÞ cos β; d

2
sinð5π

3
þ γÞ;

− d
2
cosðπ

3
þ γÞ sin βÞ, and r3 ¼ ðd

2
cosðγÞ cos β; d

2
sin γ;

d
2
cos γ sin βÞ.
In the above configurations, ψ and γϵ (0,2π

3
), αϵ (0,π), and

βϵ (0, 2π). In our present study, we have taken x in Eq. (30)
to be 0.75 as Ncoll scales as A4=3 for similar target and
projectile nuclei with mass numbers A for heavy ion
collisions and are spherical in shape. In our work, this
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consideration of x ¼ 0.75 holds well because when the
plane formed by connecting centers of each quark is
randomly rotated as part of the Monte Carlo simulation
for accounting all possible configurations of collision
geometry, the overall angular space is exhausted, thus
making collision geometry to be a closely spherical overlap
with preserving contributions from each of the different
configurations; hence the factor of 0.75 is taken so that it
accounts for general spherical overlap in heavy-ion colli-
sions. We have also chosen the RMS radius of proton and
quark as 1 fm and 0.25 fm, respectively.

A. Number of binary collisions and participants
as a function of impact parameter

We have used Eqs. (29) and (30), to estimate Ncoll and
Npart. Figure 2 shows the mean value of Ncoll (upper curve)
andNpart (lower curve) as a function of impact parameter (b).
Toward higher values of b, the difference between the two
curves effectively vanishes. Similar trends were observed for
Auþ Au and Cuþ Cu collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 TeV [19].

B. Charged particle multiplicity estimation

Two-component models have been used in heavy-ion
phenomenology for a long time to estimate the charged-
particle multiplicity [42,43]. The inelastic cross section,
σinelNN , which depends on collision energy, is used as input for
the MC Glauber model. In our current study, we have used
a similar approach for pþ p collisions as well, where
nucleons are replaced by partons (quarks and gluons) and
σinelNN by σeff. The model provides Npart and Ncoll, for an
event with a given impact parameter and collision energy
which is discussed in the previous section. As in heavy-
ion collisions, the concept of “ancestors” (independently

emitting sources of particles) has been introduced for a
given value of Npart and Ncoll. The number of ancestors
can be parametrized by a two-component model given
by [42,43]

Nancestors ¼ fNpart þ ð1 − fÞNcoll: ð32Þ

The two-component model divides the parton-parton
collisions into soft and hard interactions: the multiplicity of
particles produced by soft interaction is proportional to
Npart and hard interaction is proportional to Ncoll. As the
negative binomial distribution (NBD) is able to well
reproduce the charged-particle distribution in pþ p colli-
sions [44], we use the two-parameter NBD to calculate the
probability of producing n particles per ancestor:

Pðn; n̄; kÞ ¼ Γðnþ kÞ
ΓðkÞΓðnþ 1Þ

�
n̄

kþ n̄

�
n
�

k
kþ n̄

�
k
; ð33Þ

where n̄ is the average multiplicity and k characterizes the
width of the distribution. By the use of different combi-
nations of f [Eq. (32)], n̄ and k [Eq. (33)] we have repeated
the process of obtaining the multiplicity distribution for a
large sample of events, until our model simulates the
experimental multiplicity distribution. We have also calcu-
lated the ratio of Nch obtained from our model to that of the
experimental value and is represented in Fig. 3 for pþ p
collisions at

ffiffiffi
s

p ¼ 7 TeV. The best agreement for Nch
distribution obtained by our model with experimental data
is found for f ¼ 0.85, n̄ ¼ 8, and k ¼ 0.13. From Fig. 3, it
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can be seen that our model well describes the data in the
mid multiplicity region (15 < Nch < 90), with 5%–10%
discrepancy. However, toward the low and high multiplicity
it is unable to reproduce the experimental measurement.
The inability of the model to explain the extreme low and
high multiplicity region might be due to the lower prob-
ability of the collision impact parameter, when derived in
the Monte Carlo model from a Gaussian distribution.

C. Centrality estimation

The centrality is usually expressed as a percentage of the
total interaction cross section, σ [46]. Impact parameter
distribution is taken as input to our current model. So, the
centrality percentile of a pþ p collision with b is defined
by integrating the impact parameter distribution as

c1 ¼
R
b1
0 dN=dbdbR
∞
0 dN=dbdb

; c2 ¼
R
b2
b1 dN=dbdbR
∞
0 dN=dbdb

;…; ð34Þ

where c1; c2;…, are the percentile bins and b1; b2;…, are
the impact parameters. More clearly, the c1 percentage of
the total number of events of impact parameter distribution
fall in the interval (b1, b2) and so on. For the current
analysis, a Gaussian distribution with mean 1 and standard
deviation of 0.32 has been used as an input impact
parameter distribution, which is shown in Fig. 4, so that
the distribution function vanishes beyond the proton
radius (≈2 fm).
We have also tested different forms of impact parameter

distributions, but the Gaussian distribution is found to be a
suitable choice to describe the charged-particle multiplicity
distribution. Once, we get the ranges of the impact
parameter corresponding to each centrality, we have pro-
jected it to Nch, Npart, and Ncoll to calculate hNchi, hNparti,
and hNcolli corresponding to each b range. Figure 5
represents the multiplicity distribution for each percentile
bin. Table I shows the value of hNchi, hNparti, and hNcolli,
obtained by using our model along with the hNchi value of
ALICE for pp collisions at

ffiffiffi
s

p ¼ 7 TeV.

It can be clearly seen that the calculated hdNch=dηi is
well consistent with the experimental value, except for the
high and low multiplicity regions. This is because of
the artifact of incapability of our model to describe the
charged-particle distribution in that region (Fig. 3).
However, it is to be noted that the input σinelgg ¼ 0.43�
0.06 fm2 contains 14% uncertainty and the same amount of
uncertainty (14%) is associated with each hdNch=dηi. From
our model, we found hdNch=dηi ¼ 7.47 for minimum bias
(0–100%) collisions, which is a little higher from the
experimental value, hdNch=dηi ¼ 6.01� 0.01þ0.20

−0.12 [47].
This discrepancy needs to be understood.

D. The ratio RHL for high to low multiplicity events

In order to understand the possibility of a formation of a
medium in high-multiplicity events in pþ p collisions, we
define a variable as

RHLðpTÞ ¼
d2N=dpTdηjHM
d2N=dpTdηjLM

×
hNLM

colli
hNHM

coll i
; ð35Þ

which is similar to the nuclear modification factor RAA

in heavy-ion collisions. Here, d2N=dηdpT jHM, d2N=
dηdpT jLM, and hNLM

colli (hNHM
coll i) are charged particle yields

in high-multiplicity, low-multiplicity pþ p collisions atffiffiffi
s

p ¼ 7 TeV [48], the mean number of binary collisions in
low (high) multiplicity pþ p events, respectively. The
upper panel of Fig. 6 shows the transverse momentum
spectra of charged particles in high-multiplicity (VOM I),
second high multiplicity (VOM II), and low multiplicity
(VOM X) events obtained from Ref. [48]. And the lower
panel shows the RHL defined in Eq. (35). For such a
definition of RHL, it is observed for all charged particles for
pT < 1 GeV=c, value of RHL < 1 and for pT > 1 GeV=c,
it is greater than 1. However, it tends to reduce at very high
pT . And for pT > 1 GeV, the value of the factor is higher
for higher multiplicities.
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Figure 7 shows results of RHL for identified particles,
pion (πþ þ π−), kaon (Kþ þ K−), proton (pþ p̄) for pþ
p collisions at

ffiffiffi
s

p ¼ 7. It is found that RHL < 1 for a proton
for pT < 1 GeV, which is the same as observed in the case
of charged particles. However, for pion and kaon RHL < 1
for pT < 0.8 GeV. It is also observed that for pT <
1.9 GeV, these identified particles have almost the same
value of RHL, and for pT > 1.9 GeV, the value is almost the
same for the pion and kaon but the value for the proton is
larger and increases with pT sharply up to pT ¼ 5 GeV,
and then saturates within uncertainties. But for the pion

and kaon, the factor increases monotonically with a
decreasing slope from pT > 1.9 GeV, where the trend
splits for the proton and the other two hadrons.
It is reported [49] that the proton shows a distinct

behavior in this regard other than the hadrons produced
in p-Pb collisions. Also for p-Pb collisions, it is reported
that the factor, RpPb > 1, for all charged particle for pT >
2.5 GeV [49,50]. For p-Pb, RpPb saturates to unity for
pT > 2 GeV, and it is also found that for pþ p, RHL shows
an almost similar trend but with a larger value of the factor
with saturationlike behavior starting after pT ¼ 2 GeV. We
note that the RHL values above unity for pT > 1 GeV may
be qualitatively similar to other observed enhancements
due to the Cronin effect and radial flow in pA and dA
systems [51,52], as conjectured for a similar behavior of
RpPb [50], where the moderate excess at high pT is
suggestive of antishadowing effects in the nuclear parton
distribution function [53].

E. Estimation of elliptic flow

For a long time, pþ p collisions were considered as the
baseline measurements for the determination of the decon-
fined state of matter, i.e., QGP formed in a nuclear
collision. A recent observation of pþ p collisions at
LHC energies hints toward a collective effect; thus, it
becomes imperative to review the earlier view. In this
regard, we have also calculated eccentricity (ϵ) using the
present approach. The asymmetry ratio between semiaxis
dimensions of the overlap region weighted by Ncoll at a
particular b can be used to obtain ϵ as [40]

ϵðbÞ ¼
R ðy2 − x2Þncollðx; y; bÞdxdyR ðy2 þ x2Þncollðx; y; bÞdxdy

; ð36Þ

where ncollðx; y; bÞ ¼ σggTaðx − b
2
; yÞTbðxþ b

2
; yÞ repre-

sents the impact plane binary collision density. We have
calculated ϵðbÞ by using Eq. (36) by considering a sum
of four components, namely quark-quark, quark-gluon,
gluon-quark, and gluon-gluon. Figure 8 shows the eccen-
tricity for the pþ p collision at

ffiffiffi
s

p ¼ 7 TeV obtained
using Eq. (36), and it is observed to increase with b and
seems to saturate toward larger b.
Using ϵ, we have obtained the elliptic flow (v2) as a

function of b by considering the scaling: v2 ¼ Ωϵ, where
Ω ¼ 0.3� 0.02 [39]. Although we have considered a linear
scaling to understand the variation of v2 with multiplicity,
as a matter of fact v2 should be calculated by using
relativistic hydrodynamics with relevant initial conditions
and the equation of state as inputs.
By geometry, v2ðbÞ will follow the general trend of ϵðbÞ.

It is found that the overlap of two hard spheres with infinitely
sharp edges yields artificially large eccentricities [54].
In Fig. 9, we have compared our estimation of the

variation of v2 with the charged particle multiplicity for
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pþ p collision at
ffiffiffi
s

p ¼ 7 TeV with the experimental
result at

ffiffiffi
s

p ¼ 13 TeV [55]. This is due to the fact that
the data for collisions at

ffiffiffi
s

p ¼ 13 TeV were not available
at the time of the reporting of this work to constrain our
model. That does not prevent us from the comparison, since
in Ref. [56], it is reported that the value of v2 for collisions
at

ffiffiffi
s

p ¼ 2.76 TeV and
ffiffiffi
s

p ¼ 13 TeV are almost the same
when measured for different transverse momenta, indicat-
ing that the collision energy dependence of v2 is weak. It is
observed that for Nch ≳ 8, our estimation of v2 with a linear
response to initial geometry reproduces the value obtained
from the experiment within the error bars. However, for
lower multiplicities, our estimation with a linear response
to the initial eccentricity falls short of that obtained from
experimental data. This may be due to effects other than the
collective linear response or the final state effects. Though
the charged particle multiplicity variation of v2 for pþ p
collisions at

ffiffiffi
s

p ¼ 7 TeV is not available, the elliptic flow
coefficient extracted from the CMS Collaboration data at

ffiffiffi
s

p ¼ 7 TeV is 0.04–0.08 [57] and our estimation of v2
falls within this range. We also note that this model gives v2
similar to that of the IP-Glasma model as presented in
Ref. [58] for low multiplicity region (<8).

IV. SUMMARY AND DISCUSSION

In this work, we have investigated predictions of the
Glauber model for the initial condition for pþ p collisions,
which considers an anisotropic and inhomogeneous proton
density profile. The results have been contrasted with
experimental data. This model for the density profile is
inspired by the structure function obtained from deep
inelastic scattering. Instead of distributing the positions
of valence quarks randomly by keeping the center of mass
intact, we have taken random orientations generated by
random rotation around three spatial axes, where the center
of three quarks form a plane and connecting gluon tubes
always remain fixed in length. This prevents the overlap of
two valence quarks in space and possible placement of a
quark out of the proton radius, where these two can happen
for the first kind of randomization with only the center of
mass being fixed [21], and the condition that may bring
extra complications in the randomization process for not
allowing it, generating “spooky” correlations. However, the
present approach, apart from avoiding such complications,
will give a better handle for future investigations.
With all these considerations, we have studied multi-

plicity distribution, to obtain the impact parameter to
multiplicity relation, multiplicity dependence of initial
eccentricity, and azimuthal flow harmonics (v2). It is found
that this model can well reproduce multiplicity distribution
produced in pþ p events at ALICE, with the free param-
eter f ¼ 0.85. With properly constraining our model with
experimental data and calibrating the range of b with the
multiplicity percentile, we have used the estimated hNcolli
to obtain a nuclear modificationlike factor (RHL) for pþ p
collisions. It is found that the defined factor < 1 for
pT < 1 GeV, and beyond this, the factor > 1. Moreover,
it tends to reduce at very high pT , and for pT > 1 GeV, the
value of the factor is higher for higher multiplicities. We
have also studied RHL for identified particles for pþ p
collisions at

ffiffiffi
s

p ¼ 7 TeV and found that the trend forRHL is
similar to that observed in the p-Pb system but with an
increased value. This behavior at higher pT may be due to
noncollective flow effects, which needs further investigation.
The nonavailability of results from experiments which

shows the variation of eccentricity and v2 with multiplicity
at

ffiffiffi
s

p ¼ 7 TeV prevents us from comparing our estima-
tion with experimental data at

ffiffiffi
s

p ¼ 7 TeV. However, we
have compared our result of v2 with that of pþ p
collisions at

ffiffiffi
s

p ¼ 13 TeV, as it is observed that the
collision energy dependence of v2 is weak. We found that
the result of v2 obtained from the present approach is in
agreement with the result obtained in the IP-Glasma
model in the lower multiplicity region. Also, it is found
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that the values of v2 obtained from the present model for
Nch ≳ 8 are very close to that of the experimental data
for

ffiffiffi
s

p ¼ 13 TeV.
The elliptic flow v2 measured through the anisotropic

momentum distribution of the produced particle is gen-
erated by the hydrodynamic pressure gradient resulting
from the spatial anisotropy of the system formed initially.
Therefore, v2 can be used to characterize the evolving
medium, and to do that, any momentum dependence
resulting from other sources has to be subtracted out.
The initial conditions required to solve the hydrodynamic
equations are quantities that depend on the spatial coor-
dinate but are momentum independent. Therefore, the
initial condition obtained in the present study will be
relevant for studying the evolving matter formed in pþ
p collisions. The momentum dependent initial condition
obtained in the IP-Glasma model (e.g., the work reported in
Ref. [59]) can also be useful to study hydrodynamic
evolution when the momentum dependence is inte-
grated out.
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APPENDIX: MULTIPLICITY VS GEOMETRIC
PROPERTIES OF THE COLLISION

Table I shows geometric properties (hbi, hNchi, hNparti,
hNColli) of pþ p collisions for different multiplicity
classes using the Glauber Monte Carlo calculation along
with a negative binomial distribution fit to a charged
particle multiplicity distribution at

ffiffiffi
s

p ¼ 7 TeV for the
ALICE experiment at the LHC.
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