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In this work, we show how the knowledge of the first few terms of the Euler-Heisenberg Lagrangian’s
weak-field expansion in a magnetic field background is enough to reconstruct the pair-production rate in a
strong electric field background. To this end, we study its associated truncated Borel sum using Padé
approximants, as advocated in a recent work by Costin and Dunne [10].
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I. INTRODUCTION

In recent years, the program of “resurgence” has started
to collect a number of successes in quantum mechanics and
field theory. The idea behind it is that the typical asymptotic
expansions that are to be dealt with, for example, usual
weak coupling expansions, are to be understood as being
part of a trans-series. In simple terms, trans-series are sums
of asymptotic series weighted by nonperturbative factors
such as exponentials and logarithms. A typical example is
the semiclassical expansion, which is a sum of perturbative/
asymptotic expansions around different saddle points. We
refer the reader to [1,2] for pedagogical introductions to
the topic.
The very analytic structure of trans-series implies con-

sistency relations between the different constituent asymp-
totic series. In particular, large order coefficients of a given
expansion are known to be related to the small order
coefficients of neighboring expansions. While being seem-
ingly a mathematical curiosity, these relations have, for
example, been used to predict the loop expansion around an
instanton background for the quantum mechanical Sine-
Gordon potential [3], predictions which have been explic-
itly verified up to three loops using diagrammatic methods
[4]. For other interesting examples and reviews, we defer
the reader to [5–9] and references therein.
An immediate complaint against the potential practical

usefulness of such approaches is that the knowledge of large
orders terms of realistic quantum field theories expansions is
not necessarily available. In this spirit, Ref. [10] started to
investigate the amount of nonperturbative information that

can be extracted from a finite number of terms of an
asymptotic expansion. Stunningly, using relatively few terms
of the asymptotic expansion of solutions to the Painlevé I
equation around real infinity, they were able to reconstruct
the whole highly nontrivial analytic structure of this solution
throughout the whole complex plane. In a similar spirit, the
works [11,12] successfully explored the phase diagramof the
λϕ4 field theory by computing weak coupling expansions up
to nine loops and studying their associated Borel sums.
Having in mind general quantum field theories, these are

proofs of principle that a lot of nonperturbative information
might be at our hand, waiting to be extracted from perturba-
tive expansions.
This short article’s aim is to illustrate again the potential

use of some of the ideas developed in these works in field
theory, using one of the simplest nonperturbative effects at
hand, namely Schwinger pair production. In particular, we
present two results. First, the knowledge of a few terms of
the weak-field expansion of the Euler-Heisenberg effective
Lagrangian in a background magnetic field is enough to
reconstruct its strong-field behavior. Then, and perhapsmore
interestingly, the same knowledge is enough to reconstruct
the Euler-Heisenberg effective Lagrangian in a background
electric field, for weak and strong fields, including its
imaginary part. This means that this imaginary part, which
gives the particle production rate in a constant electric field,
can be inferred from a few terms of a perturbative expansion.

II. SCHWINGER EFFECT, GENERALITIES

Schwinger pair production is one of the most basic field-
theoretic nonperturbative effects; see [13] for an extensive
review. Its simplest realization is the vacuum emission of
charged particles in the presence of strong electric fields.
A way to study it is to compute the one-loop fermionic
effective action in a background electromagnetic field.
Then, the phenomenon of pair productions is signaled
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by the appearance of an imaginary part in the effective action.
For the sake of simplicity, we hereafter restrict ourselves to
the constant background case. There, one can explicitly write
down the effective Lagrangian [14]. For a purely magnetic
field, it admits the following closed form [13],
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with ζHðs; aÞ being the Hurwitz zeta function and ζ0Hðs; aÞ
its derivative with respect to s. The parameters m and e are
respectively the fermion’s mass and electric charge, while B
is the strength of the constant background magnetic field.
This expression is real and there is no pair production in a
magnetic background, as there is a priori no magnetically
charged particle to be produced. The case of a pure electric
field background is recovered by analytically continuing
B → �iE [15] [note that in this sense (1) can also be
understood as the Euclidean space effective Lagrangian in an
electric field background]. Then, the effective Lagrangian
does develop an imaginary part, which can be written as [15]
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with Li2 being the second polylogarithm. From this expres-
sion, it is easy to see the famous exponential suppression to
the production rate Γprod, which by definition is [13]

Γprod ¼ 2ImðLeffÞ: ð4Þ

Another representation of (1) that is of use is the following
Laplace-type integral [14,16]:
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From this representation, it is clear that the imaginary part in
the electric case comes from the contribution to the integral
of the poles of the hyperbolic cotangent at integer multiples
of iπ.
In the rest of this work, we are concerned with the weak-

field expansion of (1). It is given as [13,17]
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with ζðxÞ being the Riemann zeta function. For the electric
field, the expansion reads

LeffðEÞ ∼
m4

4π2
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Both series are asymptotic because of the factorial
growth of their coefficients. They are also both real to
all orders. It is in this sense that the rate (4) is a non-
perturbative quantity; at any given order in (7), Γprod ¼ 0.
Actually, these weak-field expansions can be resummed

to (5) using Borel summation. In this language, again, the
imaginary part appears because of the presence of poles in
the Laplace transform; (6) is “Borel summable” while (7)
is not.

III. STRONG-FIELD REGIME FROM
WEAK-FIELD EXPANSION

Following [10], we want to understand how much of the
full Lagrangian (1) we can reconstruct using a finite number
of terms in (6). To this purpose, again as in [10], we construct
the corresponding truncated Borel sum. From it, we build
Padé approximants, which are then used to compute a
resummed Lagrangian Lres

eff through a Laplace transform.
The idea behind this procedure is to try to exploit the fact that,
while the original expansion is only asymptotic, its Borel
transform is convergent. Note also that very similar tech-
niqueswere already used in the 800s; see for example [18] for
a thorough review on QCD strong coupling expansion.

To keep notations clear, we set x ¼ m2

2eB and write the
asymptotic expansion (6), truncated at order N, as
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with a2n ¼ ð−1Þnð2nþ 1Þ! ζð2nþ4Þ
ð2πÞ2n . We also define a trun-

cated Borel sum,

BLeffðp;NÞ ¼
XN
n¼1

a2n
ð2n − 1Þ!p

2n−1: ð10Þ

With these definitions, we construct a Padé approximant
of (10). Padé approximants are rational functions con-
structed to match a given series at specific points. They are
typically used to try to reproduce the analytical structure of
a function by extrapolating it away from some regions.
Their rational nature allows for the emergence of poles and

ADRIEN FLORIO PHYS. REV. D 101, 013007 (2020)

013007-2



branch cuts, which appear as accumulations of poles.
They can be found in a variety of places in the physics
literature. As a specific example, we can mention attempts to
analytically continue Euclidean lattice data to Minkowski
space through Padé approximants; see [19] and references
therein.
To have easy access to the poles of our Padé function and

have good control over the numerical Laplace transform,
we use Padé approximants of the type

P2NBLeffðp;NÞ ¼
XN
n¼1

cn
1þ bnp

: ð11Þ

The coefficients cn, bn, which are in principle complex
numbers, are computed by matching this expression to (10)
around p ¼ 0; see [20] for an explicit algorithm.
Finally, we compute our resummed Lagrangian as

follows:
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¼ 1
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1
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�
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Note in particular that without the Padé interpolation, we
would have achieved nothing, as in this case (12) would
literally be equal to (9).
We show the result of this procedure, which from now

on we refer to as Padé-Borel reconstruction, in Fig. 1.

The plain black line is the closed form (1). The dotted lines
are the truncated weak-field expansions, for different
truncation N. The dashed lines are the Padé-Borel recon-
structed expressions for the same N. Note that x → ∞,
respectively x → 0, corresponds to the weak-, respectively
strong-, field regime, the goal being to be able to extrapolate
from the former to the latter. Being an asymptotic expansion,
every order makes it break down for larger values of x,
i.e., for weaker fields. On the contrary, the Padé-Borel
reconstruction improves as N increases. This boils down to
the fact that theBorel sum (10) is convergent; every neworder
contributes, making the result more accurate. For example,
only four terms of the weak-field expansion can be used to
probe the strongly coupled regime as far as x ¼ 0.2.
This is our first result. With the knowledge of only the

first few terms of the weak-field expansion (6), it is
possible to explore the regime of strong magnetic fields
by first constructing the corresponding truncated Borel
sum, Padé approximating it and computing its Laplace
transform.

IV. SCHWINGER EFFECT RECONSTRUCTED

Now, we show that this method, using the same data,
actually also gives access to the regime of strong electric
fields. In particular, we see that we can use it to recover the
Schwinger pair production rate.
To consider an electric field, we proceed with the

analytic continuation x →∓ ix. This leads us to study

Lres
effð∓ ix; NÞ

m4

¼ 1

64π6
1

x4
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Z
∞

0
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�
: ð13Þ

Technically, to compute this Laplace transform, we
consider all the different fractions of (11) separately. We
then rotate the integration contour in the complex plane by
some angle and take into account any poles we might have
crossed in the process.
Let us first look at what we obtain for the real part of the

resummed electric field effective Lagrangian obtained
through this analytic continuation, Fig. 2. As in the magnetic
case, few terms of the weak Lagrangian allow for a precise
extrapolation up into the strong-field regime. In particular,
the reconstruction is able to predict correctly nontrivial
features such as the change of signs which happens around
x ¼ 0.1 (note that we are plotting the absolute value).
More interesting are the results for the imaginary part of

the effective Lagrangian, i.e., the pair-production rate. They
are shown in Fig. 3. They behave in exactly the same way;
few terms of the weak-field expansion still give a quanti-
tatively correct prediction of the rate. As little as the first
two terms are required to reconstruct an imaginary part
which is qualitatively correct at weak field. With only the

FIG. 1. Magnetic field effective Lagrangian: Closed-form
(plain line), weak-field expansion (dotted lines) and Padé-Borel
reconstruction (dashed lines) for different truncation order N. The
weak-field expansion has a typical asymptotic behavior; every
order makes it break down faster. The Padé-Borel reconstruction
takes advantage of the fact that the Borel sum is convergent; every
order improves the answer.
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first six terms one can make quantitative predictions up to
strong fields. This has to be contrasted again with the
original asymptotic series, which uses the same data but is
real to all orders.

The perhaps surprising capability of the Padé-Borel
reconstruction to recover the pair-production rate is due
to the fact that the Padé approximants of the truncated Borel
sums are able to reproduce the correct analytic structure of
the Borel sum. In terms of our variable x, the actual Borel
sum (5) is a meromorphic function with single poles
at x ¼ 2πin for n ∈ Z, n ≠ 0. As already mentioned, the
imaginary part (3) can be understood as coming from
the contribution of every single pole. It is dominated by the
lowest-lying ones at x ¼ �2πi,

Γlead:
prod

2
¼ 1

32π3x2
e−2πx; ð14Þ

which we also show in Fig. 3.
As the Padé-Borel approximants are constructed only

from an asymptotic expansion around the real axis it is,
however, a nontrivial fact that they are able to mimic
correctly this analytic structure. We show it occurring in
Fig. 4, where we display the poles of our Padé approx-
imants. As the truncation order N is taken to be larger, they
accumulate around x ¼ 2πin. Note that to approximate the
correct prefactors, a single pole is replaced by a combina-
tion of different ones centered around x ¼ 2πin. The
leading poles at �2πi are first reproduced accurately by
the truncation order N ¼ 6, which is consistent with the
behavior of the results presented in Fig. 3.
This is our second and most important result. The

knowledge of a few terms of the weak-field expansion

FIG. 2. Real part of the electric field effective Lagrangian:
Closed-form (plain line) and Padé-Borel reconstruction (dashed
lines) for different truncation order N. The Padé-Borel recon-
struction leads to correct and convergent results even after
analytic continuation.

FIG. 3. Pair-production rate in a background electric field
(imaginary part of the electric field effective Lagrangian):
Closed-form (plain line) and Padé-Borel reconstruction (dashed
lines) for different truncation order N. The dotted line is the
leading exponential suppression to the Schwinger rate (shifted for
readability). While N ¼ 2 gives an imaginary part which is only
qualitatively correct for weak field, N ¼ 4 and larger leads to a
quantitatively correct prediction of the Schwinger rate for a whole
range of field strengths.

FIG. 4. Poles of the Padé-Borel reconstruction in the Borel
plane, for different truncation order N. Dotted lines are multiples
of 2πi, where poles accumulate as N is taken larger. This is the
correct analytic structure of the actual Borel sum, which has
single poles at nonzero multiples of 2πi. Note that the Padé-Borel
approximation requires more than a single pole per multiple of
2πi to reproduce the correct functional dependence.
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of the effective Euler-Heisenberg Lagrangian in a magnetic
field background is enough to reconstruct the particle
production rate in a strong electric field.

V. CONCLUSION

This work can be summarized as follows: using only the
truncated weak-field asymptotic expansion of the Euler-
Heisenberg effective Lagrangian in a magnetic background,
we were able to reconstruct the full Euler-Heisenberg
Lagrangian, including its imaginary part, which gives the
Schwinger pair production rate. This may come as a
surprise, as this rate is zero at all orders of the weak-field
asymptotic expansion.
What this result suggests, as already realized in [10], is

that all coefficients in such asymptotic expansions contain
information about the analytic structure of the underlying
trans-series in the whole complex plane. This information
can be extracted by studying the associated Borel sum even
upon truncation to a finite number of terms, by taking
advantage of the fact that the Borel sum is a convergent

series. Another remarkable fact is that the knowledge of
the truncated Borel sum along the real axis is enough to
gain information about its analytic structure, using Padé
approximants, throughout the complex plane. In particular,
this means that the underlying trans-series is constrained
enough to force the Padé approximants to develop poles at
the correct locations.
The precise mechanism behind this phenomenon

remains to be better understood; this will be essential to
apply this method to unsolved problems and obtain trust-
worthy predictions. The aim of this work was however to
illustrate its potential use in a simple physical problem.
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