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We use heavy baryon chiral perturbation theory to evaluate the two-photon exchange corrections to the
low-energy elastic lepton-proton scattering at next-to-leading order accuracy, i.e., Oðα;M−1Þ, including a
nonzero lepton mass. We consider the elastic proton intermediate state in the two-photon exchange
invoking soft photon approximation. The infrared singular contributions are projected out using dimen-
sional regularization. The resulting infrared singularity-free two-photon exchange contribution is in good
numerical agreement with existing predictions based on standard diagrammatic soft photon approximation
evaluations.
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I. INTRODUCTION

During the past few decades electron-proton (ep) scat-
tering experiments at various experimental facilities, e.g.,
BINP Novosibirsk, SLAC, DESY, Fermilab, CERN, JLab,
and MAMI, have provided great insights into the electro-
magnetic structure of the proton. The pointlike nature of the
electrons as well as the small value of the electromagnetic
coupling make them ideal probes for investigating the
internal structure of the proton. Polarized and unpolarized
cross section measurements with ultrarelativistic electrons
have yielded information on physical quantities, such as
electromagnetic form factors, parton distribution functions,
and polarization asymmetries. However, in recent years the
values of some low-energy physical quantities extracted
from such experiments show discrepancies which are
currently difficult to reconcile. The most contentious being
the measurements of the root-mean-square (rms) proton
radius extracted from ep scattering data versus the ones
from the CREMA Collaboration measurements, which are
high-precision muonic hydrogen Lamb-shift determina-
tions, leading to about 5σ discrepancy with the previous
accepted proton rms value [1–7]. We note that a very recent
hydrogen Lamb-shift measurement [8], however, reported a
result consistent with the CREMA measurement [1,2].
This so-called “proton radius puzzle,” together with the
well-known discrepancy of the electric to magnetic form
factor ratio (GE=GM) of the proton [9–17], has resulted

in a renewed vigor in the study of the structure of the
proton both experimentally and theoretically (see, e.g.,
Refs. [4,18–20] for recent reviews).
The proton rms radius is determined from the proton’s

electric form factor (GE) which may be obtained from the
measurement of the unpolarized elastic lepton-proton (lp)
scattering cross section. The rms electric charge radius

(
ffiffiffiffiffiffiffiffiffi
hr2Ei

p
) is thereby extracted using the relation hr2Ei ¼

6
∂GEðQ2Þ

∂Q2 jQ2¼0 where, Q2 is the four-momentum transfer.

One of the challenges associated with the measurements of
the lp cross section at low-energy or low-Q2 values is the
bremsstrahlung process, lp → lpγ, which constitutes an
important background. The data analysis entails the dis-
entanglement of this background from the elastic lp
scattering process before the rms radius can be extracted.
To yield meaningful results one needs to deal with the soft
photon emissions, leading to infrared (IR) divergences that
must cancel with the IR-divergent virtual photon exchange
counterparts. This so-called unfolding procedure of the
radiative analysis of the raw data [21–25] makes an
experimental determination of the rms radius rather intri-
cate especially at low energies.
Several recent experimental proposals, including low-

energy lp scattering experiments, are under way to resolve
the rms discrepancy. For example, the Prad [26,27] experi-
ment at JLab and the MUon proton Scattering Experiment
(MUSE) [28,29] at PSI are two such experiments. In
particular, the MUSE Collaboration aims to measure the
elastic μ�p scattering cross sections at momentum transfer as
low as jQ2j ∼ 0.002–0.08 GeV=c2 [28,29]. In fact, MUSE
plans to extract the proton’s rms radius from very precise
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measurements (with a projected accuracy of less than 1%) of
the μ�p and e�p cross sections. This should facilitate a
comparative study of the extracted rms radii from these low-
energy elastic scattering processes under very similar exper-
imental conditions.
The proton is an extended particle composed of quarks

and gluons, and for low-energy probes one is faced with
complexities arising from the underlying nonperturbative
nature of strong interactions. This low-energy theory is
usually parametrized; the proton-photon vertices are
described by electric and magnetic (Sachs) form factors.
The form factors are either phenomenologically modeled,
extracted directly from experimental data, or determined via
ab initio numerical calculations using lattice QCD. Well-
known works from the past [21–23], as well as many recent
works in the past two decades (e.g., [18–20,30,31] and other
references therein) on radiative correction analyses, relied on
such phenomenological form factors. In contrast, our analy-
sis presented in this work makes use of elementary pointlike
vertices derived in the context of an effective field theory
(EFT). Thework of Tsai [21] presented a detailed account of
the radiative correction analysis for the elastic electron-
proton scattering process where the relativistic recoil cor-
rections for the proton were considered. This analysis
therefore predominantly concentrated on the high-energy
regime of the lepton scattering process. In a later work, Mo
and Tsai [22] introduced the so-called peaking approxima-
tionwhich is justifiable for electron scattering off the proton
even at low energies, as confirmed in, e.g., Refs. [32,33].
One of the earliest works on the two-photon exchange

(TPE) effects may be the so-called Feshbach corrections
[34], which considered relativistic electrons scattering off a
static Coulomb potential. The later works of Refs. [21–23]
did consider the virtual TPE diagrams in order to cancel the
IR divergences arising from the bremsstrahlung diagrams.
These calculations suggested that the TPE effects were
small. In other words, the dominant contributions arose
from the one-photon exchange contribution (i.e., the first
Born approximation) leading to the celebrated Rosenbluth
formula for elastic lepton-proton scattering cross section.
Modern experimental arrangements such as the MUSE
facilitate simultaneous measurement of the unpolarized
elastic e�p and μ�p scattering cross sections, thereby
enabling the extraction of possible enhanced TPE contri-
butions. In other words, MUSE will measure the difference
of the lepton and antilepton charge cross sections to which
the interference between the Born and the TPE diagrams at
Oðα3Þ contributes.1

Recent theoretical studies have suggested that the TPE
effects can play a crucial role in explaining possible
discrepancies in various measured observables. It appears
to be the general consensus that the TPE contributions have
the correct sign and magnitude in order to resolve the
bulk of the discrepancies in the extraction of form factors
[4,9–19]. This brought about a renaissance in TPE studies
relating to the lp scattering process. A wide variety of
hadronic model analyses of the TPE contributions include
dispersion theory methods [35–49],2 resonance exchange
models, and dynamical coupled channel K-matrix analyses
[50–55]. In these evaluations of the TPE processes,
inelastic intermediate states of the nucleon and the Δ,
namely, the N�, Δ�, and other possible excitation, along
with various resonance exchanges, such as σ;ω;ϕ, were
considered which could contribute even at small momen-
tum transfers, jQ2j≲ 0.1 ðGeV=cÞ2 [19]. Contributions
from these intermediate excited states are expected to be
small at such low jQ2j. Moreover, there has been a report of
an interesting interplay between the spin-1=2 and spin-3=2
resonance states leading to partial cancellations among
the above excited states of nucleon and Δ contributions
to the TPE [53]. Ultimately, the TPE with the elastic
proton intermediate state is expected to give the domi-
nant contribution at very low momentum transfers [30,
45–47,49,56,57]. In this work we focus only on the
intermediate elastic proton contributions to the TPE dia-
grams. Furthermore, here we only need to deal with the real
parts of these amplitudes which contribute to the unpolar-
ized elastic lepton-proton cross section.
As already mentioned, the TPE contributions contain IR

divergences which are canceled by the IR terms arising
from the soft photon bremsstrahlung process at Oðα3Þ. In
this work, we present an evaluation of TPE contributions
with a proton intermediate state using a low-energy EFT,
namely the heavy baryon chiral perturbation theory
(HBχPT), which is an effective low-energy field theory
of QCD (e.g., [58,59] and references therein). The primary
motivation for the use of HBχPT is to provide a systematic,
model independent evaluation of the TPE intermediate
proton contribution at low energies incorporating simulta-
neous radiative and proton recoil effects. HBχPT entails a
perturbative expansion of the chiral Lagrangian based on a
momentum expansion scheme. The leading chiral order
(LO) terms give the dominant amplitudes, and the next-to-
leading order (NLO) amplitudes normally, viz., in a naive
dimensional analysis, are smaller corrections to the LO
amplitudes of the process. HBχPT also includes a well
established perturbative counting expansion in inverse
powers of the nucleon mass M consistent with the
chiral momentum expansion. Since the chiral symmetry

1These charge-asymmetry measurements cannot be used to
extract the TPE contribution directly. The MUSE experiment can
instead observe the charge odd combinations of TPE along with
parts of the bremsstrahlung contributions. In order to isolate the
TPE contribution, model-dependent corrections must be applied
to the charge-asymmetry data; i.e., one has to extract the charge-
dependent bremsstrahlung contributions, e.g., Ref. [19].

2En passant, Refs. [41,42] used dispersion relations to predict
a smaller value of the proton’s charge radius ∼0.84–0.85 fm,
prior to the CREMA muonic hydrogen measurements [1,2].
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breakdown scale Λχ is of the order of M ∼ 1 GeV, the
expansion parameter, Q=Λχ ∼mπ=Λχ ≪ 1, includes both
the chiral expansion and the expansion in M−1. Moreover,
the electromagnetic interaction naturally enters HBχPT in a
gauge invariant way.
Thus, HBχPT provides the ideal framework to study

low-energy processes such as the lp scattering, where
nucleons, mesons, and leptons are the fundamental degrees
of freedom. Especially in dealing with MUSE-like kine-
matics where the lepton mass plays a sensitive role, the
widely used ultrarelativistic approximation of leptons
cannot be employed [32,33]. At such low-Q2 processes,
the predictive power of HBχPT becomes very effective.
Furthermore, the power counting of HBχPT allows a
systematic control of the uncertainties involved. These
uncertainties could be improved order-by-order in the
expansion scheme of HBχPT. This nonrelativistic field
theory has been used extensively in the past to study the
physical properties and the low-energy dynamics of nucle-
ons and other baryons [58,59]. In this work we use the same
framework to analytically evaluate the TPE box and cross-
box diagrams (called TPE box hereafter) and the so-called
seagull diagram (cf. Fig. 1.) While all the TPE box
diagrams are ultraviolet (UV) finite, the seagull diagram
is both IR as well as UV finite. In this work we shall use the

gauge invariance-preserving dimensional regularization
(DR) scheme in order to remove the IR singularities from
the TPE box diagrams. To the best of our knowledge such a
TPE evaluation in the context of HBχPT has not been
pursued until now.
The paper is organized as follows. In Sec. II we introduce

the general formalism for elastic lepton-proton scattering
within HBχPT, providing the relevant terms from the chiral
Lagrangian, up-to-and-including NLO in the chiral power
counting, that is necessary for the evaluation of our TPE
diagrams. We also discuss some of the details of the
kinematics involved in the calculations, which are com-
mensurate with the proposed MUSE kinematic domain. In
Sec. III, we outline the crucial steps involved in the
systematic removal of the IR divergences from the TPE
diagrams at Oðα3Þ. Especially, we discuss the subtle nature
of many cancellations among the NLO TPE amplitudes in
the soft photon limit and their relation to the corresponding
soft photon bremsstrahlung processes. Next in Sec. IV we
present our numerical estimates of the TPE contribution to
the unpolarized elastic cross section. Finally in Sec. V we
draw some conclusions and present our outlook. Appendix
is included at the end which collects some of the details of
our analytical evaluation of the seagull diagram.

II. HEAVY BARYON CHIRAL PERTURBATION
THEORY TREATMENT OF LEPTON-PROTON

SCATTERING

The relevant parts of the LO and NLO chiral Lagrangian
needed in our TPE evaluation of the lepton proton scatter-
ing amplitudes are given in, e.g., Ref. [58]. Since at NLO
the TPE vertices do not involve pions, we ignore the pion
degrees of freedom in the part of the chiral Lagrangian that
we use [the pion loops arise at next-to-next-to-leading
order (NNLO) which is beyond the accuracy of this work.]
From Ref. [58] we obtain

LN ¼ Lðν¼0Þ
N þ Lðν¼1Þ

N þ � � � ; ð1Þ

where the chiral indices ν ¼ 0 and ν ¼ 1 represent the LO
and NLO components of the HBχPT Lagrangian3

Lð0Þ
N ¼ N̄ðiv ·Dþ gAS · uÞN; ð2Þ

Lð1Þ
πN ¼ N̄

�
1

2M
ðv ·DÞ2 − 1

2M
D ·Dþ � � �

�
N: ð3Þ

Here N ¼ ðp nÞT is the heavy nucleon spin-isospin field,
and vμ and Sμ are the nucleon velocity and spin four-
vectors satisfying the condition v · S ¼ 0. Here we choose

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. The TPE Feynman diagrams ofOðe4Þ which contribute
to the Oðα3Þ interference term in the elastic lepton-proton cross
section. Thin lines represent lepton propagators, thick lines
represent proton propagators, and wiggly lines represent photon
propagators. The solid dark circles and the lines with a cross
represent vertex and proton propagator insertions, respectively,

from the NLO Lagrangian Lð1Þ
πN . Diagrams (a)–(h) are the “box”

and “cross-box” terms, and diagram (i) is the “seagull” term.

3IdeallyM is the mass of the nucleon in the chiral limit. In this
work we use M also to denote the proton’s physical mass,
M ¼ 938.28 MeV.

LEPTON-PROTON TWO-PHOTON EXCHANGE IN CHIRAL … PHYS. REV. D 101, 013008 (2020)

013008-3



v ¼ ð1; 0Þ such that S ¼ ð0; σ=2Þ. The covariant derivatives
in the Lagrangian are

Dμ ¼ ∂μ þ Γμ − ivðsÞμ ; uμ ¼ iu†∇μUu†; ð4Þ

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�; ð5Þ

∇μU ¼ ∂μU − irμU þ iUlμ: ð6Þ

Due to the absence of the explicit pions the u ¼ ffiffiffiffi
U

p
field is

simply u ¼ I ≡ I2×2, the identity matrix in isospin space.
The external isovector right and left fields, rμ and lμ,
respectively, have in our case simple expressions since the
only external source field is the photon field AμðxÞ. The
chiral Lagrangian is therefore reduced to a combination of

external isoscalar source vðsÞμ ¼ −e I
2
AμðxÞ and isovector

source uμ ¼ ðlμ þ rμÞ=2 ¼ −e τ3

2
AμðxÞ, where τ3 is the

third Pauli isospin matrix.
The relevant TPE amplitudes of Oðe4Þ are diagrammati-

cally illustrated in Fig. 1. In the diagrams labeled (a)
and (b), the proton-photon vertices arise from the LO chiral
Lagrangian, while diagrams (c)–(f) contain one proton-
photon vertex insertion from the NLO Lagrangian. Each of
the diagrams (g) and (h) contains an NLO propagator
insertion, and finally the seagull diagram (i) contains no
intermediate proton; instead this diagram has an effective
two-photon interaction vertex associated with the proton
originating from the NLO Lagrangian.
In this work we find it convenient to use the laboratory or

rest frame of the proton target which allows a straight-
forward relation to the proposed MUSE kinematic. The
convention used here is shown in Fig. 2, where the
incoming lepton momentum p ¼ ðE;pÞ, the outgoing
lepton momentum p0 ¼ ðE0;p0Þ, the incoming proton
momentum P ¼ ðM; 0Þ, and the outgoing proton momen-
tum P0 ¼ ðE0

p;P0Þ. Additionally, in the HBχPT forma-
lism one introduces a small so-called residual incoming
proton momentum pp as defined through the relation

Pμ ¼ Mvμ þ pμ
p with p2

p ≪ M2, which in the laboratory
frame means v · pp ¼ 0. Similarly, the small residual
outgoing proton momentum p0

p defined as P0μ ¼ Mvμþ
p0
p
μ, where ðp0

pÞ2 ≪ M2, implies

v · p0
p ¼ p0

p
2

2M
þOðM−2Þ: ð7Þ

Finally, the four-momentum transfer in the elastic process
is Qμ ¼ pμ − p0

μ ¼ P0
μ − Pμ ¼ ðp0

pÞμ − ðppÞμ, and the lep-
ton scattering angle is θ.
The MUSE Collaboration has chosen the incident lepton

momenta to have the following values: 115 MeV=c,
153 MeV=c, and 210 MeV=c. This means that for elastic
scattering the four-momentum transfer Q2 depends only on
the scattering angle θ. The corresponding range of the Q2

value in the laboratory frame can be obtained using the
relations

Q2 ¼ 2m2
l − 2EE0ð1 − ββ0 cos θÞ ¼ −2MðE − E0Þ; ð8Þ

where β ¼ jpj=E and β0 ¼ jp0j=E0 are the incoming and
outgoing lepton velocities, respectively. It may be shown
that 0 < jQ2j < jQ2

maxj ¼ 4M2ðE2 −m2
l Þ=ðm2

l þM2 þ
2MEÞ represents the kinematically allowed (physical)
range of momentum transfers [30]. However, the (labo-
ratory frame) scattering angle is proposed by MUSE to be
in the range θ ∈ ½20°; 100°� [28], for which the possible Q2

range of values obtained from Eq. (8) are tabulated in
Table I. By examining theQ2 values in the table we observe
that Q=Λχ ≪ 1; i.e., the HBχPT power counting scheme
can be applied reasonably well in the domain of the MUSE
kinematics.4 Here we remark that the lepton mass is
explicitly included in all our expressions. In the next
section we evaluate the TPE diagrams in Fig. 1 and isolate
the IR divergences of the TPE box diagrams.

FIG. 2. The kinematics for the lp → lp scattering in the
laboratory frame. The square shaded area represents all possible
internal graphs contributing to the elastic scattering process.

TABLE I. The MUSE range of jQ2j values for ep and μp
scattering at the two limits of the laboratory frame scattering
angle, namely, θ ¼ 20° and 100°, obtained from Eq. (8).

Momentum (p) in GeV=c 0.115 0.153 0.210

jQ2j in ðGeV=cÞ2 for electron
Angle θ ¼ 20° 0.0016 0.0028 0.0052
Angle θ ¼ 100° 0.027 0.046 0.082

jQ2j in ðGeV=cÞ2 for muon
Angle θ ¼ 20° 0.0016 0.0028 0.0052
Angle θ ¼ 100° 0.026 0.045 0.080

4We note that for the TPE diagrams with either NLO vertex or
propagator insertions being already ofOðM−1Þ, it is reasonable to
write E0 ¼ Eþ Q2

2M ≈ E at NLO.
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III. TWO-PHOTON EXCHANGE IN THE SOFT
PHOTON APPROXIMATION

In this section we evaluate all the TPE diagrams in
Fig. 1 using HBχPT and derive the Q2 or θ dependence on
the IR subtracted TPE diagrams in a gauge-invariant
manner. The finite (IR subtracted) part of the TPE fractional
corrections δ̄γγ up to and including next-to-leading order
accuracy, i.e., Oðα;M−1Þ, to the elastic scattering cross
section is defined by

�
dσelðQ2Þ

dΩ0
l

�
γγ

¼
�
dσelðQ2Þ

dΩ0
l

�
γ

δ̄γγðQ2Þ; ð9Þ

where

δ̄γγðQ2Þ ¼ 2Re
P

spinsðM�
γMγγÞP

spinsjMγj2
− δðboxÞIR ðQ2Þ: ð10Þ

In this expression Mγ is the one-photon exchange (Born)
amplitude,

Mγ ¼ −
e2

Q2
½ūðp0ÞγμuðpÞ�½χ†ðp0

pÞvμχðppÞ�; ð11Þ

and Mγγ ¼ MðboxÞ
γγ þMðiÞ

seagull is the total TPE amplitude

obtained by summing the TPE box amplitudes,MðboxÞ
γγ , and

the seagull amplitude, MðiÞ
seagull, viz., Feynman diagrams

(a)–(i) in Fig. 1. The corresponding Born cross section
is ðdσel=dΩ0

lÞγ , which to LO in the chiral expansion
(including phase space 1=M proton recoil contributions)
is given by

�
dσelðQ2Þ

dΩ0
l

�
γ

¼ 1

64π2M2

�
β0E0

E

��
1þ E

M
ð1 − cos θÞ

�
−1

×
1

4

X
spins

jMγj2;

1

4

X
spins

jMγj2 ¼
64π2α2

Q4
MEE0ðM þ E0

pÞ

×

�
1þ ββ0 cos θ þ m2

l

EE0

�
; ð12Þ

where the kinematics at 1=M order accuracy yield the
following relations:

E0 ¼ E

�
1 −

β2E
M

ð1 − cos θÞ þOðM−2Þ
�
;

β0 ¼ β

�
1 −

ð1 − β2ÞE
M

ð1 − cos θÞ þOðM−2Þ
�
;

Q2 ¼ −2β2E2ð1 − cos θÞ

×
�
1 −

E
M

ð1 − cos θÞ þOðM−2Þ
�
: ð13Þ

In Eq. (10), the term δðboxÞIR denotes the IR singular part of
the TPE box diagrams’ contribution to the elastic cross
section. Utilizing DR we project out these singularities

before deriving the expression for δðboxÞIR . It will be shown in
a future publication [60] that theOðe3Þ soft bremsstrahlung
amplitude has an IR singularity which in the cross section

generates a singular term, δðsoftÞIR , which cancels the IR

singularity in Eq. (10), namely, δðsoftÞIR ¼ −δðboxÞIR at Oðα3Þ.
Our calculations of the finite TPE contribution δ̄γγ
in Eq. (10) inherently rely on the widely used soft photon
approximation (SPA). While the HBχPT evaluation
details and discussion of the full QED radiative corrections
to the lp elastic scattering at NLO will be presented in
Ref. [60], here we simply quote our analytical expression

for δðsoftÞIR :

δðsoftÞIR ðQ2Þ ¼ αQ2

2πME

�
1

ϵ
− γE þ ln

�
4πμ2

−Q2

��

×

�
1

β
ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
þ E
E0β0

ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s �
: ð14Þ

The TPE diagrams in Fig. 1 naturally include the
contributions to the Coulomb wave functions describing
the incoming and outgoing charged leptons. For example,
the so-called “Coulomb focusing” or distortion of the
scattered lepton spectrum at low-jQ2j is explained by
considering one of the exchanged photons in the box
diagrams as a soft photon.5 The SPA has widely been
used in the literature as a practical tool to isolate the IR
singularities of the TPE box diagrams. However, the exact
implementation of the SPA is somewhat ad hoc and differs
in different theoretical works. For example, following the
work of Maximon and Tjon [23], the SPA is used only in

5The Coulomb distortion of the outgoing electron waves in the
second Born approximation was investigated in Refs. [61,62] (see
also Figs. 13 and 17 of Ref. [19]) where it was found to
significantly enhance the cross section at backward scattering
angles. However, in this case the contribution to the proton’s rms
charge radius is unlikely to be affected from the extrapolation of
the form factor data to extreme forward angles where Coulomb
wave function effects are found to be small. Hence, the authors of
Refs. [61,62] concluded that the radius discrepancy could not have
been attributed to an erroneous experimental measurement due to
the influence of this kind of SPA in the TPE contributions.
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the denominator (propagators) of the integrand in order to
single out the IR-divergent TPE amplitude; i.e., the momen-
tum of the soft exchange photon is set to zero.Maximon and
Tjon do not set the photon momentum to zero in the
numerator of the integrand. On the other hand, following
the work of Mo and Tsai [22], the SPA is used simulta-
neously in the numerator and denominator. As was noted in
Ref. [23], the convenience of using the former “less drastic”
type of approximation is that the resulting expressions
become somewhat simpler. However, some authors, e.g.,
those of Ref. [57], have argued in favor of the latter
“more drastic” approximation being more self-consistent.

The essential point is to let the momenta associated with the
soft photon go to zero, irrespective of whether they appear in
the numerator or the denominator. Since these soft momen-
tum factors, which appear in the numerator of the ampli-
tudes, originate from those in the denominator, it seems
somewhat unreasonable to let them go to zero only in the
denominator. Concurring with the argument presented in
Ref. [57], in the following we shall use the SPA definition of
Mo and Tsai [22].
As shown in Figs. 1(a)–1(i), the loop integrals up to NLO

in HBχPT contributing to the TPE amplitude Mγγ are,
respectively, given by

iMðaÞ
box ¼ e4

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞvμvνχðppÞ�

ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þðv · kþ i0Þ ; ð15Þ

iMðbÞ
xbox ¼ e4

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞvμvνχðppÞ�

ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þð−v · kþ i0Þ ; ð16Þ

iMðcÞ
box ¼

e4

2M

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞfvμð2pp þ kÞν − vμvνðv · kÞgχðppÞ�

ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þðv · kþ i0Þ ; ð17Þ

iMðdÞ
xbox ¼

e4

2M

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞfvνðpp þ p0

p − kÞμ − vμvνð−v · kÞÞgχðppÞ�
ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þð−v · kþ i0Þ ; ð18Þ

iMðeÞ
box ¼

e4

2M

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞfvνðpp þ p0

p þ kÞμ − vμvνðv · kÞgχðppÞ�
ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þðv · kþ i0Þ ; ð19Þ

iMðfÞ
xbox ¼

e4

2M

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞfvμð2p0

p − kÞν − vμvνð−v · kÞÞgχðppÞ�
ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þð−v · kþ i0Þ ; ð20Þ

iMðgÞ
box ¼

e4

2M

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞvμvνχðppÞ�

ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þ
�
1þ p2

p

ðv · kÞ2 −
ðpp þ kÞ2
ðv · kÞ2

�
; ð21Þ

iMðhÞ
xbox ¼

e4

2M

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞvμvνχðppÞ�

ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þ
�
1þ p02

p

ðv · kÞ2 −
ðp0

p − kÞ2
ðv · kÞ2

�
; ð22Þ

iMðiÞ
seagull ¼

2e4

2M

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγνuðpÞ�½χ†ðp0
pÞðvμvν − gμνÞχðppÞ�

ðk2 þ i0Þ½ðQ − kÞ2 þ i0�ðk2 − 2k · pþ i0Þ ; ð23Þ

where uðpÞ and ūðp0Þ are the incoming and outgoing
lepton Dirac spinors, and χðpÞ and χ†ðp0

pÞ are the proton’s
nonrelativistic two-component Pauli spinors. Here we re-
mark that the two LO TPE integrals, Eqs. (15) and (16),
should contain the kinetic energy terms of OðM−1Þ in the
proton propagators [cf. Eq. (7)]. However, for the purpose
of distinguishing the “true” LO from the NLO parts of the
integrals, theseOðM−1Þ terms from the two LO amplitudes
have been included in the NLO propagator insertion
integrals, Eqs. (21) and (22), respectively. In that case

the first two amplitudes, namely, MðaÞ
box and MðbÞ

xbox,
correspond to the “true” LO contribution of the TPE.

All the rest contributing at NLO either correspond to terms
that directly arise in the NLO chiral power counting or are
attributed to the dynamical recoil OðM−1Þ terms moved
from the LO chiral counting amplitudes. We isolate the IR
divergences by taking the soft photon limit, which means:
when one of the two photons’ four-momenta is considered
soft (either setting k ¼ 0 or k ¼ Q) the other photon is hard
[either with ðQ − kÞ2 ≠ 0 or k2 ≠ 0]. To project out the IR
singular terms, we must evaluate the loop integrals at both
poles and then consider their sum.
To demonstrate the utility of this approach, let us apply

SPA to the LO box, Eq. (15), and cross-box, Eq. (16),
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amplitudes [cf. Figs. 1(a) and 1(b)]. Treating each of the
two photons to be separately soft leads to the following sum
of the amplitudes:

iMðaÞ
box⇝

γsoft−2e2ðv ·pÞMγ

Z
d4k
ð2πÞ4

1

k2ðk2−2k ·pÞðv ·kþ i0Þ

−2e2ðv ·p0ÞMγ

Z
d4k
ð2πÞ4

1

k2ðk2−2k ·p0Þðv ·kþ i0Þ
ð24Þ

and

iMðbÞ
xbox⇝

γsoft
2e2ðv · pÞMγ

Z
d4k
ð2πÞ4

1

k2ðk2 − 2k · pÞðv · k− i0Þ

þ 2e2ðv · p0ÞMγ

Z
d4k
ð2πÞ4

×
1

k2ðk2 − 2k · p0Þðv · k− i0Þ : ð25Þ

It is immediately clear that MðaÞ
box is effectively canceled

by MðbÞ
xbox, which apparently is not manifest otherwise.6

Thus, we conclude that using the SPA the LO amplitudes
of the TPE diagrams give no LO amplitude contributions in

HBχPT. This LO cancellation is anticipated since the proton
does not generate any LO bremsstrahlung in HBχPT, vis-à-

vis no LO IR divergence contributions in δðsoftÞIR [60]. A
similar conclusion was obtained in Refs. [32,33], which
evaluated the lepton-proton bremsstrahlung process
(lp → lpγ) using the same HBχPT framework.
The first nonvanishing TPE contributions in SPA arise

from the NLO proton recoil contributions, which is
commensurate with the corresponding nonzero HBχPT
bremsstrahlung amplitudes with the soft photons radiated
from NLO proton-photon vertices. We now analyze the
NLO TPE integrals, Eqs. (17)–(23), and the following
observations are in order:

(i) First, when we sum these amplitudes, the terms

containing the vμvν in the amplitudes MðcÞ
box through

MðfÞ
box cancel with the first terms of amplitudesMðgÞ

box

and MðhÞ
xbox plus the vμvν part of the seagull

term MðiÞ
seagull.

(ii) Second, applying SPA to the remaining parts of the

two amplitudes, MðgÞ
box and MðhÞ

xbox, we observe that
they also cancel in the soft photon limits. This is
easily seen by analyzing the remaining parts of the
NLO proton propagator in each of these integrals in
the following way:

i½MðgÞ
box þMðhÞ

xbox�residual ¼
e4

2M

Z
d4k
ð2πÞ4 � � �

�
p2
p

ðv · kÞ2 −
ðpp þ kÞ2
ðv · kÞ2 þ p02

p

ðv · kÞ2 −
ðp0

p − kÞ2
ðv · kÞ2

�

⇝
γsoft e4

2M

Z
d4k
ð2πÞ4 � � �

�
p2
p

ðv · kÞ2 −
p2
p

ðv · kÞ2 þ
p02
p

ðv · kÞ2 −
p02
p

ðv · kÞ2
�

k→0

þ e4

2M

Z
d4k
ð2πÞ4 � � �

�
p2
p

ðv · kÞ2 −
p02
p

ðv · kÞ2 þ
p02
p

ðv · kÞ2 −
p2
p

ðv · kÞ2
�

k→Q

¼ 0: ð26Þ

Consequently, applying SPA, the two amplitudes, MðgÞ
box and MðhÞ

xbox, which are the amplitudes with intermediate NLO
proton propagator insertions, effectively do not contribute to the sum of the NLO TPE box amplitudes. Furthermore, we
observe that in the seagull amplitude, Eq. (23), only the terms proportional to gμν contribute to the total TPE amplitude. The
residual parts of the TPE integrals at NLO, after applying SPA to the box diagrams, yield the following simplified soft
photon amplitudes7:

iM̃ðcÞ
box ¼

e4

M
ðv · p0Þ

Z
d4k
ð2πÞ4

½ūðp0ÞγνuðpÞ�½χ†ðp0
pÞðpp þ p0

pÞνχðppÞ�
k2Q2ðk2 − 2k · p0Þðv · kþ i0Þ

−
2e2

M
ðp · ppÞMγ

Z
d4k
ð2πÞ4

1

k2ðk2 − 2k · pþ i0Þðv · kþ i0Þ ; ð27Þ

6Note the difference in the signs of the �iη → �i0 terms in the heavy proton propagators of the two amplitudes contributes to a
residual imaginary part, which is, however, irrelevant in the present context of evaluation of the unpolarized cross section.

7We do not apply SPA in the evaluation of the IR-finite seagull diagram. A naive application of SPA to this diagram leads to lepton
self-energy-like contributions with spurious IR-divergent terms. However, an exact evaluation (see Appendix) shows no such
singularities.
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iM̃ðdÞ
xbox ¼ −

e4

M
ðv · pÞ

Z
d4k
ð2πÞ4

½ūðp0ÞγμuðpÞ�½χ†ðp0
pÞðpp þ p0

pÞμχðppÞ�
k2Q2ðk2 − 2k · pÞðv · k − i0Þ

þ 2e2

M
ðp0 · ppÞMγ

Z
d4k
ð2πÞ4

1

k2ðk2 − 2k · p0Þðv · k − i0Þ ; ð28Þ

iM̃ðeÞ
box ¼

e4

M
ðv · pÞ

Z
d4k
ð2πÞ4

½ūðp0ÞγμuðpÞ�½χ†ðp0
pÞðpp þ p0

pÞμχðppÞ�
k2Q2ðk2 − 2k · pÞðv · kþ i0Þ

−
2e2

M
ðp0 · p0

pÞMγ

Z
d4k
ð2πÞ4

1

k2ðk2 − 2k · p0Þðv · kþ i0Þ ; ð29Þ

iM̃ðfÞ
xbox ¼ −

e4

M
ðv · p0Þ

Z
d4k
ð2πÞ4

½ūðp0ÞγνuðpÞ�½χ†ðp0
pÞðpp þ p0

pÞνχðppÞ�
k2Q2ðk2 − 2k · p0Þðv · k − i0Þ

þ 2e2

M
ðp · p0

pÞMγ

Z
d4k
ð2πÞ4

1

k2ðk2 − 2k · pÞðv · k − i0Þ ; ð30Þ

iM̃ðiÞ
seagull ¼ −

e4

M

Z
d4k
ð2πÞ4

½ūðp0Þγμð=p − =kþmlÞγμuðpÞ�½χ†ðp0
pÞχðppÞ�

k2ðQ − kÞ2ðk2 − 2k · pþ i0Þ ; ð31Þ

where the tilde symbols denote the residual NLO TPE amplitudes of Eqs. (17)–(23). Here we note again that there is a

cancellation between M̃ðcÞ
box and M̃

ðfÞ
xbox for the coefficient of v · p

0, and between M̃ðdÞ
xbox and M̃

ðeÞ
box for the coefficient of v · p

(up to an irrelevant imaginary part.) Then the resulting sum of the NLO TPE box amplitudes in the soft photon limit gets
“factorized” into a Q2 dependent function fðQ2Þ times the Born amplitude Mγ [56], namely,

MðboxÞ
γγ ⇝

γsoftM̃ðboxÞ
γγ ≡ fðQ2ÞMγ ¼ M̃ðcÞ

box þ M̃ðdÞ
xbox þ M̃ðeÞ

box þ M̃ðfÞ
xbox; ð32Þ

where

fðQ2Þ ¼ −
2e2

M
½ðp · ppÞKðþÞ

v ðpÞ − ðp0 · ppÞKð−Þ
v ðp0Þ þ ðp0 · p0

pÞKðþÞ
v ðp0Þ − ðp · p0

pÞKð−Þ
v ðpÞ�: ð33Þ

The integralsKðþÞ
v andKð−Þ

v are solved inD dimensions, i.e.,D > 4 is the analytically continued spacetime dimension. In
the expressions below, ϵ ¼ ð4 −DÞ=2, μ corresponds to the subtraction scale, γE ¼ 0.577216… is the Euler-Mascheroni

constant, and the integrals Kð�Þ
v ðpÞ in the above expression are given by

KðþÞ
v ðpÞ ¼ 1

i

Z
d4k
ð2πÞ4

1

k2ðk2 − 2k · pÞðv · kþ i0Þ

¼ −
1

ð4πÞ2Eβ
��

1

ϵ
− γE þ ln

�
4πμ2

m2
l

��
ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− ln2

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− Sp

�
2β

1þ β

�
þ π2

2

− iπ

�
1

ϵ
− γE þ ln

�
πμ2

E2β2

���
;

Kð−Þ
v ðpÞ ¼ 1

i

Z
d4k
ð2πÞ4

1

k2ðk2 − 2k · pÞðv · k − i0Þ

¼ −
1

ð4πÞ2Eβ
��

1

ϵ
− γE þ ln

�
4πμ2

m2
l

��
ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− ln2

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− Sp

�
2β

1þ β

��
; ð34Þ

where the term “Sp” stands for the standard Spence function defined as the integral
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SpðzÞ ¼
Z

z

0

dt
lnð1 − tÞ

t
; z ∈ R: ð35Þ

Likewise, we find the expression for the integrals Kð�Þ
v ðp0Þ

in Eq. (33) by replacing E ↔ E0 and β ↔ β0. The IR
divergences correspond to the poles in the dimensionally
regularized integrals in the limit ϵ ¼ ð4 −DÞ=2 → 0−. The
appearance of an imaginary part in these integrals depends
on the sign of the �iη term as η → 0 in the proton
propagator. As mentioned, the imaginary parts are irrel-
evant in our present context of the unpolarized cross section
analysis. Nevertheless, it might be interesting to note that
an additional IR divergence arises in the imaginary part of

KðþÞ
v ðpÞ which is of importance in a polarized cross section

analysis.
Finally, we sum the TPE amplitudes and compute their

interference with the Born amplitude in order to determine

their contribution to the elastic cross section, with the
appropriate IR singular term subtracted as shown in
Eq. (10). To this end, the sum of the factorizable
IR-divergent TPE box amplitudes with the nonfactorizable
IR-free seagull amplitude (evaluated in Appendix) is
given as

Mγγ ¼ M̃ðboxÞ
γγ þ M̃ðiÞ

seagull ¼ fðQ2ÞMγ þ M̃ðiÞ
seagull: ð36Þ

Denoting the corresponding fractional TPE contributions to
the elastic cross section as

δγγðQ2Þ ¼ δðboxÞγγ ðQ2Þ þ δðseagullÞγγ ðQ2Þ; ð37Þ

we obtain the following NLO expressions,8 noting that
E0 ¼ EþOðM−1Þ and β0 ¼ β þOðM−1Þ:

δðboxÞγγ ðQ2Þ ¼ 2Re
P

spinsðM�
γM̃

ðboxÞ
γγ ÞP

spinsjMγj2
¼ 2Re½fðQ2Þ�

¼ −
αQ2

2πME

"�
1

ϵ
− γE þ ln

�
4πμ2

m2
l

��(
1

β
ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
þ E
E0β0

ln

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s )

þ 1

β

(
π2

2
− ln2

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− Sp

�
2β

1þ β

�)
þ E
E0β0

(
π2

2
− ln2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ β0

1 − β0

s
− Sp

�
2β0

1þ β0

�)#

¼ δðboxÞIR ðQ2Þ − αQ2

πMEβ

"
π2

2
þ ln

�
−Q2

m2
l

�
ln

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− ln2

ffiffiffiffiffiffiffiffiffiffiffi
1þ β

1 − β

s
− Sp

�
2β

1þ β

�#
þO

�
1

M2

�
; ð38Þ

for the TPE box contribution, with δðboxÞIR ðQ2Þ ¼ −δðsoftÞIR ðQ2Þ as given in Eq. (14), and the finite seagull contribution

δðseagullÞγγ ðQ2Þ ¼ 2Re
P

spinðM�
γM̃

ðiÞ
seagullÞP

spinjMγj2

¼ −
2αQ2

πME

�
E2 þ EE0

Q2 þ 4EE0

��
I1ðQ2Þ þ I2ðQ2Þ þQ2

m2
l

½I3ðQ2Þ − I4ðQ2Þ�
�

¼ −
4αQ2

πME

�
E2

Q2 þ 4E2

��
I1ðQ2Þ þ I2ðQ2Þ þQ2

m2
l

½I3ðQ2Þ − I4ðQ2Þ�
�
þO

�
1

M2

�
: ð39Þ

The integrals I i (i ¼ 1–4) are presented in Appendix
where we evaluate the seagull term. We subsequently use
Eq. (10) to obtain the finite TPE contribution in SPA.

As mentioned, δðboxÞIR cancels exactly with δðsoftÞIR when we

include the soft bremsstrahlung contribution to this order
in QED.

IV. RESULTS AND DISCUSSION

Next we present numerical estimates of the analyti-
cally derived expressions for the box and seagull TPE
contributions obtained in the previous section. Figure 3
displays our results showing the dependence of the finite
fractional TPE corrections, δ̄γγ , of the ep and μp elastic

8Since the corrections in Eqs. (38) and (39) originate at NLO,
we use the LO expression for the four-momentum transferred,
i.e., Q2 → Q2

0 ¼ −2β2E2ð1 − cos θÞ.
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FIG. 3. Comparison of the finite TPE contributions for the box and seagull diagrams to the ep (left panel) and μp (right panel) elastic
scattering cross sections as a function of the squared four-momentum transfer jQ2j given at the three proposed MUSE incoming lepton
momenta, namely, 210 MeV=c, 153 MeV=c, and 115 MeV=c. The seagull contributions for the ep scattering, being numerically much
smaller, are shown within the inset plots. The plots in the bottom panel (fourth row) show the comparison of our results (for incoming
lepton momentum, p ¼ 153 MeV=c) with the qualitatively similar TPE results from the recent relativistic hadronic model calculation of
Ref. [57] (labeled as “Koshþ Afan”). The contribution of the Feshbach term of Ref. [34] (labeled as “Feshbach”) is also displayed.
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scattering versus the squared four-momentum transfer at
Oðα;M−1Þ. The results displayed in the figure indicate
that the TPE corrections for electron-proton scattering goes
up to about 4.5% and that for the muon-proton scattering
up to around 0.5% for the largest MUSE incoming
momentum. As anticipated from recent TPE works, e.g.,
Refs. [19,30,57], our TPE contributions are vanishing when
Q2 becomes zero.9 As observed in the figure, the TPE
contributions for electron-proton scattering are about an
order of magnitude larger than for muon-proton scattering.
At a given jQ2j and for increasing incident MUSE lepton
momenta, δ̄γγ becomes smaller but the relative electron-
proton to muon-proton ratio for δ̄γγ stays almost the same.
In Fig. 3 we also compare our evaluations of the TPE box,

δ̄ðboxÞγγ , and the seagull, δðseagullÞγγ , contributions. Here we note
that in relativistic QED the TPE box (and cross-box)
diagrams give the TPE amplitude, whereas in HBχPT
the baryons being treated nonrelativistically, the seagull
diagram naturally appears. In this case, the magnitude of
the finite seagull contribution is found to be quite insensi-
tive to the Q2 dependence except when Q2 → 0. For

electron-proton scattering, the seagull contribution is more
or less inconsequential yielding a minuscule contribution,
i.e., ∼10−6% for the range of MUSE kinematics, while for
the muon-proton scattering its contribution is much larger
going up to about 0.06%. The TPE box diagrams, however,
mostly dominate the entire MUSE range of momentum
transfers. An exception only occurs for muon-proton
scattering in the region, Q2 ≲ 0.01 ðGeV=cÞ2, where our
result indicates that the seagull terms become numerically
larger than the box contributions.
The TPE results of Ref. [57], which we label as

“Koshþ Afan,” are compared with our evaluations in
the bottom panels of Fig. 3, when we adjust their
expressions to reflect our IR treatment of the TPE ampli-
tude. To be specific, in the method used for comparing the
TPE results, we consider only the relevant finite part of
their TPE result [cf. Eq. (20) in Ref. [57] ], leaving out the
IR singular terms which must cancel against those from soft
bremsstrahlung. In our notation Eq. (20) of Ref. [57] for the
TPE (adjusted by a constant factor such that it vanishes at
Q2 ¼ 0) in the SPA is written as follows:

δ̄γγðQ2ÞjRef ½57� ¼ −
α

π

�
−
b11
γ11

�
ln

�
−Q2

mlM

�
þ 1

2
ln α12 · ln

�
4γ211

m4
l α11ð1 − α11Þ2

�

þ Sp

�
α11ðm2

l − b11 þM2Þ
2γ11ð1 − α11Þ

�
− Sp

�
m2

l − b11 þM2

2γ11ð1 − α11Þ
��

þ b12
γ12

�
ln

�
−Q2

mlM

�
þ 1

2
ln α12 · ln

�
4γ212

m4
l α12ð1 − α12Þ2

�

þ Sp

�
α12ðm2

l − b12 þM2Þ
2γ12ð1 − α12Þ

�
− Sp

�
m2

l − b12 þM2

2γ12ð1 − α12Þ
���

; ð40Þ

where

b11 ¼ 2EM; b12 ¼ Q2 þ b11;

α11 ¼
b11 þ 2γ11

2m2
l

; γ11 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b211 − 4m2

l M
2

q
;

α12 ¼
b12 þ 2γ12

2m2
l

; γ12 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b212 − 4m2

l M
2

q
: ð41Þ

In order to facilitate the comparison with our dimensionally
regularized TPE expression δ̄γγðQ2Þ [cf. Eqs. (10), (38),
and (39)] we modify their analytically regularized IR

singular terms proportional to ln λ2, where λ is a fictitious
photon mass, in the following way:

ln

�
λ2

mlM

�
↦ ln

�
−Q2

mlM

�
þ ln

�
λ2

−Q2

�
: ð42Þ

Note that the IR-divergent terms proportional to ln λ2 for
the TPE correction gets canceled by similar IR terms from a
soft photon bremsstrahlung process leading to their finite
expression, Eq. (38) in Ref. [57]. We observe in Fig. 3 that
the overall low-jQ2j behavior of our TPE contributions is
roughly consistent with Ref. [57] SPA results which are
based on the use of relativistic pointlike (Dirac) protons.
Nevertheless, despite the apparent qualitative similarity, our
total TPE contribution differs in magnitude roughly by
about a factor of 2 from that in Ref. [57]. Moreover, we
note that our results substantially differ from the results
of another recent TPE work, Ref. [30], which evaluated
the box diagrams for muon-proton scattering using a

9It may be noted that in Ref. [57] a direct evaluation of the TPE
[cf. Eq. (20) of this reference] leads to a nonzero contribution at
Q2 ¼ 0, and hence, needed to be shifted by a constant factor to
provide physical justification of vanishing asymmetry at Q2 ¼ 0.
However, we checked that an expansion of their Eq. (20) to
Oð1=MÞ indeed vanishes at Q2 ¼ 0.
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relativistic hadronic model. However, unlike Ref. [57] and
our work, the authors of Ref. [30] did not employ SPA in
their calculations, and instead numerically evaluated the
TPE amplitudes involving the so-called four-point integrals
[63,64] and their derivatives. In addition, they isolated the IR
singular terms analytically from their TPE amplitude ac-
cording to the Maximon and Tjon prescription [23]. The
significant difference of our TPE correction as well as the
results of Ref. [57] from those in Ref. [30] may imply that a
part of the TPE box diagram loop integration involves
contributions from two “hard” photon exchanges in muon-
proton scattering. This is precisely the integration region of
these TPE loops excluded in SPA.
Furthermore, in Fig. 3 we compare our TPE results with

the Coulomb potential scattering result in the second Born
approximation by McKinley and Feshbach [34], labeled
“Feshbach” in the figure. As shown in Refs. [30,47], the
relativistic evaluation of the TPE diagrams for a pointlike
Dirac proton without SPA are qualitatively very similar to
the Feshbach contribution for muon-proton scattering.
Nevertheless, it may be worth noting that the original
Feshbach derivation is applicable only for ultrarelativistic
electrons. As seen in Fig. 3 for the electron-proton
scattering, our results as well as those in Ref. [57] are
comparable to the Feshbach term for low-jQ2j values,
thereby indicating that the “hard” photon TPE loop con-
tributions might not be too important for electron-proton
scattering.
It is also instructive to study the TPE dependence on the

virtual photon “polarization” flux factor ε which may be
expressed in terms of the four-momentum transfer Q2 by
the relation [30]

εðQ2Þ ¼ 16ν2 þQ2ð4M2 −Q2Þ
16ν2 − ð4M2 −Q2Þð4m2

l þQ2Þ ; ð43Þ

where ν ¼ ðs − uÞ=4 ¼ ð4EM þQ2Þ=4 is the crossing
symmetric variable in the target rest frame. For fixed
incident lepton beam momenta, the full kinematically
allowed elastic scattering range, namely, 0 < θ < π and
0 < jQ2j < jQ2

maxj [cf. below Eq. (8)], yields the physical
bound on the flux factor, namely, εmax > ε > εmin, where

εmax ≡ εð0Þ ¼ 1

β2
;

εmin ≡ εðQ2
maxÞ ¼

m2
l ðm2

l þM2 þ 2EMÞ
2β2E2M2

: ð44Þ

While for fixed four-momentum transfers, if jQ2j > 2m2
l ,

then 2m2
l =jQ2j < ε < 1, and if jQ2j < 2m2

l , then 1 < ε <
2m2

l =jQ2j. The critical case, jQ2j ¼ jQ2
critj ¼ 2m2

l , corre-
sponds to ε ¼ 1 for all possible incoming lepton momenta.
It is worth noting that for the massless lepton case, εmay be
interpreted as the longitudinal polarization of the photon in

the case of one-photon exchange [30]. Figure 4 displays the
jQ2j dependence of ε for ep and μp elastic scatterings. The
figure identifies both the kinematically allowed and the
relevant MUSE range of ε values. Correspondingly, Fig. 5
displays the ε dependence of our TPE corrections for three
specific choices of jQ2j, namely, 0.005 ðGeV=cÞ2,
0.01 ðGeV=cÞ2, and 0.02 ðGeV=cÞ2. In each case of fixed
jQ2j the TPE effects vanish as ε → 1, i.e., the forward
scattering limit, and tend toward maximum as ε →
2m2

l =jQ2j for backward scatterings [19], as reflected in
Fig. 5. This feature of our TPE result is again qualitatively
similar to the result obtained in Ref. [57] but contrasts
sharply with the Feshbach result [34] as well as that
of Ref. [30].

FIG. 4. The dependence of the virtual photon “polarization”
factor ε on the squared four-momentum transfer jQ2j for the
proposed MUSE beam momenta for ep scattering (upper panel)
and μp scattering (lower panel.) Each plot corresponds to the full
kinematically allowed scattering range 0 < jQ2j < jQ2

maxj when
θ ∈ ½0; π� (thin lines). The thick lines are associatedwith theMUSE
kinematic range where θ ∈ ½20°; 100°�. The curves intersect at
ε ¼ 1, which correspond to the critical values, jQ2

critj ¼ 2m2
e ¼

5 × 10−7 ðGeV=cÞ2 and jQ2
critj ¼ 2m2

μ ¼ 0.02205 ðGeV=cÞ2.
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FIG. 5. The ε dependence of the finite TPE contributions for ep (left panel) and μp (right panel) elastic cross sections for three specific
jQ2j values in the proposed MUSE kinematic range. The seagull contributions for the ep scattering being numerically much smaller are
shown within the inset plots. The plots in the bottom panel (fourth row) show the comparison of our results for jQ2j ¼ 0.01 ðGeV=cÞ2
with the qualitatively similar results from Ref. [57] (labeled as “Koshþ Afan”). The contribution of the Feshbach term [34] (labeled as
“Feshbach”) is also displayed. Each plot corresponds to the kinematically allowed range of ε when θ ∈ ½0; π� (thin lines), and the
“segment” relevant to the MUSE kinematic range with θ ∈ ½20°; 100°� (thick lines).
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V. SUMMARY AND CONCLUSION

We present a low-energy model-independent calculation
of the two-photon exchange contributions to the lepton-
proton elastic unpolarized cross section at next-to-leading
order in HBχPT. The lepton mass is included in all our
expressions. Our approach contrasts many previous TPE
evaluations using relativistic hadronic models which often
use phenomenological form factors to parametrize the
proton-photon vertices. In HBχPT the heavy proton is
treated in a manifestly nonrelativistic framework which
makes it ideal for investigating the structure of the proton at
very low momentum transfers. Our evaluation is based on
the assumption that the most dominant contributions to the
TPE loop diagrams arise from the elastic proton inter-
mediate state while inelastic contributions are considered
small for low-jQ2j values. This is especially relevant in the
proposed low-energy MUSE kinematic domain where
incoming lepton beam momenta are between p ¼ 115
and 210 MeV=c. We note that while most other works
use analytic regularization schemes with a nonzero photon
mass, we used the gauge invariant prescription of the
dimensional regularization scheme to isolate the infrared
singularities of the two-photon loops. In this approach,
however, the exact evaluation of the IR-divergent four-
point one-loop Green’s function [63,64] demands analyti-
cal evaluations ofD-dimensional integrals which to the best
of our knowledge have not been pursued for exchanges of
massless photons. Further, we demonstrated in Sec. III that
the soft photon limit was taken only after the cancellations
among the NLO amplitudes were taken into account.
Moreover, one should bear in mind that we restricted the
soft photon approximation only to the IR-divergent dia-
grams. Thus, we evaluated the IR-free seagull diagram
without invoking the soft photon approximation.
The evaluation of the TPE box diagrams (with exchange

bosons with nonzero masses) involves scalar and tensor
four-point loop integrals, a topic that has been discussed
extensively in many previous works, e.g., Refs. [63–67].
In the pioneering works of Refs. [63,64], such tensor
integrals were reduced to scalar one-loop master integrals
involving one-, two-, three-, and four-point functions which
were evaluated analytically using the dimensional regu-
larization scheme. The work of Ref. [67] extended the
above formalism to include heavy-fermion propagators.
However, these approaches are unsuitable for dealing
with IR divergences using dimensional regularization
with massless photon exchanges. In fact, for massless
photon exchanges the exact analytical evaluation of the
IR-divergent four-point functions in dimensional regulari-
zation remains an open issue. Nevertheless, using dimen-
sional regularization with the soft photon approximation
provides a viable alternative for the reduction of the
four-point scalar integrals into well-known standard ones.
This approximation allows us to easily project out the
IR-divergent parts of the TPE box diagrams in order to

obtain a finite contribution to the elastic cross section. In
the soft photon limit the four-point loop integral reduces
to a three-point integrals which can be evaluated analyti-
cally, wherein each of the TPE loop momentum, 0 ≤
ðk0; jkjÞ ≤ ∞, can be decomposed as a sum of two
integrals each with a hard and a soft photon. The con-
tributions from two simultaneous hard photon exchanges
are ignored in the soft photon limit.
The results for the electron-proton scattering seem to

indicate that the dominant contribution from the TPE
loop momenta are expected to arise from the integration
domain where the contribution of the two hard photon
exchanges may give small contributions. In contrast, it
appears that for muon-proton scattering the hard two-
photon exchange part of the TPE loops could give
significant contributions. This conclusion is based on a
comparison with the muon-proton scattering analysis
presented in Ref. [47] (cf. Fig. 2 of this reference),
where the TPE amplitude was evaluated relativistically
with pointlike protons. This may indicate the importance
of including two hard photon exchanges even in very
low-energy muon-proton scattering for a more robust
estimation of the TPE contribution.
In conclusion, we demonstrated in this paper many

cancellations among the NLO box and seagull diagrams,
which are likely to remain approximately valid beyond
SPA. Furthermore, we showed that while the LO TPE
contributions vanish (up to an irrelevant imaginary part),
the dominant TPE effects arise from the box diagrams with
NLO proton-photon vertices except at very low-jQ2j values
where the finite seagull terms become significantly large
for muon-proton scattering. However, the seagull diagram
gives only a tiny contribution for electron-proton scattering
at MUSE energies. We find that the low-jQ2j behavior of
our TPE contributions are in rough agreement with the
results in Ref. [57], although they differ substantially from
those in Ref. [30]. As a next step it could be desirable to use
standard numerical packages in order to evaluate the TPE
box diagrams in the heavy baryon scheme and to examine
the robustness of our soft photon approximation results. An
estimate of the NNLO corrections in HBχPT that include,
e.g., the contribution of pion loops and the proton’s
magnetic moment, would also be helpful in understanding
the uncertainties using the HBχPT approach. Additionally,
the inelastic Δ intermediate TPE contributions may be
included to constrain uncertainties.
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APPENDIX: DETAILED DERIVATION OF THE
SEAGULL AMPLITUDE

Here we derive the TPE seagull amplitude MðiÞ
seagull from

diagram (i) in Fig. 1. The integral in Eq. (23) being both IR
and UV finite does not require any regularization and is
evaluated analytically in the four-dimensional spacetime. In
Sec. III, it was shown without implementing SPA that due
to cancellations among various NLO TPE amplitudes only

the residual part of M̃ðiÞ
seagull proportional to gμν contributes

to the cross section, namely,

M̃ðiÞ
seagull ¼ −

e4

M
1

i

Z
d4k
ð2πÞ4

×
½ūðp0Þγμð=p − =kþmlÞγμuðpÞ�½χ†ðp0

pÞχðppÞ�
k2ðQ − kÞ2ðk2 − 2k · pþ i0Þ

¼ −
e4

M
½ūðp0ÞγαIseagullγαuðpÞ�½χ†ðp0

pÞχðppÞ�;
ðA1Þ

where the loop-integral appearing above is given by

Iseagull ¼
1

i

Z
d4k
ð2πÞ4

=p − =kþml

ðk2 þ i0ÞðQ − kÞ2ðk2 − 2k · pþ i0Þ ;

where k and Q − k are the momenta of the two exchanged
photons and Q ¼ p − p0. Using Feynman parametrization
and thereby shifting the integration variable, k → kþ β
where β ¼ ðpxþQyÞ yields

Iseagull ¼
1

i

Z
1

0

Z
1

0

Z
1

0

dxdydzδð1 − x − y − zÞ

×
Z

d4k
ð2πÞ4

2ð=p − =k − =β þmlÞ
½k2 − Δ�3 :

Integration over the loop momentum k, we obtain

Iseagull ¼ −
1

16π2

Z
1

0

Z
1

0

Z
1

0

dxdydzδð1 − x − y − zÞ

×

�
=p − =β þml

Δ

�
; ðA2Þ

where Δ ¼ ðpxþQyÞ2 −Q2y. Further, it is convenient to
make a change of variables from ðx; y; zÞ to (ω; ξ) using the
transformation x ¼ ωξ, y ¼ ωð1 − ξÞ, and z ¼ 1 − ω,
which amounts to the following change of the integration
measures, namely, dxdydzδð1 − x − y − zÞ ↦ ωdωdξ.
Thus, we obtain

Iseagull ¼ −
1

16π2

Z
1

0

Z
1

0

dωdξ
ml þ =pð1 − ωξÞ − =Qωð1 − ξÞ

½ωðm2
l ξ

2 −Q2ξþQ2Þ −Q2ð1 − ξÞ�

¼ −
1

16π2

Z
1

0

Z
1

0

dωdξ

�
ml þ =p

ωðm2
l ξ

2 −Q2ξþQ2Þ þQ2ðξ − 1Þ −
ω½=Qþ ξð=p − =QÞ�

ωðm2
l ξ

2 −Q2ξþQ2Þ þQ2ðξ − 1Þ
�

¼ −
1

16π2m2
l

�
ðml þ =pÞI1 − ð=p − =QÞ

�
I2 þ

Q2

m2
l

I3

�
− ð2=Q − =pÞQ

2

m2
l

I4 þ =Q

�
Q2

m2
l

I5 − I6

��
ðA3Þ

with

I1ðQ2Þ ¼
Z

1

0

dξ

�
1

ξ2 − Q2

m2
l
ξþ Q2

m2
l

�
ln

�
m2

l ξ
2

Q2ðξ − 1Þ
�
; I2ðQ2Þ ¼

Z
1

0

dξ

�
ξ

ξ2 − Q2

m2
l
ξþ Q2

m2
l

�
;

I3ðQ2Þ ¼
Z

1

0

dξ

�
ξ

ξ2 − Q2

m2
l
ξþ Q2

m2
l

�
2

ln

�
m2

l ξ
2

Q2ðξ − 1Þ
�
; I4ðQ2Þ ¼

Z
1

0

dξ

�
ξ

ðξ2 − Q2

m2
l
ξþ Q2

m2
l
Þ2
�
ln

�
m2

l ξ
2

Q2ðξ − 1Þ
�
;

I5ðQ2Þ ¼
Z

1

0

dξ

�
1

ξ2 − Q2

m2
l
ξþ Q2

m2
l

�
2

ln

�
m2

l ξ
2

Q2ðξ − 1Þ
�
; I6ðQ2Þ ¼

Z
1

0

dξ

�
1

ξ2 − Q2

m2
l
ξþ Q2

m2
l

�
: ðA4Þ

Each of the above integrals are easily obtainable in closed forms using standard techniques or with Mathematica. Since
some of these integrals have rather elaborate expressions, we prefer to omit their explicit expressions in this communication.
Inserting the loop amplitude Iseagull into Eq. (A1) we obtain our final expression for the seagull amplitude,

M̃ðiÞ
seagull ¼

α2

m2
l M

�
N 1I1 −N 2

�
I2 þ

Q2

m2
l

I3

�
−N 3

�
I6 −

Q2

m2
l

I5

�
−N 4

Q2

m2
l

I4

�
; ðA5Þ

where N i ∝Mγ (i ¼ 1;…; 4) are defined as
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N 1 ¼½ūðp0Þγμðml þ =pÞγμuðpÞ�½χ†pðp0
pÞχpðppÞ�;

N 2 ¼½ūðp0Þγμð=p − =QÞγμuðpÞ�½χ†pðp0
pÞχpðppÞ�;

N 3 ¼½ūðp0Þγμ=QγμuðpÞ�½χ†pðp0
pÞχpðppÞ�;

N 4 ¼½ūðp0Þγμð2=Q − =pÞγμuðpÞ�½χ†pðp0
pÞχpðppÞ�: ðA6Þ

Thus, in essence we find that the seagull amplitude, unlike
the TPE box amplitudes in SPA, does not naturally
factorize into the LO amplitude Mγ times a Q2 dependent
function fðQ2Þ. This result is consistent with the propo-
sition made in Ref. [56] that the one-loop virtual radiative
corrections, and in particular the TPE amplitudes, can be
expressed as, M1−Loop ¼ fðQ2ÞMγ þ M̄1−Loop. The fac-
torizable IR-divergent first term constitutes the dominant,
so-called outer corrections, independent of the hadron
structure, while the nonfactorizable IR-finite second term
constitutes small corrections, the so-called inner correc-
tions. In most works these latter corrections are hadron
structure dependent and are often ignored in ultrarelativistic
approximations. In the HBχPT approach we find that the
dominant TPE box diagrams in SPA can be identified with
the former corrections, while the seagull term can be
identified with the latter ones. At the order of our accuracy,

the latter corrections are free of low-energy constants and,
therefore, are hadron structure independent.

Finally, it is noteworthy that, while determining δðseagullÞγγ ,
Eq. (39), the integrals I5 and I6 drop out of the calculation
due to the vanishing of spin trace ofN 3 withMγ , Eq. (11).
We find X

spins

M�
γN 3 ¼ 0 ðA7Þ

andX
spins

M�
γN 1 ¼ −

X
spins

M�
γN 2 ¼

X
spins

M�
γN 4

¼ −
16e2m2

l

Q2
ðEþ E0ÞðEp þMÞðE0

p þMÞ

¼ −
128e2m2

l M
2E

Q2

�
1þO

�
1

M

��
: ðA8Þ

Here we have used E0 ¼ EþOðM−1Þ and E0
p ¼ M þ

OðM−1Þ, since the seagull diagram already is an NLO
amplitude.
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